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Abstract

Forest ecosystems are an important source of life and economic use, since
they are large stores of carbon and a renewable raw material. Nevertheless, a
poor forest management would considerably reduce these capacities and
increase the risk of forest fires. In the last decades, remote sensing techniques
have proven their capacity for forest management. Airborne laser scanning
(ALS) provides horizontal and vertical information of different canopy layers.
In particular, full-waveform airborne laser scanning (ALSrw), which registers
the complete signal emitted by the sensor and backscattered, provides more
information about the vertical forest structure than traditional or discrete
airborne laser scanning (ALSp). However, ALSkw has received less attention
than ALSp, due to its larger amount and complexity of data, and the lack of
processing tools available.

This thesis addresses the development of ALSrw processing and analysis
methods to characterize the vertical forest structure, in particular, the
understory vegetation. To answer this overarching goal, a total of six specific
objectives were established: Firstly, the influence of pulse density, voxel
parameters (i.e., voxel size and assignation value) and regression methods on
ALSrw metric values and on estimates of forest structure attributes are analyzed.
To do this, pulse density was randomly reduced and voxel parameters
modified, obtaining ALSrw metric values for the different parameter
combinations. These ALSrw metrics were used to estimate forest structure
attributes with different regression methods. Secondly, a set of ALSkw data
processing and analysis methods are integrated in a new software named
WoLFeX (Waveform Lidar for Forestry eXtraction), including clipping, relative
radiometric correction, voxelization and ALSrw metric extraction, and
proposing new metrics for understory vegetation. Thirdly, the influence of the
scan angle of ALS data acquisition and radiometric correction on the extraction
of ALSrw metrics and on modeling forest fuel attributes is assessed. To do this,
ALSrw metrics were extracted applying and without applying relative
radiometric correction and using different scan angles. Fourthly, signal
occlusion is characterized along the vertical forest structure using and
comparing three different laser scanning configurations (ALSew, ALSp and
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terrestrial laser scanning: TLS), determining their limitations in the detection of
vegetative material in two contrasted forest ecosystems: boreal and
Mediterranean. To quantify signal occlusion along the vertical forest structure,
a new parameter based on the percentage of laser beams blocked prior to reach
a given location, the rate of pulse reduction, is proposed. Fifthly, the assessment
of how understory vegetation density classes are detected and determined by
different ALS configurations is done. Vertical distribution profiles at the lower
strata described by ALSrw and ALSp are compared with those described by TLS
as reference. Moreover, understory vegetation density classes are determined
by applying the Lorenz curve and Gini index from the vertical distribution
profiles described by ALSrw and ALSp. Finally, the new proposed voxel-based
ALSrw metrics are applied and evaluated, using TLS-based attributes as a
reference, to estimate understory height, cover and volume in a Mediterranean
ecosystem.

Results show that variations of ALSrw metric values may be reduced by
either using a minimum pulse density or increasing the voxel size and
modifying the assignation value. Given that forest attributes are estimated by
ALSrw data, they are also influenced by pulse density, which may also be
reduced by increasing voxel size and modifying the regression method.
Additionally, ALSrw metric values and estimates of forest fuel attributes are also
influenced by scan angle. This influence may be reduced, but not completely
removed, by applying the radiometric correction.

Detection of the vertical distribution was observed to be dependent on
occlusion. The degree of occlusion may be quantified by the rate of pulse
reduction along the vertical structure, and therefore, the reliability in the
characterization of the vertical distribution may also be estimated. In this
regard, ALS configurations (ALSp and ALSrw) demonstrated their capabilities
to detect understory vegetation, although much more accuracy was obtained
using ALSrw. The latter demonstrated its potential to detect and determine
understory vegetation density classes in a boreal and a Mediterranean forest by
using the Gini index, and to estimate the height, cover and volume of
understory vegetation in a Mediterranean forest.
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The use of ALSp data is adequate for most of the current ALS applications.
However, and contrary to ALSrw, it presents some limitations in the
identification and/or characterization of the intermediate and lower vegetation
strata. These limitations in the detection of vertical strata can be identified and
quantified by retrieving vertical profiles of rate of pulse reduction from
different laser scanning configurations. On the other hand, the use of ALSkw
data requires the identification of the appropriate parameters (i.e., optimal
pulse density and voxel parameters) and the application of radiometric
correction prior to any data processing. These results highlight the potential of
ALSrw to replace TLS in the extraction of forest internal structure in wider areas.
Nevertheless, despite ALSrw presents less limitations in the detection of
intermediate and lower strata than ALSp, its signal occlusion may be significant
in lower strata of forests with high canopies and very dense vegetation and
internal structure (e.g., tropical areas), resulting in a lack of vegetative material
identification. These findings in the characterization of the vertical forest
structure, in particular the understory vegetation, are relevant for forestry
applications such as wildfire mitigation, modeling fire behavior, planning forest
thinning and maintenance tasks for wildfire reduction and biodiversity
preservation, among others.
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Resumen

Los ecosistemas forestales son una importante fuente de vida y econdmica,
por su capacidad para almacenar carbono y estar formados por una materia
prima renovable. No obstante, la gestion forestal inapropiada puede reducir
considerablemente estas capacidades y aumentar el riesgo de incendios
forestales. En las ultimas décadas, las técnicas de teledeteccion han demostrado
su contribucion a la gestion forestal. El 1aser escaner aerotransportado (ALS, por
sus siglas en inglés) proporciona informacion horizontal y vertical de las
diferentes capas del dosel arbdreo. En concreto, el laser escaner
aerotransportado full-waveform (ALSrw), que registra la totalidad de la senal
emitida por el sensor que es retrodispersada, proporciona mayor informacion
que el laser escaner aerotransportado tradicional o discreto (ALSp) sobre la
estructura vertical del bosque. Sin embargo, el ALSrw ha recibido menor
atencion que el ALSp, debido a la gran cantidad y complejidad de sus datos y a
la falta de disponibilidad de herramientas para su procesado.

Esta tesis aborda el desarrollo de métodos de procesado y analisis de datos
ALSrw para la caracterizacion de la estructura vertical del bosque y, en
particular, del sotobosque. Para responder a este objetivo general, se
establecieron seis objetivos especificos: En primer lugar, se analiza la influencia
de la densidad de pulso, de los pardmetros de voxelizacion (tamano de voxel y
valor de asignacion) y de los métodos de regresion sobre los valores de las
métricas ALSrw y sobre la estimacion de atributos de estructura del bosque. Para
ello, se redujo aleatoriamente la densidad de pulsos y se modificaron los
parametros de voxelizacion, obteniendo los valores de las métricas ALSrw para
las diferentes combinaciones de parametros. Estas mismas métricas ALSew se
emplearon para la estimacion de atributos de la estructura del bosque mediante
diferentes métodos de regresion. En segundo lugar, se integran métodos de
procesado y analisis de datos ALSsw en una nueva herramienta llamada WoLFeX
(Waveform Lidar for Forestry eXtraction) que incluye los procesos de recorte,
correccion radiométrica relativa, voxelizacion y extraccion de métricas a partir
de los datos ALSrw, asi como nuevas métricas descriptoras del sotobosque. En
tercer lugar, se evalta la influencia del angulo de escaneo utilizado en la
adquisicion de datos ALS y la correccién radiométrica en la extraccion de

XXXVil



métricas ALSkw y en la estimacion de atributos de combustibilidad forestal. Para
ello, se extrajeron métricas ALSrw con y sin correccién radiométrica relativa y
empleando diferentes dngulos de escaneo. En cuarto lugar, se caracteriza la
oclusion de la senal a lo largo de la estructura vertical del bosque empleando y
comparando tres tipos diferentes de laser escaner (ALSkw, ALSp y laser escaner
terrestre: TLS, por sus siglas en inglés), determinando asi sus limitaciones en la
deteccidon de material vegetativo en dos ecosistemas forestales diferenciados: el
boreal y el mediterraneo. Para cuantificar la oclusion de la sefial a lo largo de la
estructura vertical del bosque se propone un nuevo parametro, la tasa de
reduccion del pulso, basada en el porcentaje de haces laser bloqueados antes de
alcanzar una posicion dada. En quinto lugar, se evaluia la forma en que se
detectan y determinan las clases de densidad de sotobosque mediante los
diferentes tipos de ALS. Se compararon los perfiles de distribucion vertical en
los estratos inferiores descritos por el ALSew y el ALSp con respecto a los
descritos por el TLS, utilizando este tltimo como referencia. Asimismo, se
determinaron las clases de densidad de sotobosque aplicando la curva Lorenz
y el indice Gini a partir de los perfiles de distribucién vertical descritos por
ALSrw y ALSp. Finalmente, se aplican y evaltan las nuevas métricas ALSrw
basadas en la voxelizacién, utilizando como referencia los atributos extraidos a
partir del TLS, para estimar la altura, la cobertura y el volumen del sotobosque
en un ecosistema mediterraneo.

Los resultados muestran que las variaciones de los valores de las métricas
ALSrw se pueden reducir empleando una densidad de pulso minima o
incrementando el tamafio de vdxel y modificando el valor de asignacion.
Debido a que los atributos forestales se estiman mediante datos ALSrw, también
se ven influenciados por la densidad de pulsos. Esta influencia también se
puede reducir incrementando el tamano de véxel o modificando el método de
regresion. Asimismo, los valores de las métricas ALSkw y la estimacion de
atributos de combustibilidad forestal también se ven influenciados por el
angulo de escaneo. Esta influencia se puede reducir, pero no eliminar por
completo, aplicando la correccion radiométrica.

Por otro lado, se observo una dependencia en la deteccion de la distribucion
vertical con respecto a la oclusion. El grado de oclusion a lo largo de la
estructura vertical se puede cuantificar mediante la tasa de reduccion del pulso
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y, por lo tanto, se puede estimar la fiabilidad en la caracterizacion de la
distribucion vertical. En este sentido, el ALS (ALSp y ALSrw) demostro ser ttil
en la deteccion del sotobosque, obteniendo mucha mayor precision con el
ALSkw. Este tltimo demostrd su potencial para la deteccion y determinacion de
las clases de densidad de sotobosque en un bosque boreal y otro mediterraneo
mediante el uso del indice Gini, asi como para la estimacién de la altura, la
cobertura y el volumen del sotobosque en bosques mediterraneos.

La utilizacién de los datos ALSp es suficiente para la mayoria de aplicaciones
actuales del ALS. No obstante, y contrariamente al ALSrw, presenta algunas
limitaciones en la identificacion y/o caracterizacion de los estratos intermedios
e inferiores de la vegetacion. Estas limitaciones en la deteccidn de los estratos
verticales se pueden identificar y cuantificar mediante la extraccion de perfiles
verticales de la tasa de reduccion del pulso para los diferentes tipos de laser
escaner. Por otro lado, para la utilizacion de datos ALSrw es conveniente
identificar los parametros adecuados (densidad de pulso déptima y parametros
de voxelizacidn) y aplicar una correccion radiométrica, como paso previo a
cualquier procesado de datos. Los resultados destacan el potencial del ALSrw
como sustituto del TLS en la extraccion de la estructura interna del bosque en
areas extensas. No obstante, a pesar de que el ALSrw presenta menores
limitaciones con respecto al ALSp en la deteccion de los estratos intermedios e
inferiores, la oclusion de la sefial puede ser significativa en los estratos inferiores
de bosques que presenten doseles arbdreos altos y una gran densidad de
vegetacion en su estructura interna (por ejemplo, areas tropicales), conllevando
una falta de identificacion del material vegetativo. Estos hallazgos en la
caracterizacion de la estructura vertical del bosque y, en particular, del
sotobosque, son relevantes para su aplicacion en la planificacion del desbroce
de los bosques y de las tareas de mantenimiento para la prevencion de los
incendios forestales, la modelizaciéon del comportamiento del fuego o la
conservacion de la biodiversidad, entre otras aplicaciones.
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Resum

Els ecosistemes forestals son una important font de vida i economica, per la
seua capacitat per emmagatzemar carboni i estar formats per una materia prima
renovable. No obstant aixo, la gestio forestal inapropiada pot reduir
considerablement aquestes capacitats i augmentar el risc d’incendis forestals.
En les darreres decades, les tecniques de teledeteccié han demostrat la seua
contribuci6 a la gestio forestal. El laser escaner aerotransportat (ALS, per les
seues sigles en angles) proporciona informacié horitzontal i vertical de les
diferents capes del cobricel arbori. En concret, el laser escaner aerotransportat
full-waveform (ALSkw), que registra la totalitat del senyal emes pel sensor que és
retrodispersada, proporciona major informacié que el laser escaner
aerotransportat tradicional o discret (ALSp) sobre ’estructura vertical del bosc.
En canvi, I’ALSrw ha rebut menys atencié que I’ALSp, a causa de la gran
quantitat i complexitat de les seues dades i a la falta de disponibilitat d’eines
per al seu processament.

Aquesta tesi aborda el desenvolupament de metodes de processament i
analisi de dades ALSrw per a la caracteritzacio de I’estructura vertical del bosc
i, en particular, del sotabosc. Per a respondre a aquest objectiu general,
s’establiren sis objectius especifics: En primer lloc, s’analitza la influéncia de la
densitat de pols, dels parametres de voxelitzacié (grandaria de voxel i valor
d’assignacio) i dels metodes de regressio sobre els valors de les metriques ALSrw
i sobre l'estimacid dels atributs d’estructura del bosc. Per a aix0, es redui
aleatoriament la densitat de polsos i es modificaren els parametres de
voxelitzacid, obtenint els valors de les metriques ALSkw per a les diferents
combinacions de parametres. Aquestes metriques ALSrw s’empraren per a
I'estimacio d’atributs de l'estructura del bosc mitjancant diferents metodes de
regressid. En segon lloc, s'integraren metodes de processament i d’analisi de
dades ALSrw en una nova eina anomenada WoLFeX (Waveform Lidar for Forestry
eXtraction) que inclou el processos de retallada, correccié radiometrica relativa,
voxelitzacid i extraccié de metriques a partir de les dades ALSrw, aixi com noves
metriques descriptores del sotabosc. En tercer lloc, s’avalua la influencia de
I'angle de escaneig emprat en 'adquisicié de les dades ALS i la correccio
radiometrica en l'extraccié de metriques ALSrw i en l'estimacio d’atributs de
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combustibilitat forestal. Per a aixo0, s’extragueren metriques ALSrw amb i sense
correccio radiometrica relativa i emprant diferents angles d’escaneig. En quart
lloc, es caracteritza 1’oclusio del senyal al llarg de l'estructura vertical del bosc
emprant i comparant tres tipus diferents de laser escaner (ALSrw, ALSp i laser
escaner terrestre: TLS, per les seues sigles en angles), determinant aixi les seues
limitacions en la deteccié de material vegetatiu en dos ecosistemes diferenciats:
un boreal i un mediterrani. Per a quantificar 'oclusié del senyal al llarg de
I'estructura vertical del bosc es proposa un nou parametre, la taxa de reduccio
del pols, basada en el percentatge de rajos laser bloquejats abans d’arribar a una
posicié donada. En cinque lloc, s’avalua la manera en la qual es detecten i
determinen les classes de densitat de sotabosc mitjangant els diferents tipus
d’ALS. Es compararen els perfils de distribucio vertical en estrats inferiors
descrits per I’ALSrw i I’ ALSp respecte als descrits pel TLS, emprant aquest tiltim
com a referéncia. A més a més, es determinaren les classes de densitat de
sotabosc aplicant la corba Lorenz i I'index Gini a partir dels perfils de distribucio
vertical descrits per I’ALSrw i I’ALSp. Finalment, s’apliquen i avaluen les noves
metriques ALSrw basades en la voxelitzacié, emprant com a referencia els
atributs extrets a partir del TLS, per a estimar 1’al¢cada, la cobertura i el volum
del sotabosc en un ecosistema mediterrani.

Els resultats mostren que les variacions dels valors de les metriques ALSrw
es poden reduir emprant una densitat de pols minima o incrementant la
grandaria del voxel i modificant el valor d’assignacio. A causa de que els
atributs forestals s’estimen mitjancant dades ALSrw, també es veuen influenciats
per la densitat de polsos. Aquesta influencia també es pot reduir incrementant
la grandaria del voxel o modificant el metode de regressié. Tanmateix, els valors
de les metriques ALSrw i Iestimacié d’atributs de combustibilitat forestal també
es veuen influenciats per 1’angle d’escaneig. Aquesta influencia es pot reduir,
pero no eliminar per complet, aplicant la correccié radiometrica.

Per altra banda, s’observa una dependencia en la deteccié de la distribucio
vertical respecte a I'oclusid. El grau d’oclusi6 al llarg de I'estructura vertical es
pot quantificar mitjangant la taxa de reducci6 del pols i, per tant, es pot estimar
la fiabilitat en la caracteritzacio de la distribucio vertical. En aquest sentit, I’ALS
(ALSp i ALSrw) demostra ser util en la deteccid del sotabosc, obtenint molta
major precisi6 amb 1’ALSrw. Aquest ultim demostra el seu potencial per a la

xlii



deteccid i determinacio de les classes de densitat de sotabosc en un bosc boreal
i un altre mediterrani mitjancant la utilitzacié de l'index Gini, aixi com
I'estimacié de l'algada, la cobertura i el volum del sotabosc en un boscos
mediterranis.

La utilitzacio de les dades ALSp es suficient per a la majoria d’aplicacions
actuals de I’ALS. En canvi, i contrariament a I’ALSrw, presenta algunes
limitacions en la identificacié i/o caracteritzacié dels estrats intermitjos i
inferiors de la vegetacid. Aquestes limitacions en la deteccio dels estrats
verticals es poden identificar i quantificar mitjancant 1'extraccié de perfils
verticals de la taxa de reduccio del pols per als diferents tipus de laser escaner.
D’altra banda, per a la utilitzacié de dades ALSrw és convenient identificar els
parametres adequats (densitat de pols optima i parametres de voxelitzacio) i
aplicar una correccié radiometrica, com a pas previ a qualsevol processament
de dades. Els resultats destaquen el potencial de ’ALSkw com substitut del TLS
en 'extraccid de 'estructura interna del bosc en arees extenses. No obstant aixo,
malgrat que I’ALSkw presenta menors limitacions respecte a I’ALSp en la
deteccio d’estrats intermitjos i inferiors, ’oclusio del senyal pot ser significativa
en els estrats inferiors de boscos que presenten cobricels arboris alts i una gran
densitat de vegetacid en la seua estructura interna (per exemple, arees tropicals),
comportant una falta d’identificacié del material vegetatiu. Aquestes troballes
en la caracteritzacid de l’estructura vertical del bosc i, en particular, del sotabosc,
son rellevants per a la seua aplicacié en la planificacio del desbrossament dels
boscos i de les tasques de manteniment per a la prevencio dels incendis
forestals, la modelitzacio del comportament del foc o la conservaci6 de la
biodiversitat, entre d’altres.
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Chapter 1

Introduction

Quercus ilex

“Con el sol del otofio toda el agua
de mi fontana vibra,

y noto que sacando sus raices
huye de mi la encina.”

Federico Garcia Lorca






INTRODUCTION

1.1. Background and research justification

In ecology, the forest structure is defined as the horizontal and vertical
distribution of the vegetation elements such as trees and shrubs (Kiikenbrink et
al., 2017). More specifically, these elements are composed by tree trunks,
branches, twigs, leaves and deadwood, which interact with each other forming
the forest structure. In terms of productivity, the forest structure may also be
described by basal area, which is the area occupied by the cross-section of tree
trunks at the diameter breast height (i.e., 1.3 m) by unit area, and tree height
heterogeneity (Bohn and Huth, 2017). Forest structure may be altered by some
disturbance regimes (Kimes et al., 2006), most of them related to anthropogenic
processes. Some of these activities or occurrences are infrastructure building,
timber production and wildfires (Guo et al., 2017). As a consequence, the
affection gradient of disturbance regimes is variable along forested areas, and
in addition, some species are more suitable to survive or regenerate under these
conditions, while others will disappear (Devictor et al., 2008; Johnstone et al.,
2016). This leads to a more heterogeneous horizontal and vertical forest
structures. The significance of forest structure is also clearly visible on several
factors such as biodiversity and wildfire modeling. Disturbance regimes may
cause microclimatic patterns and processes affecting distribution of bird species
and wildlife habitats (Zimble et al., 2003; Hyde et al., 2005; Hyde et al., 2006;
Lesak et al.,, 2011; Guo et al.,, 2017), modify biological process such as tree
competition and growth (Drake et al., 2002; Coops et al., 2007), and condition
the spread and severity of wildfires (Agee, 1996; Pollet and Omi, 2002; Graham
et al., 2004; D.L. Peterson et al., 2005; Hyde et al., 2006; Prichard et al., 2010).

1.1.1. Fire modeling

The fire environmental triangle is made up of three legs: topography,
weather conditions and fuel (Countryman, 1972). Topography and weather
conditions play a more decisive role in fire behavior (Pollet and Omi, 2002).
However, fuel, which is related to forest structure, is the only leg that may be
manipulated (Agee, 1996). Given that the other two legs of the fire
environmental triangle may not be controlled, they must be considered prior to
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fuel treatments (D.L. Peterson et al., 2005). For instance, fuel treatments vary
according to elevation, aspect and slope (i.e., topography), and humidity,
temperature and wind speed (i.e, weather conditions). Fuel treatment
techniques have been used by forest managers for decades. However, not all
forests are at risk of severe wildfires, but drier forests require fuel treatments to
control fire hazard (Agee and Skinner, 2005). These fuel treatment techniques
aim therefore to reduce intensity (i.e., heat release per unit distance and unit
time) and severity (i.e., related to post-fire vegetation survival) of wildfires
(Agee, 1996; Arkle et al., 2012). These techniques are even more necessary in the
last years, since fire frequencies have decreased owing to fire exclusion,
harvesting and different land use practices, leading to an increment of fuels
potentially hazardous for large wildfires (Viedma et al., 2018). Fires may be
divided into three types: ground, surface and crown fires (Werth et al., 2011).
Ground fires are related to soil organic horizons, surface fires to low vegetation,
woody fuel, moss, lichen and litter, and crown fires to canopies (Graham et al.,
2004; Weise et al., 2018). Crown fires are the most severe fires, and they are the
main threat to ecological and human values as well as challenging for fire
management, hence reducing these fires facilitates the suppression and reduces
the likelihood of having large wildfires (Lecina-Diaz et al., 2014). Crown fires
depend on the arrangement of available fuel from the ground to the canopy
(D.L. Peterson et al., 2005), and this available fuel between the two strata is
known as ladder fuel (National Wildfire Coordinating Group, 2005). Therefore,
more severe wildfires take place in spots where there is a high presence of
understory and regeneration of trees connected to trees densely stocked,
resulting in crown fires spread from crown to crown (Pollet and Omi, 2002).
Regarding the existing fuel treatment techniques to reduce wildfires intensity
and severity, two of the most used techniques are thinning and prescribed fires.
Thinning allows for carrying out a more precisely planned forest structure,
while prescribed fires burn imprecisely low vegetation and lower branches
from overstory (Graham et al., 2004). The most effective approach to reduce
crown fires events by fuel treatments is by increasing the height to live crown,
reducing fuels and canopy bulk density, and increasing distance between
canopies (Graham et al., 1999). To do this, the most adequate strategy is
applying both fuel treatment techniques mentioned: thinning and then
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prescribed fires (Graham et al., 1999; Pollet and Omi, 2002; Agee and Skinner,
2005). Thinning removes small diameter trees (Pollet and Omi, 2002) and
modifies canopy and ladder fuels, and then lower branches from overstory,
woody fuel, litter and plant remains from thinning may be removed with
prescribed fires (Harrod et al., 2009). As a result of modifying forest structure,
crown fire severity and intensity are reduced, since vertical (i.e., ladder fuel)
and horizontal (i.e., fire crown to crown) continuities are disrupted (Arkle et al.,
2012).

In order to assess ongoing or upcoming fuel treatments, wildfire behavior
may be modeled. To do this, the three legs of the fire environmental triangle
(i.e., fuel, topography and weather conditions) are inputs into the models to be
predicted (Agee, 1996). Topography consists of information about slope, aspect
and elevation, which may all be extracted from a Digital Terrain Model (DTM),
a raster file where each pixel value represents its elevation. Weather conditions
consists of temperature, humidity, wind direction and speed, and actual values
from a given scenery or arbitrary data may be used. Fuel, which consists of
estimating living and dead biomass, requires efforts, since it is dynamic and
changing (Schmidt et al., 2016; Davis et al., 2017). There are three concepts that
are often employed mistakenly: fire model, fuel type and fuel model. A fire
model is a mathematical model which describes the evolution and behavior of
the fire; fuel types are the result of clustering vegetation according to a set of
attributes such as vegetation density, loading and height, which determine the
tire spread; and fuel models are the values of the attributes describing each fuel
type (Arroyo et al., 2008). Fire models are divided into four types: physical,
physical-statistical, statistical, and probabilistic models (Albright and Meisner,
1999). Physical fire models, such as Albini (1986), are based on the physics of
combustion, however, they require such amount of detailed data that they are
not usually employed (Albright and Meisner, 1999). Physical-statistical fire
models join statistical correlation and physics. Among these fire models, there
are Rothermel’s (Rothermel, 1972) and Fire Behavior Prediction (FBP) (Forestry
Canada, 1992) fire models, which are two of the most widely employed.
Statistical fire models are based on test fires to predict fire parameters such as
tire intensity and rate of spread. Lastly, probabilistic fire models provide
contingency tables, which are used to predict the rate of spread by means of the
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fuel type, fuel moisture and wind speed (Albright and Meisner, 1999). These fire
models are implemented in decision support systems (Andrews and Queen,
2001), providing a prediction of fire parameters such as rate of spread, fire
intensity and fuel moisture (Arroyo et al.,, 2008). Several decision support
systems have been developed in different countries and providing different
outputs. Most of the decision support systems consist of fire danger systems, in
other words they provide a prediction of fire parameters or a gradient of fire
hazard from weather, topography and fuel data. The McArthur Grassland Fire
Danger Rating System (McArthur, 1966; McArthur, 1967) from Australia, the
National Fire Danger Rating System (NFDRS) (Deeming et al., 1972; Deeming
et al., 1977) from USA and, the Canadian Forest Fire Danger Rating System
(CFFDRS) (Stocks et al., 1989) from Canada, are developed from experimental
wildfires and rate the risk of wildfires at broad scales. They use weather
parameters or indices, such as the Canadian Fire Weather Index (FWI) (Wagner,
1985; Wagner, 1987) for the CFFDRS, and fuel information to predict wildfire
danger and potential over large areas. One of the most used decision support
systems is BEHAVE (Burgan and Rothermel, 1984; Andrews, 1986) and its
subsequent update BehavePlus (Andrews, 2009; Andrews, 2014) from USA,
which predicts fire parameters at a local scale. Other decision support systems
such as NEXUS (Scott, 1999), FlamMap (Stratton, 2006) and Crown Fire
Initiation and Spread (CFIS) (Alexander et al., 2006) use weather, topography
and fuel information to assess crown fire spread and intensity through a
number of indices predicted from a surface-crown fire system (Scott, 2006). In
addition to BEHAVE, Fire Area Simulator (FARSITE) (Finney, 1998) is one of
the most widely used decision support systems. FARSITE differs from the
above mentioned decision support systems, since it provides a representation
of the evolution of the fire perimeter over time in a Geographical Information
System (GIS) format. As input data, it requires a more specific information from
the tree crowns (i.e., canopy bulk density, canopy base height, canopy cover and
canopy height), since models for surface and crown fire behavior are integrated.
In addition to FARSITE, Wildfire Analyst (Ramirez and Monedero, 2011) also
represents the evolution and intensity of the fire over time to analyze the
firefighting capabilities of a wildfire. This tool implements the fire model
proposed by Rothermel (1972) and further modified by Albini (1976), and
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accepts Scott and Burgan (2005) fuel models as well as other custom fuel models.
Decision support systems require fire models to predict fire hazards, but also
fuel types to include the variability of tree species and vertical and horizontal
forest structure. There are many fuel type classifications according to
ecosystems and countries. Some of the most widely employed are NFDRS
(Deeming et al., 1977), Northern Forest Fire Laboratory (NFFL) (Albini, 1976;
Burgan and Rothermel, 1984) and Fuel Classification System (FCCS) (Sandberg
et al.,, 2001) from USA; FBP system fuel types (Forestry Canada, 1992) from
Canada; and Prometheus (Prometheus, 1999) from Europe, which is adapted
from NFFL for Mediterranean ecosystems. These fuel type classifications are
employed in the above mentioned decision support systems. For instance,
NFDRS fuel type classification is employed by NFDRS, NFFL by BEHAVE and
FARSITE, and FBP system fuel types by CFFDRS (Arroyo et al., 2008). Instead
of fuel type classifications, which are clusters of forest attribute values, more
specific values of some forest attributes may also be employed as inputs in some
decision support systems to predict wildfire behavior (Garcia et al., 2011)
(hereafter referred as forest fuel attributes). These forest fuel attributes describe
the vertical and horizontal forest structure as well as the fuel load, and are
canopy bulk density, canopy fuel load, canopy height, canopy base height, and
canopy cover (Cruz et al., 2003; Graham et al., 2004). Canopy bulk density
corresponds with the amount of fuel per unit of volume (Keane et al., 2005). It
is one of the most significant attributes to predict crown fire behavior, since it is
related to the spread rate between crowns (Cruz et al., 2003; Riafio et al., 2004;
Keane et al., 2005; Skowronski et al., 2011). Canopy fuel load is defined as the
amount of fuel that may potentially be consumed per unit of area (Skowronski
et al.,, 2011). Canopy bulk density and canopy fuel load may be extracted direct
or indirectly. Direct methods are referred to destructive sampling to quantify
biomass, which is costly and difficult to implement (Garcia et al., 2011). Once
direct methods are carried out, allometric equations may be generated using
forest biometric measurements (i.e., diameter at breast height: DBH, height, and
tree species) as independent variables and biomass from direct methods as
dependent variables (Garcia et al.,, 2011; Skowronski et al., 2011). These
allometric equations facilitate estimation of fuel attributes at field campaigns.
Canopy height may have different definitions. It may be defined as either the
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average height of the 100 tallest trees in a hectare (Assmann, 1961; Assmann,
1970) or the maximum height where a minimum value of canopy bulk density
is reached (Reinhardt et al., 2006). Canopy height influences on wind speed
reduction and fuel moisture content, and therefore it indirectly affects on crown
fire occurrence (Reinhardt et al., 2006). Canopy base height is the lowest height
where fuel may potentially be consumed (Cruz et al., 2003; B. Peterson et al.,
2005; Garcia et al., 2011). This attribute is crucial to predict crown fires, it defines
the gaps between understory vegetation and tree crowns (Graham et al., 2004;
Keane et al., 2005). Some studies (Graham et al., 2004; Keane et al., 2005; Garcia
et al., 2011) mention canopy cover as another significant forest fuel attribute. It
is defined as the proportion of land covered by tree crowns from a zenithal view
(Garcia et al., 2011). Canopy cover is related to the potential for fire spread
between crowns (Graham et al., 2004; Garcia et al., 2011). Therefore, there is a
set of attributes (i.e., canopy bulk density, canopy fuel load, canopy height,
canopy base height, and canopy cover) that may be used as inputs in decision
support systems to predict wildfire spread more accurately, instead of fuel type
classifications.

