
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/153468

Folch-Fortuny, A.; Arteaga, F.; Ferrer, A. (2017). PLS model building with missing data: New
algorithms and a comparative study. Journal of Chemometrics. 31(7):1-12.
https://doi.org/10.1002/cem.2897

https://doi.org/10.1002/cem.2897

John Wiley & Sons



See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/315379574

PLS	model	building	with	missing	data:	New
algorithms	and	a	comparative	study

Article		in		Journal	of	Chemometrics	·	March	2017

DOI:	10.1002/cem.2897

CITATIONS

0

READS

149

3	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Voluntary	Sector	View	project

CSR	in	Retailing	View	project

Abel	Folch-Fortuny

Royal	DSM

14	PUBLICATIONS			72	CITATIONS			

SEE	PROFILE

Francisco	Arteaga

Catholic	University	of	Valencia	San	Vicente	M…

51	PUBLICATIONS			371	CITATIONS			

SEE	PROFILE

Alberto	Ferrer

Universitat	Politècnica	de	València

109	PUBLICATIONS			1,883	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Abel	Folch-Fortuny	on	10	October	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/315379574_PLS_model_building_with_missing_data_New_algorithms_and_a_comparative_study?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/315379574_PLS_model_building_with_missing_data_New_algorithms_and_a_comparative_study?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Voluntary-Sector?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CSR-in-Retailing?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abel_Folch-Fortuny?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abel_Folch-Fortuny?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Royal_DSM?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abel_Folch-Fortuny?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco_Arteaga2?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco_Arteaga2?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco_Arteaga2?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alberto_Ferrer2?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alberto_Ferrer2?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitat_Politecnica_de_Valencia?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alberto_Ferrer2?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abel_Folch-Fortuny?enrichId=rgreq-bbe6b900454dcf9df8e275ac9b98826d-XXX&enrichSource=Y292ZXJQYWdlOzMxNTM3OTU3NDtBUzo1NDc5ODYxNTQ0OTYwMDBAMTUwNzY2MTQ4ODIxMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


PLS model building with missing data: new algorithms and a
comparative study

Abel Folch-Fortunya,b,∗, Francisco Arteagac, Alberto Ferrera

aMultivariate Statistical Engineering (GIEM), Dep. de Estadı́stica e Investigación Operativa Aplicadas y Calidad,
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Abstract

New algorithms to deal with missing values in predictive modelling are presented in this article.

Specifically, two trimmed scores regression (TSR) adaptations are proposed, one from principal

component analysis (PCA) model building with missing data (MD) and other from partial least

squares regression (PLS) model exploitation with missing values. Using these methods, practi-

tioners can impute MD both in the explanatory/predictor and the dependent/response variables.

PLS is used here to build the multivariate calibration models, however, any regression method

can be used after MD imputation. Four case studies, with different latent structures, are analysed

here to compare the TSR-based methods against state-of-the-art approaches. The MATLAB code

for these methods is also provided for its direct implementation at http://mseg.webs.upv.es,

under a GNU license.

Keywords: missing data, partial least squares regression (PLS), imputation, trimmed scores

regression (TSR), multivariate calibration

1. Introduction

Missing data (MD) is a common problem in data analysis. MD may appear in databases

for a different number of reasons: respondents not answering to some questions in surveys, values
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outside the instrument range or missing owing to malfunctions of the sensor, failure in the commu-

nication between the instrumentation and the digital control system (DCS), sensors with different

sampling rates, errors during data acquisition, and so on [1–3]. Most data-driven exploratory and

predictive models cannot deal directly with data sets including missing values. Thus, it is manda-

tory to address this problem as a previous step or to develop methodologies capable of fitting

models with incomplete data. MD can be related either to the set of process/exploratory/predictor

variables or to the quality/dependent/response variables in many industrial environments, such as

chemical, biochemical or pharmaceutical, and several research areas, such as biology, chemistry,

medicine, environmental sciences, psychology, economics or sociology.

When building statistical models, MD may appear at two stages i) model building (MB), when

using data sets with missing values to fit the model, and ii) model exploitation (ME), i.e. when

using existing models to process new observations with missing values.

