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ABSTRACT 

Establishing the best layout configuration for software-generated interfaces and control panels is a 

complex problem when they include many controls and indicators. Several methods have been 

developed for arranging the interface elements; however, the results are usually conceptual designs that 

must be manually adjusted to obtain layouts valid for real situations. Based on these considerations, in 

this work we propose a new automatized procedure to obtain optimal layouts for software-based 

interfaces. Eye-tracking and mouse-tracking data collected during the use of the interface is used to 

obtain the best configuration for its elements. The solutions are generated using a slicing-trees based 

genetic algorithm. This algorithm is able to obtain really applicable configurations that respect the 

geometrical restrictions of elements in the interface. Results show that this procedure increases 

effectiveness, efficiency and satisfaction of the users when they interact with the obtained interfaces. 
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1. Introduction  

Human-machine interfaces can be as simple as single displays or controls, or as technologically advanced as a 

multi-touch-enabled control panel (CP). Over the years, machines and processes controlled through CPs have 

become more and more complex. Significant progresses have been made in process monitoring and control 

instrumentation; consequently, the number of indicators and controls in CPs is constantly increasing. Nowadays, 

classical interfaces and CPs have been replaced by visual display units (VDUs) in control rooms of industrial 

processes. For example, in power plants or mines (Carvalho et al., 2008; Horberry et al., 2010; Hwang et al., 

2009; Lin and Wu, 2010), or in public transports such as trains, ships or planes (Degani et al., 1992). In the same 

way, VDUs are present in processes that need a lot of data to be simultaneously presented, like stock market 

trading, health care, traffic, etc. (Raeisi et al., 2016). Progressively, dedicated “hard” controls and displays have 

been replaced by reconfigurable “soft” elements on VDUs (Degani et al., 1992). 

The design of the CPs, and the different types of controls and displays that make them up, have been widely 

studied in past years using principles of human information processing (Alluisi and Morgan, 1976) looking for 

efficiency, safety, and ergonomics (Kantowitz and Sorkin, 1983; Kroemer et al., 2001; Sanders and McCormick, 

1993). Well-known rules have been established for selecting and arranging different sorts of controls and 

displays in interfaces according to diverse needs and conditions (International Organization for Standardization, 

2008; Kroemer et al., 2001; Stewart, 1995). For example, ISO 11064-5 contains a checklist to verify the 

implementation of design principles as well as a process description for display and control specification.  

Unlike the old analogic CPs, software-generated interfaces offer more flexibility and adaptability. The 

configuration and the layout of the CP can be adapted to operators’ requirements and to the task being 

developed. For example, in a software-based CP, controls and displays are usually presented in windows that can 

be resized or rearranged. Therefore, employing software-generated interfaces can achieve a high level of 

efficiency, satisfying personal requirements at the same time (Nachreiner et al., 2006). 

As the interfaces become more complex and flexible, new opportunities and problems appear. Due to the 

adaptability of the software-generated interfaces, it is possible to adapt the layout of the CPs to the requirements 

of the task developed (Gajos et al., 2006a), or to the user of the CP at each moment (Todi et al., 2018). However, 

establishing the best configuration for a CP including many controls and indicators is a complex problem. The 

convenient position and size of each element must be established to optimize the task performance based on 

several criteria, while multiple restrictions must be considered to maintain the functionality of the CP. 

Fortunately, new computational interaction methods help to solve these problems. A review on these new 

techniques can be found in Oulasvirta et al. (2018). 

Several methods have been developed for arranging interface elements in CPs (Chapanis, 1996; Oulasvirta, 

2017a). Process-analysis techniques perform a functional analysis of the interaction studying different steps of 

the process. Based on this analysis, flow diagrams or flow charts of the interaction are created and can be used to 

establish the CP layout (Alppay and Bayazit, 2015). Link analysis (Lin and Wu, 2010; Wickens et al., 2003) is a 

process-analysis technique widely used to improve user interfaces. This technique analyses the relationships 

between the elements of CPs and represents the intensity of these relationships using statistical values in the 

links between the corresponding elements.  
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Usually, the results of the application of these techniques are schematic charts, interaction tables or sequence 

diagrams that can be used to optimizing the arrangement of the elements in the interface. Initially, CPs layouts 

were created manually by experts relying on experience and design principles; however, when the complexity of 

the problem increased, computer programs and computational models were developed to assist designers (Foley 

et al., 1991; Kim and Foley, 1990; Oulasvirta et al., 2018; Wu and Liu, 2009). The most common approach is to 

build a quantitative model of the human-interface interaction, and subsequently, to look for the configuration that 

provides the best model performance (Francis, 2000). Due to the complexity of the problem, techniques like 

linear programming (Holman et al., 2003), hill-climbing (Francis, 2000), simulated annealing (Francis, 2000; 

Geman and Geman, 1984) and different heuristics and metaheuristics have been used. 

These procedures present two main problems. Firstly, the results are conceptual designs that require manual 

adjustments to obtain a layout valid for a real situation. Although these general arrangements indicate the 

optimal position for each component, there are restrictions such as the size or the shape of the controls and 

displays, or the total available space in the CP, which the solution obtained from these procedures do not 

consider. Therefore, it is necessary to introduce changes in the initial optimal arrangement, and the solution 

finally implemented could be far from optimal. On the other hand, some of the methods used to gather data can 

affect the behavior of the observed user, can present some subjectivity in the measurements or can be imprecise 

(Alppay and Bayazit, 2015). These problems make it difficult to obtain significant results or to generalize the 

findings.  

Avoiding these drawbacks implies to use a resolution technique that considers the geometrical restrictions of the 

CPs during the search for the optimal layout. In this way, the obtained solution can be directly implanted without 

the need for manual adjustments that distort the layout. On the other hand, it is necessary to use a simpler, less 

time-consuming and less invasive method to gather data during the observation of the users’ activities. 

Achieving these objectives can simplify the process of obtaining new optimal layouts, and take advantage of the 

adaptability of software-based CPs.  