Fires not only spread horizontally, but also vertically among the different
vertical strata. Nevertheless, fire models for the mentioned decision support
systems (e.g., FARSITE, BEHAVE) represent the spread of wildfires in a two-
dimensional space. Therefore, these tools do not include heterogeneity of crown
fuels, which results in the most dangerous wildfires (Parsons et al., 2011); and
only predict the wildfire behavior considering the interaction fuel-atmosphere
(Mell et al., 2007), which involves that they only require the terrain, wind and
fuel parameters as input. On the other hand, more recent tools for predicting
wildfire behavior, such as WFEDS (Wildland-Urban Interface Fire Dynamics
Simulator) (Mell et al., 2007) and Firetec (Linn, 1997; Linn et al., 2002), use
physical fire models based on computational fluid dynamics methods (Sullivan,
2009; Hoffman et al., 2016), which include 3D simulations of wildfire behavior.
These tools not only consider the interaction fuel-atmosphere, but also the
interactions fuel-fire and fire-atmosphere. These interactions consist of the
generation of combustion gases and their fluxes and the reaction of fire and its
plume to local winds, respectively, which have an influence on the fire spread
(Mell et al., 2007). Therefore, these tools simulate fuels and wildfire behavior
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with much more detail (Pimont et al., 2016). Nonetheless, given that these tools
consider vegetation fuels as heterogeneous, they require more information from
the different vertical strata (Mell et al., 2011), such as the three-dimensional
distribution of fuels from individual trees and understory vegetation (Pimont
et al., 2016).

However, this new generation of 3D fire behavior models needs more
precise and detailed information related to the abovementioned fire fuel
attributes, so new remote sensing techniques and systems, in particular those
based on laser scanner (aerial and terrestrial) should be explored to fill the gap
between the high 3D resolution required by the new fire behavior models and
the current capabilities offered by large area remote sensing systems.

1.1.2. Estimation of fuel attributes using discrete airborne laser

scanning

Forest fuel attributes have been traditionally estimated by field campaigns
and destructive sampling, which are very costly and limited to small spatial
extents (Hyde et al., 2005; Riano et al., 2007). Therefore, mapping forest fuel
attributes over large areas was a tedious and inaccurate task. Nevertheless, the
use of remote sensing techniques has facilitated this task in the last decades.
Remote sensing techniques, and more specifically laser scanning, have
demonstrated their potential to estimate vertical and horizontal forest structure,
and other forest attributes (Dubayah and Drake, 2000; Lim et al., 2003; Wulder
et al.,, 2012; Hevia et al., 2016; Bottalico et al., 2017). Laser scanning consists of a
sensor installed on a platform (i.e., airborne: ALS, spatial, terrestrial: TLS, drone,
backpack, etc.) emitting thousands of laser pulses per second and registering
the laser response from intercepted objects. Laser scanning data collected are
stored in 3D point cloud format, providing X, Y, Z coordinates and an intensity
value related to the physical properties of the intercepted object and the laser
wavelength. These data are known as discrete laser scanning. Regarding ALS,
many studies have demonstrated the capacity of discrete ALS (ALSp) to
estimate forest fuel attributes. Riafio et al. (2003) described the existing
relationship between some ALSp metrics and forest fuel attributes canopy bulk
density, canopy fuel load, canopy height, canopy base height and canopy cover.
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Riafio et al. (2004) went a step further and estimated at plot- and tree-level the
mentioned forest fuel attributes, except for canopy cover, by using a single ALSp
metric as independent variable in regression models. Andersen et al. (2005)
estimated the same forest fuel attributes, however, they used several metrics in
the regression models instead of using a single one. Similar to Riafio et al. (2004),
Morsdorf et al. (2006) only used a single ALSp metric, but in this case to estimate
canopy cover, and using hemispherical photographs as field data. Popescu and
Zhao (2008) estimated canopy height and canopy base height at tree-level using
a new voxel-based approach. On the other hand, Hopkinson and Chasmer
(2009) also estimated canopy cover by using hemispherical photographs as field
data, and they carried out the analysis in seven different sites distributed in five
Canadian ecozones. Erdody and Moskal (2010) used ALSp metrics alone and in
combination with high resolution color near-infrared aerial imagery to estimate
canopy bulk density, canopy fuel load, canopy height and canopy base height.
They found that combination of ALSp and imagery performed the best results,
however, accuracy of ALSp alone in estimating forest fuel attributes
outperformed the use of imagery alone. Zhao et al. (2011) also estimated forest
fuel attributes using ALSp data and analyzing how the accuracy varies when
using different machine learning models. They observed that Support Vector
Machine and Gaussian processes reached better results than traditional
approaches such as linear regression. Finally, Hevia et al. (2016) observed an
influence of thinned and unthinned plots on ALSp metrics. Overall, estimate
results show a high correlation between ALSp metrics and forest fuel attributes,
resulting in a coefficient of determination (R?) around 0.81+0.07, 0.80+0.19,
0.93+0.04, 0.79+0.06 and 0.74+0.01 for canopy bulk density, canopy fuel load,
canopy height, canopy base height and canopy cover, respectively, in the
studies analyzed. As previously mentioned, these attributes are key forest
attributes used as inputs in decision support systems to predict wildfire
behavior. Therefore, ALSp has demonstrated its potential to estimate key forest
fuel attributes over large areas, being widely employed since it reduces
considerably time and work with respect to traditional field campaigns.

10
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1.1.3. Full-waveform airborne laser scanning

Among laser scanning technology, full-waveform laser scanning goes one
step further than discrete laser scanning. Instead of a discrete 3D point cloud,
full-waveform laser scanning registers the complete signal emitted by the
sensor and it is stored in wave form (Mallet and Bretar, 2009). Waveform
amplitude values depend on the wavelength and physical properties of the
intercepted objects (Song et al., 2002; Guo et al., 2011; Hermosilla et al., 2014a),
and angle of incidence (Kukko et al., 2008). Contrary to discrete laser scanning,
full-waveform laser scanning provides a continuous response along the
trajectory of the laser pulse, and hence more information is provided from the
different vertical strata of the vegetation (Mallet and Bretar, 2009). For instance,
understory vegetation, which is key for ladder fuels to spread fire from surface
to crowns, is retrieved in more detail by full-waveform laser scanning
(Anderson et al., 2016; Hancock et al., 2017). In the last decades, several studies
have been carried out using airborne (ALSrw) and spaceborne full-waveform
laser scanning. For the latter, it is worth mentioning Geoscience Laser Altimeter
System (GLAS), which was the first laser scanning for continuous global earth
observation, onboard the Ice, Cloud, and land Elevation Satellite (ICESat) until
2008. This system had a large footprint size (~50-65 m), and was originally
launched to study changes in ice sheets, atmospheric properties and clouds
(Abshire et al., 2005; Mallet and Bretar, 2009). Nevertheless, it has also been
successfully used to estimate forest fuel attributes thanks to registering the full-
waveform (Lefsky et al., 2007; Garcia et al., 2012). Regarding ALSkw systems,
they can be divided according to its footprint size. Scanning Lidar Imager of
Canopies by Echo Recovery (SLICER) and its improved version, Laser
Vegetation Imaging Sensor (LVIS) (Blair et al., 1999), are two prototypes
developed by NASA with a footprint size of 5-15 m and 5 m, respectively. These
systems were designed to characterize the vertical forest structure and forest
fuel attributes with promising results (Lefsky et al., 1999; Means et al., 1999;
Harding et al., 2001; Drake et al., 2003; Hyde et al., 2005). Compared to laser
scanning systems with a small footprint size (i.e.,, <1 m), laser beams with a
large footprint size are less intercepted by vegetation strata and reach the
ground (Fieber et al., 2015). Nevertheless, their wide footprint size limits its

11
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resolution in retrieving the vertical forest structure, and its high pulse energy
and low pulse rate limit its spatial sampling (Wulder et al., 2012). Regarding
ALSrw systems with a small footprint size, some studies have demonstrated the
potential of ALSrw to estimate forest attributes (Cao et al., 2014; Hermosilla et
al., 2014a), including some of the forest fuel attributes (i.e., canopy bulk density,
canopy fuel load, canopy height and canopy base height). A few studies have
assessed the accuracy differences between ALSp and ALSkw for the estimation
of some forest fuel attributes, finding more accurate results for ALSrw
(Anderson et al.,, 2016; Hancock et al.,, 2017). Nevertheless, despite of its
potential to characterize understory vegetation and structure, ALSrw has
received less attention than ALSp because of three main limitations: (i)
ignorance of data, (i7) large amount of data, and (iii) lack of processing tools.
Ignorance of data is reflected in users, researchers, forestry consulting
companies and some companies in charge of data collection. This is due to the
relative novelty of ALSrw data and the shortage of researchers working on this.
Simultaneously, the latter is due to the large amount of data to deal with, which
makes tests much longer and powerful processors are often required.
Additionally, the lack of processing tools makes that most researchers must
have programming skills to research on ALSew applications. This situation may
be starting to change with the recent launching of the new full-waveform laser
scanning system, called Global Ecosystem Dynamics Investigation (GEDI),
onboard the International Space Station (ISS) (Dubayah et al., 2020). Some new
processing tools to process GEDI data, such as rGEDI for R (Silva et al., 2020)
and Gedi for Python (Camacho, 2020), along with the availability of data, will
allow more users to investigate the potential of full-waveform laser scanning to
characterize the vertical forest structure and forest fuel attributes.

1.2. Aims and objectives

The general objective of this thesis is the development of processing and
analysis methods based on full-waveform airborne laser scanner data to
characterize the vertical forest structure, in particular the understory vegetation.
It arises from the need to reduce the limitations and to present the potential of
ALSkw in forestry applications.

12
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Simultaneously, six hypotheses are raised with their respective six specific
objectives to reach the main objective. These hypotheses and specific objectives

are as follows:

Hypothesis 1: Computation of ALSew metrics through the voxelization
procedure, and subsequently the prediction of forest structure attributes, are
influenced by a variable pulse density. This influence may be reduced by
modifying the voxel parameters (i.e., voxel size and assignation value).

Objective 1: To analyze the influence of pulse density, voxel parameters and
regression methods on ALSrw metric values and on forest structure attributes
estimates, identifying those parameters and quantifying their relations to be
able to tune their values in order to considerably reduce this influence in
practice.

Hypothesis 2: Understory vegetation in Mediterranean forests is a key strata in
characterizing wildlife habitats and mitigation of forest fires. Metrics to detect
and characterize understory vegetation are crucial for modeling forest fuel
attributes and forest structure, and ALSew is a more suitable technique to
capture information from understory. There is a lack of ALSkw processing tools
integrating these tasks and able to perform radiometric correction of data.

Objective 2: To compile a set of methods to process and analyze ALSkw data,
including the relative radiometric correction of the data to reduce the effect of
the different angles of incidence and local altitude variations during the data
acquisition process, the extraction of most ALSkw metrics as proposed in the
literature, as well as new metrics focused on understory vegetation, integrating
them in a new software available to use for the scientific community.

Hypothesis 3: The scan angle has an influence on the amplitude values of the
waveforms, and therefore on the ALSrw extracted. The application of
radiometric correction is expected to reduce these differences in the amplitude
values. As well as ALSrw metric values, forest fuel attributes estimated using
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these metrics may also be influenced by scan angle differences, and radiometric
correction is expected to reduce this effect.

Objective 3: To assess the influence of the scan angle of ALS data acquisition
and the application or not of a radiometric correction on (i) the extraction of an
ALSrw metric; and (ii) modeling three of the most relevant forest fuel
attributes—canopy fuel load (CFL), canopy height (CH), and canopy base
height (CBH).

Hypothesis 4: ALS and TLS configurations are limited to detect lower and
upper strata, respectively, because of the position of the sensors. This limitation
depends on the forest ecosystem and density.

Objective 4: Characterize the signal occlusion along the vertical forest structure
using different laser scanning configurations (i.e., ALSp, ALSrw, and TLS) in
contrasted ecosystems with different canopy covers to determine how reliable
the resulting vertical distribution profiles are, based on the amount of occlusion
and the lack of information.

Hypothesis 5: Given that ALSrw registers the complete signal going through the
vertical forest structure, and ALSp is a simplification of ALSrw, understory
vegetation can be detected and its density determined more accurately with
ALSrw than with ALSp.

Objective 5: Determine how understory vegetation density classes can be
detected and further determined by ALS configurations, and whether ALSrw
allows the detection and determination to a level of detail beyond ALSp
capability.

Hypothesis 6: The new described ALSrw metrics in objective 2 may be used to
accurately characterize the height, cover and volume of understory vegetation
in a Mediterranean ecosystem.

14
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Objective 6: Apply and validate the new metrics described in objective 2
derived using a voxel based approach to estimate understory height, cover, and
volume in a Mediterranean forest ecosystem, proposing some practical
recommendations for further development and testing ALSrw metrics.

1.3. Thesis outline

This thesis is divided into six chapters, being this first chapter an
introduction to the state-of-the-art and to the topics discussed in more detail in
chapters 2-5. These four chapters are based on edited versions of four
international scientific publications, one national scientific publication, and
eight published conference papers. Lastly, the sixth chapter compiles the
conclusions of the thesis, as well as raises possible lines for future research
taking the current thesis as reference.

Figure 1.1 shows the development of the different chapters of the thesis in
chronological order and their relation to the different publications carried out.
The first two publications (one conference paper and one national scientific
publication) described the estimation of forest attributes using ALSrw, and how
the accuracy of these estimates depends on the regression models used. This
leaded to find the existing influence of pulse density on ALSkw metrics and on
the estimate of forest attributes, which is addressed in Chapter 2. The thesis is
divided in a methodological part (Chapters 2 and 3), including the development
of a software tool, and the application and analysis of ALSew for the
characterization and detection of understory vegetation (Chapters 4 and 5).

In Chapter 2, the problem of the influence of pulse density on ALSrw metrics
and on the estimate of forest attributes is addressed. As previously mentioned,
a side-lap effect due to pulse density variation was detected when estimating
forest attributes. In this chapter, the variation of the most common ALSrw
metrics and of the estimates of forest attributes when forcing the variation of
the pulse density, voxel parameters (i.e., voxel size and assignation value) and
regression methods are analyzed. This analysis allows for better understanding
the side-lap effect and how it can be reduced.
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Figure 1.1. Chronological diagram and structure of the research. Publications are
colored according to the chapter they belong, and the four core publications are in bold
and the edges highlighted.

In Chapter 3, the influence of the scan angle and the relative radiometric
correction on ALSrw metrics and on the estimates of forest fuel attributes is
assessed. This analysis and other ALSrw data processing may be done in a new
processing tool called WoLFeX (Waveform Lidar for Forestry eXtraction), which
is also presented and described in this chapter. This processing tool is the basis
for the application of methods in order to characterize understory vegetation
presented in the following chapters.

In Chapter 4, the ability of two airborne platforms (ALSp and ALSew) and
one terrestrial platform (TLS) to characterize vertical forest structure is assessed,
linking it with a new method to estimate signal occlusion in the different strata.
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Moreover, the suitability of ALSp and ALSew to determine understory
vegetation density classes is also assessed, which is challenging for airborne
platforms due to occlusion caused by overstory. All these analyses are carried
out in two contrasted ecosystems (boreal and Mediterranean).

In Chapter 5, the line of Chapter 4 is followed, and it is focused on the
characterization of understory vegetation in a Mediterranean forest using
ALSrw. The height, cover and volume of understory vegetation are estimated,
and the results evaluated using TLS as reference data.

In Chapter 6, the conclusions of the different chapters are compiled to
provide a global conclusion of the thesis. In addition to mentioning the most
relevant points of the thesis, this chapter also discusses possible further research
by continuing the line of the thesis.
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Chapter 2

Influence of methodological parameters on full-waveform
ALS metrics and forest attributes prediction
Edited version of:

Crespo-Peremarch, P., Ruiz, L.A., Balaguer-Beser, A., Estornell, J., 2018. Analyzing the
role of pulse density and voxelization parameters on full-waveform LiDAR-derived
metrics. ISPRS Journal of Photogrammetry and Remote Sensing, 146. 453-464.
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si el romero se seca
ya no florece.”
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INFLUENCE OF METHODOLOGICAL PARAMETERS ON FULL-WAVEFORM ALS METRICS AND
FOREST ATTRIBUTES PREDICTION

In this chapter, the effect that ALSew pulse density, voxelization parameters
(i.e., voxel size and assignation value), and regression methods have on ALSrw
metric extraction and on the subsequent estimate of forest attributes are
analyzed. This effect related to a variable pulse density due to differences in
flight stripes overlap is called side-lap effect, and it is visually observed as a
stripe where ALSrw metrics and forest attributes estimated differ from their
neighborhood, although forest attributes are actually similar. Side-lap effect
may lead to obtain wrong results when voxelizing ALSrw data. Hence, knowing
the causes of side-lap effect and how to reduce it is fundamental to use properly
ALSrw data for forestry applications by the voxelization procedure.

2.1. Introduction

ALS data (i.e., ALSp and ALSkw) are not homogeneous along a study area.
Several factors such as scan angle, range from sensor to registered objects,
topography or objects” structure prevent ALS point cloud from forming a
regular mesh. Moreover, side-lap areas (i.e.,, where two or more flight stripes
overlap), which are required to reduce occlusion, increase pulse density, and for
flight stripes georeferencing, have a higher pulse density (see Figure 2.1). These
pulse density variations affect metrics extracted from ALSrw and the subsequent
forest attributes estimates. Therefore, ALSrw metrics extracted in two areas with
identical forest features but different pulse densities may differ. In addition,
given that forest attributes are estimated by using ALSrw metrics in regression
models, the estimates are influenced by pulse density variations as well.

The influence of ALSp pulse density on estimates of forest attributes was
analyzed in several studies (Table 2.1). All these studies present variations in
estimates of forest attributes, however, since they were focused on different
ecosystems and used different ranges of pulse densities, variations have
different scales. Gobakken and Neesset (2008), Magnussen et al. (2010) and
Jakubowski et al. (2013) observed that estimated attributes were not
significantly affected by density until dropping 0.25 points'-m? in the first study,
and 1 pulseem? in the last two. Analyzing specific groups of attributes,
Magnussen et al. (2010), Gonzalez-Ferreiro et al. (2012), Strunk et al. (2012),
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b)

lower™
density
20 m

Figure 2.1. Representation of the ALS density variation and subsequent side-lap effect
in the ALSp point cloud from (a) a zenithal view and (b) a vertical transect, and (c) in
the estimation of the ALSrw metric RWE (Return Waveform Energy).

Treitz et al. (2012), Jakubowski et al. (2013) and Varo-Martinez et al. (2017) did
not find significant influence of pulse density on attributes related to height,
such as: mean, dominant, tree and Lorey’s height, and mean height to live
crown. According to Strunk et al. (2012) and Treitz et al. (2012), attributes related
to tree density (i.e., number of stems and stem density) were not significantly
affected either. However, Magnussen et al. (2010) observed on the reliability
ratio that stem density was affected using low pulse densities. The reliability
ratio was defined by Hansen et al. (2015) as the variance of a metric among
sample plots divided by the total variance of the metric (i.e., the variance among
sample plots plus the average variance within the plot). Regarding attributes
related to trunk size, such as quadratic mean diameter (Treitz et al., 2012), DBH
(Jakubowski et al., 2013), and basal area (Magnussen et al., 2010; Gonzalez-
Ferreiro et al., 2012; Strunk et al., 2012; Treitz et al., 2012; Jakubowski et al., 2013;
Ruiz et al.,, 2014; Varo-Martinez et al., 2017), had no significant differences
between different pulse densities, except for the basal area in a tropical forest in
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a study carried out by Manuri et al. (2017). Among volume attributes (i.e.,
volume over bark, stem volume, gross total and merchantable volume), only
volume over bark in Gonzalez-Ferreiro et al. (2012) was significantly affected
by pulse density variations. Additionally, Jakubowski et al. (2013) for shrub
cover and height variables, Ruiz et al. (2014) for canopy cover, and Silva et al.
(2017) for aboveground carbon, observed that they were not significantly
affected either. Lastly, stem biomass and aboveground biomass were influenced
by ALSp pulse density in an Atlantic and tropical forest (Gonzalez-Ferreiro et
al., 2012; Manuri et al., 2017) but Treitz et al. (2012) did not find significant
differences in aboveground biomass in a boreal forest using different densities.
Overall, mass-related attributes such as aboveground biomass (AGB) are more
influenced by pulse density than height attributes, although another factor
affecting tree density, basal area and volume is the type of ecosystem.

The influence of pulse density on forest attributes estimated from ALSp
metrics has been widely studied in different ecosystems, however, less attention
has been paid to how ALSp metrics are influenced. Roussel et al. (2017)
mentioned that even when the values of estimated attributes are stable for
different pulse densities, ALSp metrics are affected, since they are measures and
are not statistically fitted. Gobakken and Naesset (2008) and other authors, such
as Hansen et al. (2015) and Roussel et al. (2017), analyzed the effects of pulse
density on ALSp metrics. The first study computed height (e.g., percentiles,
maximum, mean and coefficient of variation) and density metric differences
between the initial point density (i.e., 1.13 points-m?) and thinned data (i.e., 0.25,
0.13 and 0.06 points-m?) at different sample sizes. They observed that the
maximum height metric had large variations between point densities, these
variations being even larger when point density decreased. The remaining
metrics did not have a clear pattern. Hansen et al. (2015) computed seven ALSp
metrics: mean, maximum, variance, percentiles 10 and 90 of the above ground
heights, and the proportion of points above the ground and above the mean.
They observed that most of the metrics were not influenced by pulse densities,
except for the maximum elevations that decreased with lower pulse densities.
However, the reliability ratio increased for all the metrics as pulse density
increased, until reaching a threshold where it remained stable. A possible
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Table 2.1. Summary of existing studies about the influence of ALSp pulse density on estimates
of forest attributes (adapted from Crespo-Peremarch et al. (2018a)).

Highest (HD)-lowest (LD)
Study Study Area Ecosystem densities Estimated variables
(pulses-m?)

Results (HD-LD)

Estimate differences:

Gobakken Valer, HI: Lorey's height HI =~ 0.2-0.6 m
and Neesset Southeastern Boreal forest 1.13-0.06 points-m BA: basal area BA = oz 0 N 5 .H.:N.Tm;
(2008) Norway Vol: stand volume Vol ~ 5-30 m-ha-l
R2 (%):
BA =79-72
Aurskog- Hl: Lorey's height V=85-80
Magnussen Holand, Boreal forest 2-0.25 BA: basal area Reliability ratio:
et al. (2010) Southeastern V: volume over bark HI ~ 1.0-0.9
Norway SD: stem density BA =~ 0.98-0.95
V =0.96-0.92
SD = 0.96-0.81
) . R2 (%):
Fim: mean height Him = 78.6-75.9
Hd: dominant height
[ . Hd = 84.6-86.5
Gonzalez- Galicia, BA: basal area
. . BA =67.8-69.2
Ferreiro et Northwestern Atlantic forest 8-0.5 V: volume over bark V =69.1-79.4
al. (2012) Spain ﬁﬂw.amss%sammm Wer = 68.7-68.8
AGE: w - stem _owsw.mm Wit =73.2-82.7
: aboveground biomass AGB = 74.6-804
Humid
Western
Strunk et al. . temperate — nRMSE (%):
Washington i 3-0.05 ST: number of stems
(2012) State (USA) Pacific lowland ST = 56-57

mixed forest
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Table 2.1. (cont.) Summary of existing studies about the influence of ALSp pulse density on
estimates of forest attributes (adapted from Crespo-Peremarch et al. (2018a)).

Highest (HD)-lowest (LD)

Study Study Area Ecosystem densities Estimated variables Results (HD-LD)
(pulses-m)
. Central ) . R2 (%):
Zmﬂmﬁmﬂhmﬁ al Kalimantan, Tropical forest 2.8-0.01 points-m2 AGB: mwwwwwﬂwﬂﬂﬂwaawmm AGB = (90.0)—(80.0,60.0)
Indonesia ) BA = (90.0)-(70.0,40.0)
Paraiba Valley, Humid
Silva et al. - ! . ) R2 (%):
2017) Sao wm:.p_o\ subtropical 10-5 AGC: aboveground carbon AGC = 82.17-81.79
Brazil forest
Varo- mxwwwmﬁmmw > Semi-arid and Hd: dominant height R2 (%):
Martinez et mosﬁrmwm»mg Mediterranean 10-0.5 m A basal m:.mmm Hd = (97.0,94.0)-(95.0,93.0)
al. (2017) Spain forest : BA = (92.0,88.0)-(93.0,87.0)
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explanation for this might be that mean values of ALSp metrics did not vary
much due to pulse density. In contrast, the standard deviation increased for
lower pulse densities, and hence the reliability ratio varied as well. Roussel et
al. (2017) also analyzed how maximum height varied for different pulse
densities. They concluded that metric variations were not only subject to pulse
density, but additionally to ALS footprint size and canopy shape. The flatter the
top canopy (i.e., fewer singularities), the lesser the difference between pulse
densities. Pre-processing of ALSp and ALSrw data differ due to data
characteristics. While ALSp metrics can be recomputed by simply varying the
number of points (i.e., pulse density), pre-processing of ALSkw data is more
complex and there are other parameters that may also be considered. This
complexity may explain why the influence of pulse density on ALSrw metrics
and on estimate of forest attributes have received less attention. Furthermore,
some published studies have analyzed the evolution of ALSrw metrics by
artificially reducing the pulse density. Crespo-Peremarch et al. (2016) observed
side-lap effect in adjacent areas that were compared pairwise, with similar
forest features but having different densities. It was found that ALSrw metrics
were influenced by density variations caused by flight stripe side-lap areas. A
standard pre-processing method for ALSrw metric extraction is voxelization
(Hermosilla et al., 2014b). Once pseudo-vertical waveform is generated, ALSrw
metrics can be extracted. Changing the voxel size and the assignation value may
diminish the side-lap effect without modifying the pulse density. Increasing the
voxel size reduces the number of empty voxels, avoiding gaps in the pseudo-
vertical waveform. On the other hand, changing the assignation value can avoid
outliers from amplitude values, which is more likely when the voxel size

increases.

Crespo-Peremarch et al. (2016) observed that the side-lap effect in ALSrw metrics
had an effect on forest attribute estimates as well, given that the latter are
estimated through ALSrw metrics. This influence was visually observed for a
large area, resulting in a wrong mapping of forest attributes, with presence of
side-lap effect due to pulse density variation. Therefore, correcting side-lap
effect is essential to properly estimate forest attributes. Comparing ALSkw
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metrics obtained using different pulse densities may help to better understand
how metrics are influenced and to reduce side-lap effect.

In this chapter, in section 2.2, the study area and the data used to carry out
the analyses are described. In section 2.3, the different processing steps followed
from raw data to the analyses of side-lap effect are enumerated. In section 2.4,
the results of how side-lap effect influences on the ALSrw metrics and on the
estimate of forest attributes are shown. In section 2.5, the discussion of the
results is addressed. Finally, in section 2.6, the conclusions of this chapter are
presented. This chapter sets out the Hypothesis 1: “Computation of ALSew
metrics through the voxelization procedure, and subsequently the prediction of
forest structure attributes, are influenced by a variable pulse density. This
influence may be reduced by modifying the voxel parameters (i.e., voxel size
and assignation value)”. To demonstrate this hypothesis, Objective 1 is
addressed in this chapter: analyze the influence of pulse density, voxel
parameters and regression methods on ALSrw metric values and on forest
structure attributes estimates, identifying those parameters and quantifying
their relations to be able to tune their values in order to considerably reduce this
influence in practice.

2.2. Study area and data

The study area (2,258 ha) is located in Panther Creek (Oregon, USA) (Figure
2.2), in the Cascade mixed forest ecoregion (Bailey, 1980). The dominant species
is Douglas-fir (Pseudotsuga menziesii) very occasionally mixed with other
conifers such as western red cedar (Thuja plicate), western hemlock (Tsuga
heterophylla) and grand fir (Abies grandis), and broad-leaved species such as
bigleaf maple (Acer macrophyllum) and red alder (Alnus rubra). Tree heights are
variable due to harvesting, being up to 60 m. Altitudes in the total extent of the
study area range from 100 to 700 m.

ALSrw data were acquired in July 2010 using a Leica ALS60 over 3,264.51 ha,
with a pulse density ranging from 2 to 168 pulses-m?, and an average of 10.4
pulses-m? (Figure 2.2c). Data were registered at an average flight altitude of 900
m above ground level, at 105 kHz pulse frequency, and with a scan angle of +14°
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Figure 2.2. (a) Study area location in the USA Pacific Northwest, (b) flight trajectories,
sample (green) and plot (blue) locations within the study area limits (red), and (c) pulse
density.

from nadir. The study area was covered with flight stripe side-lap of >50%
(2100% overlap). Waveform amplitudes were recorded in 256 bins with a
temporal sample spacing of 2 ns (i.e., 0.3 m) and a footprint size of ~0.25 m. In
addition, a DTM with 1 m spatial resolution was provided by the company that
registered ALSrw data, and its vertical accuracy assessed using 33 GPS ground
control points, obtaining a root-mean-square error (RMSE) of 0.19 m.

Regarding field works, a total of 84 circular plots with 16 m radius were
measured. Within each plot, the dominant species and every tree with a DBH
greater than 2.5 cm were registered. As a result, there were 47 plots where
Douglas-fir was dominant, and 37 with mixed species. Afterwards, forest
attributes were estimated using collected field data and allometric equations
described by Standish et al. (1985).
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2.3. Methods

Two main analyses were carried out: the influence of side-lap effect on (i)
ALSrw metrics and (ii) on the estimate of forest attributes.

The overall strategy followed to analyze the influence of side-lap effect on
ALSrw metrics and on the estimate of forest attributes is illustrated by the flow
diagram of Figure 2.3. Six procedures were applied to carry out the analyses. As
the first procedure (1), a radiometric correction and denoising were required
prior to any analysis including ALSew metrics. The second procedure (2)
consisted of a pulse density reduction so as to simulate the pulse density
variation of side-lap effect in samples. As the third procedure (3), ALSrw data
were clustered into voxels, where different sizes and assignation values (i.e.,
voxel parameters) were tested to assess its influence on side-lap effect. The forth
procedure (4) involved the extraction of the different ALSrw metrics from the
voxelization carried out with different pulse densities and voxel parameters. As
the fifth procedure (5), the first analysis is based on how the side-lap effect
influences on the ALSrw metrics extracted in Procedure 4. The evolution of
ALSrw metrics is analyzed as pulse density and voxel parameters are modified.
The last procedure firstly involved estimation of forest attributes (6a) from
ALSrw metrics extracted in Procedure 4. Lastly, the second analysis involved
analyzing the evolution of accuracy in the estimation of forest attributes by also
modifying pulse density and voxel parameters (6b).