MB and ME problems have been addressed when building exploratory models using principal

component analysis (PCA). This way, a new regression-based framework for PCA-ME was pro-

posed in [4, 5]. The methods presented there, known data regression (KDR) and trimmed scores

regression (TSR), were proven statistically superior (in terms of the mean squared error) to other

approaches commonly used by practitioners such as projection to the model plane (PMP), single

component projection (SCP), conditional mean replacement (CMR) [6], iterative algorithm (IA)

[7] and modified nonlinear iterative partial least squares regression algorithm (NIPALS) [8], using

different industrial data sets as case studies. The framework was adapted to a PCA-MB environ-

ment in [3], where TSR arose as the best compromise solution for MD imputation when comparing

to IA, PMP, KDR, data augmentation (DA) [9] and the nonlinear programming approach (NLP)

[10]. Most of these methods were afterwards implemented in a graphical user interface (GUI) in

MATLAB called Missing Data Imputation (MDI) Toolbox [11].

The most used methods for PLS-MB with MD are the aforementioned IA and NIPALS, in

their PLS versions. They have been implemented in many commercial software packages, such as

ProSensus MultiVariate [12], SIMCA-P [13], The Unscrambler [14] and PLS Toolbox [15]. Other

methods have been proposed in the literature for missing data imputation in predictive modelling

[16], such as the algorithm of Krzanowski based on SVD[17], the general iterative principal com-
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ponent imputation (GIP) [18], the multiple imputation by chained equations (MICE) [19], two

regularized versions of the known E-M algorithm: one based on ridge regression (r-EM) [20] and

the other one based on a truncated total least squares regression (t-EM) [21], and an approach

based on an optimization procedure using an undeflated PLS algorithm (OUPLS) [22]. Regarding

PLS-ME, apart from NIPALS and IA, the original TSR algorithm for PCA-ME was adapted in

[23] with the aim of predicting the uncoming measurements and the future quality variables while

the batch is still being processed.

After the good performance of TSR in PCA-MB, PCA-ME and PLS-ME, here two novel ver-

sions of TSR are proposed for PLS-MB with MD. Thus, TSR can be applied, from now on, to

solve both MD problems (MB and ME) in exploratory and predictive models, as IA and NIPALS.

For these methods, missing completely at random (MCAR) or missing at random (MAR) mecha-

nisms are assumed for the MD, that is, the reason why an element is missing does not depend on

the unobserved value (as it happens, for example, in censored data).

The first version of TSR presented here, TSR-1, is a direct adaptation of the algorithm for PCA-

MB to PLS-MB, changing the data preprocessing within the algorithm. The second one, TSR-2, is

an adaptation of the TSR algorithm for PLS-ME to PLS-MB, using the same rationale developed

in [3] to adapt the regression-based framework methods from PCA-ME to PCA-MB. The other

regression-based methods, KDR and its variants, are not adapted to a PLS-MB environment, since

TSR has been shown a more efficient approach [3].

To test the novel TSR algorithms, a comparative study is presented here against other state-of-

the-art methods [2]: NIPALS and IA. The aforementioned algorithm of Krzanowski, GIP, MICE,

r-EM and t-EM are not included here, since they consider only MD in the predictor variables, and

thus, its comparison would be more appropriate with PCA-MB methods, as commented in [3].

OUPLS is not used in the comparison for software availability problems.

The aim of this paper is to provide researchers and practitioners with a ready-to-use MATLAB

code to impute missing values in a regression environment, that is, using not only information of

predictor and response matrices separatedly but exploiting the relationships among them. This

way, the algorithms provided here can be used for fitting PLS models with MD or for imputing

MD as a previous step of any other methodology (predictive or not). The TSR algorithms proposed
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here are freely available at http://mseg.webs.upv.es, under a GNU license.

The structure of this article is as follows. Section 2 introduces the notation and explains how

the two TSR algorithms for PLS-MB are built, and how NIPALS and IA are applied here. Sec-

tions 3-4 describe the data sets and the performance criteria used in the comparative study. After

showing the resuts in Section 5, Section 6 discusses on the methods performances and presents the

conclusions.