Based on these considerations, in this work we propose a new automatized procedure to obtain optimal layouts 

for software-based CPs. Data from input devices (e.g. the path of the cursor over the screen and the clicks of the 

mouse’s buttons) are collected while the users perform usual tasks by means of the CP. Simultaneously, eye-

tracking devices are used to collect data on the users’ gaze over the CP. On the other hand, a quantitative model 

of the human-interface interaction is built using common principles in the arrangement of elements in CPs 

(Sanders and McCormick, 1993). Based on these principles and using the data collected, links between the 

interface elements are established and represented in a link table (Wickens et al., 2003).  Finally, a slicing-trees 

based genetic algorithm (Holland, 1975; Srinivas and Patnaik, 1994) is used for optimizing the layout of the 

controls and displays in CPs. This metaheuristic, based on the slicing tree structure (Tam, 1992), is specially 

efficient in the search for geometrically acceptable solutions (Diego-Mas et al., 2017, 2008), avoiding the need 

for manual adjustments of the final layout.  

Eye-tracking is a particularly relevant technique for assessing user-machines interactions and mental workload 

during the execution of the tasks, that has been previously used for analyzing interactions between operators and 

CPs (Karn et al., 1999; Martin et al., 2011; Stainer et al., 2013; Starke et al., 2015; Wedel, 2017). Mainly, these 

previous works deal with mental workload evaluation during task execution. Some of them use eye-tracking to 
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compare the operators’ workflows or to evaluate the correspondence between eye movement and the goal 

structure of a task. Therefore, eye-gaze is used to evaluate the working conditions or the adaptation level of a CP 

to the task developed. However, the obtained data are not used to improve the design of the CPs. One of the 

main contribution of our work lies in the integration of the eye-tracking data into the design of the optimal layout 

of the CPs.  

The following sections describe the developed procedure and its application to a case study. Section 2 describes 

the design principles and data gathered to generate the layouts of the CPs, as well as the way used to measure the 

performance of the users-CP interaction. Section 3 shows the problem definition and the GA designed to find the 

layout that best match the established criteria respecting the geometrical restrictions. A case study is presented in 

Sections 4 and its results are shown in Section 5. Finally, the obtained results are discussed in Section 7. 

2. Design principles, data collection and performance measuring 

The basic design principles for the arrangement of interface elements established in Sanders & McCormick 

(1993) have been widely accepted and used for the design of interfaces. The principle of sequence of use 

specifies that the elements of the interface used in operational sequences must be located with regards to these 

sequences. In the same way, the proximity compatibility principle (Wickens and Carswell, 1995) demands that 

elements relevant to a common task or mental operation should be rendered close together. The frequency of use 

of each element present in a CP must also be considered. Therefore, controls and indicators frequently accessed 

must occupy convenient locations. The position and area occupied by these elements should be defined to 

facilitate accessibility and usability. 

These design principles must be transformed in design requirements. Usually, the following design requirements 

are established:  

• the elements of the CP that are frequently accessed sequentially must be close to each other in the 
arrangement;  

• the elements of the CP that are accessed together in a common task must be close to each other;  
• the elements shall be sized according to their frequency of access and use;  

The implementation of these design requirements makes it necessary to define an access to an element of the CP. 

A software-based CP operator can access an element in two ways; obtaining information from an indicator or a 

display, or using a control (for example clicking the mouse on it). It is a common task for CPs operators to use a 

control while looking a display in order to read the response of the controlled process. This example is a case in 

which two elements are sequentially accessed; the control is accessed using the pointing device and the display 

using the gaze. For this reason, both actions, using the pointing device and looking at an element, will be 

considered an access in this work. In this way, to look consecutively at two elements, or using a control while 

looking another element, will both be considered cases of sequential accesses between two elements. 

During the CP operation, the number and sequence of accesses to its elements must be captured. In order to 

detect actions on the controls, the software events of the pointing device can be registered. Concurrently, an eye-

tracking device collects data on the operators’ gaze. The obtained data be used to optimize the arrangement of 

the elements of the CP following the design requirements previously mentioned. This optimization process 

requires the definition of a quantitative fitness function that measures the degree in which a proposed layout 
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accomplishes the design requirements. The objective of the optimization process is to find the layout that 

maximizes this fitness function.  

The quality of the arrangements of the elements in a CP depends on the human-CP interaction performance. 

Once the layout that best fits the design requirements has been obtained, its performance must be compared with 

other arrangements to validate the capability of the procedure presented in this work to find optimal layouts. The 

human-interface interaction performance should rather consider efficacy, efficiency and satisfaction in the 

development of the tasks (International Organization for Standardization, 1998), and different indicators must be 

used to measure each of these aspects (Frøkjær et al., 2000). In the case study of this work, we will measure the 

performance of a proposed layout while a group of operators performs the same series of tasks. In this way, it 

will be possible to compare the number of errors committed, the time consumed to carry them out, and the users' 

satisfaction measured by attitude rating scales.  

3. Material and methods 

The procedure proposed in this work has two stages. In the first stage, operators are monitored while using the 

CP to develop several predefined tasks in order to gather mouse and eye-tracking data. Using these data, and 

based on the design requirements exposed in the previous section, links between the CP elements are established 

and represented in a link table (Wickens et al., 2003). The value of the link between two components represents 

the need for closeness between them. In the second stage, a GA is used to obtain the optimal layout considering 

the link table and the geometrical restrictions imposed to the elements of the layout. 

3.1. Problem definition 

Given a CP to be optimized like that shown in Figure 1a, let R be its geometric ratio (height divided by width). 

Generally, R matches the geometric ratio of the screen that will show the CP. The number of elements to be 

distributed in the CP will be called n, and ai will be the percentage of the area of the CP occupied by each 

element i. These areas are considered to be rectangular and with flexible geometry. Flexible geometry means that 

the geometric ratio of the area allocated for the element may vary within certain limits (geometric constraints). 

These limits (rmin_i and rmax_i) depends on the kind of control or indicator that occupies the area, and they must 

be established considering the functionality of the element. For example, let a be the area occupied by a slider 

bar in a CP, and rmin = 0.16 and rmax = 6.00 the minimum and maximum geometric ratios permissible for this 

element. Figure 1b shows the different permissible shapes for the slider bar. While the area a remains constant, 

the ratio between the height and width of the slider varies within rmin and rmax. The area and the geometric limits 

of the elements must be assigned considering that certain controls or indicators require a specific orientation. For 

example, elements with both ratio limits lower than one have horizontal orientation (Figure 1b), while ratios 

higher than one force vertical orientations.  

Rearranging the elements of the CP can imply variations in the size of the elements to avoid overlapping 

elements or empty spaces in the screen. However, this variation of the initial area must be limited to avoid that 

some elements become unrealistic small, or that very frequently accessed elements occupy most of the CP. 

