
Processing and analysis of
airborne full-waveform

laser scanning data for the
characterization of forest

structure and fuel properties

Pa
bl
o 

C
re
sp
o-
Pe
re
m
ar
ch

PR
O
C
ES
SI
N
G
 A
N
D
 A
N
A
LY
SI
S 
O
F 
A
IR
BO
R
N
E 
FU
LL
-W
A
V
EF
O
R
M
 L
A
SE
R
 S
C
A
N
N
IN
G
   
   

D
A
TA
 F
O
R
 T
H
E 
C
H
A
R
A
C
TE
R
IZ
A
TI
O
N
 O
F 
FO
R
ES
T 
ST
R
U
C
TU
R
E 
A
N
D
 F
U
EL
 P
R
O
PE
R
TI
ES

20
20

PABLO CRESPO-PEREMARCH

Advisor: Luis Ángel Ruiz Fernández

September 2020



 

 
 





 

 
 

Processing and analysis of airborne full-
waveform laser scanning data for the 

characterization of forest structure and fuel 
properties 

 
Pablo Crespo-Peremarch 

 
Advisor: Luis Ángel Ruiz Fernández 

 
 

Geo-Environmental Cartography and Remote Sensing Group (CGAT) 
Department of Cartographic Engineering, Geodesy and 

Photogrammetry 
Universitat Politècnica de València (UPV) 

 
PhD in Geomatics Engineering 

 
 
 
 

València, September 2020 



 

 



 

i 

 
 
 
 
The author of this PhD Thesis is thankful for the financial support provided by 
the Spanish Ministerio de Economía y Competitividad and FEDER, in the 
framework of the projects ForeStructure CGL2013-46387-C2-1-R (2013-2016) 
and FIRMACARTO CGL2016-80705-R (2016-2019). In addition, this PhD thesis 
was partly developed in the Integrated Remote Sensing Studio (IRSS) of 
University of British Columbia (UBC) (Canada) and in the Centre 
d’Applications et de Recherche en TÉLédétection of Université de Sherbrooke 
(Canada) thanks to the Erasmus+ KA-107 mobility grant and to the Canadian 
research project Assessment of Wood Attributes using Remote Sensing 
(AWARE) (NSERC CRDPJ-462973-14, grantee N.C. Coops, UBC), respectively.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





 

iii 

This PhD Thesis was developed as a compendium of the following scientific 
papers: 
 

1. Crespo-Peremarch, P., Tompalski, P., Coops, N.C., Ruiz, L.Á., 2018. 
Characterizing understory vegetation in Mediterranean forests using 
full-waveform airborne laser scanning data. Remote Sensing of 
Environment, 217, 400–413. https://doi.org/10.1016/j.rse.2018.08.033 

2. Crespo-Peremarch, P., Ruiz, L.Á., Balaguer-Beser, Á., Estornell, J., 2018. 
Analyzing the role of pulse density and voxelization parameters on full-
waveform LiDAR-derived metrics. ISPRS Journal of Photogrammetry 
and Remote Sensing, 146, 453–464. 
https://doi.org/10.1016/j.isprsjprs.2018.10.012 

3. Crespo-Peremarch, P., Ruiz, L.Á., 2020. A full-waveform airborne laser 
scanning metric extraction tool for forest structure modelling. Do scan 
angle and radiometric correction matter? Remote Sensing, 12, 292. 
https://doi.org/10.3390/rs12020292 

4. Crespo-Peremarch, P., Fournier, R.A., Nguyen, V.-T., van Lier, O.R., 
Ruiz, L.Á., 2020. A comparative assessment of the vertical distribution 
of forest components using full-waveform airborne, discrete airborne 
and discrete terrestrial laser scanning data. Forest Ecology and 
Management, 473, 118268. https://doi.org/10.1016/j.foreco.2020.118268  

 
Regarding the author rights for scholarly purposes, the published scientific 
papers (1), (2) and (4) are re-used by the author of portions or excerpts in other 
works (i.e., the present PhD thesis), with full acknowledgement of the original 
publications of the scientific papers. 
In addition, this PhD Thesis was completed with the following scientific papers 
or conference presentations: 
 

