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Abstract: A new class of diffraction-based corneal inlays for treatment of presbyopia is 
described. The inlay is intended to get an improvement of the near focus quality over previous 
designs. Our proposal is a two zone hybrid device with separated amplitude and phase areas 
having a central aperture and no refractive power. An array of micro-holes is distributed on 
the surface of the inlay conforming a binary photon sieve. In this way, the central hole of the 
disk contributes to the zero order of diffraction, and the light diffracted by the micro-holes in 
the peripheral photon sieve produces a real focus for near vision. We employed a ray tracing 
software to study the performance of the new inlay in the Liou-Brennan model eye. The 
MTFs at the distance and near foci, and the area under the MTFs for different object 
vergences, were the merit functions used in the evaluation and the results were compared with 
those obtained with previous pure amplitude designs. Additionally, image simulations were 
performed with the inlays in the model eye to show the good performance of our proposal in 
improving the quality of the near vision. 
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1. Introduction

Corneal inlays are optical devices employed by ophthalmologists to provide good near and 
intermediate vision of presbyopic people between the ages of 45 and 60 years old. As their 
name suggest, corneal inlays are surgically implanted within the corneal stroma (the thicker 
middle layer of the cornea) into a small pocket created with a femtosecond laser. The pocket 
seals itself, and the entire procedure typically takes only few minutes. Actually, corneal 
inlay surgery is less invasive than other procedures, which involve implanting intraocular 
lenses inside the eye, either directly in front or behind of the iris. Moreover, corneal inlay 
surgery is usually combined with LASIK surgery to correct both presbyopia and refractive 
defects [1-3].  

Considering their physical operating principles, corneal inlays can be classified into different 
categories: refractive inlays, small aperture inlays and diffractive inlays [2,4], being the last 
category the most recent development in this field. In fact, in Ref [4] our team reported the 
first Amplitude Diffractive Corneal Inlay (ADCI) as the result of the combination of two 
concepts: the pin-hole effect [5] (used in the above mentioned small aperture inlays) and the 
photon sieve [6,7] (a photon sieve is essentially an amplitude Fresnel zone plate in which the 
transparent rings have been replaced by a set of non-overlapping holes distributed within the 
corresponding area). 

Recently we have studied different designs of ADCI in comparison with small aperture 
corneal inlay, both, numerically in different model eyes [8, 9], and also experimentally in 
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vitro with ADCI prototypes [9]. Those studies revealed that ADCI exhibit a higher light 
throughput, and improvements in imaging of near objects. In an effort to further improve the 
near vision of presbyopic people, here we present a new class of diffraction-based corneal 
inlays. The fundamental difference with the previous ADCI models is that it is a hybrid 
device with two concentric ring areas: the inner one having a pure phase transmittance and 
the outer one having a pure amplitude transmittance. Thus, the new model, called Hybrid 
Diffractive Corneal Inlay (HDCI) is a solid ring in which these two differentiated parts, are 
drilled with an array of micro-holes distributed on the surface of the inlay conforming a 
binary photon sieve. In this way, the central hole of the disk contributes to the zero order of 
diffraction, and the light diffracted by the micro-holes in the peripheral photon sieve produces 
a real focus for near vision. We employed Zemax Optic Studio software to study the 
performance of the new inlay in the Liou-Brennan model eye. The merit functions we used in 
the evaluation of the HDCI were: the Modulation Transfer Function (MTF) at the distance 
and near foci, and the area under the MTFs (AMTFs) for different object vergences. Results 
were compared with those obtained with an equivalent ADCI. Additionally, the Point Spread 
Functions (PSFs) were computed and image simulations were performed with the inlays in 
the model eye to evaluate the performance of our proposal. 

