A meta-analysis of environmental factor effects on ammonia emissions from dairy cattle houses

Elena Sanchisa*, Salvador Calveta, Agustín del Pradob, Fernando Estellésa

a Universitat Politècnica de València, Institute of Animal Science and Technology. Camino de Vera, s/n. 46022 Valencia, Spain

b Basque Centre for Climate Change (BC3), Edificio Sede Nº 1, Planta 1, Parque Científico de UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain

* Corresponding author: Elena Sanchis, Universitat Politècnica de València, Institute of Animal Science and Technology. Camino de Vera, s/n., 46022, Valencia, Spain. Tel. 003496387007 (74317); Email: elsanji@upv.es

Abstract

Livestock housing is one of the main sources of ammonia (NH\textsubscript{3}) emissions from agriculture. Different management and environmental factors are known to affect NH\textsubscript{3} emissions from housing systems. The aim of this study was to quantitatively define the effect of temperature, wind speed, relative humidity, and ventilation rate in NH\textsubscript{3} release rates from dairy cattle housing by conducting a meta-analysis of published scientific results. A literature survey was performed to review studies published before January 2018 that have identified statistical relationships between NH\textsubscript{3} emissions and environmental factors such as air temperature, wind speed, relative humidity, or ventilation rate in dairy cattle housing. Experimental values were related using a mixed model analysis in order to analyze the effect of environmental factors on NH\textsubscript{3} emissions. For this exercise, a total of 19 peer-reviewed papers were considered and 27 different relations between air temperature and NH\textsubscript{3} emissions were used for the analysis. A significant effect of air temperature inside the barn and ventilation rate on NH\textsubscript{3} emissions was observed. Results showed that NH\textsubscript{3} emissions increased linearly with increasing air temperature inside the barn (°C) at a rate of 1.5 g·cow-1·d-1 for every temperature °C rise. For ventilation rate, an increase of 100 m3·cow-1·h-1 lead to increase NH\textsubscript{3} emissions by 2.4 g NH\textsubscript{3}·cow-1·year-1. The equations obtained in this work might help to provide information on NH\textsubscript{3} barn-related emissions behavior.
under these environmental conditions, bearing in mind that other major emission drivers such as
diet composition and animal performance might be also affected by climate changes.

Keywords

NH₃; gaseous emissions; temperature; ventilation rate; dairy cows.

1. Introduction

Ammonia (NH₃) gaseous emissions from livestock buildings are a major environmental concern
worldwide as their deposition contributes to the eutrophication of terrestrial and aquatic
ecosystems, as well as the acidification of soils, thus reducing plant biodiversity and contribute
to the formation of secondary particulate matter, which is associated to respiratory and
cardiovascular diseases (Behera, Sharma, Aneja, & Balasubramanian, 2013; IPCC, 2014).

About 94% of global anthropogenic emissions of NH₃ to the atmosphere are originated from the
agricultural sector and about 64% are associated with livestock production (Steinfeld et al.,
2006), being dairy farming a major source (Hristov et al., 2011; Külling et al., 2001).

In livestock buildings, NH₃ is released as a result of microbiological hydrolysis of urea and uric
acid by urease to form NH₄⁺ and its subsequent volatilization to NH₃ (Bouwman et al., 1997).
The total amount of NH₃ being emitted to the atmosphere mainly depends on manure excretion
and its characteristics (e.g. total ammonia nitrogen, TAN). The percentage of this TAN emitted
as NH₃ depends on multiple factors such as manure management systems, livestock
management practices and animal behavior (Bjerg et al., 2013). Environmental conditions play
also a crucial role on the rate of the excreted nitrogen that will be released as NH₃. Factors such
as manure temperature (Jungbluth, Hartung, & Brose, 2001), air temperature, relative humidity,
wind speed and ventilation rates (Hempel et al., 2016; Monteny, Schulte, Elzing, & Lamaker,
1998; Ngwabie, Vanderzaag, Jayasudara, & Wagner-Riddle, 2014; Rong, Liu, Pedersen, &
Zhang, 2014; Saha et al., 2014) have demonstrated to strongly affect NH₃ emissions.

When modelling mass and energy balances at farm or system scale, gaseous emissions should
be included as a major nutrient leak. The simplification inherent to models when assessing
emissions limit their ability to refine results since they normally use equations that allow
generalizing the effect of major parameter on emissions. An approximation for environmental
parameter effects on gaseous release rates can be found already implemented in some specific
models such as Manure-DNDC (Li et al., 2012), which assesses the degradation of manure in
livestock systems. However, in those whole farm system models such as SIMSDAIRY (Del Prado
et al., 2011), which simulate housing emissions using empirical modelling approaches (Webb &
Misselbrook, 2004) and have TAN excretion as the main emission drivers, these environmental
effects have not yet been considered.