1. Crespo-Peremarch, P., Ruiz, L.Á., Balaguer-Beser, Á., Estornell, J., 2015. 
Análisis temporal de la estructural forestal mediante métricas derivadas 
de LiDAR full-waveform. Actas XVI Congreso de la Asociación 
Española de Teledetección. Teledetección, humedales y espacios 
protegidos, 387–390. 21-23 Oct., Sevilla, Spain. 

https://doi.org/10.1016/j.rse.2018.08.033
https://doi.org/10.1016/j.isprsjprs.2018.10.012
https://doi.org/10.3390/rs12020292
https://doi.org/10.1016/j.foreco.2020.118268


iv 

2. Crespo-Peremarch, P., Ruiz, L.Á., Balaguer-Beser, Á., Estornell, J., 2016. 
Analysis of the side-lap effect on full-waveform LiDAR data acquisition 
for the estimation of forest structure variables. ISPRS - International 
Archives of the Photogrammetry, Remote Sensing & Spatial Information 
Sciences, XLI-B8, 603–610. 12-19 July, Prague, Czech Republic. 
https://doi.org/10.5194/isprs-archives-XLI-B8-603-2016 

3. Crespo-Peremarch, P., Ruiz, L.Á., Balaguer-Beser, Á., 2016. A 
comparative study of regression methods to predict forest structure and 
canopy fuel variable from LiDAR full-waveform data. Revista de 
Teledetección, 45, 27-40. https://doi.org/10.4995/raet.2016.4066 

4. Crespo-Peremarch, P., Ruiz, L.Á., 2016. Estimating forest structure 
attributes from full-waveform LiDAR: comparative analysis of 
methodological parameters in two geographic areas. Proceedings 3rd 
EARSeL Workshop SIG on Forestry, p.82. 15-16 Sept., Krakow, Poland. 

5. Ruiz, L.Á., Crespo-Peremarch, P., Estornell, J., Balaguer-Beser, Á., 2016. 
Analizing some factors affecting the extraction of full-waveform LiDAR 
metrics and their effect in forest structure variable estimates. 
Proceedings 7th Edition of the International Scientific Conference 
ForestSAT 2016, 24–26. 15-17 Nov., Santiago de Chile, Chile. 

6. Ruiz, L.Á., Crespo-Peremarch, P., 2017. Optimizing operational 
parameters in a full-waveform LiDAR processing tool for forestry. 17th 
Symposium on Systems Analysis in Forest Resources (SSAFR 2017), 27-
30 Aug., Suquamish, WA, USA. 

7. Crespo-Peremarch, P., Ruiz, L.Á., 2017. Análisis comparativo del 
potencial del ALS y TLS en la caracterización estructural de la masa 
forestal basado en voxelización. Actas XVII Congreso de la Asociación 
Española de Teledetección. Nuevas plataformas y sensores de 
teledetección, 131–135. 4-7 Oct., Murcia, Spain. 

8. Crespo-Peremarch, P., Ruiz, L.Á., 2018. Influence of lidar full-waveform 
density and voxel size on forest stand estimates. IGARSS 2018 - 2018 
IEEE International Geoscience and Remote Sensing Symposium IEEE, 
5895–5898. 23-27 July, València, Spain. 
https://doi.org/10.1109/IGARSS.2018.8517594 

9. Crespo-Peremarch, P., Ruiz, L.Á., 2019. Analysis of side-lap effect and 
characterization of understory vegetation using full-waveform ALS. 

https://doi.org/10.5194/isprs-archives-XLI-B8-603-2016
https://doi.org/10.4995/raet.2016.4066


 

v 

Proceedings of the II Geomatics Engineering Conference, 19, 6. 26-27 
June, Madrid, Spain. https://doi.org/10.3390/proceedings2019019006  