Hence, minimum and maximum areas of the elements (amin_i and amax_i) are defined. Hence, the area (ai) of one 

element can be varied in [amin_i , amax_i]. 
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Summarizing the definition of the problem, n elements must be rearranged in a CP with a geometric ratio R. The 

initial area of each element i is ai, its geometric ratio can be varied between rmin_i and rmax_i, and its area must be 

in ai± alim_i. 

 

Figure 1: (a) Areas of interest (AOI) defined for each element of the interface. AOI-1 to AOI-9 were shaped over 
indicators, and AOI-10 to AOI-14 over controls. AOI-A and AOI-B were defined over elements related to the 
communications systems. (b) Variation of the shape of an element of a CP between its min and max geometric 

ratios. Ratios lower than one produce horizontal orientations. Ratios greater than one result in vertical 
orientations. 

 

3.2. Data collection 

In the first stage, a software running on a PC is used to simulate the target CP on a VDU equipped with an 

unobtrusive screen-based eye-tracking device. The position, size and functionality of the elements are the same 

as those of the target CP’s elements. The software detects the actions over the controls and a software model of 

the controlled process calculates and shows the responses in the corresponding indicators of the CP.  

For the analysis of eye movements, each element of the CP is defined as an area of interest (AOI) (Holmqvist et 

al., 2011). AOIs are used in eye-tracking studies to link eye-movement measures to parts of the stimulus used 

(Hessels et al., 2016). AOI’s are defined drawing boxes around elements on the screen (Figure 1a) and naming 

a) 

b) 
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them using the eye-tracker software, and are meant to help with doing quantitative analysis, calculating how 

often and how long these elements were looked at (Pernice et al., 2009).  

Several operators with experience in operating the target CP are selected and asked to complete the same 

sequence of tasks on the CP. The task to be performed by the operators depends on the goal of the study and the 

characteristics of the controlled process. The sequence of tasks may include, for example, the most common 

tasks of the controlled process, critical tasks in which no mistakes should be made or tasks that should be done in 

a short time. While the operator performs the job, the software registers the time devoted to each task, the 

number of mistakes made, the mouse path on the screen and the mouse-click events (including the number of 

clicks and the position of the cursor during each click). Simultaneously, the eye-tracker registers the position of 

the gaze of the operator.  

When all the operators have performed the sequence of tasks, eye-tracking data of each operator are analyzed to 

obtain the percentage dwell time (PDT) (Blascheck et al., 2014) for each AOI. PDT is the percentage of time that 

the operators eyes remain in one AOI relative to the other AOIs (Helleberg and Wickens, 2003; Wickens C. D., 

2008; Wickens et al., 2002). Besides, mouse-click events are examined registering how many times each AOI 

has been clicked, and calculating the percentage of clicks over each AOI relative to the total number of clicks. 

These data are used to obtain the transitions of gaze between the AOIs of the CP. A transition is a movement of 

the gaze from one AOI to another (Goldberg and Kotval, 1999). A common visualization technique of transitions 

between AOIs is the transition matrix (Blascheck et al., 2014; Goldberg and Kotval, 1999). Transition matrix 

arranges AOIs horizontally in rows and vertically in columns. Each element of the matrix Tij has the value of the 

number of times the transitions from AOIi to AOIj occurred (one-way transition matrix), or the number of times 

the transitions between AOIi and AOIj occurred regardless of direction of the transition (two-way transition 

matrix) (Harris et al., 1986). 

As has been mentioned in Section 2, we have considered two kinds of sequential accesses between the elements 

of a CP. The first kind of sequential access is the gaze transition between two elements (gaze-gaze sequential 

accesses). The operator looks at one element and then at another one. The second class occurs when the operator 

of the CP interacts with an element using the mouse, while looking at another element simultaneously (gaze-

mouse sequential accesses). To capture this kind of sequential accesses, mouse-click events are examined 

registering the cases in which the click is made on an AOI while the operator is looking at another one. The data 

from all the operators are used to create a two-way transition matrix, in which each element has the value Xij = 

Tij + Cij. In this expression, Tij is the average number of times the transitions between AOIi and AOIj occurred, 

and Cij is the average number of clicks over one of these AOIs (i or j) while the operator is looking at the other. 

The diagonal of the matrix is always empty because transitions within AOIs cannot occur. Since the matrix is 

symmetric, only the values under diagonal are represented. This transition matrix will be used as the link table 

that expresses the need for closeness between the elements of the CP. 

3.3. A genetic algorithm to optimize the CP layout 

To obtain the best arrangement of a group of elements (controls and indicators) in a VDU of known proportions 

is a case of a quadratic assignment problem (Karrenbauer and Oulasvirta, 2014), or facility layout problem (FLP) 

(Kusiak and Heragu, 1987). The FLP is a combinational optimization problem that studies the distribution of a 
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set of components with known and unequal area in a flat surface of given dimensions. The elements to be 

arranged interact with each other; therefore, the layout of the elements on the flat area must be obtained in such a 

way that costs related to these interactions are keep to a minimum. 

There are not exact procedures to solve FLPs if the number of elements to be distributed is high. Therefore 

metaheuristic techniques are used to obtain solutions to the problem (Zhu et al., 2017). Metaheuristics commonly 

used to solve FLPs are memetic algorithms (Merz and Freisleben, 1999), particle swarm optimization (Hosseini-

Nasab and Emami, 2013; Önüt et al., 2008), tabu search (James et al., 2009; McKendall and Liu, 2012), 

simulated annealing (Kulturel-Konak and Konak, 2015; Saifullah Hussin and Stützle, 2014) or genetic 

algorithms (GAs) (Diego-Mas et al., 2009; El-Baz, 2004; Küçükoğlu and Öztürk, 2017).  

GAs are widely used in optimizing user interfaces for human performance (Oulasvirta, 2017a, 2017b). Within 

this class of algorithms, slicing-trees based genetic algorithms (Holland, 1975; Srinivas and Patnaik, 1994) are 

specially efficient to obtain geometrically acceptable solutions to FLPs with strict geometric constrains (Diego-

Mas et al., 2008), avoiding the need for manual adjustments of the final layout. GAs explore the solution space 

of the problem performing a stochastic guided search based on the evolution of a set (population) of structures 

(chromosomes) (Goldberg, 1989). Each chromosome represents a solution to the problem. The population of 

chromosomes is evaluated using a fitness function to measure its suitability for the requirements of the problem. 