2. Diffractive Corneal Inlays

To describe the HDCI design, let us recall that previous designs of ADCI were considered [8] 
in which both, the radius of the central hole, and the area covered by the surrounding photon 
sieve structure were varied to obtain different ratios of energy between the near and far foci. 
The higher values of the axial irradiance at the near focus were obtained with the design 
shown in Fig. 1a), where the black region represents the opaque surface (with zero 
transmittance), while the white regions are holes drilled on the opaque surface, so these are 
transparent regions with transmittance value 1 and phase 0. To improve the efficiency of the 
near focus we have considered a hybrid design in which the innermost 3 opaque rings were 
replaced with transparent rings of thickness h equivalent to a phase change of π.  So,  

( )
0

CI c2·
h

n n

λ=
−

, (1) 

where λ0 is the design wavelength, nCI is the refractive index of the corneal inlay material, and 
nc is the refractive index of the cornea. In this way, a half wave phase shift is provided 
between the holes and the transparent region at the central part of the inlay. The HDCI 
transmittance distribution is shown in Fig. 1b), where the transparent surface with π phase is 
represented in blue. As can be seen in this figure, the HDCI evaluated in this study consisted 
in a disk of 4.15 mm diameter with a central hole of 1.00 mm diameter surrounded by the 3 
innermost transparent rings up to a radius of 1.133 mm and other 7 outermost opaque rings up 
the external radius of the inlay. In this way, the effect of the combination of phase and 
amplitude in the HDCI can be appreciated, even for the smallest pupil we considered in this 
wok (see the green circle in Fig. 1b). Both ADCI and the HDCI have a total of 9640 holes of 
different size, being the smallest ones of 18 μm diameter. They were designed to provide a 
near diffractive focus corresponding to a nominal addition of +3.00 D for the design 
wavelength (550 nm).  
By using Eq. 1 we have found that the structure of the inlay must have a thickness h = 4.91 
µm. The same thickness was considered for the ADCI in the following analysis. 
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increasing the amount of light directed to the near focus. On the other hand, for distant vision 
the ADCI provides the best MTFs.  

Table 1. Liou-Brennan model eye Zemax data sheet 
 (r and z are radial and axial coordinates in the crystalline lens). 

Surface 
Radius 
(mm)

Asphericity
Thickness 

(mm)
Refractive index 

Anterior 
Cornea 

7.77 -0.18 0.200 1.376

Anterior 
corneal inlay 

7.77 -0.18 0.005
1.376 (ADCI)   

1.432 (HDCI) 

Posterior 
corneal inlay 

7.77 -0.18 0.295 1.376

Posterior 
Cornea 

6.40 -0.60 3.160 1.336

Iris - - 0.000 -

Anterior Lens 
12.40 -0.94 1.590 

1.368 +0.049057 z - 

0.015427 z2 -0.001978 r2 

Lens 
Infinity - 2.430

1.407 -0.006605 z2 - 

0.001978 r2 

Posterior 
Lens 

-8.10 0.96 16.260 1.336



Figure 2: MTFs for distance and near foci provided by the ADCI (blue) and HDCI (red) with 
pupil diameters of 3.0 mm and 4.5 mm.  

To give insight into how is the relative image quality for distance and near objects provided 
by both designs, the AMTF has been calculated. In fact, this metric showed a high correlation 
with the visual acuity [12]. In our case we have selected the range of spatial frequencies 
beteween 9.5 cycles per degree and 30 cycles per degree, equivalent to visual acuites between 
0.5 logMAR and 0.0 logMAR. Fig. 3 shows the AMTFs provided by the corneal inlays with 
different pupils. As can be seen, both designs have a bifocal profile but for both pupil 
diameters, the near focus the HDCI presents a higher value of the AMTF with an extended 
depth of focus, in comparison with the ADCI. On the other hand, as expected from the results 
shown in Fig. 2, the ADCI has a better performance for distance objects.  
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holes. With the new model we found an improvement of the near focus efficiency, and an 
extension of the depth of focus for near. However, this benefits were obtained at the cost of 
losing contrast for distance objects, and it seems that the previous design provides an overall 
better optical quality. Now, taking into account that normally, corneal inlays are implanted 
monocularly in the non-dominant eye [3], this fact is not necessarily a great disadvantage for 
distance vision, because the fellow eye could compensates for this.  

Thus, in further studies the HDCI will be analyzed under different realistic variations that 
affect its optical properties, such as the influence of the inlay decentration and its behavior 
under polychromatic illumination. Moreover, both designs need to be tested subjectively to 
assess their performance. 
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