 

https://doi.org/10.3390/proceedings2019019006




 

vii 

Acknowledgments 

He aquí la sección que todos se leerán, algunos por ver si se les menciona y 
otros por mero cotilleo, y además porque es la más entendible por la gente, 
puesto que no tiene tecnicismos relacionados con el campo de la teledetección. 
Dándole vueltas a la cabeza no sé si es la sección más sencilla de escribir o la 
más compleja, puesto que en teoría aquí es donde uno abre su corazón y deja 
salir las emociones, donde todo debe fluir y, mis dedos, no ser más que una 
prolongación de mis sentimientos. Pensando sólo en eso debería ser la sección 
más sencilla, en la cual no pararía de escribir. No obstante, el proceso de 
desarrollo de la tesis no han sido unos días, han sido años, en los cuales han 
ocurrido tantísimas cosas, muchas buenas y muchas malas. Para poder 
mencionar todos esos momentos y personas debería haber llevado dos 
documentos en paralelo cada día: el de agradecimientos y la propia tesis. Pero 
sabemos que esto no es viable, y las cosas se han hecho así. Así que, pensándolo 
de este modo, donde recordar todo lo que ha ocurrido durante estos años, lo 
convierte en una tarea bastante compleja. Sin embargo, de lo que sí estoy seguro 
es que tras escribirla me quedaré muy a gusto, como si me hubiese quitado un 
gran peso de encima, al poder abrirme al resto de gente. 

Lo primero, antes de empezar con las personas, es mencionar mi afinidad 
con el tema de la tesis. Es cierto que como a cualquier ser querido, hay 
momentos que odias a la tesis (por no decir otra expresión más fuerte que es la 
que se suele emplear) y le coges manía, pero en el fondo te gusta y la quieres, y 
no puedes estar sin ella. Desde pequeño he sentido esa conexión con la montaña 
y el mundo forestal gracias a las oportunidades que me han dado mis padres. 
Yo soy urbanita, he nacido y principalmente crecido en la ciudad, así que no me 
puedo considerar de campo por pasar en él algún verano o fin de semana, hacer 
alguna excursión, o incluso vivir un par de años. Pero tampoco llego al nivel de 
dominguero. Sin embargo, dentro de mí el peso que tiene la montaña y la 
naturaleza es mucho mayor, y no podría vivir sin ella. El disponer de una casa 
en el campo en Gilet, en plena Serra Calderona, me ha hecho ser como soy y 
amar la naturaleza desde muy pequeño. Desde entonces me he perdido por el 
monte, salía fuera a la parcela a jugar aunque hiciese mucho frío, y ese contacto 
con la tierra, el agua y los árboles me hizo enamorarme de la naturaleza. Hoy 



viii 

en día sigo disfrutando de ella, aunque de otra manera. El poder ir allí ayuda a 
desconectar cuando he tenido días malos o de agobio. El salir fuera en esos días 
frescos, cuando aún queda algo de niebla y el rocío cubre las plantas, sólo con 
eso se respira diferente y se cargan los pulmones de energía. Por otro lado está 
el mundo de la cartografía, en el cual también incluyo la teledetección. Elegí esta 
carrera universitaria poco antes de presentar el formulario con las carreras que 
quería estudiar, y no me arrepiento para nada. Mi amor por los mapas viene 
también de bien pequeño. Yo soy ese niño que cogía un atlas y lo observaba 
durante horas, para conocer las ciudades, las fronteras, los ríos, los mares, las 
banderas, y al final toda esa información quedaba grabada en mi cabeza. 
Cuando estaba en Gilet intentaba recrear los mapas en el terreno, vamos lo que 
sería un replanteo para un topógrafo. Cogía los mapas de alguna zona, una 
escobilla para el coche, y con ella barría la tierra suelta del terreno para hacer 
las calles y carreteras. Después ya venía con los cochecitos y me ponía a jugar. 
Lo bueno es que cuando me aburría de una zona, podía barrerla y rehacerla de 
nuevo. Este fue mi mundo 2D, previo al 3D, en el cual recreaba monumentos 
simbólicos de ciudades con el barro que cogía de la parcela. Esta nueva moda 
surgía cuando visitaba con mis padres alguna ciudad como París o Madrid, y 
me volvía con un mapa de allí. Una vez en la parcela recreaba las calles y 
edificios, incluso cavaba un poco para recrear los ríos. Era la curiosidad de un 
niño que no se escondía detrás de un dispositivo electrónico. Mi tema de la tesis, 
en la que se han tocado temas de cartografía, teledetección y forestales, ha sido 
volver a conectar con ese niño dentro de mí que jugaba al aire libre recreando el 
mundo real y se perdía entre los árboles. 