This study was undertaken to collate and analyze published data on NH3 emissions from dairy
cattle housing with the aim of quantifying the effect of environmental factors in NH3 emissions
from dairy cattle housing and potentially be useful for refinement of modelling approaches like
SIMSDAIRY. The aim of this study was to quantitatively define the effect of temperature, wind
speed, relative humidity, and ventilation rate in NH3 release rates from dairy cattle housing by
conducting a meta-analysis of published scientific results. This study is limited to environmental
conditions affecting NH3 release rates, other major emission drivers such as TAN excretion or
management are not considered in this work.

2. Materials and methods

A literature survey was performed to review studies published before January 2018 that have
identified statistical relationships between NH3 emissions and environmental factors such as air
temperature, wind speed, relative humidity, or ventilation rate in dairy cattle housing.

The literature review was carried out searching information in the Web of Knowledge, Science
Direct, CAB direct (CAB International), and Scopus databases entering the following keywords:
ammonia or NH3 emission, temperature, ventilation rate, wind speed, relative humidity, dairy
cattle, animal housing.

Articles were selected according to the following criteria: (1) publications were in peer-
reviewed journals; (2) dairy cattle were used as experimental animals; (3) it was reported the
effect of air temperature, ventilation rate, indoor wind speed, or relative humidity on NH3
emissions inside the barn; and (4) quantitative information of the effect of these environmental factors on NH₃ emissions was reported. If these results were presented in only graphical form without directly reporting the numeric values in the literature, we quantified the values using the software Engauge Digitizer version 9.5. Measurement methods of emissions, housing system, flooring type and manure management systems, were identified but were not included in the analysis as an independent factor.

Data obtained from the articles were normalized to the same units: temperature in ºC, ventilation rate in m³·cow⁻¹·h⁻¹, wind speed in m·s⁻¹, relative humidity in %, and NH₃ emissions in g NH₃·cow⁻¹·d⁻¹. To analyze the effect of environmental factors on NH₃ emissions, the values were related using a mixed model analysis (SAS, 2009) following the procedure described by St-Pierre (2001). The mixed model analysis is useful when data are obtained from multiple studies. Therefore, it was necessary to analyze not only fixed effects of the dependent variables, but also the study and its interactions as random effects.

3. Results and discussion

3.1. Description of the dataset

A total of 19 articles were selected for this meta-analysis (Table 1). Regarding the effect of air temperature inside the barn, a total of 14 peer-reviewed published research articles were selected. Reviewed articles reported studies from 1998 to 2014, conducted in nine countries (Sweden, Netherlands, USA, Denmark, UK, Poland, Germany, Canada and Lithuania).

Table 1 compiles reported NH₃ emission rates related to environmental factors and NH₃ emissions obtained from the studies included in the meta-analysis, as well as the number of animals in the barn, the ventilation system, flooring type, manure handling, and the method used to measure NH₃ emissions. When the barn was a closed-barn, ventilation type was identified either as natural or mechanical ventilation. However, in some cases (Bjorneberg et al., 2009; Leytem, Dungan, Bjorneberg, & Koehn, 2011) the farm studied was an open-lot system dairy farm, without controlled ventilation system. Powell et al., (2008a,b) and Bagdoniené and
Bleizgys (2014) carried out their studies in chambers. The flooring systems were identified as solid or slatted floor and the manure management system as scrapped or flushed. Information regarding measuring methods for NH₃ emissions is also included in Table 1. NH₃ concentration was mainly measured by photoacoustic methods (Adviento-Borbe et al., 2010; Leytem et al., 2011; Leytem, Dungan, Bjorneberg, & Koehn, 2012; Ngwabie, Jeppsson, Gustafsson, & Nimmermark, 2011; Ngwabie, Jeppsson, Nimmermark, Swensson, & Gustafsson, 2009; Ngwabie et al., 2014; Snell, Seipelt, & Van Den Weghe, 2003; Zhang et al., 2005) or by spectroscopy (Bagdoniene and Bleizgys, 2014; Bjorneberg et al., 2009; Gustafsson et al., 2005; Powell et al., 2008a,b). Angrecka and Herbut (2014) and Kavolelis (2006) measured NH₃ concentrations using Dräger detectors whereas Flesch et al. (2009) and Misselbrook et al. (1998) measured concentrations using laser or absorption flasks, respectively. NH₃ emissions were determined in most of the studies by mass balances considering NH₃ concentrations and ventilation rates (Adviento-Borbe et al., 2010; Angrecka and Herbut, 2014; Bagdoniene and Bleizgys, 2014; Kavolelis, 2006; Misselbrook et al., 1998; Ngwabie et al., 2014, 2011, 2009; Powell et al., 2008a,b; Snell et al., 2003; Zhang et al., 2005). Other authors (Bjorneberg et al., 2009; Dore et al., 2004; Flesch et al., 2009; Leytem et al., 2011, 2012) used the Lagrange inverse dispersion technique to quantify NH₃ emissions. Only one study quantified emissions using a static chamber (Adviento-Borbe et al., 2010). The number of animals in each experiment varied from 16 to 10,000. From these articles, 27 different relations between air temperature and NH₃ emissions were used for the analysis (see SUPP. Material SP1). The effect of ventilation rate on NH₃ emissions was studied through 11 different relations obtained from 6 published studies (SUPP. Material SP2). The effect of wind speed and relative humidity was studied through the results of 5 and 6 published studies, respectively. Table 1 shows the descriptive statistics of the environmental factors and NH₃ emissions included in the database. NH₃ emission rates ranged from 0.3 to 245.7 g NH₃·cow⁻¹·d⁻¹. A wide range was observed for temperature, relative humidity, ventilation rate and air speed at animal
level. This suggests that results from a wide range of climatic conditions and barn designs were
analyzed. The statistical analysis showed a significant effect of temperature, which is described
in the following section.