2. Methodology

2.1. Notation

Let X be an N × K predictor data set. An indicator matrix M can be defined to indicate where

the MD appear in X, i.e. mnk = 1 if xnk is missing and 0 otherwise. The complementary of the

indicator matrix can also be built as M̄ = 1N1T
K −M. Let xT

n be an observation (row) of X with

MD. Without loss of generality, the missing values, denoted as x#T
n , can be assumed to appear

at the first R variables, while the available K − R values are denoted as x∗Tn . The partition of xT
n

can be extended to the whole dataset as X = [X# X∗]. Finally, the data partition is transferred

to a PCA model, affecting the K × A loading matrix P =

P#T

P∗T

, where A denotes the number

of principal components (PCs) in the PCA model. This way, the score matrix can be written as

T = XP = X#P# + X∗P∗. More details regarding the PCA-MB notation with MD can be found in

[3].

When a response matrix Y (N×M) is considered, two indicator matrices can be defined as MX

and MY. Considering that the missing data in xT
n and yT

n appear in the first RX and RY positions,

respectively, the MD partition of both vectors can be transferred to a PLS model as shown in

Figure 1. This way, the MD partition in X defines the partition in the loading, P, and weight,

W, matrices, while the partition in Y affects the loading matrix of the responses, Q. Finally, the

extention of the MD partition in the predictor variables is also extended to the normalized (K × A)

weight matrix, which here is represented as R = W(PTW)−1, in the same way as in W (see Figure

1). It is worth noting that matrix R substitutes to the classical PLS normalized weight matrix W

4
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Figure 1: MD partition in PLS data matrices. Grey areas mark the missing values in the original data sets.

with a star superindex, which is used in this article to denote the submatrix of W corresponding to

the available variables in observation xT
n (see Figure 1).

The columns of the aforementioned matrices are expressed here as the corresponding bold

lower-case letters, e.g. w from W. For T, t represents the scores of all the observations for a

particular PC/latent variable (LV) (a column of T) and τT represents the scores of an observation

for all PCs/LVs (a row of T). Similarly, the columns of the Y-scores matrix U are represented as

u.

No operator is used in this article for the usual matrix product. The Hadamard element-wise

product between matrices is represented using symbol ◦.

2.2. NIPALS

Each iteration of the NIPALS algorithm performs a sequence linear regressions of columns

and rows of X and Y matrices onto score vectors (u and t, columns of U and T, respectively) and

weight vectors (w and q, columns of W and Q, respectively) until convergence [2, 24] (see Figure

1). When data in any column or row of X or Y are missing, the iterative regressions are performed

using the available values, and the missing ones are ignored [8].

At each iteration of the NIPALS algorithm, the data are autoscaled, i.e. the mean is substracted

form each column, and afterwards the resulting values are divided by their standard deviation. In-
5



deed, this preprocessing, at each step of the algorithm, is also implemented in the other algorithms

used here, in order to make their results comparable.

2.3. IA

IA relies on the estimates from a PLS model to fill in the MD in X and Y [2, 7]. The algorithm

applied here consists of the following steps:

1. Replace the MD by the mean of the corresponding variables.

2. Autoscale X and Y.

3. Fit a PLS model using both data matrices.

4. Impute the missing values using the predictions from the PLS model: X̂ = TPT and Ŷ =

TQT

5. If convergence has not been reached, return to step 2.

2.4. TSR adaptation from PCA-MB to PLS-MB (TSR-1)

TSR algorithm for PCA-MB [3] is summarised here. TSR starts with an initial mean imputa-

tion of the data set X. Afterwards, for each row xT with MD, it triggers a loop in which the MD

are iteratively imputed fitting regression models between the missing positions and the scores of

the available data:

X# = (X∗P∗)B + U (1)

where X∗P∗ is the trimmed scores matrix, i.e. the score matrix that corresponds only to the known

variables and their associated loadings, yielding:

B̂ = (P∗TX∗TX∗P∗)−1P∗TX∗TX# (2)

Once the regression model is fitted, the missing part x#T is estimated as :

x̂# = X#TX∗P∗(P∗TX∗TX∗P∗)−1P∗Tx∗ = S#∗P∗(P∗TS∗∗P∗)−1P∗Tx∗ (3)

where the covariance matrix of X, S, can be decomposed as:

6



S = [X#X∗]T[X#X∗]/(N − 1) =

X#TX# X#TX∗

X∗TX# X∗TX∗

 /(N − 1) =

S## S#∗

S∗# S∗∗

 (4)

At each iteration step, TSR fits as many regressions as rows with missing values. In the next

iteration, the PCA model is recalculated and the missing data is imputed again using Equations

1-3. The loop stops when the difference between consecutive imputations is below the specified

threshold.