Pero por mucho que te guste un tema, no sirve de nada si no estás rodeado 
de la gente adecuada y que quieres. Esa gente que te saca de casa, te escucha, o 
simplemente te saca una sonrisa que lo arregla todo. Es muy complicado 
acordarse de toda esa gente que ha pasado por mi vida durante estos años, ha 
ayudado de algún modo directo o indirecto, o simplemente ha estado ahí. Lo 
primero es acordarme de mis padres, que me han criado y facilitado todo para 
que yo pueda llegar hasta aquí. Mis gustos no serían lo mismo sin ellos ni otra 
gente que me rodeó durante mi infancia, como familiares, amigos y profesores. 
Aparte de aportarme esa base para llegar hasta aquí, también me han dado esos 
empujones para mantenerme. No podía olvidarme tampoco en estos 
agradecimientos de Elena, mi compañera de viaje que tantísimo quiero, que 



 

ix 

siempre me ha escuchado cuando necesitaba desahogarme y siempre tiene 
buenos consejos para saber cómo afrontar “laj” cosas. Aunque una simple 
sonrisa suya lo ha cambiado todo en más de una ocasión. Después de la familia 
no puedo dejar de mencionar a la familia que se elige, a los amigos. Dentro de 
la categoría amigos hay muchos grupos que en algún momento o lugar habéis 
estado presentes. No me puedo olvidar de Pau, Carles, Marta, Elena, Alba, Inés 
y Alicia, aunque cada vez estemos más separados, porque cada uno está en una 
parte del mundo y, por lo tanto, cuesta más verse, sois unos amigos increíbles y 
los momentos vividos con vosotros son inolvidables. Ojalá podamos volver a 
juntarnos pronto y seguir viviendo momentos. Aparte de ser compañeros de 
trabajo, Jesús, Carlos, Juan Pedro, Jaime, Chema, Marta y Elena, sois mucho 
más. El trabajar en el CGAT con vosotros es increíble y hacéis que se lleve de 
otra manera. Cada uno de nosotros somos diferentes y tenemos nuestra parte 
especial, pero el ambiente en el CGAT es una risa y muy ameno gracias a todos 
y a cada uno de vosotros. En el CGAT hemos tenido momentos de estrés, de 
silencio máximo (pocos), y de venirnos arriba con alguna partida de algún juego 
inventado como el “chair-hockey”, especialmente por las tardes, cuando ya 
empezamos a desvariar. Qué paciencia han tenido que tener gente como Marta 
o Elena. Otro grupo de gente que no podía olvidar mencionar son los de Gilet: 
David, Tere, Javi, Laura, Jeni y Diana. Las responsabilidades y la edad hacen 
que cada vez nos podamos ver menos, pero cuando nos vemos siempre 
pasamos buenos momentos y nos reímos un rato, y encima en un marco que nos 
encanta como son las montañas de Gilet. Algo fundamental son las actividades 
que me han ayudado a desconectar en los momentos de mayor agobio, sin ellas 
no habría conseguido llegar hasta aquí, y estas actividades se han podido llevar 
a cabo gracias a otros grandes amigos. Siempre había tenido respeto (y le sigo 
teniendo) al mar. Cuando empiezas a practicar windsurf siempre tienes el 
miedo de lo que te podría pasar, pero todo cambia cuando empiezas a avanzar, 
y cuando ya uno se queda completamente enganchado es cuando empiezas a 
planear. Esa sensación de libertad y velocidad en medio del mar hace que te 
olvides de todo y grites para liberar la adrenalina, lo que hace que te quedes 
completamente enganchado a este deporte. Todo esto no habría sido posible sin 
Mompa. Él me enseñó y me fue metiendo esta afición por el windsurf. Él me ha 
permitido empezar y avanzar utilizando su material sin pedir nada a cambio, 
simplemente porque es un deporte que se disfruta mucho más yendo varias 