2.3.1. Radiometric correction and waveform denoising

Prior to voxelization, the radiometric correction is a key pre-processing step
for ALSrw data (Procedure 1), since the metrics extracted depend on the
amplitude values of the waveform. These amplitude values registered vary
according to sensor and atmospheric factors, as well as the local angle of
incidence and the range from the sensor to the object intercepted. Thus, an object
may be registered with different amplitude values depending on these factors.
The goal of the radiometric correction is to reduce these differences of
amplitude values to make amplitude values independent of these factors.
Moreover, the radiometric correction also allows for converting digital numbers
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(1) Radiometric
correctionand
denoising DATA

l PRE-PROCESSING

(2) Pulse density
reduction

(3) Voxelization -J PARAMETERS
1 SETTING

(4) Extraction of
ALSgy metrics v
(6a) Estimation of
forest attributes

RESULTS

(5) Analysis of side- (6b) Analysis of side-
lap effect on ALSgy lap effect on estimate
metrics of forest attributes

ANALYSIS

Figure 2.3. Overall processing flowchart implemented to analyze the side-lap effect on
ALSrw metrics and on the estimate of forest attributes.

of amplitude values to physical units such as reflectance by means of ground
truth data from targets. Therefore, there are two main approaches of
radiometric correction: relative and absolute. The relative radiometric
correction reduces radiometric differences between flight stripes due to some
factors such as the local angle of incidence or the range to the object registered.
The absolute radiometric correction however also reduces radiometric
differences between data acquired in different days and with different sensors
(Wagner, 2010), and allows for converting amplitude values to physical units.
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To deal with this correction, properties from targets distributed along the study
area are required (e.g., targets or paved roads). In this research, the relative
radiometric calibration was considered, since ground-truth data from targets
were not available and there were no paved roads whose radiometry was
known. Equation 1, described by Kashani et al. (2015), considers the distance
from the sensor to the registered object and the angle of incidence. The angle of
incidence depends on the scan angle, the slope and the aspect (Figure 2.4).
Knowing these values, the angle of incidence may be calculated for those ALSrw
returns corresponding to the ground. However, objects present on the ground,
such as trees, do not follow the terrain slope. In general, trees grow vertically,
and their branches almost horizontally. Since it is unfeasible to know the angle
of incidence on tree leaves and branches without an accurate external data (e.g.,
TLS), for the computation of the angle of incidence the terrain slope is
considered for ALSrw ground returns, and a null slope (i.e., 0%) for the rest of
ALSrw returns.
R" 1

*

Ac = Ax
¢ Ry cosa

Equation 1
where Ac = corrected amplitude,
A = amplitude to be corrected,
Ri=range from the sensor to the object,
Rrs=reference range set to 1,000 m for this study,
n = power of the range,
a =local angle of incidence.

After the radiometric correction, waveforms still contain noise. The process
followed to remove it was the one described by Hermosilla et al. (2014b)
(Procedure 1). This process consists of first discarding noisy waveforms, and
then removing noise from non-noisy waveforms. In this process, waveforms are
tagged as noisy when all the amplitudes are below a threshold defined as the
mean plus four times the standard deviation of the waveform amplitudes
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-I.l....‘ Q

Figure 2.4. Relation between the angle of incidence at the ground (aw) and at a branch
(a1), the scan angle (B), and the range from the sensor to ALSrw return corresponding
with the ground (Ri).

(Lefsky et al., 2005). All these waveforms are removed, and only the rest of
waveforms (i.e., non-noisy) are used for the next step. For the remaining
waveforms, two denoising filters may be applied. First, noise, defined as 133%
of the mode of the amplitudes, is subtracted from each amplitude value of the
waveform. Then, a Gaussian filter is applied to eliminate the remaining noise.
The new amplitude values slightly differ from the original ones (Hancock et al.,
2015), however, the shape and proportion of the waveform is kept, and
therefore ALSrw data values are not highly influenced.
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2.3.2. Pulse density reduction

For the first analysis (i.e., analyzing the influence of side-lap effect on ALSrw
metrics), a total of 30 samples were selected from the study area where conifers
were dominant (Figure 2.2b). These samples were located where pulse density
was higher (i.e., side-lap areas) in order to be able to test a higher number of
pulse density variations. Despite the fact that in side-lap areas scan angles are
usually higher, we assumed the influence of scan angle negligible after the use
of the radiometric correction. The polygon samples were square-shaped with
an area of 804.25 m? each, this is the equivalent area of 16 m radius circular plots.
For the second analysis (i.e., analyzing the influence of side-lap effect on
estimate of forest attributes), a subsample of 36 conifer-dominant plots from the
84 measured was selected (Figure 2.2b) to work with plots having the highest
pulse densities, and then testing a higher number of pulse density variations as
well. In this thesis, we differentiate between the terms “sample” and “plot”,
requiring the latter ground-truth data from field works.

The analysis of the side-lap effect on ALSkw metrics requires forcing a pulse
density reduction (Procedure 2) to assess its influence in samples whose forest
attributes remain constant. In this way, the effect due to a pulse density
variation may be assessed in more detail, since several pulse densities may be
tested. This is a crucial processing step, since although some adjacent samples
may have similar forest attributes, only identical forest attributes may be
guaranteed using the same sample. Pulse density may be calculated by
identifying the number of pulses in a sample and its area (Equation 2). The
number of pulses in the sample may be easily calculated by counting the
number of first or last returns in the sample. To force a pulse density reduction,
it is needed to calculate the number of pulses in the sample by knowing the
pulse density to reach and the area of the sample. Afterwards, the new number
of pulses calculated are randomly selected among all the pulses in the sample
(see Figure 2.5). This resulting new dataset is therefore voxelized in the next
section to assess the side-lap effect at the new pulse density indicated.

Pulse densities tested differ according to the analysis. Samples from the
analysis of the side-lap effect on ALSrw metrics were located in areas with higher
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Number of pulses in the sample

Pulse density =
ulse density Area of the sample

Equation 2

Figure 2.5. Examples of gradual reduction of pulse density, representing values of 20,
4, and 2 pulses-m from left to right.

pulse densities, therefore a wider range of pulse densities could be tested. The
pulse density was reduced from 16 to 2 pulses-m? with an interval of 1 pulse-m-
2, resulting in 15 different density values. The initial pulse density was selected
considering the maximum and common pulse density value found in the 30
samples. Plots from the analysis of the side-lap effect on the estimate of forest
attributes correspond with areas where field data are available. Because of this,
the selection of plots for the analysis is restricted, and therefore a smaller range
of pulse densities could be tested. In this case, the maximum and common pulse
density value was set to 9 pulses-m? to work with 36 plots. The pulse density
was reduced from 9 pulses'm to 1 pulse-m? every 0.5 pulses-m?2.

2.3.3. Voxelization

Once ALSrw data have been radiometrically corrected and noise removed,
and selected according to pulse density, voxelization procedure (Procedure 3)
may be carried out. However, prior to voxelization a height normalization is
required to avoid mixing different vertical strata. The DTM described in section
2.2, and generated from the original pulse densities was used for height
normalization. Up to this point, the terms “waveform” or “pulse” have been
employed, since denoising and pulse density reduction was done at waveform-
level. However, voxelization requires a point cloud, and this is obtained from
the discretization of the waveforms. Waveforms are defined by a set of bins
(Figure 2.6), which have an amplitude that is provided either in the LAS file or
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in a WDP file. Nevertheless, XYZ coordinates of each bin must be calculated
prior to voxelization. To do this, XYZ coordinates from at least one return
belonging to the waveform, the return point waveform location of this return
(i.e., offset in time units from the first bin of the waveform to the return point
location), the temporal sample spacing value (i.e., distance between two
consecutive bins), and the waveform line parameters Xt, Yt and Zt are required.
All these data may be retrieved from the LAS file and are described in Figure
2.6. Firstly, the coordinates of the anchor point (i.e., the first bin of the
waveform) (see Figure 2.6) must be calculated (Equation 3). To do this, the XYZ
coordinates of the anchor point are calculated from the known coordinates of
the return point, the waveform line parameters, and the offset between the
anchor and the return point:

Xy = Xpi - Xt * RPWL
Yi=Yr- Yt *RPWL
Zy = Zpi - Zt *RPWL
Equation 3
where X4, Ya, Za=XYZ coordinates of the anchor point in meters,
Xri, Yri, Zri = XYZ coordinates of the return point i in meters,
Xt, Yt, Zt = waveform line parameters,

RPWL = return point waveform location, which is the offset in
picoseconds (10-2) between the anchor and the return point i.

Secondly, XYZ coordinates of all the bins contained in the waveform may
be calculated from the anchor point coordinates (Equation 4). To do this, the
offset in each dimension between the anchor point and the corresponding bin is
calculated using the waveform line parameters, the relative position of the
corresponding bin in the waveform from the anchor point, and the distance
between two consecutive bins. Next, this offset in each dimension is added to
the corresponding coordinate of the anchor point:
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Xi=Xq+Xt*i*TSS
Y=Y+ Yt*i*TSS
Zi =7y + 2t *I *TSS
Equation 4
where X, Yi, Zi= XYZ coordinates of current bin in meters,
Xa, Ya, Za=XYZ coordinates of the anchor point in meters,
Xt, Yt, Zt = waveform line parameters,

i = bin position with respect to the anchor point (i.e., i = 0 for the anchor
point),

TSS = temporal sample spacing in picoseconds (10-'2).

Following this procedure, XYZ coordinates from each bin of each waveform
may be calculated. These coordinates together with its amplitude value yield to
a discrete point cloud from ALSrw data, which may be further voxelized.

Voxelization is a procedure to drastically reduce the amount of data and
facilitate the extraction of metrics. It consists of clustering data within voxels,
which are 3D pixels or rectangular prisms (Figure 2.7a). A voxel must be defined
by its XYZ dimensions. Usually, X and Y dimensions coincide, however Z
dimension may differ, since horizontal and vertical accuracies differ in ALS
systems. To process ALSrw data, XY dimensions are related to the footprint size
of the laser pulse and the pulse spacing, while Z dimension is defined by the
temporal sample spacing value (see Equation 5).

oo x TSS
Equation 5

where S = distance in meters between two consecutive bins,
¢ = speed of light in m-s’,

TSS = temporal sample spacing in seconds.
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Figure 2.6. Description of waveform elements.

On the other hand, an assignation value must also be assigned for the
voxelization. This is the statistical procedure (i.e., maximum, mean, median,
etc.) employed to calculate the resulting voxel value from all the data contained
inside (Figure 2.7b). Therefore, to carry out the voxelization procedure is
necessary to set two voxel parameters: voxel size and assignation value. As a
result, a regular voxel grid with their corresponding voxel values is obtained
(Figure 2.7a).

Different voxel sizes and assignation values were tested in the analyses. In
the analysis of side-lap effect on ALSrw metrics, 14 voxel size variations in XY
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Figure 2.7. Representation of (a) 3D matrix of voxels, and (b) voxelization of point
cloud data within a voxel with different statistical procedures.

dimensions were tested: 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.05, 1.15, 1.25,
1.35, 1.45 and 1.55 m. The minimum voxel size was equal to the footprint size.
The voxel size in Z dimension was not modified, and the vertical distance
between waveform bins, based on the temporal sample spacing of the ALS
system, was respected. Therefore, the voxel size in Z dimension was 0.3 m,
calculated from the temporal sample spacing (see Equation 5). In addition, the
voxel value was computed using five different statistics (maximum, mean,
median, percentiles 90 and 95) for all the waveform bins within each voxel. In
the analysis of side-lap effect on the estimate of forest attributes, three voxel
sizes were tested: 0.25, 0.5 and 1 m. As in the first analysis, Z dimension of
voxels was calculated from the temporal sample spacing (i.e.,, 0.3 m) (see
Equation 5). However, only maximum as the assignation value was tested for
this second analysis to keep the significance of the maximum amplitudes from
the original waveforms when generating the pseudo-vertical waveforms
(Hermosilla et al., 2014b).
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2.3.4. Extraction of ALSrw metrics

Once voxelization has been carried out, pseudo-vertical waveforms must be
generated. Although it is a step prior to the extraction of ALSrw metrics, they
are considered in the same procedure (Procedure 4). The generation of pseudo-
vertical waveforms was proposed by Hermosilla et al. (2014b) to standardize
the acquisition of ALSrw metrics from different flight stripes and off-nadir scan
angles. Most of the emitted pulses have off-nadir angles, and hence they have a
horizontal displacement. In order to remove this horizontal displacement, the
standardization of the pseudo-vertical waveform consists of generating new
waveforms from the voxel values along a voxel column from the top of the
canopy to the ground (Figure 2.8). As all these new waveforms have a vertical
direction, they all represent the vertical profile of the vegetation from a nadir
angle. As a result, a regular grid of waveforms with a vertical direction is
generated, where each voxel column contains a pseudo-vertical waveform.
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Figure 2.8. Extraction of the voxel column and the corresponding pseudo-vertical
waveform from the 3D matrix of voxels.

Once waveforms from different scan angles have been standardized using
pseudo-vertical waveforms, ALSrw metrics may be extracted (Procedure 4).
Some of the most employed metrics were proposed by Duong (2010) and further
described by Cao et al. (2014). These metrics are HOME (Height Of Median
Energy), WD (Waveform Distance), NP (Number of Peaks)), ROUGH
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(ROUGHness), HTMR (Height/Median Ratio), VDR (Vertical Distribution
Ratio), RWE (Return Waveform Energy), and FS (Front Slope), which are
described in Table 2.2 and Figure 2.9. All these metrics were extracted from each
pseudo-vertical waveform, resulting in a regular grid where each voxel column
contains the values of these metrics (Figure 2.10). To carry out an area-based
approach (ABA) based on either plots, where field data have been acquired, or
samples, to assess metric variations, metric values were obtained by calculating
the mean and the standard deviation of each metric value within the area
delimited by either the plot or the sample. As a result, 16 metrics were computed
with an ABA from the initial eight metrics: HOMEu, HOMEo, WDu, WDg,
NPp, NPo, ROUGHp, ROUGHo, HTMRu, HTMRo, VDR, VDRo, RWE,
RWEo, FSu, and FSo. These resulting ALSrw metrics with an ABA were used
for further assessment of metric variations and estimation of forest attributes.

Table 2.2. Description of the ALSrw metrics.

Metric Description
HOME Height of the waveform centroid
WD Height of the waveform
NP Number of peaks in the waveform
ROUGH Offset between the waveform height and the height of the first peak
HTMR HOME/WD
VDR (WD-HOME)/WD
RWE Integral of the waveform amplitudes
ES Vertical angle from the beginning of the waveform to the amplitude of the first peak

2.3.5. Analysis of the influence of side-lap effect on ALSrw metrics

In this section, the influence of side-lap effect of ALSrw metrics was
analyzed. Firstly, it was analyzed how metric values vary as a function of pulse
density; and secondly, as a function of voxel parameters (i.e., voxel size and
assignation value).

2.3.5.1. Variation of ALSrw metrics related to pulse density

Once ALSrw metrics were computed for every sample, voxel size, assignation
value and pulse density, its variation related to the pulse density was analyzed
(Procedure 5). The goal was to analyze variations of ALSew metrics modifying
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Figure 2.9. Graphical description of six of the eight ALSrw metrics (HOME, WD, NP,
ROUGH, RWE and FS) extracted from a pseudo-vertical waveform. The other two
(HTMR and VDR) are computed as a combination of others.

the three mentioned parameters (i.e., voxel size, assignation value and pulse
density). Among the eight ALSrw metrics previously described, only six of them
(HOME, WD, NP, ROUGH, RWE and FS) were analyzed in this analysis, since
the other two (HTMR and VDR) depend on HOME and WD. Firstly, the
variation related to pulse density for several samples at different voxel sizes and
assignation values was observed. As this variation followed a negative
exponential distribution, the least squares method was used to find the most
appropriate parameter values, fitting a negative exponential model (Equation
6). In this model, based on the exponential semivariogram model (David, 1977),
ALSrw metric values (y = dependent variable) tend to remain stable around a sill
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Figure 2.10. Resulting values from the extraction of (a) HOME, (b) NP, (c) VDR and
(d) RWE ALSrw metrics in a specific area of 500 x 500 m.

with a slight positive slope at a given pulse density (x = independent variable).
The formula of the negative exponential function is as follows:

3x

y=a+c X(1— exp b)
Equation 6
where x = value of density in pulses'm?,
y = value of the ALSrw metric,

a =value of y at which x = 0 in the negative exponential model,
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b =value of x where y reaches the 95% of the sill value,

c = range of y between a and the value of y at which the function is
stabilized then,

a + c =y value of the sill.

On the other hand, each sample has different values for ALSrw metrics, due
to vegetation variability. Therefore, with the aim of working with all 30 samples,
a function was fitted for each sample separately. Instead, a function for each
sample individually was fitted, and then the model results from the 30 samples
clustered by ALSkw metric, voxel size and assignation value was averaged. As a
result, 12,600 different models were computed (i.e., 30 samples x 6 ALSrw
metrics x 14 voxel sizes x 5 assignation values) resulting 420 averaged results
(i.e., 6 ALSrw metrics x 14 voxel sizes x 5 assignation values). Only negative
exponential models with a convergence tolerance of < 1 x 10” in the iterative
fitting process were used for the study. Validation was carried out using the
Jackknife procedure described by Duda et al. (2012), which utilizes a leave-one-
out procedure. Results were evaluated using the coefficient b, which shows the
minimum pulse density where ALSrw metrics hardly vary, and the Jackknife
bias, which shows the average of the deviations after removing one observation
at each iteration.

2.3.5.2. Variation of ALSrw metrics according to voxel size and assignation value

As seen in the previous section, analyzing variability of ALSrw metrics as
pulse density increases provides the minimum pulse density (MPD) where
metrics stay steady, corresponding to the coefficient b of the negative
exponential model. In addition, analyzing the variability using different voxel
sizes and assignation values may help to diminish the influence of the pulse
density (Procedure 5). Total Variation (TVar) (Equation 7) (Harten, 1983) can be
used instead of the variability of ALSrw metric values for the different pulse
densities explained in the previous section. The TVar computes the sum of
differences between adjacent values. Hence, the lower the TVar value, the less
variability the ALSrw metric has due to the pulse density. The formula of the
TVar is as follows:
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16—-1
TVar = z |ypd+1 — Ypd
pd=2

Equation 7
where y = value of the metric in a given pulse density (pd) and,
pd = pulse density.

Given that ALSrw metrics and assignation values have, in practice, a
different range of values, ALSrw metrics were rescaled independently for each
possible combination of metric and assignation type. A modified version of the
feature scaling method was used (Equation 8) to standardize data. In our case,
the minimum value was equal to zero to keep the minimum TVar value as zero:

x —min (x)

y= max(x) —min (x) /min (x) =0

Equation 8
where y = standardization of the ALSrw metric value,
x = ALSrw metric value,

min(x) = minimum ALSrw metric value grouped by ALSrw metric and
assignation value, in our case modified to min(x) =0,

max(x) = maximum ALSrw metric value grouped by ALSrw metric and
assignation value.

Afterwards, the TVar was computed from the 30 samples by averaging
every ALSkw metric, voxel size and assignation value.

2.3.6. Analysis of the influence of side-lap effect on the estimate of

forest attributes

The second analysis involved the assessment of side-lap effect when
estimating forest attributes (Procedure 6b). To do this, accuracies of forest
attribute estimates were compared by reducing pulse density in plots and
testing different voxel sizes and regression methods. Prior to this analysis, the
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estimation of forest attributes using ALSrw metrics as independent variables in
the regression models was carried out (Procedure 6a). In this analysis, two forest
attributes were estimated: AGB and canopy base height (CBH), being mass- and
height-related attributes, respectively. Contrary to the previous analysis, the
eight ALSkw metrics previously described were used as independent variables.
The mean of each metric within each plot was computed and further used as
variable in the regression models. Before generating the regression models, a
selection of ALSrw metrics was performed only for the highest pulse density
(i.e., 9 pulsessm?) and each regression method. The four regression methods
tested were linear, square-root-transformed (sqrt), exponential and power,
whose models are presented in Equation 9, Equation 10, Equation 11 and
Equation 12, respectively. These selected metrics were used for all the pulse
density reductions and voxel sizes in order to better compare how it affects
estimates without using different explanatory variables. The process followed
for the metric selection was to compare the Akaike Information Criterion (AIC)
(Akaike, 1973) of all the possible models with a maximum of three ALSrw
metrics as independent variables.

y=ayg+ta; Xxg+a, Xx,+--+a, Xx,
Equation 9
ﬁ= gt ay Xxy+a; Xx,+--+a, Xx,
Equation 10
y = exp(a0+a1><x1+az><x2+---+an><xn)
Equation 11
Y= ag X x;M X x,% X ... X x, %
Equation 12
where y = dependent variable (i.e., forest attribute to estimate),
X1, X2, ..., X» = independent variables (i.e., ALSrw metrics)

ao, a1, az, ..., an = coefficients to be adjusted.
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Once ALSrw metrics were selected, the four regression models described
(i.e., linear, square-root-transformed, exponential and power) were generated
for each pulse density and voxel size. Finally, regression models were evaluated
by comparing R? and RMSE, and using leave-one-out cross-validation.

2.4. Results

This section presents the results of the analysis of side-lap effect on ALSrw
metrics and on the estimate of forest attributes. Firstly, variations in ALSrw
metrics were analyzed by modifying pulse density and voxel parameters (i.e.,
voxel size and assignation value). Secondly, differences in evaluation
parameters (i.e., R and RMSE) of forest attribute estimates were analyzed when
modifying pulse density, voxel size and regression methods.

2.4.1. Analysis of the influence of side-lap effect on ALSrw metrics

Figure 2.11 shows how the pseudo-vertical waveform and the ALSrw metrics
from the same voxel column vary modifying the pulse density, voxel size and
assignation value. The lower the pulse density, the more null values and the less
details appear in the pseudo-vertical waveform. However, changes in the
waveform due to pulse density reduction seem to be less noticeable when voxel
size increases to 1.25 m, except for the median assignation value. In addition,
pseudo-vertical waveforms using the median assignation are smoother than
those using the maximum assignation. Analyzing values of ALSrw metrics for
the same voxel size, HOME, WD, ROUGH and FS do not show significant
variations. On the contrary, NP and RWE are more variable.

2.4.1.1. Variation of ALSrw metrics related to pulse density

Figure 2.12 and Figure 2.13 show the variation of HOME, WD, NP, ROUGH,
RWE and FS in one sample for the different pulse densities with the maximum
assignation and voxel size of 0.25 and 0.75 m. In the case of 0.25 m (Figure 2.12a),
the trend fits a negative exponential model for all the metrics. This does not
occur using a voxel size of 0.75 m for metrics HOME and FS (Figure 2.12a and
Figure 2.13c). The negative exponential function shows that metric values
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Figure 2.11. Examples of pseudo-vertical waveforms at voxel column-level and ALSrw
metric values for different pulse densities (20, 10 and 5 pulses-m?), voxel sizes (0.25
and 1.25 m) and assignation values (maximum and median).
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Figure 2.12. Variation of (a) HOME in meters, (b) WD in meters and (c) NP, related
to pulse density in one sample for the maximum assignation value and a voxel size of
0.25 m (left column) and 0.75 m (right column). The black points represent the values
computed and the red curve the fitted negative exponential model. The values of HOME
in the right column do not fit a negative exponential model.

progressively increase as pulse density increases, until they reach the sill of the
curve, being for example for HOME at 9-10 pulses-m? (in this case the MPD was
7.11 pulses'm?). However, the difference of metric values obtained at the lowest
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and largest pulse density decreases with a voxel size of 0.75 m, therefore metric
values become more stable increasing the voxel size.
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Figure 2.13. Variation of (a) ROUGH in meters, (b) RWE and c) FS in degrees, related
to pulse density in one sample for the maximum assignation value and a voxel size of
0.25 m (left column) and 0.75 m (right column). The black points represent the values
computed and the red curve the fitted negative exponential model. The values of FS in
the right column do not fit a negative exponential model.
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After generating the fitted models for every sample, Figure 2.14 shows the
average of the adjusted MPD values from the 30 samples where the
corresponding ALSrw metric remains stable (i.e., the b coefficients from the
negative exponential models (see Equation 6)); and Figure 2.15 shows the
standard deviation of the MPD for all samples. All the models obtained a
Jackknife bias lower than 1.56x10° in the validation procedure for the three
coefficients of the negative exponential model (i.e., 4, b and c). This means that
there were not outliers after applying the leave-one-out procedure. It is
important to remark that the negative exponential models were generated using
sample data from 2 to 16 pulsess-m? Hence, variation of ALSrw metric values
estimated out of this range are extrapolations, and as such the resulting MPD
values higher than 16 pulses-m? must be considered carefully. Additionally,
empty cells in Figure 2.14 and Figure 2.15 correspond to combinations of metrics
and voxel sizes that do not fit a negative exponential model. NP, ROUGH, and
RWE are the metrics with highest MPD values (MPD € [42.2, 46.2], MPD € [18.7,
21.3], and MPD € [60.2, 89.7] pulses-m?, respectively, for a voxel size of 0.25 m),
while HOME, WD and FS have the lowest MPD €[7.1, 7.2], MPD =9.6 and MPD
€ [3.9, 4.1] pulses'm?, respectively, for a voxel size of 0.25 m). Every ALSrw
metric remains asymptotically stable at lower pulse densities as voxel size
increases. For instance, the MPD decreases from 7.1 to 3.4 pulses-m? for HOME;
from 9.6 to 8.4 pulses-m for WD; from 45.5 to 15.4 pulses-m? for NP; from 21 to
4.6 pulsess-m for ROUGH; and from 60.2 to 5.3 pulses-m? for RWE. However,
WD has low values for voxel sizes of 0.35 and 0.45 m (MPD ¢ [8.4, 8.5]), but they
increase again as the voxel size also increases (MPD = 13.5 pulses-m?). Results
also show that for low MPD values (i.e., MPD € [3.9, 5.6]), variation of ALSrw
metrics does not fit a negative exponential trend for high voxel sizes. This
behavior is observed with HOME, ROUGH, RWE and FS, except for ROUGH
using the maximum assignation value. In these cases, ALSrw metric values tend
to slightly decrease as pulse density increases.

Comparing different assignation values, HOME, WD, NP and FS have
similar MPD values; however, ROUGH and RWE were influenced differently.
Both ROUGH and RWE remain stable at lower pulse densities using the median
as assignation value, but they present more variation using the maximum,
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Figure 2.14. Average minimum pulse density (MPD; i.e., coefficient b from the
negative exponential model) from the 30 samples for different voxel sizes and
assignation values. Empty cells correspond to combinations of metrics and voxel sizes
that do not fit a negative exponential model. Values in bold correspond to MPD values
higher than 16 pulses-m? (i.e., the maximum pulse density from sample data used to
generate the negative exponential model). Smallest and highest values are represented
by blue and red colors, respectively.

percentiles 90 and 95. For instance, RWE has a MPD value of 5.3 pulses-m? using
the median assignation and a voxel size of 1.25 m, while the MPD value was
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Figure 2.15. Average standard deviation of minimum pulse density (MPD; i.e.,
coefficient b from the negative exponential model) from the 30 samples for different voxel
size and assignation values. Empty cells correspond to combinations of metrics and
voxel sizes that do not fit a negative exponential model. Smallest and highest values are
represented by blue and red colors, respectively.

Analyzing the average of the standard deviation of the MPD from the 30
samples (Figure 2.15), all the values are low (between 1 and 2.6 pulses-m?)
except for NP and RWE with small voxel sizes. These ALSrw metrics have large
standard deviations for small voxel sizes ([6.7, 8.6] and [5.8, 11] pulses'm?,
respectively), diminishing the values for larger voxel sizes ([1.9, 2.3] and [1.0,
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1.2] pulses'm?, respectively). However, the standard deviation of ROUGH
using the maximum assignation increases as voxel size increases. High standard
deviation value of MPD are related to high MPD values.

2.4.1.2. Variation of ALSrw metrics according to voxel size and assignation value

Figure 2.16 shows the TVar value defined by Equation 7 and Equation 8, for
every ALSrw metric computed at the different voxel sizes and assignation
values. Overall, HOME, WD and FS present the lowest TVar values (TVar ¢
[0.03, 0.27], TVar € [0.06. 0.28] and TVar € [0.10, 0.28, respectively), while NP,
ROUGH and RWE present higher values (TVar € [0.24, 0.36], TVar € [0.14, 0.52]
and TVar € [0.12, 0.45], respectively) using small voxel sizes. TVar values of
HOME, WD, NP for maximum, RWE for mean and median, and FS, decrease as
voxel size increases compared to the lowest voxel size (i.e., 0.25 m). These values
range from 0.27 to 0.04 for HOME, from 0.28 to 0.06 for WD, from 0.33 to 0.30
for NP with the maximum assignation value; from [0.40, 0.45] to [0.12, 0.17] for
RWE with the mean and median assignation values; and from [0.26, 0.28] to
[0.10, 0.14] for FS. NP TVar values do not vary significantly as voxel size
increases, the values being [0.24, 0.32] at 0.25 m, and [0.27, 0.30] the lowest TVar
values at other voxel sizes. Regarding RWE, the TVar values are minimal at the
lowest voxel size using the maximum, percentiles 90 and 95 as assignation
values. Nevertheless, TVar values are particularly high at the lowest voxel size
using the mean and median assignation value, and become low for the largest
voxel sizes, especially with the median. In addition, TVar values from ROUGH
steeply increase as voxel size increases, varying from [0.14, 0.23] at 0.25 m to
[0.38, 0.52] at 1.55 m.

Regarding the assignation values, HOME and WD present little or no
differences. However, NP, ROUGH and RWE have different TVar values
depending on the assignation values. NP has the lowest value at 0.25 m for the
median assignation value (TVar = 0.24 m). The lowest TVar values of ROUGH
are reached using the maximum, percentiles 90 and 95. Finally, RWE TVar
values have the largest differences between assignation values, the mean and
median being completely different from the others.
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Figure 2.16. TVar values for the different ALSrw metrics computed for the assignation
values and voxel sizes. Smallest and highest values are represented by blue and red
colors, respectively.

2.4.2. Analysis of the influence of side-lap effect on the estimate of
forest attributes

Figure 2.17 shows R? values obtained in AGB and CBH estimates for the
different regression methods, pulse densities and voxel sizes. Regarding AGB,
the voxel size of 1 m has the highest and less affected results by pulse density
variations for all the regression methods. R? values range between 0.72-0.87,
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0.81-0.88 and 0.83-0.89 for a voxel size of 0.25, 0.5 and 1 m, respectively.
Additionally, for a voxel size of 1 m, R? variations along the different pulse
densities with a same regression method are 0.01-0.04, while variations are 0.03-
0.13 and 0.01-0.05 for a voxel size of 0.25 and 0.5 m, respectively. On the other
hand, sqrt regression is also unaffected by pulse density at a lower voxel size
(i.e., 0.5 m), varying up to 0.01. Overall, sqrt has the highest R? values, ranging
between 0.87-0.88, and 0.88-0.89 for a voxel size of 0.5 and 1 m, respectively. On
the other hand, R? values from CBH estimates stay steady until 1.5 pulses-m?,
where they suddenly drop with a R? variation up to 0.11, except for 0.25 m with
power and exponential regressions. For CBH estimates, the power regression is
more constant for all the voxel sizes than the linear, sqrt and exponential
regressions. R? variations for the power regression are between 0.02-0.04, while
variations of linear, sqrt and exponential regressions range between 0.05-0.11,
0.10-0.15 and 0.05-0.05, respectively.