PLS aims at finding the latent space of X that better explains Y by maximising the covariance

between both data matrices. Thus, one could argue that one way of meeting this objective consists

of augmenting the X data set with the Y matrix and fit a PCA model, which in this case would

maximise the covariance of matrix [X Y]:

[X Y]T[X Y] =

XT

YT

 [X Y] =

XTX XTY

YTX YTY

 (5)

Following this idea, the TSR algorithm for PCA-MB with MD can be used directly for PLS-

MB purposes simply by using the aforementioned augmented matrix as input. This way, after

using Equation 3 in the iterative scheme for MD imputation, we would only need to fit a PLS

model with the imputed data as final step.

Figure 2 shows a scheme of the adapted TSR algorithm using the augmented matrix [X Y].

This data matrix is autoscaled at each step t using the vector of means, m, and the diagonal matrix

D containing the standard deviations of the variables. Once the MD have been imputed iteratively

using TSR for PCA-MB, the last step of the algorithm consists of fitting a PLS model to obtain

matrices T, P, Q and R. This TSR version for PLS-MB is from now on denoted as TSR-1. The

iterative procedure stops when the imputed values stabilize, as the original TSR.

2.5. TSR adaptation from PLS-ME to PLS-MB (TSR-2)

Two issues arise in the straightforward adaptation of TSR-1. Firstly, even pursuing a similar

objective, a PCA on [X Y] gives a different solution than a PLS, so a PCA-based model for MD

may offer a different imputation than using a method fitting inner PLS models in the algorithm, as

NIPALS and IA do. Secondly, the number of components may be different in PCA than in PLS.
7
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t = 0 

For each incomplete row n 
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Convergence? 
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Figure 2: TSR-1 procedure for PLS-MB. M denotes here the MD indicator matrix of the augmented data [X Y]. M̄ is

the complementary of the indicator matrix.
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Therefore, if the number of PLS components are used to fit a PCA model using the augmented

matrix, overfitting or underfitting problems may appear.

A TSR version for PLS-ME, using PLS as the core model, can be derived from the original

idea of the algorithm for PCA-ME. In [23] this model was proposed to estimate the missing values

in real-time batch monitoring. TSR for PLS-ME aims at estimating the complete scores of new

observations using the information contained in the scores of the submatrix of X corresponding to

the available data in the reference observation. Using matrix T from the complete model, this can

be expressed as:

T = T∗B + E (6)

where T = XR, B is here a different regression coefficient matrix than in Equations 1-2, and:

T∗ = X∗R∗ = X∗W∗(PTW)−1 (7)

Matrices P and W are used to obtain R∗ in order to improve prediction of the missing values

using information from the complete PLS model, and to avoid problems of invertibility [23].

From Equations 6-7, the regression matrix B can be estimated as:

B̂ = (T∗TT∗)−1T∗TT = (R∗TXT∗X∗R∗)−1R∗TX∗TT (8)

And since X∗ = TP∗T:

B̂ = (R∗TXT∗X∗R∗)−1R∗TP∗TTT = (R∗TS∗∗R∗)−1R∗TP∗Θ (9)

where Θ = TTT
N−1 is the covariance matrix of the scores. Finally, using the previous estimation, the

scores of the PLS can be estimated in the last step of TSR for PLS-ME [23], that is, combining

Equations 6-7:

T = X∗R∗B + E (10)

we get:

9



τ̂ = B̂TR∗Tx∗ (11)

being x∗ the available part of the measurements of the new observation x.

To adapt TSR from PLS-ME to PLS-MB, the same rationale presented in [3] is followed here.

That is, the TSR version for ME is applied in each of the n rows with missing values of the data

matrices at each step t of the iterative procedure, using the PLS model of the previous imputation

step as the complete model.

Additionally, as a final step in TSR for PLS-MB, not only the PLS scores are needed, but the

values for the MD imputation. These are obtained, from Equation 11, as:

x#
n = P#τ̂n = P#B̂TR∗Tx∗n = P#ΘP∗TR∗(R∗TS∗∗R∗)−1R∗Tx∗n =

= P# TTT
N − 1

P∗TR∗(R∗TS∗∗R∗)−1R∗Tx∗n =

=
X#TX∗

N − 1
R∗(R∗TS∗∗R∗)−1R∗Tx∗n = S#∗R∗(R∗TS∗∗R∗)−1R∗Tx∗n (12)

It is worth noting that Equation 12 gives, in fact, a similar estimation for the missing measure-

ments in X as presented in [3] for PCA-MB, that is, substituting P∗ by R∗ in Equation 3.