x 

personas. Hemos disfrutado días de mucho viento, quedándome alguno de 
ellos en la playa, y otros de mucha calma para enseñar a otras personas o 
simplemente para darse una vuelta hasta la playa de Pinedo con un bocadillo y 
tomárnoslo allí en la orilla. También ha ayudado en poder llevar a cabo esta 
tesis esos días de partido del Llevant con mi primo Hugo. Esos partidos en el 
que se han pasado nervios, pero al final han sido más risas que otra cosa. 
Aunque nos riésemos de nuestro propio equipo, hacen pasar un buen rato de 
distracción y desconexión. No puedo olvidarme de otra actividad que ha sido 
muy importante para mí durante estos años de tesis, y en la que pude conocer 
a mi pareja, el Lindy Hop. Nunca había bailado, y nunca hubiese pensado que 
una actividad así me enganchara tanto y me ayudara tanto. Pero sin lugar a 
duda lo más importante ha sido toda la gente maravillosa que he conocido. Ese 
grupo de amigos que se formó, y que desafortunadamente ya no nos vemos 
tanto por diversos motivos. Me olvidaré de mucha gente que he conocido estos 
años, pero en estas palabras me gustaría acordarme de David, Pablo, Marta, 
Albert, Davinia, José Luis, Natalia y Sergio. Esas tardes/noches de clase, cena, 
sofá y baile en la escuela fueron unos meses increíbles. Por último, no quiero 
olvidarme de mis gatas Ellie, Chuchi y Duna. Poca gente entenderá que incluya 
a unos animales en los agradecimientos, pero no podía olvidarme de quien me 
ha hecho compañía, dado cariño y extraño mucho cuando no están. Tampoco 
quiero olvidarme de mi otra familia que tantos buenos momentos me han dado, 
se han preocupado mucho por mí y tanto me han hecho reír. Gracias Llanos, 
Juanba, Ana, Darío, los dos Pablos y Rita. Puede que este párrafo haya sido muy 
extenso, pero no quería olvidarme de todos aquellos que han puesto su granito 
para que este documento sea posible. Gracias a todos. 

No sólo hay que rodearse de buena gente para poder llevar a cabo algo 
satisfactoriamente, sino que alguien te debe dar la oportunidad de trabajar en 
lo que te gusta desde pequeño, y eso ha sido gracias a Luis Ángel. Para mí fue 
muy importante que se acordara de mí para una oferta predoctoral en Suiza 
habiendo coincidido sólo en una asignatura, y en parte por eso y por mi interés 
por la teledetección decidí que fuera mi codirector en la tesina de máster. 
Gracias a él he tenido la oportunidad de trabajar en este tema tan bonito, y sin 
su ayuda y conocimientos no habría podido presentar esta tesis. También quiero 
agradecer a Ángel lo mucho que me ha ayudado con los temas matemáticos y 
estadísticos, sin él tampoco se habrían podido llevar a cabo muchas cosas. Por 



 

xi 

último, quiero agradecer al resto de miembros del CGAT, Javier, Jesús, Alfonso, 
Jorge y Josep por su ayuda y los buenos momentos vividos durante estos años. 
Las risas y el sentido del humor nunca han faltado. Sin el equipo del CGAT y la 
oportunidad que se me dio, todo esto tampoco se podría haber llevado a cabo. 

My experience at the IRSS of UBC in Vancouver was unforgettable. I had 
the opportunity to work in a leading group in remote sensing headed by 
Nicholas Coops. I felt at home there since I was given the opportunity to attend 
meetings and conferences, go to the IRSS retreat, travel to some amazing places, 
go to drink beers on Friday afternoons, and play games such as ping-pong or 
laser chess. Nicholas made me feel like one more, and he taught me many 
things. Apart from Nicholas I met other wonderful people who made up the 
IRSS like Nacho, Giona, Marco, Joseph, Txomin, Tristan, Piotr, Doug, Riccardo, 
Aria, Chris, Bean and Max. They are an amazing research group. In addition, 
Vancouver and surroundings are such a wonderful place. After living there for 
six months, I realized that it was the nicest place I had ever stayed. 

Grâce à mon stage à l’IRSS, j’ai pu rencontrer Richard Fournier et avoir aussi 
l’opportunité de faire un petit stage à l’Université de Sherbrooke. Richard m’a 
hébergé chez lui, où j’ai rencontré sa famille, qui m’a traité comme un d’entre 
eux. Avec lui, j’ai aussi pu apprendre beaucoup de choses du monde de la 
recherche. De plus, bien que mon stage ait été court, j’ai pu rencontrer de très 
bonnes personnes comme Bastien, Van-Tho, Naime, Batistin, Catherine et 
Aurélie; et en plus revenir au Québec, où j’ai vécu de si bonnes expériences en 
2008-2009. 