Table 2.3 shows the mean and standard deviation of the RMSE obtained
from AGB and CBH estimates. Analyzing AGB results, the smaller the voxel
size, the larger the RMSE and the more variability. For a voxel size of 0.25 m,
mean and standard deviation values of RMSE range between 87.5-102.1 Mg-ha-
Tand 2.9-11.1 Mg-ha', respectively, while for a voxel size of 1 m, mean and
standard deviation values of RMSE range between 80.6-91.1 Mg-ha and 0.7-3.2
Mg-ha’, respectively. In addition, sqrt regression has the lowest RMSE, being
80.6 Mg-ha' with a standard deviation of 1.2 Mg-ha' for a voxel size of 1 m.
Conversely, CBH has lower RMSE differences between voxel sizes and less
variable. For all the voxel sizes, mean and standard deviation values are
between 4.6-5.2 m and 0.1-0.3 m, respectively. Hence, CBH results do not
depend on voxel size. In this case, power regression has the lowest RMSE, being
4.5 m with a standard deviation of 0.1 m for a voxel size of 1 m. In general, the
behavior of RMSE is coincident with that of the R? values.

Figure 2.18 shows the estimation of AGB and CBH in a small area of 1.5 x
1.5 km with two different voxel sizes (0.25 and 0.75 m) and the maximum as
assignation value. Estimation with a voxel size of 0.25 m shows that side-lap
effect (highlighted with red rectangles) is present on both forest attributes. On
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the contrary, the use of a larger voxel size (i.e., 0.75 m) shows that this side-lap
effect is reduced or disappears.

Pulse density (pulses.m?)
9 85 8 75 7 656 555 45 4 35 3 25 2 15 1

.84 0.84 0.84 0.83 0.83 0.83 0.83 0.84 0.83

Figure 2.17. Variation of R?> values for AGB and CBH estimates for the different
regression methods (Lin: linear, Sqrt: square-root-transformed, Exp: exponential, Pow:
power), pulse densities and voxel sizes. Red- and blue-colored cells represent the lowest
and highest R? values, respectively, for each attribute.
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Table 2.3. Mean and standard deviation from the RMSE for the different forest
attributes, voxel sizes and regression methods (linear, Sqrt: square-root-transformed,

Exp: exponential, power).

AGB (Mg-hat CBH (m

Methods (Mg ) (m)
0.25m 0.5 m 1m 0.25m 0.5 m 1m
Lineal 92.6+2.9 88.4+1.6 86.6+0.7 4.840.1 4.8+0.2 4.5+0.2
Sql‘t 87.5+3.2 82.1+1.2 80.6+1.2 5.0+0.3 4.9+0.3 4.6+0.2
Exp. 102.1+11.1 93.0+£3.7 91.1+£3.2 5.1+0.1 5.2+0.1 5.0+0.1
Power 97.4+4.0 87.2+2.8 82.4+1.1 4.6+0.1 4.7+0.1 4.5+0.1

Voxel size
0. 25 m 0.75m
AGB (Mg.ha™')

704.06
- 506.29

308.53

. 110.76
0

CBH (m)
- 26.38
18.82
- 11.26
3.69

Figure 2.18. Estimation of AGB and CBH in an area of 1.5 x 1.5 km using maximum
assignation value and voxel sizes of 0.25 m and 0.75 m. Red rectangles highlight the
side-lap effect on forest attribute values for a voxel size of 0.25 m.
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2.5. Discussion

Key results indicate that variations of ALSkw metrics due to pulse density
differences can be foreseen, and therefore their impact reduced by setting a
MPD, modifying the voxel size and/or the assignation value used. Additionally,
forest attributes estimated from ALSrw metrics are apparently much less
influenced by side-lap effect. However, this effect is present when estimating
forest attributes in larger areas and must also be considered. Hence,
modification of the voxel parameters may help to diminish the side-lap effect in
a particular study area, and therefore to obtain a more accurate estimate of
forest attributes.

Results showed that variations of ALSkw metrics related to pulse density have a
negative exponential behavior, especially with small voxel sizes. Usually, there
is a MPD from which metric values are stabilized. In new acquisitions of ALSrw
data, this MPD should be the minimum pulse density value registered by the
sensor to avoid the side-lap effect. However, the MPD is not constant for every
ALSrw metric, voxel size or assignation values employed. Therefore, in practice,
either the most affected ALSrw metrics should be avoided for estimation of
forest attributes, the voxel size increased, the assignation value or the regression
method modified.

On the other hand, when ALSrw data have already been acquired, pulse
density cannot be increased, and therefore other strategies are required, such as
modifying voxel parameters. Our results showed that increasing the voxel size
and/or modifying the assignation value can make ALSrw metrics more stable.
The probability that larger voxels are crossed by at least one waveform is higher,
avoiding the gaps in the voxel columns that may alter values of ALSkw metrics.
Therefore, side-lap effect is influenced by pulse density, which, together with
the voxel size, is directly related to the number of waveforms crossing each
voxel. Hence, a trade-off between increasing voxel size to reduce side-lap effect
and a substantial loss of resolution should be considered. Regarding the
assignation value, its effect on the stability of ALSrw metrics depends on the
chosen metrics. Some standard ALSrw metrics, such as RWE, have unstable
behavior, whereas some others, such as WD, have not. In general, the increment
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of the voxel size and the change of the assignation value reduce the variation of
ALSrw metrics.

MPD values determine the minimum pulse density required to obtain stable
ALSrw metrics. However, the variation trend of some ALSrw metrics does not
follow a negative exponential model. Additionally, in some metrics (e.g., WD)
higher values of MPD do not correspond to higher values of TVar. Therefore,
the introduction of TVar complements the MPD as an indicator of the variability
of the ALSrw metric due to pulse density changes.

Regarding different behavior among ALSrw metrics, NP and RWE are more
sensitive to pulse density changes than the rest. The lack of one or more voxel
values means fewer peaks and a different sum of amplitudes in the wave. On
the contrary, HOME, WD, ROUGH (at lower voxel sizes) and FS are less
affected, since they are metrics that are related either to the height or to the top
texture of the canopy, where the laser energy from airborne sensors arrives
without occlusion. WD only requires a proper estimation of the height of the
beginning of the waveform (top of the canopy), and it is well determined if the
waveform intersects with the top of the trees. HOME calculation involves the
beginning of the waveform as well as the height of the median energy. The latter
is usually well registered, since it often corresponds to the densest vertical layer
(see HOME values in Figure 2.11). ROUGH and FS calculation required the
beginning of the waveform, and the position and amplitude of the first peak.
Therefore, HOME, WD, ROUGH and FS vary if some voxel columns have no
data due to a low pulse density. In order to avoid this, an increment of the voxel

size is required.

In addition, there is remarkable disparity in values of ALSrw metrics using
different assignation values. MPD and TVar values from WD do not vary, since
the beginning of the waveform does not vary by modifying the assignation
value. HOME has slight differences, since the height of the median energy may
vary depending on the assignation employed. NP also presents minor variation,
since the pseudo-vertical waveform has more singularities when the maximum
assignation value is employed, ROUGH also has some differences due to
possible variation of the first peak. RWE is the most variable ALSrw metric. As
it is computed as the sum of amplitudes of a waveform, the sum of maximum
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values may substantially differ from the sum of median values, for instance. A
normalized metric may be used in order to avoid these differences. A possible
approach could be to calculate a normalized RWE (nRWE) following Equation
8, where x is equal to RWE, and min(x) and max(x) are the minimum and
maximum RWE values, respectively, for each assignation value. Thus, nRWE
values from different assignation values would be comparable. Finally, FS may
present small differences, since the amplitude and position of the first peak can
vary as well.

To summarize, in order to reduce the side-lap effect in this scenario, the
increment of the voxel size is recommended for HOME, WD, ES, and RWE for
the mean and median assignation values, but not for ROUGH and RWE when
maximum, percentiles 90 and 95 assignation values are used. Besides,
depending on the voxel size, the selection of the assignation value has to be
considered for RWE. According to results, NP might be discarded for estimating
forest attributes because of its sensitivity to pulse density. Observing Figure 2.14
and Figure 2.16, MPD, voxel size and assignation values can be selected to
minimize the side-lap effect in areas with similar vegetation types and densities.
When planning a ALS project, a MPD around 10 pulses-m?, a voxel size of 0.75
m or similar, and the mean or median voxel assignation seem to optimize
general performance. This combination of parameters provides the minimum
values of MPD for most of the ALSrw metrics (Figure 2.14), except for NP.
However, if ALSrw data are already available and the pulse density cannot be
increased, the maximum assignation and a voxel size of about 0.75 m would be
the most efficient option in terms of reduction of side-lap effect Figure 2.16.

Results are analogous to those of previous studies using ALSp. In these
studies, a similar tendency for R? (Jakubowski et al., 2013; Manuri et al., 2017),
reliability ratio (Magnussen et al., 2010; Hansen et al., 2015) and maximum
height metric (Roussel et al., 2017) was found. These values stabilize as pulse
density increases.

On the other hand, estimate of forest attributes are also influenced by side-
lap effect, given that influenced ALSrw metrics are used as independent
variables in the regression models. Nevertheless, the influence of side-lap effect
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is apparently lower on forest attributes, since the plots used for the analysis are
located where field data are available, and therefore there might not be a
variability in pulse density; and because forest attributes are statistically fitted
and errors minimized by using regression models. However, side-lap effect is
clearly present when forest attributes are estimated for large areas.

In the same way that the influence of side-lap effect depends on the ALSew
metrics, estimate of forest attributes are influenced differently. For instance,
mass-related attributes (e.g., AGB) are more influenced by voxel size to reduce
side-lap effect, while height-related attributes (e.g., CBH) are more influenced
by the regression methods. Increasing the voxel size around 1 m makes that
accuracy to estimate AGB does not vary as pulse density decreases. On the other
hand, the use of the power and exponential regression methods makes the
accuracy to estimate CBH more constant.

These results are coherent with those reported by Gonzalez-Ferreiro et al.
(2012) and Jakubowski et al. (2013) with ALSp. They also observed a lower
variation in precision for attributes related to height than for mass- and cover-
related attributes as pulse density decreases.

Modeling variations of ALSrw metrics related to the pulse density is relevant
to remove or reduce the side-lap effect when mapping or estimating metrics and
forest attributes. Depending on the ALS data acquisition step, different
strategies can be followed. First, if ALSrw data have not been acquired yet, a
minimum pulse density that keeps ALSrw metrics stable may be set. Second, if
ALSrw data have already been acquired, variation of ALSrw metrics can be
reduced by increasing the voxel size to a certain extent, and/or using a specific
assignation value. In this case, the pulse density cannot be increased, therefore
voxel parameters that provide more stable metrics should be used. Finally, if
some forest attributes do not respond to these strategies and reducing the side-
lap effect is not possible, then either they should be avoided for further
regression models or other regression methods should be employed, especially
in height-related attributes.
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2.6. Conclusions

In this chapter, the variation of ALSrw metrics and estimates of forest
attributes according to the pulse density, voxel parameters and regression
methods has been analyzed. This variation is common due to side-lap areas that
are registered with a higher pulse density, and is known as “side-lap effect”.
Our results suggest that ALSrw metric variations related to pulse density can be
modeled in most cases using a negative exponential model, and therefore there
is a threshold at which their values stabilize. From this point, a minimum pulse
density can be set to avoid the side-lap effect. In addition, modifying voxel
parameters (i.e., voxel size and assignation value) reduces the side-lap effect
when pulse density cannot be increased, e.g., when ALSrw data have already
been acquired. Thus, an increment of the voxel size is recommended for HOME,
WD, FS and RWE for the mean and median assignation values. Nevertheless,
small voxel sizes make ROUGH and RWE for maximum, percentiles 90 and 95
more stable. On the other hand, the choice of the assignation value must be
considered depending on the voxel used for RWE. However, NP is sensitive to
pulse density variations and they cannot be reduced through voxel parameters,
and therefore should be avoided for further analyses. Regarding estimates of
forest attributes, mass-related attributes are more influenced by pulse density
than height attributes. This influence however can also be reduced by increasing
the voxel size. On the contrary, height-related attributes are influenced by the
regression methods used for the estimate. The results presented in this chapter
have practical relevance in order to avoid the side-lap effect when estimating
forest attributes using ALSrw data. Further studies could focus on analyzing the
effect of these parameters on different ecosystems with different dominant
species, as well as the effect of the emitted pulse energy, footprint size, and
vertical structure on ALSrw metrics, since they also influence the penetration of
laser pulses.
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Creating a full-waveform airborne laser scanning metric
extraction tool (WoLFeX), and analyzing the influence of scan
angle and radiometric correction on metrics and forest fuel
attributes estimates
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CREATING A FULL-WAVEFORM AIRBORNE LASER SCANNING METRIC EXTRACTION TOOL
(WoLFeX), AND ANALYZING THE INFLUENCE OF SCAN ANGLE AND RADIOMETRIC CORRECTION
ON METRICS AND FOREST FUEL ATTRIBUTES ESTIMATES

In this third chapter, a software tool (WoLFeX) that integrates methods for
processing ALSrw data and extracting object-oriented metrics is presented.
Additionally, the influence of the relative radiometric correction and the
acquisition scan angle (i) on the ALSrw metric RWE, and (ii) on the estimation
of three forest fuel attributes (canopy fuel load: CFL, canopy height: CH, and
CBH) are tested and evaluated. The lack of ALSrw software and the fact that
most of them do not include radiometric correction or computing specific
metrics for understory vegetation, makes WoLFeX a significant tool to work
with ALSew data and to use it in the next sections of this thesis.

3.1. Introduction

As mentioned in Chapter 2, an essential pre-processing step before
generating ALSrw metrics is the radiometric correction. Radiometric correction
or calibration is a term widely used in remote sensing imagery. The goal of this
correction is to reduce errors in the acquired digital values of the pixels due to
atmospheric or sensor factors (Xu et al., 2019). This process is fundamental when
dealing with images acquired from different sensors or in different days
(Mafanya et al.,, 2018). Additionally, radiometric correction may involve
converting digital numbers to physical units (Chander et al., 2009). This process
is less extended for ALS data, however, it is an essential step for ALSew due to
the reliance between ALSrw metrics and amplitude values (Wagner, 2010). The
use of ALSrw data without radiometric correction may lead to modified ALSrw
metrics, and consequently modified estimates of forest fuel attributes. In this
case, the goal of the radiometric correction is to provide amplitude values
independent of the angle of incidence, range from the sensor to the target, as
well as sensor and flight day atmospheric conditions. Attending to Briese et al.
(2012), there are two main types of radiometric correction of ALSew: (i)
correcting radiometric differences between flight lines without auxiliary data
(i.e., relative correction) or (ii) using a surface whose approximate reflectance
values are known or using measured reflectance values from ground targets
(i.e., absolute correction). The use of any of these corrections, which depends on
the available data and the presence of well-known surfaces, has been pointed
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out by some authors as a relevant pre-processing step of ALSrw datasets
(Wagner, 2010; Sevara et al., 2019).

There are several processing tools available to retrieve ALSp metrics, which
are further used to predict forest fuel attributes. Two well-known software tools
are FUSION/LDV (McGaughey, 2014) and LAStools (Isenburg, 2017). Additional
libraries for processing ALSp data are available in different programming
languages (e.g., lidR in R as used by Roussel and Auty (2017); laspy in Python
[http://laspy.readthedocs.io/en/latest/]), such that users can customize their
own tool for specific needs. However, due to the complexity of the use of ALSrw
data and the non-standard level of its use and application, there is a very limited
number of processing tools available for ALSew data, both at open or
commercial levels. Researchers working on ALSrw have developed their own
tools for specific purposes, while others have made their tools available. Zhou
and Popescu (2019) developed an R package named waveformlidar to process
and visualize ALSrw data. This package allows for processing ALSrw data
through two different strategies: (i) by means of deconvolution or
decomposition of waveforms, therefore providing ALSp point clouds with more
information (e.g., echo width); and (ii) generating dense point clouds from
waveforms, self-named as "hyper point clouds”. Furthermore, some commonly
used ALSrw metrics, including those proposed by Duong (2010), may also be
retrieved by voxelizing the hyper point clouds through the waveformlidar
package. Miltiadou et al. (2019) created another open source software tool to
process ALSrkw and hyperspectral imagery data called DASOS. This tool
visualizes a polygon representation from voxelized ALSrw data and computes
ALSrw metrics at the voxel column level. Most of these metrics are related to
height, distance between voxels, and number of empty/full voxels, except for
the maximum and average intensity value of the voxel column. Another
available tool for ALSrw data processing is OPALS (Orientation and Processing
of Airborne Laser Scanning Data) (Pfeifer et al., 2014). This tool computes an
ALSrw decomposition, but not specific ALSkw metrics from the whole waveform
amplitudes. Apart from ALSp, LAStools allows for the visualization of ALSrw
data through PulseWaves (Isenburg, 2012) by representing the trajectories of the
pulses. Among the software tools mentioned, only waveformlidar and OPALS
include the radiometric correction, with the relative radiometric correction
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being recently included in OPALS (Sevara et al., 2019). However, more tools are
needed in order to cope a wider range of metrics able to better characterize
forest structure (e.g., understory vegetation metrics), as well as to offer a more
straightforward approach for the radiometric correction for raw ALSrw data.

In this chapter, in section 3.2, the different steps to process ALSrw data using
the methodology based on voxelization and generation of pseudo-vertical
waveforms to extract ALSrw metrics are described. In addition, a set of ALSrw
metrics proposed in the literature and others in this study are enumerated. In
section 3.3, it is shown the software tool WoLFeX and how ALSrw data
processing and metric extraction described in previous sections may be carried
out. In section 3.4, it is shown an application example of WoLFeX where the
influence of scan angle and the relative radiometric correction of ALSrw data on
one ALSrw metric and the estimate of three forest fuel attributes is analyzed.
Finally, in section 3.5, the conclusions of this chapter are presented. This chapter
sets out the Hypotheses 2 and 3: “Understory vegetation in Mediterranean
forests is a key strata in characterizing wildlife habitats and mitigation of forest
fires. Metrics to detect and characterize understory vegetation are crucial for
modeling forest fuel attributes and forest structure, and ALSrw is a more
suitable technique to capture information from understory. There is a lack of
ALSrw processing tools integrating these tasks and able to perform radiometric
correction of data” and “The scan angle has an influence on the amplitude
values of the waveforms, and therefore on the ALSrw extracted. The application
of radiometric correction is expected to reduce these differences in the
amplitude values. As well as ALSew metric values, forest fuel attributes
estimated using these metrics may also be influenced by scan angle differences,
and radiometric correction is expected to reduce this effect”, respectively. To
demonstrate these hypotheses, Objectives 2 and 3 are addressed in this chapter:
(i) compile a set of methods to process and analyze ALSkw data, including the
relative radiometric correction of the data to reduce the effect of the different
angles of incidence and local altitude variations during the data acquisition
process, the extraction of most ALSrw metrics as proposed in the literature, as
well as new metrics focused on understory vegetation, integrating them in a
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new software available to use for the scientific community, and (ii) assess the
influence of the scan angle of ALS data acquisition and the application or not of
a radiometric correction on the extraction of an ALSrw metric, and model three
of the most relevant forest fuel variables—canopy fuel load (CFL), canopy
height (CH), and canopy base height (CBH).

3.2. ALSrw data processing

One the most common methodologies proposed to process ALSrw data to
study and model the three-dimensional structure of forests is the one based on
voxelization and generation of pseudo-vertical waveforms (Hermosilla et al.,
2014b), which has been described in more detail in sections 2.3.3 and 2.3.4.

The overall strategy followed to process ALSrw data and extract derived
metrics is illustrated by the flow diagram of Figure 3.1. This strategy coincides
with some procedures of the strategy followed in Chapter 2 (Figure 2.3). As the
first procedure (1), radiometric correction and denoising were required prior to
any treatment of ALSrw data. The second procedure (2) consists of voxelizing
ALSrw data to generate pseudo-vertical waveforms and the third procedure (3)
in extracting ALSrw metrics. The last procedure (4) computes ALSrw metrics
from a pseudo-vertical waveform scale to an object scale (i.e., samples or plots).

As mentioned in the previous chapter, the first ALSew processing step
consists of the radiometric correction of the amplitude values contained in each
waveform bin (Procedure 1). This is especially critical for ALSew, since the
metrics extracted to create the models are directly related to the amplitude
values. The approach followed to do the relative radiometric calibration is
described in section 2.3.1.

After the radiometric correction, a denoising process is needed to remove
the noise due to the system registration process (Procedure 1). The process
followed is the one described in section 2.3.1.

Next step is the voxelization of ALSrw data (Procedure 2), which is described
in section 2.3.3.
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(1) Radiometric
correctionand
denoising

|

(2) Voxelization

|

(3) Extraction of

full-waveform

LiDAR metrics DATA
l PRE-PROCESSING

(4) Computation
of ALSgy metrics
at object-level
RESULTS

Figure 3.1. Overall processing flowchart implemented to process ALSrw data and
extract derived metrics.

Once voxelization is carried out, pseudo-vertical waveforms are obtained
based on the amplitude values of a same column of voxels (Procedure 3),
correcting off-nadir waveforms. The description of how to generate the pseudo-
vertical waveforms following Hermosilla et al. (2014b) and how to extract the
derived metrics is described in more detail in section 2.3.4.

After generation of pseudo-vertical waveforms, ALSrw metrics may be
extracted. Among the ALSrw metrics enumerated, we proposed 13 new metrics:
kurtosis, height of the first empty voxel (HFEV), height of the first empty voxel
from a threshold (HFEVT), energy to the first empty voxel (EFEV), normalized
energy to the first empty voxel (nEFEV), filled voxels at the understory (FVU),
normalized number of filled voxels at the understory (NFVU), bottom of canopy
(BC), bottom of canopy distance (BCD), bottom of canopy energy (BCE), canopy
distance (CD), canopy energy (CE), and the canopy energy ratio (CER) and
perform an exhaustive compilation of those proposed by previous recent
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studies (Kimes et al., 2006; Duncanson et al., 2010; Duong, 2010; Zhang et al.,
2011). All of them are available in the software tool. The ALSrw metrics
implemented can be divided into seven categories: height, energy, peaks,

understory, percentiles, Gaussian decomposition, and others. Table 3.1

describes the different ALSrw metrics classified by category.

Table 3.1. Description of ALSrw metrics available in WoLFeX (adapted from Crespo-
Peremarch and Ruiz (2020)).

Category Name Description Units Reference
WD Waveform distance m
z D 2010
fo ROUGH Roughness of outermost canopy m uong ( )
] - -
T HEIGHT On Proportion of energy at the nth elevation ) Duncanson et
quarter al. (2010)
RWE Return waveform energy DN Duong (2010)
MAXE Maximum energy DN
£ VARIANCE Variance of energy DN? Duncanson et
E SKEWNESS Skewness of energy - al. (2010)
5 - .
ENERGY On Proportion of energy at the nth energy )
quarter
KURTOSIS Kurtosis of energy - This study
NP Number of peaks - Duong (2010)
0 Distance between the beginning of the
4
s START PEAK waveform and the height of MAX E m Duncanson et
. i i L (201
PEAK END Distance between the height of MAX E m al. (2010)
and the ground
HFEV Height of the first empty voxel m
HFEVT Height of the.z first empty voxel from a m
given threshold
o EFEV Energy from the ground to the first DN
5 empty voxel
@ Energy from the ground to the first .
b3 EFEV - This stud
5 " empty voxel divided by RWE 18 study
5 Number of filled voxels at the
FvVU -
understory
Number of filled voxels at the
NFVU understory divided by the total number -
of voxels
0
2
£ Hn (H50 = Kimes et al.
§ }111 O(MS](E)) Height at the nth percentile of energy m lr(r;%i)z) a
9]
~

* DN: Digital Number
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Table 3.1. (cont.) Description of ALSrw metrics available in WoLFeX (adapted from
Crespo-Peremarch and Ruiz (2020)).

Category Name Description Units Reference
N GS Number of Gaussian curves in the i
waveform
Nos  NymbwlCeinane b T ouanon
STARTPEAK & 5 al. (2010)
height of the boundary
N GS Number of Gaussian curves between the )
ENDPEAK height of the boundary and the ground
GE Ground energy extr.acted from the DN
ground Gaussian curve
Ground return ratio: GE divided by
GRR RWE -
c Elevation of the nth quarter of energy,
IS) CHn ) ] m
= excluding the ground Gaussian curve Zhang et al.
3 Rn CHn divided by WD - (2011)
g" AGS Average Gaussian curve slope -
o . . .
S SGS Standard deviation Gaussian curve )
A slope
c s I :
& MSGS Modified standard deviation Gaussian )
A curve slope
5 Bottom of canopy: elevation of the first
@) BC . m
canopy Gaussian curve
Bottom of canopy distance: distance
BCD from the beginning of the waveform to m
BC
BCE Bottom (.)f canopy energy: energy from DN .
the beginning of the waveform to BC This study
Canopy distance: distance from the
CD beginning of the waveform to the m
boundary between ground and canopy
CE Canopy energy: energy excluding GE DN
Canopy energy ratio: CE divided by
CER RWE
HTMR Height/median ratio: HOME divided by )
WD
2] VDR Vertical distribution ratio: WD minus )
< HOME divided by WD Duong (2010)
©) Front slope: vertical angle from the
FS beginning of the waveform to the degrees

amplitude of the first peak

* DN: Digital Number
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ALSrw metrics HOME, WD, NP, ROUGH, RWE and FS are described
graphically in Figure 2.9 from section 2.3.4, and HTMR and VDR depend on
HOME and WD. The other ALSrw metrics mentioned are described below in
different figures, due to the large number of metrics.

Figure 3.2 shows the representation of MAX E, START PEAK and PEAK
END. Generally, waveform peaks with the maximum energy correspond to the
ground. However, if most of the energy is intercepted prior to reach the ground,
maximum energy may be located in the denser vegetation strata. Therefore,
these metrics not only provide information about the presence of vegetation and
detection of the ground, but also about the densest strata. MAX E corresponds
with the maximum energy of the waveform, which in this example is located at
a height of 7.2 m. START PEAK is the distance between the beginning of the
waveform and the height of the maximum energy, while END PEAK is the
distance between the height of the maximum energy and the ground.

10+

Height [m]

Q= == = = - - - - e — — — —

0 10 20 30 40 50 60 70
Amplitude

Figure 3.2. Representation of ALSrw metrics MAX E, START PEAK and END PEAK.
The waveform signal is represented in red, metric marks in black dashed lines, and MAX
E with a green point.

Figure 3.3 shows the amount of energy from the different height and energy
quarters in Figure 3.3a and b, respectively. These quarters of height and energy
are computed from the distance (i.e., WD) and the maximum energy of the
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waveform (i.e., MAX E), respectively. Height quarters provide information
about the distribution of the vegetation along the vertical structure. Energy
quarters represent if the energy is focused on one peak or distributed in
different strata. Afterwards, ALSrw metrics HEIGHT Qn and ENERGY Qn are
computed as the ratio of energy contained in the corresponding quarter divided
by the total amount of energy (i.e., RWE).

a) b)
10

10+

1 1 1 1 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Amplitude Amplitude

Figure 3.3. Representation of the amount of energy from the different quarters of (a)
height and (b) energy used for the computation of ALSrw metrics HEIGTH Qn and
ENERGY Qn, respectively. The waveform signal is represented in red, metric marks in
black dashed lines, and height and energy quarters filled in blue, green, orange and red.

HFEV and HFEVT are related to the understory height and analyze the
pseudo-vertical waveform in the vertical dimension from the ground upwards.
HFEV is computed as the height from the ground to the first filled voxel
(defined as an amplitude higher than a given number provided by the user
(Figure 3.4a). To account for lower shrubs close to the ground and a more open
understory, the HFEVT calculates the height of the first filled voxel above a
given threshold (Figure 3.4b). FVU and NFVU are related to understory cover.
FVU examines if there are any filled voxels between two given heights (Figure
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3.4c), and NFVU is the number of filled voxels divided by the number of voxel
between these two heights (Figure 3.4d).

a b
) ) 1.05m
0.9m 0.9m
0.15m 5
Empty voxel
Om Om Om
Filled voxel
c) d)
= Computed voxel
Threshold
g’,:m Metric value
N Ground
|
1 1 0 0 4/4 3/4 0/4 0/4

Figure 3.4. Representation of voxel transects to describe ALSrw metrics (a) HFEV, (b)
HFEVT, (c) FVU, and (d) NFVU. Voxel height is equal to 0.15 m and metric values for
each column of voxels are written in black. Height thresholds in (b), (c), and (d) are user
inputs.

Following with the ALSrw metrics related to understory, EFEV and nEFEV
are represented in Figure 3.5. These two metrics are related to the properties of
the understory. EFEV is the sum of amplitudes from the ground to the
understory height, which corresponds to HFEV. The nEFEV is a relative
measure, and is equal to the EFEV divided by the sum of amplitudes of the
whole waveform (i.e., RWE). Additionally, the ALSew metric Hn is also
represented in Figure 3.5 with different percentiles. To compute this metric, it
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is necessary to check at which height a given percentile of energy is reached.
The height of percentile 50 of energy (i.e., H50) is equal to HOME.

H75

H50 (=HOME)

Height [m]

4+ nEFEV = EFEV/RWE

EFEV

0 1 20 30 40 50 60
Amplitude
Figure 3.5. Representation of ALSrw metrics EFEV, nEFEV and Hn. In this case

percentiles 5, 25, 50, 75 and 95 are represented for the metric Hn. The waveform signal
is represented in red, metric marks in black dashed lines, and EFEV filled in green.

The following ALSrw metrics are based on the Gaussian iterative
decomposition of the waveform. This decomposition consists of splitting the
original waveform into different Gaussian curves, until the difference between
the original waveform and the resulting Gaussian curves is below a given
tolerance (Hofton et al., 2000). ALSrw metrics related to the Gaussian iterative
decomposition were designed by Zhang et al. (2011) for large footprint ALSrw,
and Hancock et al. (2015) showed that Gaussian iterative fitting was the most
accurate method comparing energy values for large footprint ALSrw. However,
in this study the potential of these metrics as descriptors for forestry
applications was tested, since according to Hancock et al. (2015), energy
differences for the Gaussian iterative method and small footprint ALSkw were
small as well (i.e., nNRMSE (normalized root-mean-square error) = 1.37%). In the
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example represented in Figure 3.6, the original waveform is split into three
Gaussian curves, therefore N GS is equal to three. After applying the Gaussian
iterative decomposition to the waveform signal, the other ALSrw metrics
represented in Figure 3.6 and Figure 3.7 require the computation of the
boundary between ground and canopy curves (Zhang et al., 2011). The height
of this boundary is defined as the height at the ground curve plus 1.5 times its
standard deviation, being the ground curve the one with the highest amplitude
located in the half of the waveform with the lowest heights. Once ground and
canopy curves are identified, ALSrw metrics N GS STARPEAK and N GS
ENDPEAK are computed as the number of Gaussian curves above and below
the boundary, respectively (Figure 3.6). GE is equal to the amount of energy
between the ground and the boundary, and GRR is the proportion between this
amount of energy at the ground curve and the total amount of energy (i.e.,
RWE). At the canopy curve, CHn are computed as the height of the different
energy quartiles from the canopy curve energy, and Rn are the proportion
between the different CHn metrics and the total height of the waveform (i.e.,
WD).

Also from the Gaussian iterative decomposition Figure 3.7 represents ALSrw
metrics BC, BCE, BCD, CD, CE and CER. BC is defined as the height from the
ground to the first Gaussian curve above the boundary. BCE is the energy from
the ground to BC, and BCD is the distance from BC to the top of the canopy.
These metrics are related to understory, since it is assumed that the first energy
peak excluding the ground must be related to either the understory or the
canopy base. Regarding the overstory, CD is the distance between the beginning
of the waveform and the boundary. CE is the energy from the beginning of the
waveform to the boundary. CER is equal to CE normalized by the total energy
of the waveform (i.e., RWE).