Finally, the estimation for the Y missing values is obtained as:

y#
n = Q#τ̂n = Q#ΘP∗TR∗(R∗TS∗∗R∗)−1R∗Tx∗n (13)

Unfortunately, Equation 13 cannot be expressed in a more simplified way, since the matrix

establishing the relationship between X and Y, R, has the dimensions of the loading matrix in X,

not in Y.

This methodology can be represented as a diagram. Figure 3 shows the adapted TSR version

from PLS-ME [23] to PLS-MB, from now on denoted as TSR-2. This algorithm is indeed similar

to TSR-1 (see Figure 2) with some differences: i) since data matrices are processed separatedly,

each step is applied on both matrices, ii) MD indicator matrices are defined, each one associated

to the data partition in one of the matrices, and iii) a PLS model is fitted on both autoscaled data
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matrices, instead of PCA. The iterative procedure stops again when the imputation values stabilize

in both data matrices, so the PLS matrices are estimated using the last round of imputation.

3. Data sets

The case studies used in the comparative study span different practical situations in chemomet-

rics. We selected four data sets displaying fat (more variables than observations) and thin (more

observations than variables) X matrices, using industrial and research data sets, real and simulated

ones, comparing different latent variable structures (1, 3 and 6 LV), and different number of Y

variables (1, 4 and 5).

The first case study is the Hald data set, widely used as an example for regression purposes

[25, 26]. This data set has 13 observations of 4 ingredients of Portland cement and a single

response variable equal to the number of calories of heat generated in the hardening process. One

single LV is extracted, explaining 55% of X and 96% of Y.

The second data set is taken from systems biology, and corresponds to 36 cultures from the

flux data set used in [27]. The 44 fluxes measured in each experiment, excluding biomass, are

considered as predictors, and the protein produced as the response. 3 LVs are selected in the PLS,

explaining 76.5% of variance in X and 71.5% in Y.

The third data set comes from chemometrics, and has been used in [28] for calibration transfer

purposes imputing unmeasured spectra as missing data. It corresponds to a set of measurements

of pseudo-gasoline samples using an spectrometer capturing wavelengths from 800 nm to 1600

nm in 2 nm intervals. The Y data correspond to measurements of heptane, iso-octane, toluene,

xylene and decane concentration are the properties of interest to be predicted. The first (master)

spectrometer is used here. 6 LV are used in the PLS model, explaining 99.9% and 99.8% of

variance in X and Y, respectively.

Finally, a simulated data set including 10 variables and 100 observations is simulated [29, 30],

using 4 PCs with eigenvalues equal to 3, 2.5, 2 and 1.5. The original data matrix is split afterwards:

the first 6 variables are assigned to the X data set, while the remaining 4 to Y. When fitting a PLS

model, 3 LVs are chosen, explaining 87.9% of variance in X and 75.2% in Y.

11
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Figure 3: TSR-2 procedure for PLS-MB.
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4. Comparative study

In the next section, the performance of TSR-1, TSR-2, IA and NIPALS are compared using the

case studies. The strategy to generate the MD is the same as proposed by the authors in previous

articles [3, 31]: 6 incremental levels of MD are considered in each data set, ranging from 10% to

60%, and for each data set and percentage, 50 incomplete data sets are simulated.

The principal performance criterion for each method is the mean squared prediction error

(MSPE) in both X and Y data sets:

MSPE-XMethod =

N∑
n=1

K∑
k=1

(x̂nk − x̂Method
nk )2

NK
(14)

MSPE-YMethod =

N∑
n=1

M∑
m=1

(ŷnm − ŷMethod
nm )2

NM
(15)

where x̂nk is the predicted value for the kth variable of the nth observation in the prediction matrix

X̂ = TPT obtained from the complete data set; and x̂Method
nk the analogous prediction obtained after

applying the corresponding method on the incomplete data set. The same applies for the mth

Y-variable in ŷnm and Ŷ = TQT.

The second performance criterion is the cosine between the normalized weight vector of the

first PLS, obtained using the full data matrix and its corresponding from the imputed data set.