Based on the fitness of each chromosome, a new population that inherit the best characteristics of their 

predecessors is obtained. The new population is the result of several transformations guided by some genetic 

operators (generally selection, crossover and mutation), which combine or alter the chromosomes obtaining new 

solutions. This iterative procedure is repeated a predefined number of iterations or until another stop criterion is 

reached. 

The CP layouts obtained using these methods must be applicable in real practice. Therefore, the geometrical 

restrictions of elements that form the CP must be respected. Solutions that do not conform to these limits must be 

considered unacceptable. For this reason, we propose to use a slicing-trees based genetic algorithm to obtain the 

CP layouts. This GA uses slicing trees to generate the solutions. In our case, a slicing tree is a rooted binary tree 

in which each leaf is assigned a unique integer corresponding to the identifier of an element to be arranged in the 

CP. Each internal node represents the way (vertical or horizontal) a rectangular partition of the VDU is cut, 

allocating the elements in each branch of the node on each side of the partition. Figure 2 shows two slicing trees 

used to arrange five elements in a VDU recursively cutting the VDU space. Each leaf of the trees corresponds to 

one element of the CP. Each internal node represents the way a rectangular partition of the VDU is cut (V 

vertical, H horizontal), allocating the elements in each branch of the node in each side of the partition. Partitions 

are generated descending recursively throughout the tree. If the partition is horizontally cut, the elements in the 

left sub-tree and right sub-tree are allocated in the upper and lower side of the partition respectively. If the 

partition is vertically cut, the elements of the CP in the left sub-tree and right sub-tree are allocated in the left and 

right side of the cut respectively. The calculation of the cut point is straightforward since the areas of the 

elements to be allocated in each partition are known. Different layouts can be generated by modifying the type of 

cut that is made in the internal nodes or the structure of the tree. 

The proposed GA operate in two phases. In the first one, the algorithm looks for an optimum slicing tree. The 

trees are generated by applying clustering techniques (using the average linkage method) considering the 
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requirements of the different elements to be near each other, and the geometric potential of the slicing trees 

(Diego-Mas et al., 2008). The geometric potential is an indicator of the capacity of a slicing tree to generate 

geometrically acceptable solutions. In the second phase, using the previously obtained slicing tree, the algorithm 

looks for the optimum layout by changing the kind of cuts made in the nodes of the optimal tree. A detailed 

description of the operation of this kind of algorithms can be found in Diego-Mas et al. (2008).  

 

Figure 2: Generating CP layouts in a VDU from slicing trees. Each leaf of the trees corresponds to one element 
of the CP. Each internal node represents the way a rectangular partition of the VDU is cut (V vertical, H 

horizontal), allocating the elements in each branch of the node in each side of the partition. Modifications of the 
type of cut made in the internal nodes or the structure of the tree will generate different layouts. 

 

3.3.1. Fitness function 

In a FLP, the elements must be arranged in such a way that costs related to the interactions between them are 

keep to a minimum, and the geometrical restrictions are respected. This cost is the fitness function that the GA 

must minimize. We define the cost (C) of a layout for the elements of a CP as shown in Equation 1. In this 

equation, n is the number of elements to be distributed in the CP. The total cost is composed of two terms: the 

relational cost and the geometrical cost. The relational cost (first term in the second member of the equation) is 

the cost due to the intensity of the relationship between each pair of elements and the distance between them in 

the layout. The geometrical cost (second term in the second member) measures the degree in which the 

geometrical restrictions of the elements are respected in the evaluated layout.   

𝐶𝐶 = 𝑅𝑅𝑅𝑅 ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 + 𝐺𝐺𝐺𝐺 ∑ 𝑔𝑔𝑖𝑖𝑛𝑛

𝑖𝑖=1    Equation 1 
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To optimize a CP layout, the elements that are frequently accessed sequentially must be close to each other in the 

arrangement. The intensity of the relationship between two elements of a CP is measured as the number of 

transitions between these elements. Therefore, each xij in the equation1 is the corresponding value in the 

transition matrix. Consequently, the relational cost is calculated as the product of the number of transitions 

between each pair of elements (xij) and the distance between them in the layout (dij). The distance between 

elements is usually measured as the euclidean distance between the geometric centers of the elements (Tompkins 

et al., 2010). 

In the geometrical cost, gi measures the compliance with the geometric constraints of the element i in the layout 

of the CP. As pointed out in Section 3.1, the area occupied by an element in the CP is considered to be 

rectangular and with flexible geometry (the geometric ratio of the element i may vary between rmin_i and rmax_i). 

To measure the compliance with this condition, gi value is 0 if the geometric ratio of the element i in the layout is 

within the range [rmin_i,rmax_i]. Otherwise, gi value increases proportionally to the distance to the nearest end of 

that range.  

Relational and geometrical costs are weighted using the Rc and Gc coefficients. By varying these coefficients, 

the designer is able to give more or less importance to each criterion. Finally, more terms can be added to 

Equation 1 to consider other criteria. For example, to allow that some elements, like panic buttons or emergency 

alarms, occupy special position in the layout of the CP. 

4. Experimental application 

An experiment was performed to verify the operation of the proposed procedure. A CP for controlling common 

processes in a ship was implemented using a simulation software (Figure 1a). The software detects the actions 

over the controls and a model of the controlled process calculates and shows the responses in the corresponding 

indicators of the CP. The CP was composed of 16 resizable child windows inside a parent window that occupied 

the whole screen of the VDU. Each child window contained one control to act on the process (i.e. speed controls, 

engines controls, communications controls…) or one indicator showing information about the process (i.e. 

speed, direction, route, radar, engines state, communications…). Four types of indicators were used: numeric 

displays, dials, graphs and gauges. The controls were slider bars and buttons. 

Eye-tracking devices have been improved dramatically in recent years. Nowadays, apart from using expensive 

specialized devices, low-cost eye-tracking software can work on commodity hardware such as mobile phones, 

tablets or web-cams without the need for additional sensors or devices (Cai et al., 2017). Selecting the 

appropriate device for each application must considers some advantages and disadvantages of both kind of 

devices, like accuracy, robustness, need of calibration process or price (Titz et al., 2018). In this work, a Tobii 

TX300 Eye-Tracker was employed for the experiment. This eye-tracker collects data look at 300 Hz with an 

accuracy rate of 0.5° and <0.03° drift, and is integrated in a 23’’ TFT monitor that was used as VDU for showing 

the CP. Tobii Pro Studio analysis software that was used to record and analyze the eye-tracking data and perform 

the calibration process. 