Finally, there is a set of ALSew metrics (AGS, SGS and MSGS) related to
overstory and proposed by Zhang et al. (2011). These metrics are also extracted
from the Gaussian iterative decomposition, but only from the Gaussian curves
above the boundary (i.e., the canopy). Prior to the computation of these metrics,
the slope of each Gaussian curve must be calculated as the ratio between the
amplitude and the standard deviation of each Gaussian curve (Equation 13).
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NGS=3
N GS STARTPEAK =2
N GS ENDPEAK =1

Height [m]

R25 = CH25/WD
R50 = CH50/WD
R75 = CH75/WD

GRR = GE/RWE

0 10 20 30 40 50 60
Amplitude
Figure 3.6. Representation of ALSrw metrics N GS, N GS STARTPEAK, N GS
ENDPEAK, GE, GRR, CHn and Rn, derived from the Gaussian decomposition. The

waveform signal is represented in red, the resulting Gaussian iterative decomposition
in blue dashed line, metric marks in black dashed lines, and GE filled in green.

BC BCD
Amplitude : ; CcD it

CER=CE/RWE

¥/ Bce

first peak
after boundary

Height

Figure 3.7. Representation of ALSrw metrics BC, BCD, BCE, CD, CE and CER from
the Gaussian iterative decomposition of the waveform signal.
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Next, AGS, SGS and MSGS metrics may be computed (Equation 14, Equation
15 and Equation 16, respectively).

A

Si - —

i
Equation 13

where i = current Gaussian curve above the boundary,
Si = slope of the current Gaussian curve i,
Ai=amplitude of the current Gaussian curve i,

oi = standard deviation of the current Gaussian curve i.

AGS=S= ) S,

-

Il
-

4

Equation 14
where i = current Gaussian curve above the boundary,
Si=slope of the current Gaussian curve i,

n =number of Gaussian curves above the boundary.

SGS = AS =

Equation 15
where i = current Gaussian curve above the boundary
Si=slope of the current Gaussian curve i,
S = mean slope of the Gaussian curves above the boundary,

n =number of Gaussian curves above the boundary.
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= E, _
MSGS = AS' = Z_(Si —§)?
i=1 Er

Equation 16
where i = current Gaussian curve above the boundary
Si = slope of the current Gaussian curve i,
S = mean slope of the Gaussian curves above the boundary,
Ei = energy of the current Gaussian curve i,

Er = total energy of the Gaussian curves above the boundary (i.e.,
nE)
=11/

n =number of Gaussian curves above the boundary.

3.3. Software tool

The software tool WoLFeX is designed to perform all the processing steps
described in previous sections, from the relative radiometric correction of
ALSrw data to the extraction of ALSrw metrics for generating either regression
or classification models, which can be further applied in larger study areas.

WoLFeX is divided into five sections (Figure 3.8): Inputs, Radiometric
correction, Voxelization parameters, Metrics and Execution. In the Inputs
section, the user selects the ALSrw data files, typically LAS files (version 1.3 and
point format 4), the DTM for the height normalization, and a workspace to save
the outputs. In order to process a smaller area, data may be clipped using the
limits saved in shapefile format with a polygon geometry. In addition, if the clip
area is representing objects such as plots or segmented trees, an id field from
the shapefile must be selected in the Inputs section to identify the different
processed objects in the output statistics. To apply a radiometric correction of
the data, the trajectory files related to the LAS files must be selected. This
trajectory files can be in *.txt or *.trj format and they are needed to compute the
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A WolFeX v1.0 [Waveform Lidar for Forestry eXtraction] = B B || % WolFeXv10 [Waveform Lidar for Forestry eXtraction] =8| &
Inputs | Radiometric Corredtion | Parameters | Metrics | Execution | | nputs | Radiometric Correction | Parameters | Metrics | Execution |
[ E:/Data/CASTELLON 150916 074452125 From— E/Data/trajectories/ CASTELLON_150916 063438 41j =
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E:/Date/CASTELLON 150916 081255 Jes E/Dataftrajectories/ CASTELLON_150916 071223.15
E-/Data/CASTELLON 150916 081955 Ias E/Data/trajectories/ CASTELLON_150916_072025.t1 |
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£/Data/trajectories/ CASTELLON 150916 082655.11
E/Data/trajectories/ CASTELLON_150916_083338.11
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E:\Data\dtm.tif Scan Angle Filter
E:\Data\output\ [ Minimum Scan Angle () [7] Maximum Scan Angle (0)
4 WolFeX v1.0 [Waveform Lidar for Forestry eXtraction] = B B || 4 WolFeXv10 [Waveform Lidar for Forestry eXtraction] =8 =7
| inputs | Radiometric Correction | Parameters | Metrics | Execution | | mnputs | Radiometric Correction | Parameters | Metrics | Execution |
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Figure 3.8. Graphic user interface of WoLFeX and the five different sections: (a) Inputs,
(b) Radiometric correction, (c) Voxelization parameters, (d) Metrics and (e) Execution.

trajectory of each waveform. When the format is *.txt, the user should select the

fields containing the GPS time, X, Y, and Z coordinates, and specify if there is a
header in the text file. For both formats (*.txt and *.trj), the user should introduce
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a range of reference and a power 1 as described in Equation 1 in section 2.3.1.
On the other hand, WoLFeX also allows for filtering by scan angle intervals
without selecting trajectory files. This option can be used to process a narrower
range of scan angles to minimize the effect of a wide range of incidence angles
on radiometric values. The third section allows for the selection of the voxel size
and the assignation value. In the Metrics section, the user can select the specific
ALSrw metrics to compute. Lastly, the Execution sections allows for the selection
of the different processing steps that the user wants to execute, as well as the
output format (*.csv or *.tif) for the metrics. In addition, this is the section where
the completed steps or possible error messages are printed after the execution
of the process.

3.4. Case of study: Influence of radiometric correction and

forest fuel modeling

3.4.1. Material and methods

In this application example, we tested the effect of the relative radiometric
correction of ALSrw data on modeling forest fuel attributes for different scan
angle intervals using the described software tool WoLFeX. The study area was
located in the Natural Park of Sierra de Espadan, 30 km west of the
Mediterranean Sea in eastern Spain (Figure 3.9a). The region is highly
mountainous with steep hillsides, where elevation ranges from sea level to 1,100
m within few kilometers. Because of its topography and orientation, Sierra de
Espadan Natural Park receives higher annual rainfall than its local
surroundings, which combined with its unique geomorphology makes it a
regional hotspot for biodiversity. The total area of the Natural Park is 31,000 ha
with our foci sites covering 12% (3,741.5 ha). The dominant species are Aleppo
pine (Pinus halepensis), maritime pine (Pinus pinaster), cork oak (Quercus suber),
and holm oak (Quercus ilex).

ALSrw data were acquired on September 16t 2015 over 7,465.53 ha using a
LiteMapper 6800 with an average pulse density of 14 pulses-m?. Data were
acquired at a flight altitude between 600 and 820 m above ground level, at 300
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Figure 3.9. Maps of (a) general location of the study area in Natural Park of Sierra de
Espaddn (Castellén, Spain), (b) flight stripes categorized by scan angle interval (0°-5°
in orange and 15°-20° in yellow), and (c) sample and plot locations (square samples for
analyzing radiometric differences in RWE are represented in yellow; and circular plots
for analyzing estimation of forest fuel attributes in blue).

kHz pulse frequency, and with a scan angle of + 30° The study area was flown
over with contiguous flight stripe side-lap between 55% and 77%. After
processing, waveforms were provided in a variable number of bins (80-160-240
bins) depending on what height the pulse intercepted the vegetation, with a
temporal sample spacing of 1 ns (0.15 m) and a footprint size of 0.24 m. In
addition, ALSrw data were discretized by the service provider (IMAQO, France)
using the Gaussian pulse estimation computation method to extract ALSp data,
resulting in an average point density of 36 points-m2. The vertical accuracy of
the ALSp, verified using a set of ground control points located in open flat areas,
was 4.3 cm (RMSE). Afterwards, ALSp data were used to create the DTM.

Samples differed according to the test. Firstly, the influence of radiometric
correction and scan angle on the values of ALSrw metrics was analyzed in Test
1. To do this, 20 square samples of 75 m side (i.e., 5,625 m?) were selected in
areas registered from different scan angles but with similar pulse densities.
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Secondly, 22 circular plots of 15 m radius (i.e., 706.86 m?) from a total of 70 were
selected for Test 2, where the influence of the application of the radiometric
correction and scan angle on modeling forest fuel attributes was analyzed.
Selected plots also needed to be registered from different scan angles and field
data to estimate the forest fuel attributes. The locations of the 42 samples and
plots for both tests is shown in Figure 3.9c. Ground-truth data collected from
the 22 plots of Test 2 included DBH from trees with a value greater or equal to
5 cm, height and CBH from the seven trees with largest DBH, and tree species
(see field survey sheet in Figure 3.10). Afterwards, allometric equations
provided by Montero et al. (2005) were used to compute the reference data of
three forest fuel attributes: CFL, CH, and CBH.

ALSrw metrics were extracted using WoLFeX, as described in section 3.2, for
the different combinations of scan angle intervals and relative radiometric
corrections. Radiometric correction reduces the effect of energy loss of the pulse
due to different factors such as range (i.e., distance from the sensor to the target),
attenuation (because of penetration of pulse through vegetation), and angle of
incidence (slope and target orientation) (Kashani et al., 2015). Given that the
RWE metric represents the sum of the waveform amplitudes from the beginning
of the canopy to the ground, it is highly sensitive to pulse energy losses along
the trajectory. For this reason, and in order to avoid redundancies in the test,
only this metric was selected as a good indicator to evaluate the influence of
scan angle and radiometric correction on ALSrw metrics. Hence, RWE metric
was extracted for the samples of Test 1, while all the metrics from Table 3.1 were
extracted for the plots of Test 2. The two scan angle intervals tested were 0°-5°
and 15%-20% in an attempt to differentiate between nadir and off-nadir pulses,
respectively. Although the greater the scan angle, the greater the influence on
radiometric values, we selected a maximum scan angle of 20° to have enough
samples with enough size for the test. Four options were considered for the
relative radiometric correction: uncorrected data, and corrected data varying
the power n of Equation 1 in section 2.3.1 (i.e., n=2, n=3 and n=4). Hence, eight
different datasets were computed (i.e., the combination of the two scan angle
intervals and the four options for the relative radiometric correction) for the two
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sets of samples and plots (i.e., Test 1 and 2) (Table 3.2).
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Figure 3.10. Example of field survey sheet from one of the plots used during the field
campaign.

Table 3.2. Combination of datasets tested for Test 1 and 2.
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In Test 1, the mean values of RWE were computed for each sample at the
different combinations. The RWE value variations were computed as the
differences at sample-level between two combinations. The combinations
compared had the same radiometric correction but different scan angle interval
(i.e., (1)-(2), (3)-(4), (5)-(6) and (7)-(8) in Table 3.2). Additionally, the corrected
data with a given scan angle interval were compared to their corresponding
interval of uncorrected data (i.e., (3)-(1), (4)-(2), (5)-(1), (6)-(2), (7)-(1) and (8)-(2)
in Table 3.2). Results were evaluated using the RMSE of these differences and
the nRMSE, computed as the RMSE divided by the range of RWE values in the
sample.

3.4.2. Results and discussion

Table 3.3 shows the RWE differences between the different scan angle
intervals by means of RMSE and nRMSE. Results show that differences in RWE
values between scan angle intervals decreased when relative radiometric
correction was applied and as power (1) increases. For instance, uncorrected
data had an RMSE of 262.29, while corrected data had a value of 117.41 and
93.25 for a power n=3 and n=4, respectively. This means that the influence of the
scan angle on the metric value was smaller when using radiometrically
corrected data, but it is not completely removed. On the other hand, results in
Table 3.4 show that differences between uncorrected and corrected data
increased as the power n increased, and the effect of the radiometric corrections
on the metrics was more obvious at small scan angle intervals. For instance,
differences between corrected data with a power n=2 and a scan angle interval
of 0°-5° were equal to 183.86, while using the same scan angle interval and a
power n=4 differences were equal to 299.29. Moreover, using the same power 7,
but a scan angle interval of 15%-20° resulted in differences of 90.74 and 164.43,
respectively. This means that the larger the power n and the smaller the scan
angle, the larger the correction that is applied to the uncorrected data.
Analyzing Equation 1 in section 2.3.1, this occurred in this study since the range
reference used was larger than the rest of ranges; otherwise it would be the
opposite.
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Table 3.3. RWE differences between the different scan angle intervals (0°-5° and 15°-
20°). RMSE: root-mean-square error; nRMSE: normalized RMSE.

Differences between 0°-5°

Radiometrically Comparison

Power n and 15°-20°
corrected data (Table 3.2) RMSE RMSE
No - 1)-2) 262.29 15.40%
Yes 2 (3)-(4) 150.71 13.32%
Yes 3 (5)-(6) 117.41 11.21%
Yes 4 (7)-(8) 93.25 11.74%

Table 3.4. RWE differences between the radiometrically uncorrected and corrected
data.

Differences between

S lei 1 P Comparison Uncorrected and Corrected
can angle interva ower n (Table 3.2) Data
RMSE nRMSE
0°-5° 5 3)-(1) 183.86 9.98%
15°-20° @)-(2) 90.74 5.39%
0°-5° 3 5)-(1) 24831 13.48%
15°-20° 6)-(2) 12857 7.63%
0°-5° . @)-(1) 299.29 16.25%
15°-20° 8)-(2) 164.43 9.76%

For the Test 2, the mean and the standard deviation of all the ALSrw metrics
described in section 3.2 were computed at plot-level using WoLFeX. As a result,
the software tool provided a *.csv file that was used as input file in statistical
software. All possible combinations of linear regression models with a
maximum of three metrics were computed, finally selecting the model with the
minimum AIC. Among the selected ALSrw metrics, those proposed in the
present thesis (i.e., KURTOSIS, HFEV, HFEVT, EFEV, nEFEV, FVU, NFVU, BC,
BCD, BCE, CD, CE, and CER) were among the most selected, and therefore they
had an influence on estimating forest fuel attributes. For instance, KURTOSIS
and HFEVT were selected to estimate CFL and CBH, BC and CD for CH and
CBH, EFEV for CFL, HFEV, nEFEV, NFVU and BCD for CH, and CE for CBH.
Afterwards, a model was obtained for each of the three forest fuel variables (i.e.,
CFL, CH, and CBH), each combination of scan angle interval (i.e., 0°-5° and 15°-
20°), and each radiometric correction type (i.e., uncorrected and corrected data
with a power n=2, n=_3, and n =4). The linear regression models were evaluated
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using leave-one-out cross-validation and computing the R?, RMSE, nRMSE and
coefficient of variation (CV). Table 3.5 shows the prediction results of the forest
tuel attributes (i.e., CFL, CH, and CBH) using varied scan angle interval and the
radiometric correction. The prediction of CFL was considerably improved when
a radiometric correction was applied with a higher power n for both scan angle
intervals, varying R? from 0.62 to 0.79 and from 0.68 to 0.85 for scan angle
intervals of 0°-5° and 15°-20°, respectively. However, CBH prediction results did
not improve, or even slightly worsened, when a radiometric correction was
applied. In this case, differences were also smaller compared to CFL, and as in
the CH predictions, results were similar for a scan angle interval of 15°-20°. The
test shows that the influence of the radiometric correction was smaller
predicting height attributes, such as CH and CBH, than in predicting mass-
related attributes, such as CFL. Height attributes are fixed at a specific point on
the waveform, usually a maximum or minimum, while mass-related attributes
are described using the complete waveform profile. Therefore, the latter are
more subject to radiometric values. Additionally, the difference between
uncorrected and corrected data for the three forest fuel attributes was smaller
when the scan angle interval was 15°20° than when it was 0°-5°. A previous
analysis (Morsdorf et al., 2008) found that parameters corrected by radiometric
correction such as flying altitude and incidence angle have an influence on
estimates of biophysical vegetation properties (i.e., tree height, crown width,
fractional cover, and leaf are index). However, the influence of scan angle was
not as apparent here, probably due to the use of small scan angles. Additionally,
other studies also mentioned the radiometric correction as a key step in using
backscattered measurements to estimate geophysical vegetation properties or
similar analyses (Wagner, 2010; Sevara et al., 2019).

3.5. Conclusions

In this chapter, we presented and described a software tool named WoLFeX,
designed to process ALSrw data, which includes a wide range of new proposed
ALSrw metrics. We assessed the influence of radiometric correction on ALSrw
metrics and on the estimates of forest fuel attributes through WoLFeX.
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Table 3.5. Prediction of forest fuel attributes (i.e., CFL, CH and CBH) using varied scan angle interval and radiometric

correction.
Forest fuel Scan angle Radiometricall
; can ang Y Powern R? RMSE nRMSE cv
attribute interval corrected data
No - 0.62 4.61 Mg-ha' 0.15 0.20
0950 Yes 2 0.75 3.67 Mg-ha! 0.12 0.16
A Yes 3 0.77 3.55 Mg-ha'! 0.11 0.15
CFL Yes 4 0.79 3.37 Mg-ha! 0.11 0.15
No - 0.68 4.13 Mg-ha! 0.13 0.18
152908 Yes 2 0.72 3.84 Mg-ha' 0.12 0.17
Yes 3 0.83 3.04 Mg-ha' 0.10 0.13
Yes 4 0.85 2.86 Mg-ha' 0.09 0.12
No - 0.89 1.09 m 0.08 0.08
0950 Yes 2 0.88 1.18 m 0.09 0.09
Yes 3 0.93 0.89 m 0.07 0.07
Yes 4 0.86 1.25m 0.10 0.09
CH

No - 091 1.02m 0.08 0.08
Yes 2 0.90 1.05m 0.08 0.08

150200
Yes 3 091 0.99 m 0.08 0.07
Yes 4 0.92 0.95m 0.07 0.07
No - 0.94 0.68 m 0.06 0.11
0950 Yes 2 0.93 0.73m 0.06 0.12
Yes 3 0.92 0.83 m 0.07 0.14
Yes 4 0.89 0.89 m 0.07 0.15

CBH

No - 0.96 0.56 m 0.05 0.09
Yes 2 0.92 0.74 m 0.06 0.12

15°-20°
Yes 3 0.95 0.61m 0.05 0.10
Yes 4 0.95 0.59 m 0.05 0.10
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This tool allows for clipping, radiometrically correcting, voxelizing the
original ALSrw waveforms, creating pseudo-vertical waveforms and extracting
an exhaustive set of object-oriented metrics. These metrics are saved into a *.csv
tile that can be used as an input file for generating either regression or
classification models, such as forest fuel attributes or fuel types, respectively.
Among these metrics, those related to the understory vegetation are the most
remarkable, since they have not been considered by other processing tools so
far, and they allow for the location and quantification of understory vegetation,
which is a key parameter for the characterization of fire behavior in
Mediterranean forests. Processing ALSrw is more challenging than ALSp, since
it registers the complete return of the signal, and therefore it allows for a better
detection of the lower strata.

From the case of study of WoLFeX software, different models of forest fuel
attributes (CFL, CH, and CBH) were generated, varying processing parameters
related to radiometric correction and scan angle interval of ALSrw data
acquisition. These tests showed that differences in metric values measured from
nadir and off-nadir were reduced when a relative radiometric correction was
applied. The improvement of the models obtained when the relative
radiometric correction of the data was applied was noteworthy — from R?=0.62
up to R?=0.79 in the case of CFL. However, height attributes (i.e., CH and CBH)
were less strongly influenced by a relative radiometric correction, presenting
only subtle differences.

The software WoLFeX, freely available for download at

[http://cgat.webs.upv.es/software/], is an alternative for processing ALSrw data
in an integrated manner. It includes the relative radiometric correction of the
data, which plays an important role in reducing radiometric differences
between different scan angles and may be essential for estimating some forest
fuel attributes. It also extracts multiple new and previously proposed metrics to
generate models that characterize forest structure. Among these metrics, the
most remarkable are those related to understory vegetation, due to the potential
of ALSkw to register the complete vertical forest structure. This opens a wide
range of applications in environmental sciences, forestry and fire ecology.
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COMPARATIVE ASSESSMENT OF THE VERTICAL DISTRIBUTION OF FOREST COMPONENTS USING
FULL-WAVEFORM AIRBORNE, DISCRETE AIRBORNE AND DISCRETE TERRESTRIAL LASER
SCANNING

In the fourth chapter, three points are examined for a boreal and a
Mediterranean forest with contrasted conifer canopy densities: (i) the
characterization of the vertical distribution and occlusion from three laser
scanning configurations: ALSkw, ALSp, and TLS; (ii) the comparison in the
detection of understory vegetation by ALSrw and ALSp using TLS as reference;
and (ii7) the use of a methodological procedure based on the Gini index concept
to determine understory vegetation density classes from both ALSrw and ALSp
configurations. Estimating occlusion along the different vertical strata allows
for a better prediction of the limitations of laser scanning configurations in
registering forest structure. On the other hand, detection and determination of
understory vegetation density classes with ALS configurations is relevant for
several applications such as characterizing wildlife habitats, assessing timber
productivity and improving silvicultural decision-making in support of
wildfire mitigation, all of them over large areas.

4,1. Introduction

Signal occlusion is the main limitation in acquiring fully comprehensive
laser scanning datasets in forested environments. Signal occlusion occurs when
the object to sample is partially or completely obscured by an intervening object.
The presence and amount of signal occlusion found in a laser scanning dataset
depends greatly on the scanning configuration (i.e., above-canopy for aerial or
near-ground for terrestrial), vegetation cover and density, and its complexity
(Watt and Donoghue, 2005). Signal occlusion can therefore limit the detection
of forest’s horizontal and vertical distribution of vegetation, particularly in
dense forested environments. It is important to note that signal occlusion is not
to be confounded with forest cover. While forest cover refers to the proportion
of forest covered by the vertical projection of tree crowns, signal occlusion refers
to the shadow (lack of laser signal) caused by canopy elements. Several
strategies have been tested to reduce signal occlusion such as increasing the
number of flyovers for ALS (Kiikenbrink et al., 2017), combining data from
multiple sensors (Giannetti et al., 2018), or sampling the plot with multiple scans
from varying viewpoints with a TLS (Martin-Ducup et al., 2017). Another way
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to deal with signal occlusion in TLS data is to divide the point cloud space into
voxels and compute the Plant Area Density (PAD) for each voxel (Béland et al.,
2014; Pimont et al., 2018). Analyzing signal occlusion and its effects on the
estimation of forest structural attributes is essential in understanding the
limitations of different laser scanning and sampling configurations, and
therefore sampling designs to best minimize signal occlusion.

Although signal occlusion is present in all laser scanning datasets, ALS and
TLS systems have nonetheless demonstrated their capability to characterize
forest attributes with great precision and accuracy. As mentioned previously in
the overall introduction, ALSp and ALSrw are now used operationally to
estimate stand attributes for a wide range of forest ecosystems, and classify tree
species and forest canopy fuels, receiving ALSkw less attention due to the data’s
greater complexity and the current lack of processing tools. In comparison with
ALS data, TLS data can provide a more detailed point cloud of a forest structure,
albeit from a different viewpoint. For applications in forested environments, the
useful portion of the TLS point cloud extent is often limited (10 — 30 m) with a
hemispherical view around the sensor. Withstanding that, many studies have
demonstrated the capabilities of TLS to estimate and extract forest stand
attributes (Watt and Donoghue, 2005; Moskal and Zheng, 2011; Kankare et al.,
2013; Srinivasan et al., 2015; Liang et al., 2016; Ravaglia et al., 2019), and fewer
on the classification of tree species (Othmani et al., 2013; Lin and Herold, 2016;
Torralba et al., 2018).

Since ALS and TLS sensors acquire data from differing positions relative to
the forests canopy, different occluded forest strata can be observed in their point
clouds. Consequently, it is of interest to compare their independent
effectiveness to detect the forests horizontal vertical distribution, and estimate
forest structural attributes. Several studies provide a base for comparison
between three laser scanning configurations: ALSp, ALSkw and TLS. These
studies generally show that CH estimations are more accurate using ALS than
TLS (Hilker et al., 2010), while characterization of the foliage profile is estimated
with more accuracy by TLS, especially in the lower strata (Chasmer et al., 2006;
Hilker et al., 2010), where understory vegetation is found. On the other hand,
other studies concur on a more accurate estimation of forest structural attributes
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from ALSrw than ALSp for CH (Anderson et al., 2016), AGB (Nie et al., 2017),
stand volume (Lindberg et al, 2012), and the classification of species
composition (Torralba et al., 2018).

A common challenge in predicting forest structure from ALS data is finding
associated reference data from which reliable error estimation is possible. Most
studies on forest structure variable use a combination of field measurements
and allometric relationships as reference data (Gonzalez-Ferreiro et al., 2012;
Treitz et al., 2012; Ruiz et al., 2014). However, in cases where 3D assessments of
vegetative material are required, it can be beneficial to use TLS data as a
reference as these can be difficult and often logistically challenging to quantify
directly from field activities. TLS data often represent the best available
information to describe forest elements (Martin-Ducup et al., 2016; Ravaglia et
al., 2019), being sampled in much more detail when compared with ALS.
However, there are important discrepancies between ALS and TLS point clouds
that need to be acknowledged. Looking at a vertical profile of data points in
relative terms, ALSp point clouds have far more hits within the upper canopy
and on the ground, while most of the hits for TLS point clouds are located at the
lower crown, trunks-stems, understory, and ground. These differences in
sampling capabilities lead to estimation divergences (Chasmer et al., 2006). In
general, ALSp point clouds tend to under-represent the lower strata. While
correlation between ALSp and TLS point clouds has been found to be 0.48 for
heights below 20 m, it reached 0.87 when only the upper canopy (z > 20 m) was
considered (Hilker et al., 2010). As for CH, estimation from ALSp and TLS were
generally similar: (i) an underestimation of 1 m by the TLS in a mixed forest in
Ontario, Canada (Chasmer et al.,, 2006), (ii) a correlation of 0.94 between
estimations from both datasets in a pine-dominated forest in South-Korea (Jung
et al., 2011), and (ii7) a correlation near 1 in a coniferous forest on Vancouver
Island, BC, Canada (Hilker et al., 2010). Conversely, few studies found ALSp
more suited to estimate CH than TLS with an R? of 0.96 and 0.86, respectively in
a lodgepole pine forest in Alberta, Canada (Hilker et al., 2012). Therefore, there
are situations where ALS and TLS may not accurately estimate the entire
vertical forest structure, primarily due to signal occlusion. This signal occlusion
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problem is more severe for ALS than it is for the TLS because of the much
smaller number of laser pulses. Fortunately, the beam width and the multiple
return configuration mitigate this problem. Consequently, sampling understory
vegetation is comparably far more comprehensive from TLS than it is from ALS.
TLS data are therefore suitable reference data for the estimation of understory
structural attributes and preferred over using traditional sampling techniques,
which can be laborious and time consuming.

Within the vertical distribution of the forest, detection of the lower strata
can be challenging from ALS sensors, especially from ALSp as a results of signal
occlusion from the overstory (Anderson et al., 2016). Nonetheless, ALSp has
proven to discriminate presence and absence of understory vegetation with
promising accuracy, e.g., with R¥'s of 0.83 (Martinuzzi et al., 2009), 0.77 (Hill and
Broughton, 2009), 0.74 (Wing et al., 2012), and 0.48 (Morsdorf et al., 2010), and
has been demonstrated to be more accurately estimated by ALSrw than ALSp
(Hancock et al., 2017; Torralba et al., 2018). In contrast, point clouds from TLS
provide a large amount of detail on understory vegetation due to the position
of the sensor (Liu et al., 2017). However, most studies have focused on the ability
of TLS to characterize shrubs in ecosystems absent of overstory (Vierling et al.,
2013; Olsoy et al., 2014; Greaves et al., 2015); few have focused on characterizing
the understory vegetation from forested ecosystems (e.g., Chen et al. (2016)).
Furthermore, few studies have estimated understory cover with ALSrw using
TLS as reference data and obtained a nRMSE of 24% (Hancock et al., 2017).
Nevertheless, a limited amount of studies have compared the ability to estimate
understory vegetation presence or distribution from three different laser
scanning datasets (i.e., ALSew, ALSp and TLS) (e.g., Hancock et al. (2017) and
Torralba et al. (2018)). These studies confirmed that ALSrw and TLS are both
capable of estimating the spatial distribution of understory vegetation in more
detail than using ALSp data, e.g., with overall accuracies of 86.4% and 77.3%,
respectively (Torralba et al., 2018). These results demonstrate the potential of
combining ALSrw and TLS data in a workflow that estimates the spatial
distribution of the understory vegetation beyond what can be estimated from
ALSp data. However, these results were limited in their application as they were
assessed in a fragmented urban forest and an open Mediterranean forest.
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In this chapter, in section 4.2, the characteristics of both study areas and laser
scanning configurations are described. In addition, the different processing
steps followed to characterize the vertical distribution and occlusion, to
compare the detection of understory vegetation from ALSrw and ALSp, and to
determine the understory vegetation density through the Gini index and ALS
data are described and enumerated. The results obtained following the different
processing steps are shown in section 4.3. In section 4.4, the discussion of the
results is addressed. Finally, in section 4.5, the conclusions of this chapter are
presented. This chapter sets out the Hypotheses 4 and 5: “ALS and TLS
configurations are limited to detect lower and upper strata, respectively,
because of the position of the sensors. This limitation depends on the forest
ecosystem and density” and “Given that ALSrw registers the complete signal
going through the vertical forest structure, and ALSp is a simplification of
ALSrw, understory vegetation can be detected and its density determined more
accurately with ALSrw than with ALSp”, respectively. To demonstrate these
hypotheses, Objectives 5 and 6 are addressed in this chapter: (i) characterize the
signal occlusion along the vertical forest structure using different laser scanning
configurations (i.e., ALSp, ALSrw, and TLS) in contrasted ecosystems with
different canopy covers to determine how reliable the resulting vertical
distribution profiles are based on the amount of occlusion and the lack of
information, and (ii) determine how understory vegetation density classes can
be detected and further determined by ALS configurations, and whether ALSrw
allows the detection and determination to a level of detail beyond ALSp
capability.

4.2, Material and methods

4.2.1. Study areas

Two study areas were selected based on their contrasting canopy densities
and understory vegetation presence. Both sites are conifer dominated, albeit,
structurally very different. Our first study area (111,257 ha) is located in a Boreal
Shield Ecozone in western Newfoundland and Labrador, Canada (Figure 4.1).
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The ecoregion is dominated (~70%) by forest land and is located within the most
eastern boreal forest region of North America. Balsam fir (Abies balsamea (L.)
Mill) is the dominant tree species of the regions followed by Black spruce (Picea
mariana (Mill.) Britton, Sterns & Poggenb.). White birch (Betula papyrifera
Marsh.), yellow birch (Betula alleghaniensis Britton), white spruce (Picea glauca
(Moench) Voss) and eastern larch (Larix laricina (Du Roi) K. Koch) are present
to a much lesser extent. The relief is gently undulating to hilly with elevation
ranges between ~30 m and 640 m. Forest understory is extremely variable
depending on stand density and age, soil conditions, status of regeneration and
silvicultural treatments such as precommercial thinning (e.g., Figure 4.2 —
Newfoundland, sparse understory). Understory vegetation can be composed of
tree saplings and seedlings, ferns (e.g., Dryopteris carthusiana (Vill.) HP Fuchs)
and to a lesser extent ericaceous shrubs (e.g., Kalmia angustifolia L., Rhododendron
groenlandicum (Oeder) Kron & Judd, Vaccinium spp.).