In order to assess whether the differences among methods, in terms of MSPE, are statistically

significant, a four-factor mixed-effect ANOVA model is fitted per each case study. Method (4

levels), X-MD percentage (6 levels), Y-MD percentage (6 levels), and their interactions are fixed-

effect factors, and the data set, nested to the combination of X-MD and Y-MD percentages, is a

random-effect factor. The total number of individual data sets imputed here is 4 original data sets

× 6 MD percentages in X × 6 MD percentages in Y × 50 simulations = 7200.

A logarithmic transformation is used for MSPE-X and MSPE-Y. This transformation also ex-

pands the differences for low percentages of MD, easing the visualization of the plots. In case any

effect or interaction is statistically significant (p-value<0.05) in the ANOVA model, the 95% least

significant difference (LSD) intervals are computed to establish differences among methods.
13



The mechanism generating the MD in this comparative study is MAR or MCAR. In other

words, these methods do not apply for missing values due to non-ignorable (NI) [2] mechanisms,

in which the reason while a value is missing is related to the value itself. Classical examples of MD

generated by NI mechanisms are values below the detection limit and respondants not answering

specific questions in a survey or other types of censored data. In our case studies, to mimic

the MAR and MCAR mechanisms, missing values are distributed randomly across variables and

individuals in the data sets.

5. Results

5.1. Hald data

As expected, the more missing values are considered in both X and Y the more difficult is for all

methods to reconstruct accurately the MD. This can be seen in the first and second column of plots

in Figure 4, corresponding to MSPE-X and MSPE-Y values. Each plot in these two columns show

the evolution of the MSPEs when increasing the X-MD percentage for a fixed Y-MD percentage.

In the third column of plots, representing the cosines of the normalized weigths of the first LV, this

effect can also be appreciated in the degradation of the cosine values.

NIPALS has problems in imputing MD in this first data set from 40% of X-MD onwards,

and when converges it has in general a statistically worse peformance than the other methods in

imputing MD in X (see first column of plots in Figure 4). Regarding the MSPE-Y, its performance

is clearly the worst one (see second column of plots in Figure 4).

The performance of TSR-2 and IA is similar in MSPE-X, having TSR-2 a better performance

for some percentages of MD (see first column of plots in Figure 4). Regarding MD in Y, IA attains

a statistically better results for low X-MD (10-30%), otherwise their results are similar (see second

column of plots in Figure 4).

The performance of TSR-1 is, in general, statistically superior to all the other methods up

to 40% of Y-MD, and there tend to be no statistically significant differences for some X-MD

percentages among the other methods (except NIPALS) for 50-60% of Y-MD.
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Figure 4: Hald data set resuls. The first (second) column of plots show the MSPE-X (MSPE-Y) results and the

last column shows the cosines of the normalized weights of the first LV. The x-axis of each plot denotes the X-MD

percentage. The differences regarding Y-MD percentages can be seen comparing rows of plots. The blue circles, red

’+’s, green crosses and black squares denote the results of TSR-1, TSR-2, IA and NIPALS, respectively. The shaded

bands represent the LSD 95% confidence intervals for the MSPE results of each method.
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5.2. P. pastoris data

NIPALS has also problems in the P. pastoris data set (see Figure 5). Even having results on

MSPE-Y statistically as good as TSR-1 for low percentages of X-MD and Y-MD, and statistically

better than IA and TSR-2 (see Figure 5e, h and k), it fails to converge when more than 40% of

missing data is considered in Y.

TSR-1 obtains here the best performance both in MSPE-X and MSPE-Y, with very few excep-

tions, in which its results are statistically equal to other approaches (see first and second column

of plots in Figure 5). Mainly, the second-best method in this data set is TSR-2, followed by IA.

The MSPE-Y for high percentages of Y-MD shows an oscillatory performance for all methods,

e.g. Figure 5k, n and q. This effect might be due to the 29% Y-variability not explained by the

PLS model, causing artifacts depending on the combination of percentages of MD in X and Y

considered for the imputation.

5.3. NIR data

The performance of NIPALS in this third case study is even poorer than in previous examples.

Here, it is only able to impute up to 40% of X and 20% of Y-MD. And, when available, its results

are statistically worse than the other iterative approaches.