Using this software, an AOI was defined for each child window of the CP. AOI-1 to AOI-9 corresponded to 

indicators, and AOI-10 to AOI-14 were defined over controls. Two AOIs named AOI-A and AOI-B were 

defined over elements related to the communications systems. The initial layout of the CP and the AOIs 
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distribution are shown in Figure 1a. The ratio and the area of each element, as a percentage of the total VDU, are 

shown in the second and the sixth columns of Table 1. Minimum and maximum values for the areas and ratios of 

each element were established. These values depend on the kind and functionality of the element. For example, 

minimum and maximum ratios of the vertical sliders must be greater than one, while the ratios of the horizontal 

sliders must be lower than one. In the same way, some indicators need small areas for show information while 

some controls need bigger areas to facilitate their operation. Minimum and maximum values for areas and ratios 

are shown in Table 1. 

ID 

Area (%)  Ratio 

Initial Min Max Final Initial Min Max Final 
AOI-1 2.21 2 6 2.30  1.02 0.20 2.00 0.25 
AOI-2 5.03 2 6 2.38  0.79 0.20 2.00 0.26 
AOI-3 4.95 2 6 3.59  0.44 0.20 1.00 0.39 
AOI-4 12.81 2 14 7.08  0.62 0.20 5.00 4.49 
AOI-5 3.64 2 6 3.62  1.10 0.90 1.10 0.97 
AOI-6 7.57 3 8 4.82  1.07 0.70 1.43 0.73 
AOI-7 5.95 2 6 2.34  2.04 1.00 5.00 3.76 
AOI-8 8.30 2 14 2.42  0.69 0.20 1.00 0.27 
AOI-9 3.63 3 8 7.08  1.09 0.20 5.00 4.49 

AOI-10 5.81 4 14 11.86  1.35 1.00 2.00 1.30 
AOI-11 6.83 4 14 10.82  0.12 0.10 0.50 0.32 
AOI-12 6.00 4 14 10.69  3.41 2.00 10.00 2.97 
AOI-13 12.81 4 14 9.59  0.61 0.50 2.00 0.93 
AOI-14 6.00 4 14 10.69  3.15 2.00 10.00 2.97 
AOI-A 6.46 2 8 4.75  0.61 0.20 2.00 0.30 
AOI-B 2.00 2 8 5.98  1.35 0.20 2.00 0.37 

 

Table 1. Characteristics of the elements to be distributed in the case study. Columns Initial and Final show the 
area and the geometric ratio of each AOI in the initial and final layouts. Columns Mix and Max show the 

geometric constraints of each AOI.  
 

A sequence of 20 tasks to be performed on the CP was established including common and critical operations, 

and 20 users with experience in the use of this kind of CPs were selected to perform the experiment. 

4.1. First experimental session 

All 20 users participated in the first experimental session. The objective of the experiment and the basic 

procedures to use the CP were explained to participants. They performs some basic operations using the CP 

during 15 minutes to be familiarized with its functioning. After that, participants were asked to perform the 

previously established sequence of tasks using the CP arranged as in Figure 1a. The goal of each task was shown 

to the participant in a display occupying the AOI-A. When the participant considered that the task was 

completed he used the control in AOI-B to warn the system and the next task was shown in the AOI-A display. 

Finally, the participants completed the After-Scenario Questionnaire (ASQ) (Lewis, 1995) to measure the users' 

satisfaction. This questionnaire consists of three questions that the respondent must answer using a 7 point Likert 

scale, ranging from 1 (strongly agree) to 7 (strongly disagree). The three questions are: 1- Overall, I am satisfied 
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with the ease of completing this task, 2- Overall, I am satisfied with the amount of time it took to complete this 

task and 3 - Overall, I am satisfied with the support information (on-line help, messages, documentation) when 

completing this task. The ASQ score is obtained as the arithmetic mean of the three answers.  

Eye-tracking and mouse data collected from all the participants were used to obtain the transition matrix between 

AOIs. Data obtained from Tobii Pro Studio for each participant were analyzed to calculate the percentage dwell 

time (PDT) for each AOI and to obtain the transitions of gaze between the AOIs of the CP. Only dwell times 

over 300 milliseconds were considered to calculate the transitions between AOIs. Accordingly, short gaze 

fixations on AOIs while participants are searching for the appropriate next element of the CP were not 

considered as transitions. 

On the other hand, mouse-click events were analyzed registering how many times each AOI was clicked. 

Comparing eye-tracking and mouse-click events, the cases in which the participants clicked on an AOI while 

looking at another one were registered. Figure 3 shows the eye-tracking heat map and the mouse tracking 

(Blascheck et al., 2014) of one participant. This map shows the aggregation of the gaze fixations over time, the 

mouse path (white lines) and the mouse clicks (yellow circles). The results of these analyses were used to build 

the transition matrix. The average number of transitions between AOIs for all the participants were calculated 

(Table 2). These values include the gaze-gaze and the gaze-mouse transitions. The gaze-mouse transitions are 

shown in brackets in Table 2. 

 

 

Figure 3: Eye-tracking heat map and mouse path of one participant. The red color represents areas with a large 

number of gaze fixations over time. The white line is the path of the mouse and yellow circles are the mouse 

clicks. 

The minimum and maximum areas and ratios for each element of the CP shown in Table 1, and the transition 

matrix between AOIs (Table 2), were used in a slicing-trees based GA (Diego-Mas et al., 2009) to obtain an 



13 
 

optimal distribution of the elements. Equation1 represents the fitness function of the GA. In this equation, n was 

16 (the number of elements in the CP) and the values established for the relational cost (Rc) and geometrical cost 

(Gc) were 1 and 2 respectively. The GA used is an algorithm in two stages and both stages were run for 1000 

generations. Crossover probability was set at 0.9 and mutation probability at 0.01. The population size was 50. 

The time taken by the calculation process was 4 minutes and 58 seconds on a PC with 12 GB RAM and 3.6 GHz 

processor.  