The second study area is located in a Mediterranean forest in the Natural
Park of Sierra de Espadéan (Spain), and coincides with the one described in
section 3.4.1. The presence of understory in this study area is very variable,
mainly depending on the dominant species and soil properties. Understory
vegetation is dominated by the following shrubs and flowering plants:
rosemary (Rosmarinus officinalis L.), tree heath (Erica arborea L.), brezo (Erica
multiflora L.), Mediterranean buckthorn (Rhamnus alaternus L.), kermes oak
(Quercus coccifera L.) and mastic (Pistacia lentiscus L.). Figure 4.2 illustrates
examples of different understory scenarios.

4.2.2. Forest plots

Circular plots were established with a radius of 11.28 m and 15 m for the
Newfoundland and Spain sites, respectively. Plot center locations for both sites
were measured with a GPS RTK with an average accuracy of ~0.40 m. As
mentioned in section 3.4.1, tree species, living status, DBH, height and CBH
were measured at all plot locations. For the Newfoundland site, 59 established
experimental plots from Luther et al. (2019) were made available with
associated ALSp and ALSrw data, while 70 established experimental plots were
made available with similar data for the Spain site (Figure 4.1c and d). Among

100



COMPARATIVE ASSESSMENT OF THE VERTICAL DISTRIBUTION OF FOREST COMPONENTS USING
FULL-WAVEFORM AIRBORNE, DISCRETE AIRBORNE AND DISCRETE TERRESTRIAL LASER
SCANNING

Figure 4.1. Location of plots registered (red) and plots used in the current study
(yellow) within each study area: (a, c) in western Newfoundland, Canada, and (b, d) in
the Castellon province, Spain (Background imagery: PNOA and WorldView-2).

these experimental plots, a structurally representative sample of ten plots was
selected per site for TLS sampling by maximizing the variability of canopy cover
and understory vegetation for analysis in this chapter. Regarding canopy cover,
we estimated it all plot locations from the proportion of ALSp first hits to total
hits above 2 m per McGaughey (2014). Then, plots with a percentage of first hits
above 70% were classified as having dense canopy cover, between 40% and 70%
as having a sparse canopy cover, and below 40%, as having a very sparse
canopy cover. Furthermore, we assigned understory vegetation density classes
at plot locations through field interpretations and classified plots as having
dense, moderate, sparse, or absence of understory vegetation (Figure 4.2).
Figure 4.3 illustrates the variability in structure from all conifer dominated plots
and the structural representativeness of the retained plots.
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NEWFOUNDLAND SPAIN

ABSENT

SPARSE

UNDERSTORY
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Figure 4.2. Field photographs from the Newfoundland and Spain sites illustrating the
varying densities of understory vegetation.
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Figure 4.3. Violin plots representing four structural attributes (canopy cover,
understory, canopy height and stem density) from all available plots. Attribute values
for plots retained for analysis are in red. Abbreviations: D-dense; M-moderate; S-sparse;
VS-very sparse; A-absent.

4.2.3. Laser scanning data

In this chapter, we analyzed laser scanning data obtained from three
differing configurations, namely ALSpb, ALSkw and TLS. The ALS data obtained
for the Newfoundland site were acquired between August 15t and September
24" 2016 with a Riegl LMS-Q680i. The approximate flight altitude was 1,000 m
above ground level with an approximate speed of 100 knots. Data were acquired
with a pulse frequency of 330 kHz and a scan angle range of + 30°. Not excluding
waterbodies, the overall average laser scanning pulse density was 7.34 pulses-m-
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2. ALSew data were discretized by the service provider (Leading Edge
Geomatics, Canada) using the Gaussian pulse estimation computation method
to extract ALSp data. Average point densities of 16 points'm? were observed at
plot locations for ALSp.

ALS data at the Spain site used in this chapter were the same used and
described in section 3.4.1.

The TLS data were collected using a FARO FOCUS 3D 120 phase-based
scanner (see specifications in Table 4.1) using a multi-scan configuration on both
sites, recording only the first hit with an angular density between pulses of
0.0036 degree. TLS data for the Newfoundland site were acquired between June
and August 2017 while the TLS data for the Spain site were acquired between
September 29" and October 23, 2015. To minimize signal occlusion, each plot
was scanned from nine positions: one at plot center, four at ~15 m from the
center in each cardinal direction (i.e., N, W, S, E), and four at ~7.5 m and ~6 m
from the center in each primary intercardinal direction (i.e., NW, SW, SE, NE)
for the Spain and Newfoundland sites, respectively. Each scan identified a
minimum of three co-registration spherical targets common with adjacent
scans. Co-registration of the 9 scans was performed using FARO SCENE
software version 6.2 (FARO, Lake Mary, FL). The resulting co-registered point
cloud comprised, on average, 392 x 10¢ hits.

Table 4.1. TLS data specifications.

Specification Value
Sensor FARO FOCUS 3D 120
Accuracy +2mm at 25 m
Range 0.6-120 m
Pulse frequency 97 Hz

Horizontal: 300°

Scan angle Vertical: 360°
Wavelength 905 nm
Beam divergence 0.19 mrad
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4.2.4. Overview of the methods

An overview of the methodological approach and associated procedures is
presented in Figure 4.4. First, ALSrw data were denoised and georeferenced in
order to create an ALSrw point cloud compatible with the ALSp and TLS point
clouds (Procedure 1). We then proceeded with the co-registration of the three
laser scanning datasets: ALSrw, ALSp and TLS (Procedure 2). Once co-
registered, all the point clouds were represented independently in voxel grids
(Procedure 3a). Sampling of each voxel by the laser beams depends primarily
on three variables: (i) the number of theoretical laser beams passing through the
voxel (Nt), (if) the number of these theoretical beams that were occluded prior
to reaching the voxel (Nb), and (iii), the number of hits actually returned from
these beams within the voxel (Nh). We then estimated these variables for each
voxel of the three datasets (Procedure 3b) in order to derive the vertical
distribution profiles from ALS (NhA'S for both ALSp (NhA'SP) and ALSkw
(NhALSFW) datasets) (Procedure 3c) as well as the Plant Area Density from TLS
(PAD™S) (Procedure 3d), which is the projected surface of the vegetated
materials (wood and leaves). In order to quantify and compare signal occlusion
within the three laser scanning datasets, we computed for each the rate of pulse
reduction of Nt as the proportion of beams blocked prior to reaching the voxel
(Nb/Nt) (Procedure 3e). A height normalization was then applied to NhALS,
PADT™S, and the rate of pulse reduction from ALSkw, ALSp and TLS (Procedure
4). This created a coherent vertical leveling between these estimated variables
from which we produced vertical profiles of NhAlS, PAD™S and the rate of pulse
reduction (Procedures 5a and 5b). These vertical profiles were used to analyze
the relationship between the detection of vegetative material in different strata
from ALS and TLS configurations and the rate of pulse reduction. We computed
the coefficient of correlation at lower strata (0.5 m < z < 4 m) to quantify the
similarity of vertical profiles of NhA'SfW and NhASP with PAD™S. Afterwards,
the lower strata of the NhALS vertical profiles were compared to determine
which ALS configuration (i.e., ALSrw or ALSp) depicts the understory
vegetation in more detail. An application of the Lorenz curve (Lorenz, 1905) and
the Gini index (Gini, 1912) calculated from the NhA'SFfW and NhAMSP vertical
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profiles of the lower strata determined the density of understory vegetation,
which we compared with field observations.
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Figure 4.4. Overview of the methodological approach.
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4.2.5. Data processing
4.2.5.1. Denoising

Initial data were available in point cloud format for the ALSp and TLS
configurations. Unlike ALSp return sensors which record backscattered energy
at precisely referenced points in time and space, ALSrw sensors record
backscattered energy as a nearly continuous signal in a full-waveform indexed
bin. We therefore needed to create an ALSrw point cloud compatible with the
ALSp and TLS point clouds. To do so, we removed the noise contained in the
raw ALSrw waveforms and georeferenced the remaining bins (Procedure 1). The
denoising procedure followed was the one described in section 2.3.1.
Afterwards, we computed each bin’s XYZ coordinates following the procedure
described in section 2.3.3. The resulting ALSrw data contained only significant
waveforms with the noise removed from which we were able to create a
georeferenced point cloud compatible with those from the two other
configurations: ALSp and TLS.

4.2.5.2. XY co-registration

Considering that our main goal was to compare the data obtained from
three different laser scanning configurations, it was necessary that all point
clouds were co-registered in the same coordinate system (Procedure 2). Co-
registration is a critical step to ensure that the three point clouds can be
compared in our analysis. Georeferencing of the ALS data followed common
practice and was done by registering the flight trajectory coordinates from the
airborne GPS to a set of ground control points. These ground control points
allowed for an accurate georeferencing of the flight lines, and therefore the
resulting waveforms and point clouds. Given that ALSp is derived from the
ALSrw data, co-registration between these two datasets was not necessary.

Co-registration of the TLS data to the ALS data was performed using the
latter as reference. These data were co-registered on a plot-level basis. For each
plot, Canopy Height Surfaces (CHS) were generated independently from both
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ALSp and TLS data. The geometric distribution of tree crowns and canopy gaps
guided the selection of homologous points from both CHS (see Figure 4.5). A
2D affine matrix transformation was then computed from the homologous point
coordinates and applied to the TLS point clouds. Only translation in the
horizontal plane and rotation around the vertical axis were applied since the
distance values from both laser scanner systems needed to be maintained,
therefore not altering the scale. The RMSE of the 2D affine transformation was
9 cm +4 cm and 7 cm + 7 cm for the Newfoundland and Spain data, respectively.

Figure 4.5. Selection of homologous points in canopy height surfaces (CHS) computed
from (a) ALS and (b) TLS datasets prior to 2D affine matrix transformation.
Homologous points are represented in red and green color for ALS and TLS,
respectively.

4.2.6. Estimating voxel sampling variables and the rate of pulse

reduction

The 3D space of the point clouds was discretized in voxels to produce
vertical profiles (Procedure 3a) following section 2.3.3. The point density from
the TLS point clouds was sufficiently high to allow the adoption of very small
voxels (e.g., ~5 cm). However, assessing the capacity of each laser scanning
configuration to detect understory vegetation required adopting a common
voxel size: a trade-off between the fine vertical features of vegetation density
and the availability of sufficient hits from laser scanning signal within a voxel.
We therefore adopted a voxel size for all three datasets according to (i) the pulse
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spacing of ALS in XY plane, (ii) the temporal sample spacing of ALSrw in the Z
axis, and (iii), avoiding empty voxels in either datasets. The most suitable voxel
size was determined to be 0.5 m in X, 0.5 min Y and 0.15 m in Z (vertical).

We first computed for all datasets the number of beams crossing the voxel
(Nt), the number of hits within the voxel (Nh), and the number of beams
blocked prior to reaching the voxel (Nb) (Procedure 3b) (see Figure 4.6). The
computation approach of these three sampling variables differed between the
TLS and ALS datasets due to their distinct sensor-signal-scene configurations.
The approach taken for the TLS data used the one (first) hit per pulse of the TLS
phase-shift technology. The approach taken for the ALS data assumed that all
recorded hits were associated with an independent laser pulse having no cross-
section (i.e., a vector with no divergence). This, however, is an abstraction. In
fact, multiple hits originate from the same beam. Hence, the sampling variables
derived from TLS data are not directly comparable with those derived from ALS
data. We therefore assumed the number of hits in each voxel to be a
representation of the vertical forest distribution only from ALS for both NhAtSP
and NhALSFW (Procedure 3c) while the vertical forest distribution from TLS was
represented by the cumulative PAD™S (Procedure 3d). In addition to Nt, Nh
and Nb, the path length of all pulses crossing the voxel was estimated from the
TLS data. The three voxel sampling variables and the path length of all pulses
crossing the voxel allowed calculating PAD™S, in m?>m?, for each voxel
according to mathematical framework proposed by Pimont et al. (2018). We
used a minimum of five pulses reaching a voxel (Nt-Nb > 5) as a threshold for
calculating PAD™S, otherwise the voxel was assigned as being occluded. A
negligible number of TLS voxels were tagged as occluded due to the large voxel

size relative to point density.

In order to quantify signal occlusion caused by vegetation, we computed the
rate of pulse reduction as the proportion of beams blocked prior to reaching the
current voxel (Nb/Nt) (Procedure 3e). Knowing the rate of pulse reduction
provides insight on the potential or drawbacks of the different laser scanning
configurations.
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Figure 4.6. Depiction of number of theoretical beams crossing a given voxel (Nt),
number of hits (Nh), and number of hits blocked prior to reaching a given voxel (Nb)
for the TLS configuration. Red dots represent the hits, red lines the laser beams prior to
be blocked, and dashed pink lines the theoretical laser beams after being blocked.

4.2.7. Extracting vertical forest distribution and rate of pulse

reduction profiles

In section 4.2.5, through the 2" procedure, TLS data were co-registered only
in XY (not in Z) to the ALSp data. Absolute heights of the canopy needed to be
maintained in order to define the original laser pulse trajectories, which was
critical in computing NhASP, NhASFW, PADTS, and the rate of pulse reduction.
However, in order to extract and make meaningful plot-level comparisons of
the vertical profiles of these attributes (stored as 3D matrices of voxels), a co-
registration in the Z-axis was necessary (Procedure 4). Co-registration ensured
that the base of each column of voxels was set to a common Z reference system
where all ground voxels were set to a height of 0 m. Both the ALS and TLS
datasets had their respective DTMs created with a cell size of 0.5 m. The DTMs
for ALS data were generated from ALSp data. Classification of ground points
was done using the Axelsson algorithm (Axelsson, 2000) implemented in
LAStools (Isenburg, 2017). The DTMs for the TLS data were produced for every
plot using an open source ground classification algorithm in Computree
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(Piboule et al., 2015). Height normalization of the 3D matrices was therefore
done with their respective DTM; e.g., NhASP and NhASFW were normalized to
its respective ALS-derived DTM as PAD™S was normalized to its respective
TLS-derived DTM.

Next, we extracted vertical profiles of these 3D matrices to represent the
vertical distribution of forest elements for each horizontal layer of voxels (i.e., a
vertical bin with a height of 0.15 m). The value of each vertical bin was
calculated as the sum of the voxel values of the corresponding horizontal layer
for NhASP, NhASIW and PAD™S (Procedure 5a). The rate of pulse reduction was
calculated as the average of the voxel values for that horizontal layer (Procedure
5b). Only information 0.5 m above the ground was considered therefore
removing values associated to an understory zone strongly influenced by soil
micro-relief and very low vegetation. This procedure provided the normalized
vertical profiles of NhAtSP, NhAMSFW and PAD™S, and the rate of pulse reduction.

In order to assess how well we captured the vertical distribution profiles at
different heights from ALS, we assessed the relationships between NhA' and
PADT™S by means of ratios. To do so, we computed, plotted and compared the
ratios between NhALS and PADT™S (i.e., NhASP/PADT™S and NhALSFW/PADTS). The
resulting vertical profiles highlighted limitations in detecting the different
vertical strata based on a unitless indicator. Higher values imply a higher
detection of the vegetation, while lower values imply a more limited detection.

4.2.8. Classifying the vertical distribution of understory vegetation
from ALS data

Once the vertical profiles were generated for NhA'S, both ALS configurations
(ALSp and ALSrw) were compared to detect the understory vegetation. The
height range for this comparison was set between 0.5 m and 4 m to detect the
lower strata through NhALS vertical profiles. The upper limit of 4 m deemed
appropriate to capture high shrubs within our study sites. Detection of the
understory vegetation was addressed through the characteristics of the NhAS
vertical profiles, whose curvature depends on the presence of understory
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vegetation. To quantify the curvature of the NhA'S vertical profiles, we
combined the fitting of the Lorenz curve (Lorenz, 1905) with the Gini index
(Gini, 1912) (Procedure 6). The Gini index is a measure of statistical dispersion
initially created to measure inequality of countries” wealth. It is computed as
the area between the curve and the equality line (i.e., 1:1 line) (see area A in
Figure 4.7a) divided by the area below the equality line and delimited by the
main axes (see area B in Figure 4.7). Figure 4.7b and c show the two extreme
cases, i.e., complete equality (i.e., Gini index = 0) and complete inequality (i.e.,
Gini index = 1), respectively. Consequently, the Gini index quantifies the
curvature of a distribution, or in our application, a vertical profile. The Lorenz
curve and Gini index have been widely used in economics, but also in some
forestry applications. For instance, Valbuena et al. (2013) and Valbuena et al.
(2014) proposed several indicators describing tree size inequality related to
vertical forest structure. These indicators were based on the combined analysis
of the Lorenz curve from ALSp data, including the Gini index. In addition, the
Gini index obtained from ALSp was proposed to identify differences in
structural complexity of forests (Valbuena et al., 2016).

a) b) €
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37 Gini index = 1
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Figure 4.7. Description of the Gini index for (a) a general case, and two examples
showing (b) equality (i.e., Gini index = 0) and (c) inequality cases (i.e., Gini index = 1),
respectively.

In our study, each NhA!S vertical profile (NhA'P and NhALSFW) s represented
by a Lorenz curve. The Gini index was estimated from this Lorenz curve
through the ratio A / (A + B) (Figure 4.7a and Figure 4.8b). To do so, we applied
the following three steps:

1. Nh2'S vertical profiles were first filtered to exclude overstory
following the same procedure for ALSrw and ALSp. We discarded the
NhALS values in the vertical profiles that had a height greater than the
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first relative minimum of NhA'S (see Figure 4.8b). Consequently, high
shrubs were included in the analysis but lower crowns were excluded
from the computation of the Gini index (see Figure 4.8a).

2. NhA values were then normalized between 0 and 1 using Equation
17 (see Figure 4.8c). The normalization facilitated the comparison
between plots since NhA' values are variable according to the
different plots and acquisition configurations.

_ Nh*™S —min (Nh*5)
mOTM T max(NhALS) — min (NRALS)

NhALS

Equation 17

where NhALS o refers to the normalization (between 0 and 1) of
NhALS, Also, min(NhALS) and max(NHALS) are the minimum and
maximum values, respectively, of NhAS for the current plot between
0.5 and 4 m.

3. Finally, the Gini index was computed as the area between the curve
and the equality line divided by the area below the equality line and
delimited by the main axes (see Figure 4.8c).

The PAD estimation of the lower strata from the TLS data is a far less
affected by signal occlusion because of the position of the scanner. Therefore the
PADT™S vertical profiles was used as a reference to compare the ability of ALSrw
and ALSp to detect understory vegetation. NhA'S vertical profiles were
compared with PAD™S by calculating the correlation coefficient at lower strata
(0.5 m <z <4 m) and its significance using the Student’s t-test (Gosset, 1908).
This coefficient is a unitless quantity, and therefore allows comparing different
datasets with different units and orders or magnitude, such as NhASFW, NhALSD
and PAD™S vertical profiles.
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Figure 4.8. Depiction of (a) separation between understory vegetation and overstory,
() the filtering of NhALSEW vertical profiles corresponding to the lower strata from plot
P3-NF and NhALSEW vertical profile, and (c) estimation of the Gini index from the
resulting NhALS vertical profile.

4.3. Results

4.3.1. Forest vertical distribution and rate of pulse reduction

profiles

The data processing steps led to a representation of the vertical distribution
and rate of pulse reduction profiles from the three laser scanning
configurations, shown for a sample of plots from the Newfoundland and Spain
sites in Figure 4.9 and Figure 4.10, respectively. Overall, results show that ALS,
viewing the forest from the top-down, was more limited to sample the lower
strata, while TLS, viewing the forest from bottom-up, was more limited to
sample the top of the canopy. Despite these limitations, the vertical distribution
profiles generally represented the forest's vertical structure, capturing
components of the different vertical strata. For instance, plot P5-SP (Figure
410b) has a mixed presence of maritime pines and cork oaks. This
heterogeneous vertical structure was represented by different peaks in
associated PAD™S vertical profiles. Conversely, plots with a homogeneous
vertical structure (e.g., plot P7-SP, Figure 4.10c) were represented by a single
and well-defined peak in their associated vertical distribution profiles. A visual
comparison between vertical distribution profiles (i.e., PAD™S, NhALSP and
NhALSFW) and associated rate of pulse reduction with the one meter wide point
cloud transects reveals an obvious correlation: both vertical profiles of element
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Figure 4.9. Vertical profiles representing four plots of the Newfoundland site (a-d). The
three figures from left to right represent: (i) the number of hits from ALS and cumulative
Plant Area Density from TLS, (ii) a point cloud transect of one meter wide, and (iii) the
rate of pulse reduction from the three configurations (i.e.,, TLS, ALSp and ALSrw).
Dashed lines represent the limits of the lower strata (i.e., 0.5 and 4 m).
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Figure 4.10. Vertical profiles representing four plots of the Spain site (a-d). The figures
from left to right represent: (i) the number of hits from ALS and cumulative Plant Area
Density from TLS, (ii) a point cloud transect of one meter wide, and (iii) the rate of pulse
reduction from the three configurations (i.e., TLS, ALSp and ALSrw). Dashed lines
represent the limits of the lower strata (i.e., 0.5 and 4 m).
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distribution and point cloud density decreased as the rate of pulse reduction
increased. The rate of pulse reduction profiles generally followed a distribution
in the form of a sigmoid function or “S”-shaped curve, whose form, or
increment of slope of the rate of pulse reduction, depended on the laser
scanning configuration as well as the density of the upper canopy. For example,
all plots with dense canopy cover (e.g., Figure 4.9a and b, Figure 4.10a, b and d)
had rate of pulse reduction profiles following a clearly defined sigmoid
distribution. However, converse trends were observed in the rate of pulse
reduction from ALS and TLS: increasing rates of pulse reduction were
associated with decreasing heights from ALS and increasing heights from TLS.
Furthermore, in some instances, observed high values in the rate of pulse
reduction were associated with very low values from the vertical distribution
profiles (i.e., where PAD™S and/or NhA' reached or approached 0). This
occurred more frequently for Newfoundland plots where conifer species on this
site grow dense, creating a dense upper canopy (e.g., P2-NF and P4-NF in
Figure 4.9a and b, respectively). For these plots, the rate of pulse reduction
profiles transition to high values (i.e., 35-40% for TLS; 80-90% for ALS) at heights
of ~10-13 m. Conversely, for plots with sparsely distributed vegetation, the rate
of pulse reduction was very low. In conditions of sparse vegetation, the rate of
pulse reduction curve followed the typical sigmoid distribution, however did
not reach the high values observed from denser plots (e.g., P7-SP in Figure
4.10c). Sparse and very sparse sites often displayed a relatively flat vertical line,
terminating near ground by a steep high value (e.g., P6-NF and P10-NF in
Figure 4.9c and d). Overall, but more specifically in dense canopy covers, an
offset in the x-values from the midstory strata of PAD™S was observed relative
to NhA, This offset coincides with the large discrepancy in the number of hits
returned by ALS and TLS systems from the midstory strata, where ALS did not
detect tree stems to the same degree as TLS. On the other hand, little variability
was observed in NhAMP vertical profiles in the lower strata, except in some cases
where canopy cover was very sparse (e.g., P10-NF). The analysis of vertical
distribution profiles from the lower strata generally showed lower NhA'°® when
compared to NhASFW, In addition, similarity in overall shape, quantified and
reported in section 4.3.2 by means of the coefficient of correlation, was greater
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between NhASFW and PAD™S than between NhA'SP and PAD™S. Furthermore,
NhALSFW value has an exponential increment as they approached the ground
when understory vegetation was absent. This trend was less obvious in plot P4-
NF and most Newfoundland plots with higher rates of pulse reduction (> 80%).

Considering TLS as reference, the ratios between NhA'S and PAD™S in
Figure 4.11 illustrate the limitations of ALS configurations in detecting the
vertical distribution profiles at different heights based on a unitless indicator.
Ratios were calculated as NhAS divided by PAD™S, therefore implying higher
detection of vegetation as this ratio value increases. The highest values for the
ratio calculated from Nh2'S® were observed in the upper strata for all plots
(Figure 4.11). In most cases, ALSp incoming pulses were blocked by the
dominant strata, generating signal occlusion beneath. ALSrw (NhALSFW/PADTLS)
and ALSp (NhASP/PAD™S) ratio values were most similar in the upper strata.
Nevertheless, ALSrw ratio values below the dominant strata (i.e., intermediate
and/or lower strata) remained high, while ALSp ratio value dropped. Generally,
ALSp ratios dropped below 1 m, and in some cases below 2.5 m (e.g., P10-NF in
Figure 4.11).

4.3.2. Understory characterization from ALS

In the previous subsection, it was observed that although the values of the
vertical distribution profiles may differ between NhA'S and PADTS, they
remained similar in terms of shape, albeit with different units and order or
magnitude. This similarity in terms of shape of the vertical distribution profiles
was quantified between NhA and PAD™S by using the coefficient of correlation
(see Table 4.2), which ultimately allows for determining whether understory
vegetative material was detected. Coefficients of correlation were calculated
between NhA'S (i.e.,, NhASFW and NhASP) and PAD™S vertical profiles from the
lower strata. Null coefficient of correlation values (e.g., observed from ALSp for
plots P4-NF, P5-NF and P6-SP, and for plot P6-SP from ALSrw) were due to the
fact that no values were registered at the lower strata, and therefore the
standard deviations of the corresponding vertical profiles were equal to zero.
Coefficients of correlation between NhA'fW and PAD™S were rarely below 90%,

and all were considered to be significant correlations according to the Student’s
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t-test (Table 4.2). The range of coefficients of correlation for ALSrw was between
53.48% and 99.58%, with an average value of 90.11% and an associated standard
error of 3.04%. On the other hand, with the exception of plot P9-NF, all
coefficients of correlation between NhALSP and PAD™S were all lower or at par,
with one correlation not being considered as significant (plot P7-SP). The range
of coefficients of correlation for ALSp was between 30.60% and 97.36%, with an
average value of 82.57% and an associated standard error of 4.29%. Regarding
summary statistics of the differences in coefficients of correlation between
ALSrw and ALSp, the range was between 22.01% and -68.36% (being negative
values when coefficients of correlation for ALSrw were greater), with an average
value of -9.50% and an associated standard error of 4.62%. Hence, although
ALSkw detected understory vegetation with a much larger number of hits than
ALSp (see Figure 4.9, Figure 4.10 and Figure 4.11), the latter still had a significant
correlation with PAD™S. Remarkably, strong correlations between NhASFW and
PADTS were observed for dense canopy cover plots from the Newfoundland
site, where the rate of pulse reduction was large in lower strata. For instance,
plots P2-NF and P4-NF had rates of pulse reduction ~84% for ALSrw at the lower
strata and an associated coefficient of correlation with PAD™S equal to 98.50%
and 93.39%, respectively. NhASTW and NhALSP were equally correlated with
PADTS (i.e., < 1% of difference) in only a few plots having a dense canopy cover
(plots P8-SP and P10-SP) and in a plot with very sparse canopy cover (plot P10-
NF).

4.3.3. Understory vegetation density classification

Afterwards, the variation of the NhAl® vertical profiles at the lower strata
was quantified by means of the Gini index, whose values for ALSp and ALSew
are presented in Table 4.3. Generally, sparse understory vegetation densities
had large Gini indices (i.e, gradual increments of NhAMS), while dense
understory vegetation had low Gini indices (i.e., steep increments of NhAS).
Despite considerable differences between the structure of boreal and
Mediterranean forests, the Gini index values confirmed a coherent behavior for
both sites as a vegetation density indicator. Specific Gini index ranges derived
from the NhASFW vertical profiles were associated to understory vegetation
density classes as follows: absent (91.63% =+ 0.13), sparse (90.59% =+ 2.23),
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Table 4.2. Coefficient of correlation values between NhALS (i.e., NWALSEW and NhALSP) and PADTLS
as reference at the lower strata.

Site PlotID Correlation NhALSFW-PADTLS (%) Correlation NhALSP-PADTLS (%)

P1-NF 63.25 56.21
P2-NF 98.50 97.36
= P3-NF 92.95 88.09
= P4-NF 93.39 NA
'g P5-NF NA NA
8 P6-NF 95.66 67.40
2 P7-NF 98.09 87.29
Z P8-NF 96.06 90.46
P9-NF 69.77 91.78
P10-NF 96.64 96.70
P1-SP 96.89 92.31
P2-SP 98.73 67.89
P3-SP 99.58 91.13
P4-SP 98.78 96.97
£ _ ps5ep 94.96 84.02
& Pe-sp 53.48 NA
P7-SP 98.96 30.60*
P8-SP 89.89 90.46
P9-SP 84.37 82.16
P10-SP 92.21 92.93

* Correlation deemed not significant from Student’s t-test with a confidence level of 95%.

moderate (84.31% + 0.00), and dense (75.45% + 7.86). Similarly, from the NhASP
vertical profiles, Gini index ranges were associated to understory vegetation
density classes as follows: absent (97.69% =+ 4.01), sparse (83.79% =+ 12.31),
moderate (53.38% + 0.00), and dense (59.37% + 16.71). Nevertheless, the Gini
index class interval thresholds computed from ALSp were fuzzier, implying
more overlap between classes, than those from ALSrw. Class intervals derived
from computed Gini index values showed larger standard deviations for ALSp
than ALSrw. Furthermore, misclassification between sparse and absent
understory vegetation density classes occurred when derived with ALSp data.
Some plots with a moderate or sparse understory had a Gini index from NhAP
lower than plots with a dense understory vegetation (e.g., P7-SP vs. P3-SP),
which led to a misclassification. Similarly, plot P5-NF, with sparse understory
vegetation, had a Gini index from NhASfW Jarger than that observed for plots
with absent understory, which also led to a misclassification.
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Table 4.3. Gini index from NhA'SPW and NhALSP vertical profiles for each plot from the
Newfoundland and Spain sites. Plots are in ascending order according to the Gini index
computed from NhALSEW,

Plot Understory Canopy Gini index NhASTW  Gini index NhALSP
ID vegetation cover (%) (%)
P9-NF Dense Very Sparse 59.63 33.47
P6-NF Dense Sparse 65.10 45.97
P1-SP Dense Dense 72.65 55.04
P2-SP Dense Very Sparse 74.98 51.21
P7-NF Dense Very Sparse 75.74 89.94
P4-SP Dense Dense 78.88 60.13
P10-NF Dense Very Sparse 80.09 66.87
P10-SP Dense Dense 80.12 69.82
P8-NF Dense Sparse 83.03 45.25
P3-SP Dense Dense 84.27 76.04
P7-SP Moderate Sparse 84.31 53.38
P8-SP Sparse Dense 86.83 64.14
P2-NF Sparse Dense 90.55 79.33
P3-NF Sparse Dense 90.57 90.71
P5-SP Sparse Dense 90.61 77.81
P1-NF Sparse Dense 91.14 94.91
P4-NF Absent Dense 91.48 100.00
P9-SP Absent Dense 91.67 93.06
P6-SP Absent Dense 91.74 100.00
P5-NF Sparse Dense 93.81 95.83

4.4. Discussion

In this chapter, we assessed the ability of different laser scanning
configurations to estimate vertical forest structure, linking it with a new method
to estimate signal occlusion in the different strata. In addition, we also assessed
and compared the suitability of ALSrw and ALSp to classify in understory
vegetation density classes. Key results highlighted the limitations inherent to
different configurations in estimating vertical forest structure and the
importance of signal occlusion. More specifically, in the lower strata, which is
highly occluded by ALS configurations, understory vegetation density was
successfully assessed through vertical canopy density profiles. Moreover, the
analysis of vertical profiles from our testing plots demonstrated that ALSrw
improved understory identification and density determination over ALSp.
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Overall, our results confirmed the general trend largely accepted by the
scientific community, which implies that laser scanning signal occlusion
prevails in sectors blocked by dense canopy covers. Signal occlusion therefore
depends largely on the laser scanning configuration: ALS, viewing the forest
from the top-down, is more limited to sample the lower strata, while TLS,
viewing the forest from bottom-up, is more limited to sample the top of the
canopy (Hilker et al, 2010; Anderson et al, 2016). Regarding ALS
configurations, canopy density of the upper layer is the single most important
environmental factor in defining if sufficient airborne laser pulses reach the
complete vertical range of the forest. Hence, signal occlusion can limit
exhaustive sampling of the lower vertical strata with ALS data. In this sense,
Maltamo et al. (2014) distinguished between signal occlusion and canopy cover
as two different but related phenomena, both affecting the overestimation of
CBH when using ALS. Conversely, for plots with sparsely distributed
vegetation, the level of signal occlusion is very low. Consequently, estimation
of the distribution of vegetative material is possible throughout the vertical
range of the forest. In these cases, vertical distribution of forest materials can be
estimated with high level of accuracy. LaRue et al. (2020) also observed that
estimating canopy density of the lower strata is best achieved in open canopy
covers for ALS configurations, because of the influence of signal occlusion
caused by dense canopy covers.