Aunque estos agradecimientos los escribiera hace tiempo, no podía 
olvidarme de esta situación tan extraña vivida durante el desarrollo final de la 
tesis : la pandemia y confinamiento de la COVID-19. ¿Quién nos hubiera dicho 
esto hace unos meses? Esto te hace ver lo cambiante que puede ser el mundo, 
aunque vivas en lo conocido como primer mundo. No ha sido fácil llevar a cabo 
la tesis estando siete semanas confinados en casa, más la posterior desescalada. 
El no estar en la oficina o poder salir a la calle lo ha complicado todo. Aunque 
parece que el cerebro humano intenta olvidar la situaciones más adversas, es 
algo que siempre estará ahí, una demostración de lo vulnerables que somos. 



xii 

Esta tesis no ha sido todo un camino de rosas, pero lo importante es que me 
voy con mucho más de lo que vine, tanto profesional como personalmente. No 
soy la misma persona y he aprendido de muchas personas tan diversas. En 
definitiva, todo esto ha sido lo que ha hecho que yo haya podido llevar a cabo 
esta tesis, y espero que la disfrutéis. Así que, gracias a todos, gràcies a tots, thank 
you all, merci à tous. 

A toda esa gente que me rodea, y a la que pueda disfrutar de la lectura. 



 

xiii 
 

List of abbreviations 

Abbreviation Explanation 
ABA Area-Based Approach 
AGB AboveGround Biomass 
AGS Average Gaussian curve Slope 
AIC Akaike Information Criterion 
ALS Airborne Laser Scanning 

ALSFW Full-Waveform Airborne Laser Scanning 
ALSD Discrete Airborne Laser Scanning 

BC Bottom of Canopy 
BCD Bottom of Canopy Distance 
BCE Bottom of Canopy Energy 

C Cover of understory vegetation 
CBH Canopy Base Height 
CD Canopy Distance 
CE Canopy Energy 

CER Canopy Energy Ratio 
CFL Canopy Fuel Load 
CH Canopy Height 

CHP Canopy Height Profile 
CHn Canopy Height quartile n 
CV Coefficient of Variation 

DBH Diameter at Breast Height 
DTM Digital Terrain Model 
EFEV Energy to First Empty Voxel 

ENERGY Qn ENERGY Quarter n 
FS Front Slope 

FVU Filled Voxels at Understory 
GE Ground Energy 

GEDI Global Ecosystem Dynamics Investigation 
GIS Geographical Information System 

GLAS Geoscience Laser Altimeter System 
GPS Global Position System 
GRR Ground Return Ratio 

HEIGHT Qn HEIGHT Quarter n 
HFEV Height at First Empty Voxel 

HFEVT Height at First Empty Voxel from Threshold 
Hmax Maximum Height of understory vegetation 
Hmean Mean Height of understory vegetation 
Hn Height percentile n 

HOME Height Of Median Energy 
HTMR HeighT/Median Ratio 
ICESat Ice, Cloud, and land Elevation Satellite 



 

xiv 
 

ISS International Space Station 
LiDAR Light Detection And Ranging 
LVIS Laser Vegetation Imaging Sensor 

MAX E MAXimum Energy 
MPD Minimum Pulse Density 

MSGS Modified Standard deviation Gaussian curve Slope 
NFVU Number of Filled Voxels at Understory 

Nb Number of beams occluded prior to reaching a given voxel 
Nh Number of hits 

NhALS Number of hits from ALS 
NhALSD Number of hits from ALSD 
NhALSFW Number of hits from ALSFW 

Nt Number of theoretical laser beams crossing a given voxel 
NP Number of Peaks 

nEFEV Normalized Energy to First Empty Voxel 
N GS Number of Gaussian curve 

nRMSE Normalized Root-Mean-Square Error 
PAD Plant Area Density 

PADTLS Plant Area Density from TLS 
pR2 Pseudo-coefficient of determination 
Rn Ratio quartile n 
R2 Coefficient of determination 
R2c Conditional coefficient of determination 
R2m Marginal coefficient of determination 