 AOI-1 AOI-2 AOI-3 AOI-4 AOI-5 AOI-6 AOI-7 AOI-8 AOI-9 AOI-10 AOI-11 AOI-12 AOI-13 AOI-14 AOI-A AOI-B 

AOI-1                 

AOI-2 1.58                

AOI-3 2.46 4.00               

AOI-4 2.31 4.12 10.38              

AOI-5 2.46 7.38 7.96 6.58             

AOI-6 2.46 4.35 8.50 15.31 10.69            

AOI-7 2.46 1.42 1.77 4.15 2.69 2.92           

AOI-8 0.38 2.85 5.31 3.15 5.46 3.81 0.96          

AOI-9 1.27 1.42 5.81 9.00 14.46 10.08 2.46 2.73         

AOI-10 0.54 1.46 2.92 
(0.10) 

3.58 
(0.05) 2.04 1.50 0.92 0.38 0.65        

AOI-11 2.92 1.54 6.85 
(0.25) 

4.54 
(1.25) 

29.81 
(15.80) 

97.42 
(49.35) 2.50 3.35 3.46 

(1.05) 0.15       

AOI-12 0.54 2.58 3.96 104.65 
(23.10) 

14.31 
(4.09) 

3.88 
(0.25) 0.77 3.65 7.65 

(0.65) 2.58 7.85      

AOI-13 1.19 
(0.10) 2.58 3.85 

(1.25) 
5.88 

(1.50) 
5.96 

(2.85) 8.69 1.12 0.62 2.54 7.04 1.12 1.77     

AOI-14 1.04 2.12 4.15 8.50 
(1.05) 

18.85 
(4.85) 5.54 3.46 3.23 

(1.25) 
47.23 

(20.05) 0.54 4.73 5.04 1.73    

AOI-A 4.92 6.58 23.04 47.12 13.92 32.96 6.08 3.46 17.31 11.65 14.42 17.58 24.73 16.81   

AOI-B 4.92 2.88 
(0.25) 

9.88 
(0.05) 8.38 4.35 8.42 6.27 2.88 3.62 2.08 3.42 2.54 3.69 7.35 36.65  

 
Table 2. Transition matrix of the CP used in the experimental sessions. Each cell represents the average number 

of gaze-gaze and gaze-mouse transitions between AOIs. Gaze-mouse transitions are shown in brackets. 
 

4.1. Second experimental session 

In the second experimental session, the participants were randomly separated in two groups of 10 members 

(group A and group B). The members of the group A were asked to rearrange manually the distribution of the 

child windows containing the elements of the CP. They had to consider their experience in the first experiment to 

adapt the layout to their preferences and needs changing the position and size of the elements. Then, they were 

asked to perform again the same tasks using the new distribution. On the other hand, the members of the group B 

performed the same sequence using the best layout obtained by the algorithm (Figure 4). Again, the time to 

complete each task, eye-tracking data and mouse events were collected from all the participants, and all of them 

completed the ASQ. 
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Figure 4: Initial CP layout and optimal layout obtained by the genetic algorithm. Height-width ratios (r) are 
shown for each element of the control panel.   

 
5. Results 

Figure 4 shows the initial layout of the CP and the best layout obtained by the GA. In this figure black lines 

represents the intensity of the relationships between the elements of the CP as expressed in the transition matrix 

(Table 2). The greater the thickness of the line between the AOIs, the greater the relationship between them. In 

the optimal solution, the elements with intense relationships are adjacent or closer than in the initial layout, e.g., 
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AOI-4 and AOI-12. The aspect ratio of the elements (r) are also shown in the Figure 4. The aspect ratios of all 

the elements are between the minimum and maximum ratios (Table 2). Therefore, geometric constraints of all 

items are met and the geometrical cost (Equation 1) of the solution is 0, so that the overall cost of the solution is 

due to the relational cost. The relational costs of the layouts calculated using Equation 1 are 5619.6 for the initial 

layout and 3798.0 for the optimized layout; therefore, the GA solution achieved a reduction of 32.6% in the 

relational cost. 

Table A1 in Appendix A section presents the complete results by user for both experimental sessions. Figure 5 

presents the data aggregated by experimental session, showing the mean values of the tasks total duration, the 

errors committed, the ASQ score, the number of mouse clicks and the mouse path length for both experimental 

groups. Two classes of errors were considered to calculate the number of errors committed by the participants 

during the experiment. The first class error was not achieving the goal of one task of the predefined sequence of 

tasks. The second class consisted of initially using an inadequate control to perform a task, although the 

objective of the task was finally achieved.  

Figure 5: Results of the experimental sessions. Bars show, for both experimental groups, the mean values by 
experimental session of the tasks total duration (a), the errors committed (b), the ASQ score (c), the number of 

mouse clicks (d) and the mouse path length (e). Whiskers indicate the standard errors of the means. 
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Dependent-samples t-tests (α = 0.05) were conducted to compare the indicators between sessions. Table A2 in 

Appendix A section shows the mean and standard deviation of the values of the indicators by experimental 

session and group, and the t-values and the percentage change in indicators by groups. 

Considering all the participants in both experimental sessions, there were significant differences in all the 

indicators between sessions. By groups, the mean value of the task duration decreased by 26.70% for Group A 

and 37.70% for Group B. The difference in the reduction of the number of errors was greater; while the 

participants of the Group A reduced the errors by 17.19%, those of Group B decreased the number of errors 

committed by 34.78%. On the other hand, there was a slight reduction in the ASQ score between sessions for the 

Group A (1.03%), but this difference was not significant. The ASQ score of the participants of the Group B 

decreased by 13.95%. Because of the Likert scale used in this questionnaire, lower values of the scores 

correspond to higher levels of satisfaction. The number of mouse clicks needed to perform the tasks diminished 

by 9.16% in the Group A, and by 15.65% in the Group B, and the mouse trail length decreased by 32.59% in the 

Group A, and by 39.69% in the Group B. 

Finally, Pearson product-moment correlation coefficients were calculated to measure the relationship between all 

the indicators between sessions for all the participants. There were positive correlations between the task 

duration (r = 0.506, n = 20, p = 0.023), number of errors (r = 0.857, n = 20, p = 0.000), ASQ scores (r = 0.767, n 

= 20, p = 0.000) and number of mouse clicks (r = 0.691, n = 20, p = 0.001), for all the participants between 

sessions. Low and not significant correlation was found for the mouse path length between sessions (r = 0.117, n 

= 20, p = 0.625). Positive significant correlations were also found between the ASQ scores and the task duration 

in both sessions (r = 0.5443, n = 20, p = 0.013 for session 1; r = 0.5391, n = 20, p = 0.014 for session 2), and 

between the ASQ scores and the number of errors (r = 0.6995, n = 20, p = 0.001 for session 1; r = 0.7985, n = 20, 

p = 0.000 for session 2). 