In cases where significant signal occlusion exists, ALS configurations
detection of lower strata density capabilities are limited. The reliability of
vertical distribution profiles is directly dependent on the level of signal
occlusion. In this regard, we proposed to use the rate of pulse reduction as an
indicator of the amount of signal occlusion occurring at various heights in the
forest. Inferring the ability to detect vertical distribution from our reference
dataset (PAD™5) and the plotted values of rate of pulse reduction profiles led us
to propose a threshold of the rate of pulse reduction from which the estimation
of the distribution of vegetative material is no longer possible. This threshold is
variable and related to the density of the canopy cover, which remains plot-
specific. We noticed that NhA'S values between the height with a rate of pulse
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reduction above ~80-90% and the ground do not provide reliable estimates of
vegetation density. A similar principle, reversed vertically, applies to TLS
datasets where PAD™S between the height with a rate of pulse reduction above
~35-40% and the top of the canopy. The slope of the rate of pulse reduction
curve, which follows a sigmoid function, depends on the laser scanning
configuration as well as the density of the upper canopy. Currently we suggest
an approximate threshold for the rate of pulse reduction. The ability to define a
more specific threshold may be tied to parameters of this sigma curve as a
discriminating indicator of the overall signal occlusion and defining the vertical
area where vegetation density can be estimated.

ALSrw and ALSp data come from the same signal, however, further
processing steps before obtaining the final product make them different. Using
the complete (i.e., ALSrw) or the discretized (i.e., ALSp) signal in the detection
of the top of the canopy is not significantly different to assess vegetation density.
Nonetheless, ALSrw provided a definite advantage to detect vegetation density
for intermediate and lower strata than ALSp. Lower strata are generally
occluded due to overstory blocking incoming laser pulses. Consequently,
NhALSP vertical profiles do not show much features in the lower strata, except in
some cases where signal occlusion caused by overstory is low (e.g., very sparse
canopy cover). Nevertheless, when using PAD™S as reference, NhA'S (i.e.,
NhALSFW and NhALSP) vertical profiles correlations are considered as significant,
albeit NhAMSFW is more correlated. Although curve correlation is more accurate,
and the number of hits much larger at the lower strata with ALSew, our results
confirmed that understory vegetation was captured by ALSp, albeit to a lesser
extent and in plots with a high rate of pulse reduction (i.e., ~85%). Other studies
have also found difficulties associated with ALSp to detect the internal forest
structure (Chasmer et al., 2006; Hilker et al., 2010; Hilker et al., 2012). The higher
potential of ALSew when compared with ALSp to detect and determine
understory vegetation density classes was also found in several studies
(Hancock et al., 2017; Torralba et al., 2018). Our results confirm the potential of
both ALS configurations to detect non-occluded strata (i.e., top of the canopy)
and demonstrated the increased capability of ALSkw to detect strata with signal
occlusion (i.e., intermediate and lower strata). Although ALSp may be used to
estimate understory vegetation at a plot-level, the signal is generally weak in
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dense canopies and hence limits the estimation of density in the lower strata at

such fine spatial scales.

Vertical profiles with NhALSFW display a systematic artefact near the ground
in the form of an exponential increment, even if understory vegetation is absent.
This increment depends mainly on two factors: the large number of hits from
the ground and the hits from the understory vegetation. The histogram of hits
from the ground usually follows a Gaussian curve for which the upper side can
be merged by the hit from understory, if present. When understory is present,
generally variation of the NhAISTW value relates to the understory vegetation
density classes, whereas NhA'P are not responsive, except for open canopies
with a rate of pulse reduction below ~50%. Regardless, the number of hits from
the ground dominates to the point of masking the understory signal in most
situations. Hence, although NhALSPW vertical profiles increase exponentially as
they approach the ground for all the understory vegetation scenarios, variation
of NhASFW increment can be used to identify and determine understory
vegetation density classes.

We demonstrated the Gini index to be a useful and accurate indicator to
determine understory vegetation density classes from either NhA'S vertical
profiles. Our results demonstrated that understory vegetation density classes
can be identified and further grouped by processing the ALS data in both dense
and porous forests. Despite strong signal occlusion at lower heights in the
forest, ALS and especially ALSrw, the Gini index identifies understory densities.
Additionally, Gini index thresholds established for understory vegetation
densities coincide for both sites: boreal and Mediterranean. Thus, the
understory vegetation density classes are represented by the following Gini
value ranges from NhALSFW: below a value of ~85% for dense understory
vegetation density, between ~85% and ~90% for sparse, and above ~90% for
absent. Fortunately, and contrary to ALSp, misclassification from ALSkw is not
occurring between sparse and other understory vegetation density classes. In a
related study, Valbuena et al. (2012) discriminated forest structural types by
using an application of the Lorenz curve and the Gini index based on the basal
area and the number of trees. Apart from a Gini index of 0% and 100%
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representing the complete equality and inequality, respectively, they also found
that a value of 50% was relevant. This value represents a uniform distribution
of the basal area of the trees. However, with our datasets, Gini index values
from NhASFW were all above 56%, since the Lorenz curves start increasing below
the height considered as upper limit of the lower strata (i.e., 4 m), and therefore
Gini index values are higher. Other indicators such as L-Skewness (Valbuena et
al.,, 2017) and Shannon Index (Almeida et al., 2019) are complementary to Gini
index. L-Skewness allows for quantifying the asymmetry of the Lorenz curve.
This facilitates estimating mean height and absence of understory vegetation.
Additionally, the Shannon index represents the diversity of the dataset using a
variable as reference (e.g., species). Therefore, it would be feasible to use height
thresholds as a variable to determine understory vegetation density classes.
Nonetheless, when signal occlusion caused by overstory is important, the ability
to use the Shannon or Gini indices is strongly compromised. It is therefore
critical to estimate the level of signal occlusion by means of the rate of pulse
reduction prior to carry out the analysis.

We proposed a simple way to identify the understory vegetation layer and
exclude the overstory. The procedures most frequently adopted in the literature
apply a threshold at 2 m height assuming that it covers the understory
vegetation. This procedure is non-discriminant, not plot-specific, and therefore
it may exclude shrubs or include lower crowns. Instead, we propose
considering the vertical distribution of gaps in the density profiles to identify a
local minimum separating overstory from understory vegetation. This results
in different height values delimiting understory vegetation from overstory,
which for our dataset varied between 0.525 and 3.975 m. The accuracy of this
procedure depends on vegetation homogeneity. This vertical gap assessment
was done at a plot-level, but it can also be applied at a finer scale (e.g., at voxel-
column) if a minimum hit density is reached for all heights to avoid false gaps.
The procedure we proposed is plot-specific and allows for an automatic height
division of overstory and understory vegetation layers.

Some limitations in the application of the developed methodological
procedure are noteworthy. Currently, PAD estimates are limited to being
derived from TLS data, as the estimation of PAD from ALS configurations is
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currently not possible. The unbiased estimation of PAD from the mathematical
framework proposed by Pimont et al. (2018) decreases significantly the
influence of signal occlusion for a reliable representation of vertical profiles.
Therefore, it is a useful reference to represent distribution of vertical structure.
PAD estimation from all the configurations would have allowed for a
comparison in the detection of the vertical distribution profiles. Unfortunately,
no methods were currently available to estimate PAD from multiple returns
ALS data. Nevertheless, the number of hits in the ALS data in the non occluded
areas can be used as a unitless indicator (i.e., coefficient of correlation)
comparable with PAD™S. Furthermore, we note that the Gini index was
successful in determining understory vegetation density classes from both
airborne and terrestrial laser scanning data, but cannot be implemented with
emerging full-waveform spaceborne laser scanning data such as GEDI
(Dubayah et al., 2020). GEDI emits four laser beams with a large footprint (~19-
25 m) that do not overlap. The method proposed in this chapter assumes that
many laser beams cross a same voxel, and then the number of hits is used as a
driving variable to calculate the Gini index. Nevertheless, other metrics based
on return amplitude, and proposed in section 3.2 in Table 3.1, may be more
suited to characterize understory vegetation on large areas with GEDI.

Knowing the limitations of laser scanning configurations is fundamental to
use laser scanning point clouds for the estimation of forest canopy structure.
The most severe limitation is caused by signal occlusion by vegetative elements,
which can be quantified with the rate of pulse reduction. Despite high level of
signal occlusion in the lower strata for ALS configurations, the proposed
method allows estimating presence and density of understory vegetation in
both dense and porous canopies of boreal and Mediterranean forests through
the Gini index applied to ALSrw data. This new indicator becomes one of the
few options to characterize understory vegetation for ALS configurations,
which has many implications for forest ecology and wildfire mitigation.
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4.5. Conclusions

In this chapter, the limitations and potentials of airborne and terrestrial laser
scanning configurations to estimate the vertical forest structure have been
assessed. We conclude that understory vegetation density classes can
successfully be determined more accurately with ALSrw than with ALSp. More
specifically, three key points stand out from this chapter. Firstly, the rate of
pulse reduction profiles were demonstrated to be a good indicator to quantify
occlusion along the vertical profile. This information can be used to determine
the reliability of vegetation density estimates from different laser scanning
configurations for specific vertical strata. Secondly, both ALS configurations
(ALSp and ALSrw) showed their capability to detect understory vegetation,
albeit significantly more accurately with ALSrw due to the greater number of
hits registered in lower strata. This considerably lower number of hits registered
from ALSp in the lower strata suggests that a forest plot would be the finest
spatial scale (i.e., minimal mapping unit) for which understory vegetation can
be successfully detected from ALSp, and hence, our methods could be applied
to. Finer scales would inevitably lack sufficient registered hits in understory
vegetation for accurate understory characterization. Finally, and thirdly, we
demonstrated the use of the Gini index as a way to determine understory
vegetation density classes from both ALS configurations, again, more accurately
with ALSkw. Understory vegetation density classes (absent, sparse, moderate
and dense) were defined through thresholds applied to the index for both
ALSrw and ALSp. Computing the rate of pulse reduction and Gini index we
characterized the vertical structure and understory vegetation of these
structurally differing forests. The applications for which this contribution may
be relevant are several, such as characterizing wildlife habitats, assessing timber
productivity and improving silvicultural decision-making in support of
wildfire mitigation. Further research is needed to better understand the
relationships between estimates of PAD and vertical profiles of number of hits
for ALS configurations, vertical profiles of rate of pulse reduction and
classification of forest types, and the use of the Gini indicator to estimate
presence and density of understory vegetation.
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CHARACTERIZATION OF UNDERSTORY VEGETATION USING FULL-WAVEFORM AIRBORNE
LASER SCANNING AND VOXEL-BASED METRICS

This chapter analyzes the characterization of understory vegetation by
using ALSrw data in a Mediterranean forest. As described in chapter four, the
use of these data allows for the extraction of detailed information in different
vertical strata compared to ALSp, since the complete signal emitted by the
sensor is registered. The characterization of understory vegetation over large
areas by means of ALSrw is a key factor to map and better describe the vertical
structure and wildlife habitats, as well as for the estimation of ladder fuels,
which are determinant in fire behavior in some ecosystems, such as the
Mediterranean.

5.1. Introduction

Understory vegetation is an essential component of forest ecosystems
(Suchar and Crookston, 2010). Understory is critical for wildlife habitat, nesting
and foraging (Hill and Broughton, 2009; Martinuzzi et al., 2009; Wing et al.,
2012), impacts overstory regeneration (Royo and Carson, 2006), provides
protection against soil erosion (Suchar and Crookston, 2010), as well as mediates
microclimatic conditions below the canopy. The height, cover, and condition of
the understory are also key drivers of fire behavior through ladder fuels, which
drive crown fires (Molina et al.,, 2011). These types of fires are the most
dangerous in terms of economic impacts and tree death (Molina et al., 2009).

Despite its importance, understory vegetation has conventionally been
difficult to describe spatially, particularly over large areas (Wing et al., 2012).
Traditional techniques, such as the line interception method (Canfield, 1941),
often used in field surveys (Vierling et al.,, 2013), are very costly and only
provide information over small spatial extents (Riafio et al., 2007). Airborne or
satellite-borne passive optical remote sensing approaches can acquire data over
large areas, but have limitations for characterizing vertical forest structure (Kerr
and Ostrovsky, 2003; McDermid et al., 2005; Wulder and Franklin, 2012).

Active remote sensing techniques, such as ALS, provide horizontal and
vertical information of different canopy layers (Ruiz et al., 2018). Several studies
have estimated characteristics of understory vegetation cover using ALSp (Table
5.1). Most of these studies utilize classification approaches, where understory
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vegetation is classified based on a set of characteristics derived from point cloud
data (Hill and Broughton, 2009; Martinuzzi et al., 2009; Morsdorf et al., 2010).
Less common approaches involve regression, where understory characteristics
are mapped in a continuous fashion (Wing et al., 2012). Martinuzzi et al. (2009)
defined and classified two categories of understory cover (above and below
25%) using ALSp in a mixed temperate coniferous forest in Northern Idaho with
an overall classification accuracy of 0.83 and a kappa value of 0.66. In a
temperate deciduous woodland in Cambridgeshire (England), Hill and
Broughton (2009) predicted the presence and absence of understory using two
separate leaf-on and leaf-off ALS flights, with a pulse density of 0.5 pulses-m?
and 1 pulse-m?, respectively. The overall accuracy and kappa value of the
classification were 0.77 and 0.53, respectively. Morsdorf et al. (2010) classified
different vertical layer strata using height and intensity from ALSp in a pine-
evergreen oak woodland in the French Mediterranean region, resulting in an
overall accuracy of 0.48 for the shrub layer. More recently, Wing et al. (2012)
estimated understory cover in an interior ponderosa pine forest in Northeastern
California using ALSp with a mean density of 6.9 points'm?. The authors
introduced a new metric to characterize understory ALS points using a height
and intensity filter, resulting in a proportion of explained variance of 0.74 and
nRMSE of 22%. Kobal et al. (2015) also used ALSp and extracted a range of
canopy gap and understory information such as canopy “sinkholes” and plant
species richness beneath dense forest cover. Other studies estimated shrub
height and cover in Central Portugal and the Spanish Mediterranean using
ALSp (Riafo et al., 2007; Estornell et al., 2011). However, these sites were
dominated by shrubland, where there is little overstory, which reduces the
impact of resulting of overstory occlusion.

Although ALSrw provides a full representation of the intercepted forest
structure, since it registers the complete signal emitted by the sensor, few
studies have demonstrated its capability to characterize understory vegetation
(Table 5.1). Hancock et al. (2017) characterized voxelized understory cover in
urban area (Luton, England) using ALSkw data. They proposed a new method
to calibrate and validate results retrieved from ALSrw using TLS as reference
and obtained an understory cover accuracy of 24% at 1.5 m horizontal and 0.5
m vertical resolution. Harding et al. (2001) derived CHP retrieved from large

132



CHARACTERIZATION OF UNDERSTORY VEGETATION USING FULL-WAVEFORM AIRBORNE

LASER SCANNING AND VOXEL-BASED METRICS

(vyjofturdavo snuyn)
W[ PIABI[-[[EWS

(eq £8T)
(uonpedtyIsse)) ursasnd HO3edl pue (vjnuia.y snyndod) puerdug
pue uo-Jes] woij pue[poom uadse “(vnpuad vinjag) (6002)
€50 = eddey (00%) gomogeal ejep Sururquiod sSnonpod DI1q I9ATIS “(24982dwivo PayseBpHquIe) uojy3nox
120 = Koeanooe 00%) T€1 wasnd STV Jep suruIq poap UDIIq I9A[T 1 UL 9A1983Y bl q
A103819pUN JO oreradwa], 120v7) apdewr pue [TH
ewLa0 1 :Jjo-yea] aImjepN reuoneN
ERIIETe|JERIDELEN A | PIRY “(4nqo4 snaiangy)
POOA SYUOIN
yeo ysiduy “(Lo1570xa
SnuIxvi) ysy
(syvpuapro00 ,
X140T) UDIe] UID)SaM \Aomsmooo:mwv MMD
(%sT < pue (vpo1d viny 1) L THOMON
(uonyedyIsse[D) T ur Uurejunojy
IDA0D dI9YM) SNOISJIUOD Iepad pal UId)som (6002)
99:0 = eddey (S0%) - a s@eus pue sqniys areradwa ‘(stpuva8 saqy) MOSSOIN tY e
€80 = £Loemdoe s0v) €8 STV pue sqniy } } i v, jsa10§ padeuewr ey
£103s19pUN JO PaXIA 1y puer ‘(11sarzuatu 1ZZNUT)IR]A]
[ewLa0 rerusurnzadxa
90UdSqB/a0UISAI] v3nsjopnasy)
pue [ergsnpur
1y se[3no( “(vsosapuod
AeALL]
snuig) aurd esorapuog
wI 9ZIS
G : sadfy
S3NS9 jo1d) (cw-syutod) eje samqre }S310J jJO wajsAs0d eary Apny Apny
nsay syord fysuaq a 1oSeL 33 qd V ApmiS PmS
uonuyag
JO "'ON

‘((98102) "1V 12 Yo4vuaaJ-0dsaD) woif pazdvpy)
20Uasa4d 10354200 yj1m STy Suisn Ai0§Siapun Jo UOYYZLIAIVIVYD dY) Jnoqy Saipnjs Suiysixa Jo Aipuwung *1°G d[qel

133



CHAPTER 5

Table 5.1. (cont.) Summary of existing studies about the characterization of understory using ALS with overstory
presence (adapted from Crespo-Peremarch et al. (2018b)).

S No. of
Definition T ¢ Densit lot
arge ensi ots
Study Study Area Ecosystem of forest . 5 Data . Y P Results
attributes (points-m-?) (plot
types .
size m?)
Experimental Overall accuracy
Morsdorf ~ Mediterranean Aleppo pine (Pinus Mediterranean  Presence/absence =048
etal region of halepensis) and holm  pine-evergreen of different ALSp 3.7 63 (25) (Classification
(2010) Lamanon, oak (Quercus ilex) oak woodland vertical strata of shrub
France (16.5 ha) layer)
Ponderosa pine
(Pinus ponderosa
ZM_MMWMa Dougl. Ex P. and C.
Motuntain Laws), fir (Abies R2=0.74 bias=0
Wing et Experimental concolor (Gord. And Interior Understor RMSE = 0.064-
& perime Glend.) Lindl), ponderosa Srstory ALSp 6.9 154 (40.5) 0.0735
al. (2012) Forest in . . vegetation cover
incense-cedar pine nRMSE =22%
northeastern (Calocedrus decurrens (Regression)
California, USA . &
(Torr.) Florin) and
(4,358 ha) . .
Jeffrey pine (Pinus
jeffreyi)
Hancock Luton, England Woodland, Understory 0.5-4 8 bwgmm B N.% o
etal. 100 ha scrubland and Urban area tation . ALSrw lses-m:2 (subplot (Verification
(2017) ( ) parkland vegetation cove puises =1.5m) at voxel-level)
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footprint ALSew such as Scanning LiDAR Imager of Canopies by Echo Recovery
(SLICER) and ground-based measures. Focusing on the understory strata,
SLICER underestimated cover by 33% compared to ground-based measures.
Comparing ALSrw to ALSp for more conventional forest inventory attribute
estimation, Hermosilla et al. (2014a) found no statistical difference for many of
the compared both technologies to estimate forest fuel and structure attributes.
Cao et al. (2014) used ALSrw to estimate biomass components, finding that
ALSrw explained more variability for crown biomass than ALSp, and that the
combination of both datasets produced the best results. Fieber et al. (2015)
applied a procedure based on Harding et al. (2001) to obtain the CHP, using
small footprint ALSrw, and observed a strong relationship between laser
scanning and field data with a mean R? of 0.75. Lastly, Anderson et al. (2016)
found that in an urban woodland landscape, CH estimated by ALSp was more
biased, and intensity less accurate, than that provided by ALSkw.

Compared to ALS, TLS can produce a higher number of laser returns due to the
close range nature of the technology (Vierling et al., 2013). This allows analysis
of understory structure in much more detail (Vierling et al., 2013). TLS systems
can register denser point clouds in lower vegetation (e.g., terrain, canopy base
and understory) (Chasmer et al., 2006; Hilker et al., 2010) and produce forest
inventory information commensurate with field observations, registering data
for > 97% of the trees in deciduous, coniferous and mixed forests (Maas et al.,
2008). However, despite its high accuracy, there is a lack of automatic
algorithms to extract height and species from individual trees with TLS data
(Liang et al., 2016). The highly detailed representation of the three-dimensional
structure of the forest stand makes TLS point clouds an ideal dataset to
characterize understory vegetation (Vierling et al., 2013; Greaves et al., 2015).
TLS is often considered a much more efficient method than conventional field
work, and it has successfully been proved as an effective and accurate approach
to calibrate ALS-based models (Hopkinson et al., 2013; Hancock et al., 2017).
However, because TLS is limited in its spatial coverage, it is restricted in its use
as a forest management tool at broad spatial scales.

In this chapter, in section 5.2, the understory characteristics of the study area
and the datasets used are described. The different processing steps followed to
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characterize understory vegetation using ALSew and TLS as reference are
enumerated in section 5.3. Results from the different tests to characterize
understory vegetation are shown in section 5.4. In section 5.5, the discussion of
the results is addressed. Lastly, in section 5.6, the conclusions of this chapter are
presented. This chapter sets out the Hypothesis 6: “The new described ALSrw
metrics in objective 2 may be used to accurately characterize the height, cover
and volume of understory vegetation in a Mediterranean ecosystem”. To
demonstrate this hypothesis, Objective 6 is addressed in this chapter: apply and
validate the new metrics described in objective 2 derived using a voxel based
approach to estimate understory height, cover, and volume in a Mediterranean
forest ecosystem, proposing some practical recommendations for further
development and testing ALSrw metrics.

5.2. Study area and data

The study area is located in eastern Spain, in a Mediterranean forest in the
Natural Park of Sierra de Espadan (see Figure 3.9 and Figure 4.1). This study
area coincides with the one described in section 3.4.1, whose characteristics of
understory vegetation are further described in section 4.2.1.

TLS data used in this chapter were previously described in section 4.2.3.
Among the experimental plots registered by TLS, a structurally representative
sample of 21 plots was selected (Figure 5.1) by maximizing the variability of
dominant species and understory vegetation cover. Moreover, during TLS data
acquisition, the maximum height of the understory was also assessed at each
plot by trained forestry staff. This involved measuring the lower crown of the
dominant and co-dominant trees, as well as the maximum height of the shrub
and understory layer. This information was later used to provide the height
threshold between understory and overstory in order to remove overstory point
clouds from TLS data described in section 5.3.4.

ALSrw data used in this chapter were previously described in section 3.4.1,
and also further used in Chapter 4 as the second study area.
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Figure 5.1. Plot locations (in yellow) in the study area.

5.3. Methods

In this chapter, we assess the capacity of ALSrw to characterize understory
vegetation using voxel-based metrics in a Mediterranean forest. The overall
strategy followed in this chapter is illustrated by the flow diagram of Figure 5.2.
As the first procedure (1), ALSrw and TLS data must be co-registered to be in
the same coordinate system in XY plane. In the second procedure (2a and 2b),
heights from ALSrw and TLS data are respectively normalized to work with the
same Z origin and to avoid the effect of relief in the characterization of the
understory strata. The third procedure (3) involves denoising of ALSkw data to
remove noise present in the signal registered. As the fourth procedure (4), the
TLS point cloud is filtered to retrieve the understory strata, which is used as
reference data in further procedures. The fifth procedure (5a and 5b) consists of
the voxelization of ALSrw and TLS data for the extraction of the corresponding
metrics and attributes, respectively. As the sixth procedure (6), ALSrw metrics
are extracted from each pseudo-vertical waveform (i.e., voxel column), and then
metrics are computed at cell- (6a) and plot-level (6b). The seventh procedure (7)
consists of the extraction of understory attributes from the TLS voxelization
used further to assess the characterization of understory vegetation from ALSrw
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data at plot- (7a) and cell-level (7b). Finally, metrics from ALSrw as independent
variables and understory attributes from TLS as dependent variables are used
in regression models at plot- (8a) and cell-level (8b). In addition, other plot
characteristics such as slope and dominant species are used in mixed-effect
models (9) to characterize understory vegetation.

ALSpy TLS
l DATA
(1) Co-registration
ALS-TLS |
(2b) Normalization
(2a) Normalization :
l (4) Extraction of
understory point
(3) Denoising doud
}
l (5b) Voxelization
(5a) Voxelization i
(7) Extraction of
l understory attributes (i.e.
. height, cover and volume)
(6) Metric at voxel-level (i.e., 0.75m)
— extraction at voxel-
level (i.e., 0.75m) —l 1 I l
(6a) Generation of (6b) Generation of (7a) Generation of (7b) Generation of
metrics at cell-level metrics at plot-level attributes at plot-level attributes at cell-level
DATA
PRE-PROCESSING
(8a) Regression
models’ results at
plot-level
]
(8b) Regression (9) Regression
models’ results at models’results using
cell-level mixed-effect models STATISTICAL
ANALYSIS

Figure 5.2. Overall processing flowchart implemented to characterize understory
vegetation from ALSrw and TLS data.
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5.3.1. XY co-registration of ALSrw and TLS datasets

Co-registration is a key step when dealing with different datasets from
different sources. This co-registration in XY plane was done in this chapter by
following the same procedure previously described in section 4.2.5.2. In this
case, ALS data were also taken as the reference dataset, since its accuracy is
higher than the one for TLS data.

5.3.2. Height normalization

Heights of the ALS and TLS datasets were normalized using DTMs derived
from each of the point clouds (Procedures 2a and 2b, respectively) for a new co-
registration in Z plane, being 0 m the reference surface. In the case of ALS,
classified ground points were provided by the vendor. These classified points
were used to generate the corresponding DTM by means of LAStools (Isenburg,
2017)(version 171017). TLS ground points were classified using a variation of
the Axelsson (2000) algorithm implemented in LAStools. DTMs with a
resolution of 0.3 m were generated and each dataset was then normalized.
Height normalization of TLS point cloud was done by using LAStools, while
normalization of ALSrw was done as described in Chapter 3, as a step of the
ALSrw metric extraction implemented in WoLFeX.

5.3.3. Denoising

This procedure (Procedure 3) was the same followed and previously
described in section 2.3.1.

5.3.4. Extraction of understory point cloud

TLS-based attributes characterizing the understory require two additional
pre-processing steps (Procedure 4). First, points registered on tree trunks were
removed using a combination of intensity filtering and manual point cloud
editing. By examining the TLS point cloud intensity values it was found that
returns with intensity value higher than 170 can be flagged as tree trunks. Using
a point cloud editor, TLS returns adjacent to the trunks were also removed to
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ensure points located on tree trunks were no longer included in the analysis. In
the second pre-processing step returns located above the field-measured
maximum understory height were removed (Figure 5.3).

Figure 5.3. Vertical transect showing the extraction from TLS point cloud of understory
vegetation (in green) from overstory (in brown).

5.3.5. Voxelization

This procedure (Procedures 5a and 5b) was the same followed and
described in section 2.3.3. In this chapter, the horizontal size of the voxels was
based on the results of Chapter 2 (i.e., 0.75 m), while the vertical dimension was
calculated from the temporal sample spacing by using Equation 5 (i.e., resulting
in 0.15 m). As assignation value, the maximum was the one selected. The goal
of selecting this voxel size was to have the lowest number of empty voxels
without a loss of accuracy.

5.3.6. Extraction of ALSrw metrics

The extraction of ALSrkw metrics (Procedure 6) was done following the
procedure previously described in section 2.3.4, where pseudo-vertical
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waveforms are generated from voxelization and then metrics are extracted.
Hence, ALSrw metrics were firstly extracted from the selected voxel size, i.e.,
0.75 x 0.75 x 0.15 m (henceforth referred to as 0.75 m). Then, the understory was
characterized at two spatial scales; 3.75 x 3.75 x 0.15 m (i.e., 5 x 5 columns of
voxels; henceforth referred to as 3.75 m), which is denoted as “cell-level” of
understory vegetation (Procedure 5a), as well as at the broader plot-level scale
(15 m radius) (Procedure 5b).

The total number of ALSrw metrics extracted was 53, as described in section
3.2 and Table 3.1. In addition, to better understand if limiting the calculation of
the pseudo-vertical waveform metrics to lower components of the canopy
enhances estimations of understory vegetation, a height filter was applied to
ALSrw metrics. This height filter consisted of cutting off the pseudo-vertical
waveform at a given height threshold, then extracting ALSrw metrics from the
resulting pseudo-vertical waveform. The height threshold for the whole study
was computed as 99% height of understory heights extracted from TLS data.
Therefore, all the ALSrw metrics were computed on both the full pseudo-vertical
waveform as well as a pseudo-vertical waveform limited to the height of the
TLS understory height threshold.

As all these metrics were computed for each column of voxels, mean and
standard deviation was calculated at the corresponding cell- (Procedure 6a) and
plot-level (Procedure 6b) as variables for the regression models.

5.3.7. Extraction of understory attributes from TLS

Four key attributes describing the understory vegetation were extracted
from the TLS voxels: mean understory height (Hmean), maximum understory
height (Hmax), understory canopy cover (C) and total volume (V), which is
defined as three-dimensional space occupied by understory (Procedure 7).
These four understory attributes were used as the observed variables and
modeled with ALSrw derived predictors.