Regarding MSPE-X, TSR-1 and TSR-2 have a similar performance, being both statistically

superior to IA for 40%-60% of X-MD percentages (see first column of plots in 6). However, TSR-

1 is indisputably the best method when checking the MSPE-Y results, followed by TSR-2, which

gets statistically better or equal results than IA (second column of plots in Figure 6).

The performance in MSPE-Y of IA for high Y-MD percentages (see Figures 6k, n and q)

improves when changing from 10 to 30% of MD in X. This is probably due to IA is being affected

by overfitting in the imputation, since the percentage of variance explained of both X and Y in the

PLS model is very high (see Section 3) when using 6 LV in the model. TSR-1 and TSR-2 seem to

be not influenced by this problem.

The difference in the performances of TSR-based algorithms and IA can also be appreciated

in the third column of plots in Figure 6, where, even getting very high cosines, the values of IA

appear below TSRs’ when the percentages of MD in X and Y increase.
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Figure 5: P. pastoris data set resuls. More details in caption of Figure 4.
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Figure 6: NIR data set resuls. More details in caption of Figure 4.
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5.4. Simulated data

In the last case study analysed here, NIPALS is unable to analyse any combination of X and

Y-MD percentages, even including only 10%-X and 10%-Y MD. TSR-1 shows again a clear

statistically better performance in both MSPE-X and MSPE-Y for all MD percentages than its

competitors, with few exceptions where its results are as accurate as TSR-2’s. Between TSR-2

and IA there are again some cases in which they get statistically equal results, but in general the

performance of TSR-2 outperforms IA. These significant differences match the results obtained in

the third column of plots, corresponding to the cosines of the weight vector of the first LV.

In this dataset, IA shows an erratic performance, especially in MSPE-Y (see Figures 7n and

q). This happened also in the P. pastoris case study, and reinforces the hypothesis that it is due

to the lack of variance explained in Y, in this case similar to the aforementioned example (25%).

However, TSR-1 seems to be not affected by this problem in any case study.

6. Discussion and conclusion

Two TSR algorithms have been proposed in this chapter: TSR-1 consists of an adaptation of

the TSR algorithm from PCA-MB to PLS-MB, and TSR-2 is an adaptation of TSR from PLS-ME

to PLS-MB. The representative set of case studies analysed here, which span different practical

situations with missing data, show that TSR-1 is an excellent approach regardless the latent struc-

ture of the data. Its performance is in general statistically superior to TSR-2, in terms of MSPE-X

and MSPE-Y, with few exceptions for some combinations of MD percentages in X and Y.

Both TSR-based approaches have been compared to other state-of-the-art methods: IA and

NIPALS. IA shows generally a statistically worse performance than the TSR-based approaches,

being its results in few cases closer to TSR-2’s. NIPALS, a method implemented in many commer-

cial statistical packages (such as ProSensus MultiVariate, The Unscrambler, SIMCA-P and PLS

Toolbox), is clearly the statistically worst method compared here, since for most MD combina-

tions is not able to converge and when it converges, its results are significantly worse than IA and

TSR-based methods.

TSR-1 performed extraordinarily well for PLS-MB with MD. As commented in the Intro-

duction, the ability of TSR to reconstruct the covariance matrix of incomplete data sets, which
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Figure 7: Simulated data set resuls. More details in caption of Figure 4.
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ultimately determines the relationships among variables in most multivariate models, makes the

final PLS fitted on imputed data resemble more the actual model than specific methodologies de-

veloped for PLS-MB with MD. This way, if practitioners find MD when fitting other covariance

matrix-dependent methodologies, such as principal component regression or multiple regression

models, they can use directly TSR-1 to impute the MD and then use the complete matrices for

obtaining the desired model.

On the other hand, TSR-1 uses the number of components specified for the PLS model at

hand to build the PCA-based model for the MD imputation. This may generate a problem if the

covariance structure of the augmented data matrix [X Y] is strongly different to the latent structure

of a PLS model between X and Y, thus provoking over or underfitting. However, one way to

overcome this hypothetic situation consists of using an algorithm to select the appropriate number

of PCs using the augmented matrix. In [11], the ckf algorithm [32] was used to decide the number

of components in the MDI toolbox for PCA-MB. This procedure could solve the aforementioned

problem.

Both TSR algorithms proposed here are freely available at http://mseg.webs.upv.es, un-

der a GNU license.
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