6. Discussion 

The main objective of the redesign of a user interface is to improve its usability. ISO 9241-11 standard 

(International Organization for Standardization, 1998) defines usability as: “the extent to which a product can be 

used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified 

context of use”. Three different aspects are involved in this definition: effectiveness, efficiency and satisfaction. 

Each of them must be measured using different indicators (Frøkjær et al., 2000). Error rates is a good indicator 

of effectiveness, indicators of efficiency include task completion time and attitude-rating scales can measure 

users’ satisfaction. 

We used error rates as indicator of effectiveness and the length of the mouse trail and the number of mouse 

clicks that the users need to perform the tasks in the CP as indicator of efficiency. Intuitively, both of them are 

related to the amount of effort required to achieve the proposed goals. The longer the mouse trail and the higher 

the number of mouse clicks, the more choices and relevance judgments are needed to be made by the operator 

(Gwizdka and Spence, 2007). On the other hand, more mouse clicks could occur when the operator uses 

successively a control to correct a previous mistake or when he finds difficulties to use it properly. These 

relationships have been proved in the context of web searching (Cox and Silva, 2006; Huang et al., 2011; Kim, 
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2006; Mueller and Lockerd, 2001), however, to the best of our knowledge, they must still be tested for other 

kinds of interfaces. 

We used the ASQ (Lewis, 1995) to measure the users' satisfaction. Common usability and user experience 

surveys (Tullis and Albert, 2013) evaluate multiple aspects of the interfaces as sequence of screens, terminology, 

readability, help and documentation, interface learnability, etc. The procedure presented in this work is intended 

to obtain optimal layouts of the elements of an interface without modifying their characteristics (except their 

position and, to a lesser extent, their size). The kind of control and indicators or other features as functionality or 

colors are not modified by this system. ASQ is a simple questionnaire intended to determining the user 

satisfaction in scenario-based usability studies. Therefore, we selected it to measure the users' satisfaction.  

The experiment performed in this work has shown that the GA used in the proposed system is able to find 

solutions that considers the geometrical restrictions of the elements of the interface. As all the geometric 

constraints are met, the solution found has no geometric cost, and the overall cost is due to the relational cost. 

Therefore, the optimized layout obtained can be directly implanted without needing manual adjustments 

achieving a reduction of 32.6% in the relational cost. 

We performed two experimental sessions with two groups (A and B) of 10 users. All 20 users participated in the 

first experimental session completing a sequence of 20 tasks on a CP arranged as in Figure 1a. In the second 

experimental session, the members of the group A were asked to rearrange manually the distribution of the CP 

considering their experiences in the first session and to perform the same sequence of tasks. The members of the 

group B used the best layout obtained by the algorithm (Figure 4). The time to tasks completion, errors made, 

eye-tracking data and mouse events were collected from all the participants, and all of them completed the ASQ. 

Figure 6 shows the percentage change in usability indicators between the sessions. The participants were more 

familiar with the interface in the second session. Therefore, as it might be expected, all the usability indicators 

decreased in the second experimental session. Because of their definitions, lower values of the usability 

indicators correspond to higher levels of usability. The decrease was more pronounced for the participants that 

used the optimized CP (Group B) than for those that used their own arrangement (Group A). Dependent-samples 

t-tests (α = 0.05) conducted showed that the differences between sessions were significant except the slight 

reduction in the ASQ score for the Group A. 

These results suggest that the CP layout obtained using the procedure proposed in this work increases 

effectiveness, efficiency and user satisfaction compared to user self-defined arrangements. However, the 

obtained values must be compared between groups before concluding that the improvement is due to different 

layouts. Different skills, abilities or capacities of the participants in each group might as well explain this fact. 

The independent t-tests (α = 0.05) conducted to compare the indicators between groups (Table A3) show that 

there were not significantly different indicators values between groups for the experimental session 1, when all 

the participants used the same interface, being the values for task duration, errors and ASQ score lower for 

Group A. Conversely, the mean values of the indicators were higher for the group using the optimized interface 

in session 2. Therefore, it could be concluded that the differences in effectiveness, efficiency and user 

satisfaction between groups are not due to the different capacities of its members. 
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Figure 6: Percentage change in the mean values of the usability indicators between sessions by groups of 
participants. 

 

Pearson product-moment correlation coefficients were calculated to measure the relationship between all the 

indicators between sessions for all the participants. Overall, in all indicators except for the mouse path length, as 

the result obtained in the first session improves so does that in the second. This outcome shows that individual 

abilities, skills and preferences of the participants significantly affects the effectiveness, efficiency and 

satisfaction when using the interface regardless of its configuration. On the other hand, the mouse path length by 

participant does not show correlation between sessions. While the users of the interface are looking for the 

appropriate control or indicator, mouse cursor assist them with visual search using the pointer as a marker (Cox 

and Silva, 2006). Figure 7 shows the mouse trail for one participant for the sessions. Although this aspect needs 

more specific research, the length of the mouse path could be an indicator of the familiarity with the task to be 

performed using the CP (Todi et al., 2018), and its variation between sessions seems to be independent of the 

user ability or skills. This is consistent with some previous studies about web searching (Huang et al., 2011; Liu 

et al., 2010; Mueller and Lockerd, 2001).  

The procedure proposed in this work is intended to optimize the layout of software-based interfaces such as control 

panels or applications with customizable menus and toolbars in order to improve their usability. Our proposal uses 

Eye-tracking and mouse-tracking, non-invasive techniques that permit gathering the data required by the GA to 

obtain new layouts while the operators perform their usual tasks. Therefore, the system can be used to generate 

static or adaptive user interfaces (Gajos et al., 2006a; Todi et al., 2018). Static user interfaces remain unchanged 

once designed and implemented. The data to optimize static interfaces can be gathered from users during a time 

interval of normal operation of the CP or during controlled experimental sessions. On the other hand, adaptive 

user interfaces can adapt or modify themselves while being used based on users’ interaction history. Our system 

can propose new optimized arrangements in an automatized way based on data collected permanently from the 

users during the normal operation of the CP.  
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Figure 7: Mouse path (red lines) and clicks (yellow points) of a participant of the Group B in both experimental 
sessions. (a) Experimental session 1 with the initial layout of the CP. (b) Experimental session 2 with the final 

layout of the CP obtained by the genetic algorithm. 
 