To calculate the Hmax, we computed the 99% height of each 0.75 m column
of voxels and then extracted the maximum within each 3.75 m side cells (cell-
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level) (Procedure 7b). Hmean was defined as the average of the 99% heights of
each 0.75 m column of voxels across the 3.75 m cells. A proportion of filled voxel
columns within each 3.75 m cell was used to describe C. A minimum threshold
of 10 points was used to determine filled voxels in each column, and a minimum
of one filled voxel was required to define a column as filled. A sum of all filled
voxels in each column multiplied by the volume of the voxel was used as an
estimate of V. A graphical description to compute these understory attributes at
cell-level is showed in Figure 5.4. Moreover, Figure 5.5 shows these TLS
attributes categorized by the dominant species and the slope of the plot.
Dominant species had a high influence on all the understory attributes.
Understory vegetation height, cover and volume were higher with presence of
Pinus halepensis, and slightly lower with presence of Pinus pinaster compared to
mixed Pinus pinaster and Quercus suber. These understory vegetation attributes
were however less influenced by slope. In this case, median values were
generally similar among the different slope categories, however, mean height
and volume values were less dispersed as the slope increases.

In addition to the cell level (3.75 m) (Procedure 7b), all attributes were also

calculated at plot-level (15 m) (Procedure 7a).

5.3.8. Linear regression models

Linear regression was used to obtain predictive models of the four understory
attributes, using ALSrw metrics as independent variables (Procedure 8).
Attribute selection consisted of comparing the AIC of all possible model
comparisons using a maximum of three ALSrw metrics in each model. Each plot
was composed of 40 samples (i.e., cells). In order to reduce spatial
autocorrelation, 10 samples per plot were randomly sampled, which resulted in
210 samples at the cell-level (Procedure 8b) and 21 for the plot-level analysis
(Procedure 8a). A total of 16 model sets were tested (4 understory TLS metrics
x 2 resolutions (cell- and plot-level) x 2 sets of ALSkw metrics (with and without
the TLS height filter)). Models were compared using the R?2, RMSE, nRMSE and
CV. In the case of C, which is a bounded variable between 0 and 1, we replaced
linear regression with Beta regression (Ferrari and Cribari-Neto, 2004) where a
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99% height of each column of voxels

Y

Voxelization (0.75 x 0.75x 0.15 m) Lx

At least one voxel with more
than 10 hits in the column?

c=0288

Number of voxels containing at
least 10 hits in the column

Number of

.-- filled voxels = 39

V=39x(0.75%0.75%x 0.15m)
V=329 m?

Figure 5.4. Graphical description to compute the understory attributes (Hmax, Hmean, C
and V) at cell-level (i.e., 3.75 m) from a TLS point cloud.

pseudo-coefficient of determination (pR?) was generated for these regression
models.
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Figure 5.5. Box and whiskers representing TLS understory attributes (mean height:
Hinean, maximum height: Hwax, cover: C, and volume: V) categorized by dominant species
(Pinus halepensis, Mixed Pinus pinaster and Quercus suber, and Pinus pinaster) and

slope (low, medium, and high) from the 21 plots.
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5.3.9. Linear mixed-effect models

To assess if the ability of ALSrw to predict the TLS attributes was site
dependent, a mixed-effect modeling approach was also undertaken (Procedure
9), which involved developing statistical models containing both fixed and
random effects (Crawley, 2012). The two known variables from each plot, slope
and dominant species, were used as categorical class variables since both can
affect the understory (see Figure 5.5). The slope was categorized in three groups:
low, medium, and high. The dominant species were split into three groups as
well: H (Pinus halepensis), P (Pinus pinaster), and M (Pinus pinaster + Quercus
suber). Beatty (1984) found that microrelief could affect nutrient content, making
mounds poorer and pits richer in biodiversity. Barbier et al. (2008) found that
understory vegetation was highly affected by overstory species, since a number
of environmental factors (e.g., light and nutrients) highly influence species. Both
the model slope and intercept were allowed to vary (based on Gelman and Hill
(2007)) while utilizing Nakagawa and Schielzeth’s (2013) steps with an update
of Johnson (2014) to calculate two model estimators: marginal R? (R?m) and
conditional R? (R%c) for model comparison, as well as standard RMSE and
nRMSE for linear mixed-effect models. These 24 models (4 TLS understory
attributes x 2 ALSrw metric datasets (with and without height filter) x 3
combination of categorical variables (slope, dominant species, and both)) plus
the 16 models explained above, resulted in 40 models in total for this study.

5.4. Results

The detection of pR? of the understory cover (C) was 0.871. The R? values of
the predicted understory attributes were 0.957, 0.771, and 0.951, for Hmean, Hmax,
and V, respectively.

Figure 5.6 shows an example of the four TLS and ALSkw derived attributes
of the understory with a site photograph for three plots within the study area.
These three characteristic plots demonstrate low, moderate, and high degrees
of understory cover (i.e., plots P6-SP, P7-SP, and P2-SP, respectively).
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Figure 5.6. TLS and ALSrw derived four attributes (Hmem, Hmax, C and V) and field
photographs extracted from three plots (P2-SP, P6-SP, and P7-SP) with 15 m radius
within the study area. Plots P6-SP, P7-SP, and P2-SP, represent low, moderate, and
high degrees of understory cover, respectively.
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Figure 5.7 shows a table with the ALSrw metrics selected for the 16
regression models (4 understory TLS attributes x 2 resolutions (cell- and plot-
level) x 2 set of ALSrw metrics (with and without the TLS height filter)) with
corresponding R?, RMSE, nRMSE and CV values. Results indicate that the best
model for Hmean and Hmax was developed at the plot-level using a height filter,
and had R? values of 0.957 and 0.771, respectively. These models also had the
lowest RMSE and nRMSE (0.08 m and 7% for Hmean; 0.51 m, and 11% for Hmax,
respectively). The best model for C was also developed at plot-level, with
similar results with and without a height filter. Model performance was
characterized by R? = 0.871, RMSE = 0.09, nRMSE = 11%, CV = 12% when the
height filter was used, and by R? = 0.792, RMSE =0.07, nRMSE = 9%, CV = 9%
without the height filter. Lastly, the plot-level model for V, without a height
filter, was the most accurate and had R?=0.951, RMSE = 56.49 m3, nRMSE = 7%
and CV = 9%. Among all models, Hmax modeled at cell-level had the lowest
accuracy with a R? of 0.447.

The most frequently used metrics in the regression models included NFVU,
FVU, nEFEV, EFEV, Hn, and MAX E, while WD, RWE, VARIANCE, ENERGY
On, N GS, N GS ENDPEAK, CE, GRR, AGS, SGS, and MSGS were not included
in any of the models.

Results of the mixed-effect models that incorporated different combinations
of categorical variables (slope, dominant species, and both) are shown in Table
5.2. These results indicate that the highest accuracy was achieved for Hmean, with
an nRMSE of 9%, for the model that used both categorical variables, as well as
for the model that used only the dominant species. For all the understory
attributes, using just the dominant species or both variables as categorical
variables reached the best results.

When compared to the results of the linear regression models (Figure 5.7),
all understory attributes were predicted with higher accuracy. The
improvement in nRMSE was about 1% for Hmean, 2% for Hmax, 7% for C, and 2-
3% for V.

Figure 5.8 shows scatter plots of the TLS-based observed and ALSrw-based
predicted attributes at cell- and plot-level, as well as using the mixed-effect
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Figure 5.7. ALSrw metrics selected for the estimation of the different attributes (Hmea, Hmax, C, and V) for cell- (3.75 m
resolution) and plot-level (15 m radius) resolution, and for each height filter (NF: no filter, HF: height filter). The results
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models. Predictions of Hmean, Hmax, and V to their respective observations were

closer to 1:1 than C at the cell-level and when using mixed-effect models.

Improvement between cell-level and mixed-effect models is especially visible

for C. As demonstrated previously, results at the plot-level were more accurate
than at the cell-level.

Table 5.2. Results of mixed-effect models for the estimation of the four understory
attributes (Hmean, Hmax, C, and V)

Categorical

Height

nRMSE

variable Attribute filtor Rm R2%c RMSE %) CV (%)
o NO 0271 0847 031m 10 41
YES 0625 0627 033m 10 43
o NO 0344 0550 0.67m 15 )
Slope YES 0433 0519 0.70m 15 43
c NO 0466 0670 021 21 27
YES 0238 0793 021 21 26
v NO 0311 0849 3.85m’ 14 31
YES 0068 0943 458 m? 17 37
o NO 0394 0666 030m 9 40
YES 0526 0606 031m 10 41
o NO 0294 0421 0.67m 15 41
Dominant YES 0397 0575 0.67m 15 41
species c NO 0.055 0.960 0.17 17 22
YES 0059 0946 017 17 2
v NO 0191 0876 3.61m? 13 29
YES 0110 0898 449 m? 17 36
o NO 0232 0791 030m 9 39
YES 0260 0780 031m 9 41
NO 0157 0613 064m 14 40
Slope + Hinax
Dominant YES 0145 0745 0.66m 14 41
) NO 0032 0972 015 15 20
species c YES 0036 0961  0.16 16 20
v NO 0118 0914 355m? 13 29
YES 0035 0967 426m° 16 34

5.5. Discussion

In this chapter, a new methodology to characterize understory vegetation from
ALSrw data has been described. This methodology was verified with TLS data
acquired at key plot locations. Key results from this study indicate that

understory cover, height, and volume were accurately predicted from ALSkw at
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Figure 5.8. Regression graphs for the estimation of the different attributes (Hmean, Hmax,
C and V) for each resolution (cell-level, mixed-effect (cell-level) and plot-level (15 m
radius)) and for each height filter (NF: no filter, HF: height filter). Solid line represents
the 1:1 line.
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both the cell and plot scale when compared to the reference.

Overall, the results showed a high performance of ALSrw for estimating
Hmean, Hmax, C, and V, especially at plot-level. Hmean and V were modeled with
highest accuracy, while poorer results were obtained for C and Hmax. These
results suggest that Hmean had a higher performance than Hmax since mean values
are smoother than maximum values, due to the latter being able to have extreme
values. V results were close to Hmean, given that both attributes are directly
related. Most of the C training values were close to 1, hence not being a
distributed sample, causing poorer estimates of C. A possible solution to
improve C estimate results is to increase the number of plots with an
intermediate understory cover. Results at the cell-level were poorer since
estimates were more sensitive to small changes due to the finer scale. Although
results were lower at cell-level, these values were acceptable having in mind its

resolution.

A number of key findings were apparent. A height filter was applied in
order to determine whether cutting off the pseudo-vertical waveform fragment
that corresponds to understory enhanced estimations of understory vegetation
characterization. Nevertheless, applying this filter to the ALSrw prior to metric
calculation did not result in an improvement in accuracy when predicting Hmean
at cell-level, as well as C and V at both scales. In addition, in those cases where
results from height filter tests were higher, improvements compared to no
height filter tests were small. This is likely due to the fact that contrary to ALSp,
which has a limited number of digitized hits, ALSrw can fully discriminate
height strata through decomposing the waveform. As a result, height thresholds
for data processing are not needed.

Estimation results of understory cover, height, and volume improved when
mixed-effect models were applied using just the dominant species as variable,
or combined with the slope. These results suggest that terrain slope alone has
little influence on the prediction of the understory variables, however when
combined with dominant species it has a more significant effect.

With respect to the accuracy of the predictions, our results correspond to
those of others (Hill and Broughton, 2009; Martinuzzi et al., 2009; Morsdorf et
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al., 2010; Wing et al., 2012; Hancock et al., 2017). Most of the studies to date (Hill
and Broughton, 2009; Martinuzzi et al., 2009; Morsdorf et al., 2010) have
estimated the presence or absence of understory by applying a classification
based approach. Contrastingly, Wing et al. (2012) estimated understory cover
using regression models and found a R? of 0.74, with a similar nRMSE as
reported in our study (NnRMSE = 22%), but used a resolution of 40.5 m? and
applied height and intensity filters. This study suggests that ALSrw can be used
to estimate understory cover with a similar nRMSE, but with a higher resolution
(i.e., 3.75 m or 14.06 m?) and without applying any filter. Alternatively, Hancock
et al. (2017) obtained a similar accuracy (nRMSE = 24%) at finer scale (1.5 m
horizontal and 0.5 m vertical resolution), but in an urban landscape. This
suggests that understory cover can be extracted more accurately in urban
environments, where vegetation is likely more intensively managed by

humans.

Scaling from the cell-level to the full plot showed an increase in accuracy
and decrease in error when compared to the reference TLS predictions. In the
case of Hmean, the R? coefficient increased from 0.633 to 0.949, and from 0.447 to
0.758 for Hmax. The R2 coefficient for C increased from 0.581 to 0.871, and from
0.651 to 0.951 for V. From a modeling point of view, the most selected attributes
were those developed in this thesis, especially at the finer scale. The newly
created attributes were also used more frequently in the regression models at
the plot scale, but they were selected by fewer models. Attributes from Gaussian
iterative decomposition related to return energy were not selected, except for
BCE. As Hancock et al. (2015) suggested, Gaussian iterative decomposition
methods were poorer when extracting return energy from ALSrw when a small
footprint is used because of the increase heterogeneity of the targets. Other
methods such as the sum of waveform amplitude and spline may be used in
further studies instead of the Gaussian iterative decomposition, since they are
less time consuming and robust (Hancock et al., 2015).

Hmean, Hmax, C, and V, can be represented as four layers that can be used in
three key ways for fire behavior assessment. First, fire models need understory
height. These layers give an accurate height that, with the CBH measure, can be
used to calculate the gap between understory and overstory. This gap is
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critically important for Mediterranean forests as it describes when a surface fire
will likely become a crown fire (e.g., ladder fuel fires). Second, fire behavior
depends on understory cover. Surface fire intensity is higher with larger
amounts of understory, which is determined by cover and biomass. The latter
of which was not able to be predicted in this study, since ground-based data
from understory species registered by TLS were not available, as well as the lack
of allometric equations for these species to predict biomass. Third, forest
clearing in the Mediterranean for fire prevention consists of removing
understory vegetation and creating controlled fires. Knowing the understory
vegetation volume easily allows determination of how much volume will be
removed during a fire, which can also be converted to biomass for other
purposes.

5.6. Conclusions

In this chapter, a method to characterize the understory vegetation through
ALSrw data in a Mediterranean forest has been presented. Our results suggest
that the use of ALSrw provides an alternative to traditional or local techniques
for understory characterization. ALSrw is able to accurately estimate understory
vegetation attributes such as height, cover, and volume over large areas. These
attributes reached very high R? values at plot scale (mean height: R? = 0.957,
maximum height: R?=0.771, cover: R?=0.871, and volume: R?=0.951), but were
slightly lower at cell-level (i.e., 3.75 m side) (mean height: R? = 0.633, maximum
height: R? = 0.470, cover: R? = 0.581, and volume: R?=0.651). The new proposed
metrics in section 3.2 proved to be decisive for a more accurate characterization
of the understory vegetation. This is an advantage to traditional or TLS
techniques, which can only be collected in small areas and tend to be very costly.
The results presented in this chapter are particularly important for forest
management, as well as fire prevention and prediction. Further studies must be
conducted in different ecosystems in order to assess the potential use of ALSrw
for various tree and shrub densities and types, as well as predicting other
attributes such as biomass, which is essential to analyze forest fire intensity.
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Final conclusions

Olea europaea

“El olivo estd triste,

languidece la florecilla blanca de su ramaje,
se desvanece hacia lechos de tierra

en su frondoso almagre.”

Nieves Fernandez Rodriguez
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6.1. Answers to the original research questions

This thesis addressed the development of ALSkw processing and analysis
methods to characterize the vertical forest structure, in particular the
understory vegetation.

ALSrw data have proven to be a powerful tool to characterize the entire
vertical forest structure, since the complete signal emitted by the sensor and
going through the different vertical strata is registered. The possibility of having
all this information makes it possible for the user to analyze different vertical
strata in more detail than with ALSp, where data are reduced by the Gaussian
decomposition technique. Focusing on the understory strata, its
characterization is challenging for ALS configurations due to occlusion of
overstory, and crucial for forest fire mitigation and mapping wildlife habitats.
ALSrw has proven to detect and characterize with more detail these strata than
ALSp. Nevertheless, other aspects of ALSkw should be considered. The
registration of the complete signal also involves a large amount of data that
must be stored and managed, which implies availability of disk space and
powerful processors. This drawback is disappearing, as more powerful
computers with more storage capacity and cloud computing alternatives are
being available. On the other hand, the creation and publication of new
processing tools, such as WoLFeX, is expected to diminish the effect of the lack
of ALSkw processing tools, which was a disadvantage until now.

The main conclusions for each of the specific objectives enumerated in
section 1.2 are as follows:

Objective 1: To analyze the influence of pulse density, voxel parameters and
regression methods on ALSrw metric values and on forest structure attributes estimates,
identifying those parameters and quantifying their relations to be able to tune their
values in order to considerably reduce this influence in practice.

e Values of ALSrw metrics extracted following the voxelization
procedure are subject to pulse density. This means that ALSrw metric
values vary if the pulse density changes. This entails a problem since
pulse density is variable due to different factors such as objects’
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occlusion, scan angle or flying speed. The variation of ALSkw metric
values due to higher pulse density in side-lap areas is known as side-
lap effect, and this is not the same for all the ALSkw metrics, therefore
some are more influenced than others.

Overall, this variation of ALSrw metric values follows a negative
exponential distribution (Equation 6), being the variation lower as
the pulse density increases. Therefore, variation of ALSrw metric
values related to pulse density can be modeled using a negative
exponential distribution to determine, through coefficient b, from
which pulse density ALSkw metric values become stable. Hence, the
coefficient b shows the minimum pulse density that should be used
to avoid the side-lap effect.

On the other hand, if a minimum pulse density cannot be set (e.g.,
ALSrw data have already been acquired), modifying voxel
parameters (i.e., voxel size and assignation value) may be used to
reduce the side-lap effect. Overall, an increment of the voxel size,
and the modification of the assignation value for some metrics,
results in reduction of the side-lap effect. This is due to the fact that
the probability that larger voxels are crossed by at least one
waveform is higher, avoiding the gaps in the voxel columns that may
alter values of ALSrw metrics. Hence, a trade-off between increasing
voxel size to reduce side-lap effect and a substantial loss of
resolution should be considered.

Regarding the different ALSrw metrics in more detail, the increment
of the voxel size is recommended for HOME, WD, FS and RWE for
the mean and median assignation values. Nevertheless, small voxel
sizes make ROUGH and RWE for maximum, percentiles 90 and 95
more stable. On the other hand, the choice of the assignation value
must be considered depending on the voxel size used for RWE.
However, NP is sensitive to pulse density variations and it cannot
be reduced through voxel parameters, and therefore should be
avoided for further analyses.

Forest attributes are estimated by using ALSrw metrics influenced by
the side-lap effect; therefore, these attributes are also influenced by
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the effect. Nevertheless, the influence of the side-lap effect on
estimate of forest attributes is lower than on ALSrw metrics, since the
former are statistically fitted, and errors minimized by using
regression models.

However, the increment of the voxel size also diminishes the side-
lap effect on forest attributes. For instance, side-lap effect is lower in
mass-related attributes when the voxel size is increased than in
height-related attributes. In the latter, however, side-lap effect can
be reduced more efficiently by changing the regression method
used.

Objective 2: To compile a set of methods to process and analyze ALSrw data,

including the relative radiometric correction of the data to reduce the effect of the

different angles of incidence and local altitude variations during the data acquisition

process, the extraction of most ALSrw metrics as proposed in the literature, as well as

new metrics focused on understory vegetation, integrating them in a new software

available to use for the scientific community.

A new software tool named WoLFeX is presented and described.
This software tool is designed to process ALSrw data, allowing for
clipping, radiometrically correcting, voxelizing the original ALSrw
waveforms, creating pseudo-vertical waveforms and extracting an
exhaustive set of object-oriented metrics that can be used in
regression and classification models as independent variables.

A wide range of ALSrw metrics is included in WoLFeX. New metrics
for the characterization of understory vegetation have been
proposed. These new metrics allow for the identification and
quantification of understory vegetation, which is a key parameter for
forest fires mitigation.

Objective 3: To assess the influence of the scan angle of ALS data acquisition and

the application or not of a radiometric correction on (i) the extraction of an ALSrw

metric; and (ii) modeling three of the most relevant forest fuel variables—canopy fuel
load (CFL), canopy height (CH), and canopy base height (CBH).
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Values of ALSkw metric RWE are influenced by the scan angle of the
waveforms. Estimated values of RWE should be equal for a same
sample; however, up to a nRMSE difference of 15.40% was observed
in the estimate of RWE from waveforms acquired with extreme scan
angles.

These differences in RWE values related to scan angle decrease when
relative radiometric correction is applied, but they are not
completely removed. The efficiency of radiometric correction is
affected by the correction parameter power n (see Equation 1). Thus,
differences quantified by nRMSE can be reduced in more than 4%
using radiometrically corrected data.

Forest fuel attributes (CFL, CH and CBH) estimated from ALSrw
metrics are also influenced by scan angle. Different values of forest
fuel attributes are estimated for a same plot when using different
scan angles. Nevertheless, estimates of forest fuel attributes are
differently influenced by scan angles. For instance, mass-related
attributes are more influenced than height attributes.

On the other hand, differences in estimates of forest fuel attributes
due to scan angle are also reduced, and its accuracy improved, by
applying radiometric correction. Again, estimates of mass-related
attributes are strongly influenced, and its accuracy improved, by
applying radiometric correction, while height attributes are little
influenced. Forest fuel attributes are differently influenced since
height attributes are fixed at a specific point on the waveform,
usually a maximum or minimum, while mass-related attributes are
described using the complete waveform profile. Therefore, the latter
are more subject to radiometric values.

Objective 4: Characterize the signal occlusion along the vertical forest structure

using different laser scanning configurations (i.e., ALSp, ALSrw, and TLS) in

contrasted ecosystems with different canopy covers to determine how reliable the

resulting vertical distribution profiles are based on the amount of occlusion and the lack

of information.
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Overall, results confirm the general trend largely accepted by the
scientific community, which implies that laser scanning signal
occlusion prevails in sectors blocked by dense canopies. Signal
occlusion therefore depends largely on the laser scanning
configuration: ALS, viewing forest from the top-down, is more
limited to sample the lower strata, while TLS, viewing the forest
from bottom-up, is more limited to sample the top of the canopy.
The rate of pulse reduction, which is the ratio between the number
of blocked laser beams prior to reach a given voxel and the number
of theoretical laser beams that should cross a given voxel, is a good
indicator of occlusion. Therefore, vertical profiles representing the
rate of pulse reduction allows for quantifying the occlusion in the
different vertical layers. This involves assessing the reliability of the
vegetative material detected from the different laser scanning
configurations at the different vertical strata.

Comparing vertical profiles retrieved from the number of hits of
ALSrw and ALSp, and taking PAD from TLS as reference, ALSp
concentrates most of its data at the upper strata, since the dominant
strata generates occlusion underneath. Despite this, the detection of
the top of the canopy by ALSrw and ALSp are not significantly
different. Nevertheless, detection of strata below the dominant strata
(intermediate and/or lower strata) is enhanced by ALSrw.

Objective 5: Determine how understory vegetation density classes can be detected

and further determined by ALS configurations, and whether ALSrw allows for the

detection and determination to a level of detail beyond ALSp capability.

Again, using the PAD from TLS as reference, vertical profiles at
lower strata retrieved from the number of hits of ALSp and ALSkw
data are both high correlated with vertical profiles of TLS. However,
vertical profiles retrieved from ALSrw are significantly more
accurate. This implies that vegetative material at lower strata (i.e.,
understory vegetation) are generally well detected by ALS
configurations, but especially by ALSkw.
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Despite the correlations between the number of hits of ALS (i.e,,
ALSrw and ALSp) and the PAD from TLS are high, this is a unitless
indicator, and therefore, it only considers the shape but not the order
of magnitude of the vertical profiles at the lower strata. In this
regard, ALSrw detects understory vegetation with a much larger
number of hits than ALSp. This implies that lower strata, and
therefore understory vegetation, is registered in more detail with
ALSrw.

The considerably lower number of hits registered from ALSp in the
lower strata with respect to those registered by ALSrw and TLS, but
the significant correlation with TLS, suggests that understory
vegetation can be successfully detected at plot-level but not at finer
scales. The low density of ALSp point clouds cannot represent the
complexity of each individual understory vegetation element.
However, the significant correlation with TLS at plot-level shows
that the presence of understory vegetation within the plot is
generally detected.

The variation of the vertical profiles of the number of hits of ALS
configurations at the lower strata depends on the density of
understory vegetation. From up-bottom, gradual variations are
related to sparse understory vegetation, while steep variations are
related to dense understory vegetation.

The application of the Gini index quantifies how these variations in
the vertical profile of the number of hits are. Therefore, this index
can be used to determine the density of understory vegetation by
using the ALS (i.e., ALSrw and ALSp) vertical profiles of the number
of hits at the lower strata as input. Again, the determination of
understory vegetation density is more accurate with ALSkw. Gini
index class interval thresholds to determine understory vegetation
density from ALSp are fuzzier, implying more overlap between
classes, than those from ALSkw.

Despite strong signal occlusion at lower strata in the forest, ALS and,
especially ALSrw, can be processed to identify understory densities
with the Gini index.
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Objective 6: Apply and validate the new metrics described in objective 2 derived
using a voxel based approach to estimate understory height, cover, and volume in a
Mediterranean forest ecosystem, proposing some practical recommendations for further
development and testing ALSrw metrics.

e Understory vegetation can be characterized very accurately in a
Mediterranean ecosystem by using ALSrw metrics. Among the
understory vegetation attributes used for the characterization, mean
height and volume have the highest correlations, above the
maximum height and cover.

e Contrary to ALSp, and in order to enhance estimations of understory
vegetation characterization, ALSrw data do not need to be cut off to
exclude the waveform fragments that do not correspond to
understory vegetation. This is likely due to the fact that contrary to
ALSp, which has a limited number of digitized hits, ALSrw can fully
discriminate height strata through decomposing the waveform.

e The terrain slope alone has little influence on the prediction of
understory vegetation cover, height, and volume. However, when
combined with dominant species it has a more significant effect, and
therefore, estimation results are improved.

Overall, the use of ALSp data is adequate for most of the current ALS
applications. Nevertheless, we have demonstrated that ALSkw is capable of
going one step further in the identification and/or characterization of the
intermediate and lower vegetation strata. This is crucial for applications such as
wildfire mitigation, modeling fire behavior, planning forest thinning and
maintenance tasks for wildfire reduction and biodiversity preservation, or
mapping biodiversity. However, the use of ALSrw data requires the
identification of the appropriate parameters, such as the optimal pulse density
and processing parameters (i.e., voxel size and assignation value), as well as the
application of radiometric correction prior to undertake any data processing.

Analyzing the vertical forest structure and occlusion with terrestrial and
airborne laser scanning configurations allowed us for a better understanding of
a potential previously mentioned by other authors: the use of TLS to calibrate
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ALSrw, thus the latter could replace TLS to retrieve information from forest
internal structure massively, at broader scales.

Nevertheless, ALSrw still presents some limitations, such as signal occlusion
due to dense vegetation. This may have particular importance in forests with
high canopies and very dense vegetation and internal structure (e.g., tropical
areas), where the energy from ALS pulses may not be sufficient to reach the
ground or the lowest vegetation strata.

6.2. Further research

This research deepened into the use of ALSkw for the characterization of the
vertical forest structure in different ecosystems. Several aspects were addressed
such as the influence of pulse density on ALSrw metrics and on forest attributes
estimates, and how this influence may be reduced; creation and description of
a new processing tool to process ALSrw data, including this tool new proposed
ALSrw metrics related to understory vegetation; the analysis of the influence of
scan angle and the radiometric correction of ALSrw metrics and on the estimate
of forest fuel attributes; the characterization of the vertical distribution and
occlusion for different laser scanning configurations (ALSp, ALSrw and TLS); the
comparison in the detection and determination of understory vegetation
density with ALSp and ALSrw in two contrasted ecosystems; and the
characterization of understory vegetation with ALSrw metrics in a
Mediterranean ecosystem. This thesis may also be taken as the start point of
further research to deepen even more into the use of ALSew for the
characterization of the vertical forest structure.

Promising further research might be mainly focused on deepening into
some aspects addressed in this thesis, such as the use of ALSrw data to estimate
useful inputs for 3D simulations of wildfire behavior (e.g., WFDS and Firetec).
These new 3D physical fire behavior models include the fuel-fire-atmosphere
interactions, which require very accurate forest structure and fuel moisture
information at voxel-level. Thus, it is important to classify and map forest
species by combining ALSrw with other sensors (e.g., multispectral or
hyperspectral), and to estimate forest structure parameters (canopy bulk
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density, canopy base height, cover and height) at voxel-level following some of

the methods presented in this thesis. On the other hand, it is also important to

analyze the use of emerging ALSrw sensors and deep learning techniques, such

as GEDI (Global Ecosystem Dynamics Investigation) and convolutional neural

networks, respectively. Furthermore, new techniques for storing and processing
ALSrw might also be addressed.

Several interests for further research are proposed below:

Classification of forest species by using ALSrw and other sensors
(e.g., multispectral or hyperspectral).

Estimation of CBD at voxel-level using ALSrw.

Identification of understory vegetation and ladder fuels, and
quantification of their structural properties (i.e., volume and
biomass) at voxel-level using ALSkw.

Analysis of the side-lap effect on different ecosystems with different
dominant species.

Assessment of the effect of the emitted pulse energy and the
footprint size on ALSew values.

Study of the relationships between estimates of PAD and vertical
profiles of number of hits for ALS configurations.

Analysis of the relationship between vertical profiles of rate of pulse
reduction and classification of forest types and structure.
Validation of the characterization of understory vegetation with
ALSrw data in different ecosystems.

During the development of this thesis, it has been observed that
ALSrw data are not standardized. Firstly, this is reflected in how
data are provided depending on the sensor and on the processing
software used to generate LAS files from RAW files. For instance,
line parameters of the waveforms (i.e., Xt, Yt and Zt), which describe
the direction and location of the waveform, are sometimes
represented differently. Secondly, given that LAS format was
originally created for ALSp data, different hits belonging to one
waveform are provided, which is redundant to represent the
waveform. A standardization of a new LAS format for the
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distribution of ALSrw data would be suitable. This new format
would standardize the parameters present in the LAS file to
represent the ALSrw data, as well as resulting in a reduction of
memory and processing time.

Exploration of a new denoising process for ALSrw data based on the
Fourier transform. This technique decomposes a waveform into its
constituent frequencies. Therefore, some of these frequencies may
be identified as noise and removed.

Comparison of new sources of full-waveform laser scanning data,
such as GEDI (i.e., a space-borne laser scanning), with ALS data. In
addition, given that ALS data are denser than those from GED], the
latter could be calibrated using ALS data as reference. This would
allow for the characterization of forest fuel and vertical forest
structure in wider areas with time series using the wall-to-wall
procedure, as it has been used for ALSp and Landsat data (Saarela
et al.,, 2015).

Exploration of the use of convolutional neural networks to
characterize the forest fuel and vertical forest structure with ALSrw
data for estimating forest attributes or for classifying tree species
and fuel types, etc. The development of 3D segmentation methods
to identify individual trees or tree elements (e.g., trunk, crown, etc.)
can also be relevant for future work in forest structure.
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