RMSE Root-Mean-Square Error 
ROUGH ROUGHness 

RWE Return Waveform Energy 
SGS Standard deviation Gaussian curve Slope 

SLICER Scanning Lidar Imager of Canopies by Echo Recovery 
sqrt Square-root-transformed 
TLS Terrestrial Laser Scanning 
TVar Total Variation 

V Volume of understory vegetation 
VDR Vertical Distribution Ratio 
WD Waveform Distance 

WoLFeX Waveform Lidar for Forestry eXtraction 



 

xv 
 

Table of contents 
Abstract xxxiii 

Resumen xxxvii 

Resum xli 

Chapter 1: Introduction 1 

1.1.  Background and research justification 3 

1.1.1. Fire modeling 3 

1.1.2. Estimation of fuel attributes using discrete airborne laser 
scanning 

9 

1.1.3. Full-waveform airborne laser scanning 11 

1.2.  Aims and objectives 12 

1.3.  Thesis outline 15 

Chapter 2: Influence of methodological parameters 
on full-waveform ALS metrics and forest attributes 
prediction 

19 

2.1.  Introduction 21 

2.2.  Study area and data 28 

2.3.  Methods 30 

2.3.1. Radiometric correction and waveform denoising 30 

2.3.2. Pulse density reduction 34 

2.3.3. Voxelization 35 

2.3.4. Extraction of ALSFW metrics 40 



 

xvi 
 

2.3.5. Analysis of the influence of side-lap effect on ALSFW 
metrics 

41 

2.3.5.1. Variation of ALSFW metrics related to pulse density 41 

2.3.5.2. Variation of ALSFW metrics according to voxel size 
and assignation value 

44 

2.3.6. Analysis of the influence of side-lap effect on the estimate 
of forest attributes 

45 

2.4.  Results 47 

2.4.1. Analysis of the influence of side-lap effect on ALSFW 
metrics 

47 

2.4.1.1. Variation of ALSFW metrics related to pulse density 47 

2.4.1.2. Variation of ALSFW metrics according to voxel size 
and assignation value 

54 

2.4.2. Analysis of the influence of side-lap effect on the estimate 
of forest attributes 

55 

2.5.  Discussion 59 

2.6.  Conclusions 63 

Chapter 3: Creating a full-waveform airborne laser 
scanning metric extraction tool (WoLFeX), and 
analyzing the influence of scan angle and 
radiometric correction on metrics and forest fuel 
attribute estimates 

65 

3.1.  Introduction 67 

3.2.  ALSFW data processing 70 

3.3.  Software tool 81 



 

xvii 
 

3.4.  Case of study: Influence of radiometric correction and 
forest fuel modeling 

83 

3.4.1. Material and methods 83 

3.4.2. Results and discussion 87 

3.5.  Conclusions 89 

Chapter 4: Comparative assessment of the vertical 
distribution of forest components using full-
waveform airborne, discrete airborne and discrete 
terrestrial laser scanning 

93 

4.1.  Introduction 95 

4.2.  Material and methods 99 

4.2.1. Study areas 99 

4.2.2. Forest plots 100 

4.2.3. Laser scanning data 103 

4.2.4. Overview of the methods 105 

4.2.5. Data processing 107 

4.2.5.1. Denoising 107 

4.2.5.2. XY co-registration 107 

4.2.6. Estimating voxel sampling variables and the rate of pulse 
reduction 

108 

4.2.7. Extracting vertical forest distribution and rate of pulse 
reduction profiles 

110 

4.2.8. Classifying the vertical distribution of understory 
vegetation from ALS data 

111 

4.3.  Results 114 



 

xviii 
 

4.3.1. Forest vertical distribution and rate of pulse reduction 
profiles 

114 

4.3.2. Understory characterization from ALS 118 

4.3.3. Understory vegetation density classification 120 

4.4.  Discussion 122 

4.5.  Conclusions 128 

Chapter 5: Characterization of understory 
vegetation using full-waveform airborne laser 
scanning and voxel-based metrics 