Furthermore, it is possible to use data collected from individual users to find per-user customized interfaces, or 

data from several users to obtain a common arrangement optimized for several operators. Using custom user 

interfaces for each operator takes into account the abilities and requirements of specific users (Gajos et al., 2006b; 

Gamecho et al., 2015; Nichols et al., 2006; Nichols and Lau, 2008). In the same way, it is possible to obtain per-

task customized interfaces using the data gathered while the users are performing specific tasks (Gajos et al., 

2006a).  

Some limitations of the proposed procedure must be pointed out. The current approach makes use of the intensity 

of the relationship between two elements of a CP and the distance between them in the layout to calculate the 

relational cost that the GA must minimize. The intensity of the relationship between two elements of a CP is 
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measured using the number of transitions between the elements. We have considered two kinds of transitions: 

gaze-gaze transitions and gaze-mouse transitions. Currently, both kinds of transitions are equally weighted in the 

fitness function, giving them the same importance in obtaining the optimal layout. Further research must study if 

using different weighting coefficients for each of them may lead to improve the usability of the obtained CP, and 

how it affects to effectiveness, efficiency and users' satisfaction. 

7. Conclusions 

In this work we have used eye-tracking and mouse-tracking data for optimize the layout of the elements of a CP 

using a slicing trees based GA. The algorithm used considers the geometrical restrictions of the elements of the 

interface during the search for the optimal layout. Consequently, the obtained solution can be directly implanted 

without the need for manual adjustments that distort the layout. The results of our experiments show that the 

layouts obtained using this procedure outperforms user-defined interfaces arrangements in effectiveness, 

efficiency and user satisfaction. 

Appendix A 

Results of the experimental sessions. 

 

Table A1. Results of the experimental sessions. Task duration (seconds), errors committed, After Scenario 
Questionnaire score (ASQ), number of mouse clicks and mouse path length (in pixels) for both experimental 

sessions (S1 and S2) are shown by user. 
 

  Duration (s) Errors ASQ Mouse Clicks Mouse path length 

GROUP USER S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 
A U1 542.14 370.44 7 6 4.00 4.00 332 300 127546 82343 
A U2 560.43 377.60 5 6 3.67 4.00 346 315 124469 84769 

A U3 471.08 378.61 3 3 2.67 3.00 267 301 105581 86024 

A U4 497.84 371.08 7 5 3.67 3.00 336 278 104843 79863 

A U5 465.96 372.28 4 3 3.33 3.67 365 388 110071 117162 

A U6 386.34 279.66 6 4 3.33 3.00 257 228 69834 58079 

A U7 622.45 326.41 7 6 4.67 4.00 350 305 184256 54653 

A U8 617.82 498.54 9 8 5.67 5.33 354 308 167325 87956 

A U9 463.77 428.94 10 7 4.00 4.33 369 262 118588 109333 

A U10 622.66 445.15 6 5 3.67 4.00 322 311 130716 77826 

B U11 555.94 301.74 9 6 4.00 3.67 255 226 97222 75854 

B U12 548.85 304.14 5 4 4.33 4.00 290 251 150469 62385 

B U13 566.96 382.64 3 1 3.33 3.00 279 259 85659 47890 

B U14 558.67 352.61 3 2 3.00 3.00 335 275 100197 69994 

B U15 537.46 377.84 11 7 6.00 5.00 401 340 103251 55489 

B U16 309.68 272.24 8 6 4.00 3.67 220 215 86557 83408 

B U17 747.14 382.42 8 5 6.00 4.00 374 252 149917 93349 

B U18 681.74 359.04 10 6 5.00 4.33 256 238 100040 58339 

B U19 412.02 296.47 7 4 3.00 3.33 266 227 128072 73192 

B U20 436.49 306.96 5 4 4.33 3.00 328 251 119357 56075 
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Table A2. Mean and standard deviation of the values of the indicators by group and session, and t-values for the 

dependent-samples t-tests between sessions conducted. 
 

 

 
Table A3. Mean and standard deviation of the values of the indicators by session and group, and t-values for the 

independent-samples t-tests between groups conducted. 
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 Session 1 Session 2   

Indicator M SD M SD t-test %M 

All 
participants 

Duration (s) 530.27 103.67 359.24 57.24 8.54** -32.25 

Errors 6.65 2.43 4.90 1.77 6.05** -26.32 

ASQ 4.08 0.97 3.77 0.68 2.27** -7.60 

Mouse clicks 315.10 49.97 276.50 44.21 4.62** -12.25 

Mouse path length 118198.54 28402.00 75699.13 18445.20 5.94** -35.96 

Group A 

Duration (s) 525.05 81.18 384.87 61.13 6.22** -26.70 

Errors 6.40 2.12 5.30 1.64 3.16** -17.19 

ASQ 3.87 0.82 3.83 0.72 0.26 -1.03 

Mouse clicks 329.80 38.56 299.60 41.22 2.38** -9.16 

Mouse path length 124322.96 32366.30 83800.79 19300.40 3.21** -32.59 

Group B 

Duration (s) 535.50 126.64 333.61 41.49 6.47** -37.70 

Errors 6.90 2.81 4.50 1.90 6.47** -34.78 

ASQ 4.30 1.09 3.70 0.66 2.78** -13.95 

Mouse clicks 300.40 57.49 253.40 35.23 4.32** -15.65 

Mouse path length 112074.12 23917.50 67597.47 14138.10 5.96** -39.69 

**p<0.05. M = Mean. SD = Standard deviation. %M = Mean percent variation between sessions. 

 
 Group A Group B   

Indicator M SD M SD t-test %M 

Session 1 

Duration (s) 525.05 81.18 535.50 126.64 -0.22 -1.99 

Errors 6.40 2.12 6.90 2.81 -0.45 -7.81 

ASQ 3.87 0.82 4.30 1.09 -0.99 -11.11 

Mouse clicks 329.80 38.56 300.40 57.49 1.34 8.91 

Mouse path length 124322.96 32366.30 112074.12 23917.50 0.96 9.85 

Session 2 

Duration (s) 384.87 61.13 333.61 41.49 2.19** 13.32 
Errors 5.30 1.64 4.50 1.90 1.01 15.09 
ASQ 3.83 0.72 3.70 0.66 0.43 3.39 

Mouse clicks 299.60 41.22 253.40 35.23 2.69** 15.42 

Mouse path length 83800.79 19300.40 67597.47 14138.10 2.14** 19.34 

**p<0.05. M = Mean. SD = Standard deviation. %M = Mean percent variation between groups. 
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