In our study, no wind speed neither relative humidity presented statistically significant effects
on NH₃ emissions. According to Snoek et al. (2014), the rate of NH₃ volatilization depends on
the mass transfer coefficient, which depends on air velocity at manure level, thus leading to a
positive correlation between both parameters. Nevertheless, data from air velocity
measurements used in this analysis were not performed at manure level but at barn level. It is
known that, at barn scale, air velocities might present a high variability. This might be also
happening with humidity data and should explain the low impact of these variables on NH₃
emissions as also observed by Bougouin et al. (2016) and Simsek et al. (2012).

3.2. Effect of temperature on NH₃ emissions

Figure 1 shows the relationship between temperature and NH₃ emissions. NH₃ emissions
increased linearly with increasing air temperature inside the barn (°C). According to Meisinger
and Jokela (2000), higher temperatures promote NH₃ losses by decreasing the solubility of NH₃
gas in the soil solution and by increasing the proportion of TAN as NH₃ gas. Urease activity is
also is affected by temperature, being reduced at temperatures lower than 10 °C and increased
between 10 and 40 °C (Sommer et al., 2006). The amount of volatile NH₃ release to the
atmosphere depends as well on the equilibrium between NH₃ in the liquid and in the gas phase.
This equilibrium is strictly temperature dependent (Monteny & Erisman, 1998).

Several of the selected studies for the meta-analysis have shown a significant positive
correlation between temperature in the barn and NH₃ emissions (Adviento-Borbe et al., 2010;
Doorn, Natschke, & Meeuwissen, 2002; Gustafsson et al., 2005; Kavolelis, 2006; Misselbrook
et al., 1998; Ngwabie et al., 2011; Zhang et al., 2005). These authors found that NH₃ emissions
increased with increasing air temperature, but in some cases, this increase was highly dependent
on floor type and manure system (Zhang et al., 2005).
The rest of the articles selected did not quantify the relationship between air temperature and NH$_3$ emissions, however they found diurnal and seasonal patterns of NH$_3$ emissions associated with air temperature (Bjorneberg et al., 2009; Dore et al., 2004; Flesch et al., 2009; Leytem et al., 2012, 2011; Ngwabie et al., 2009; Powell et al., 2008a,b).

Table 3 shows the statistical parameters obtained through the meta-analysis. According to our results, when temperature increases one degree, NH$_3$ emissions increase by 1.5 g·cow$^{-1}$·d$^{-1}$. Liu et al. (2017) found linear regression equations between NH$_3$ emissions, air temperature and crude protein content of feed in open-lot, free-stall and tie-stall dairy barns. These authors found a stronger effect of temperature on emissions, thus each 1ºC increase in air temperature, NH$_3$ emissions increased between 2.7 and 2.4 g·cow$^{-1}$·d$^{-1}$. It must be considered that the equation obtained in this work has been developed considering only those studies who studied the effect of temperature on NH$_3$ emissions, by obtaining emission factors at the same location and conditions except for temperature. However, Liu et al. (2017) included also studies showing a unique value of temperature and NH$_3$ emissions, which might lead to bias when multiple factors affect emissions at a single point (e.g. higher milk yields for lower temperatures).

Emission factors obtained using the equation developed in this work are within the range used for inventories. As an example, the European Environmental Agency guidelines for national emission inventories (EEA, 2016) suggest a Tier 1 emission factor between 16.9 and 19.2 kg NH$_3$·place·year$^{-1}$. Using values provided in Table 3, and an average temperature of 15ºC, it results in an emission factor of 17.53 kg NH$_3$·cow$^{-1}$·year$^{-1}$.

This equation can be generalized to a broader scale if expressing the results as the effect of temperature on the percentage of excreted TAN emitted as NH$_3$. Then, results from Table 3 can also be expressed as a percentage of TAN, according to Equation 1 (where temperature values ranged from -8 to 35 ºC). For this purpose, values of nitrogen excretion (105 kg N·year$^{-1}$) and proportion of TAN (0.6 g TAN·g N excreted$^{-1}$) in the dairy cattle manure excreted have been obtained from the EMEP/EEA Guidelines (EEA, 2016).

\[\text{NH}_3 \text{ emissions (g N-NH}_3/\text{g TAN excreted)} = 0.007 \cdot \text{Temp (°C)} + 0.12 \] (Equation 1)
3.3. Effect of ventilation rate on NH3 emissions

According to Blanes-Vidal (2008), higher ventilation rates cause in general, higher air velocities inside the barn, and therefore higher gaseous emissions. Several authors have studied the relationship between ventilation rate and NH3 emissions with a general positive correlation between both terms (Kavolelis, 2003; Philippe, Cabaraux, & Nicks, 2011; Samer et al., 2012). Figure 2 depicts the relationship found in this work for ammonia NH3 and ventilation rates. A positive linear relationship was also observed in this case.

According to the statistical analysis (Table 4), an increase of 100 m³·cow⁻¹·h⁻¹ lead to increase NH3 emissions by 2.4 g NH3·cow⁻¹·year⁻¹. The following equation (Equation 2) shows the NH3 emissions expressed as a percentage of TAN. For this purpose, values of nitrogen excretion and proportion of TAN in the dairy cattle manure excreted have been obtained from the EEA (2016) Guidelines. Ventilation rate values in Equation 2 ranged from 40 to 1814 m³·cow⁻¹·hour⁻¹.

\[
\text{NH3 emissions (g N-NH3/g TAN excreted) = 0.00016\cdot Vent Rate (m³-cow⁻¹·h⁻¹) + 0.11 (Equation 2)}
\]

It must be considered that there is an interaction between temperature and ventilation rate. It is known that the difference of temperatures inside and outside of the barn affects ventilation rates. Bearing this fact in mind, it must be considered that neither the wind velocity nor the ventilation rates are necessarily the dominant factor of influence for the NH3 concentration in the air of naturally ventilated dairy houses. Therefore, only one of the two equations presented in this work should be used at once to avoid overestimating the effect of these effects on emissions.

An increase in gaseous emissions due to global warming might be expected in the future (IPCC, 2014), creating great challenges for animal production and the sustainability of livestock systems, particularly in countries with warmer climates such as the Mediterranean (Pereira, Misselbrook, Chadwick, Coutinho, & Trindade, 2012). The equations obtained in this work might help to provide information on NH3 barn-related emissions behavior under these environmental conditions, bearing in mind that other major emission drivers such as diet composition and animal performance might be also affected by climate changes.
4. Conclusion

This study was designed to quantify the effect of environmental factors in NH$_3$ emissions from dairy cattle housing. The statistical analysis showed a significant effect of air temperature inside the barn and ventilation rate on NH$_3$ emissions. The following conclusions can be drawn from this study:

Air temperature inside the barn is the most important environmental factor affecting NH$_3$ emissions. NH$_3$ emissions increased linearly with increasing air temperature inside the barn ($^\circ$C).

Ventilation rate also produce a linear increase in NH$_3$ emissions. However, due to the close correlation between both factors, a confounded effect of ventilation rate with temperature may exist.

No effects between NH$_3$ emissions and wind speed or relative humidity were found significant through the statistical analysis probably due to the high variability of both parameters within the barn environment.

Our equations to predict NH$_3$ emissions would be very helpful to provide information on NH$_3$ barn-related emissions behavior under these environmental conditions, bearing in mind that other major emission drivers such as diet composition and animal performance might be also affected by climate changes.

Acknowledgements

This study is part of the project OPTIBARN and was financially supported by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) through the research grant 618105 FACCE Era Net Plus – Food Security, Agriculture, Climate Change ERA-NET plus.

5. References

Del Prado, A., Misselbrook, T., Chadwick, D., Hopkins, A., Dewhurst, R. J., Davison, P., …

and pigs and from manure stores. *Advances in Agronomy*, 89, 261–335.