129 

5.1.  Introduction 131 

5.2.  Study area and data 136 

5.3.  Methods 137 

5.3.1. XY co-registration of ALSFW and TLS datasets 139 

5.3.2. Height normalization 139 

5.3.3. Denoising 139 

5.3.4. Extraction of understory point cloud  139 

5.3.5. Voxelization 140 

5.3.6. Extraction of ALSFW metrics 140 

5.3.7. Extraction of understory attributes from TLS 141 

5.3.8. Linear regression models 142 

5.3.9. Linear mixed-effect models 145 

5.4.  Results 145 

5.5.  Discussion 149 

5.6.  Conclusions 153 



 

xix 
 

Chapter 6: Final conclusions 155 

6.1.  Answers to the original research questions 157 

6.2.  Further research 164 

References 167 





 

xxi 

List of figures 
Figure 1.1. Chronological diagram and structure of the research. 
Publications are colored according to the chapter they belong, and 
the four core publications are in bold and the edges highlighted. 

16 

Figure 2.1. Representation of the ALS density variation and 
subsequent side-lap effect in the ALSD point cloud from (a) a 
zenithal view and (b) a vertical transect, and (c) in the estimation of 
the ALSFW metric RWE (Return Waveform Energy). 

22 

Figure 2.2. (a) Study area location in the USA Pacific Northwest, (b) 
flight trajectories, sample (green) and plot (blue) locations within 
the study area limits (red), and (c) pulse density. 

29 

Figure 2.3. Overall processing flowchart implemented to analyze 
the side-lap effect on ALSFW metrics and on the estimate of forest 
attributes. 

31 

Figure 2.4. Relation between the angle of incidence at the ground 
(α0) and at a branch (α1), the scan angle (β), and the range from the 
sensor to ALSFW return corresponding with the ground (Ri). 

33 

Figure 2.5. Examples of gradual reduction of pulse density, 
representing values of 20, 4, and 2 pulses·m-2 from left to right. 

35 

Figure 2.6. Description of waveform elements. 38 

Figure 2.7. Representation of (a) 3D matrix of voxels, and (b) 
voxelization of point cloud data within a voxel with different 
statistical procedures. 

39 

Figure 2.8. Extraction of the voxel column and the corresponding 
pseudo-vertical waveform from the 3D matrix of voxels. 

40 

Figure 2.9. Graphical description of six of the eight ALSFW metrics 
(HOME, WD, NP, ROUGH, RWE and FS) extracted from a pseudo-
vertical waveform. The other two (HTMR and VDR) are computed 
as a combination of others. 

42 



 

xxii 
 

Figure 2.10. Resulting values from the extraction of (a) HOME, (b) 
NP, (c) VDR and (d) RWE ALSFW metrics in a specific area of 500 × 
500 m. 

43 

Figure 2.11. Examples of pseudo-vertical waveforms at voxel 
column-level and ALSFW metric values for different pulse densities 
(20, 10 and 5 pulses·m-2), voxel sizes (0.25 and 1.25 m) and 
assignation values (maximum and median). 

48 

Figure 2.12. Variation of (a) HOME in meters, (b) WD in meters and 
(c) NP, related to pulse density in one sample for the maximum 
assignation value and a voxel size of 0.25 m (left column) and 0.75 
m (right column). The black points represent the values computed 
and the red curve the fitted negative exponential model. The values 
of HOME in the right column do not fit a negative exponential 
model. 

49 

Figure 2.13. Variation of (a) ROUGH in meters, (b) RWE and c) FS in 
degrees, related to pulse density in one sample for the maximum 
assignation value and a voxel size of 0.25 m (left column) and 0.75 
m (right column). The black points represent the values computed 
and the red curve the fitted negative exponential model. The values 
of FS in the right column do not fit a negative exponential model. 

50 

Figure 2.14. Average minimum pulse density (MPD; i.e., coefficient 
b from the negative exponential model) from the 30 samples for 
different voxel sizes and assignation values. Empty cells correspond 
to combinations of metrics and voxel sizes that do not fit a negative 
exponential model. Values in bold correspond to MPD values 
higher than 16 pulses·m-2 (i.e., the maximum pulse density from 
sample data used to generate the negative exponential model). 
Smallest and highest values are represented by blue and red colors, 
respectively. 

52 

Figure 2.15. Average standard deviation of minimum pulse density 
(MPD; i.e., coefficient b from the negative exponential model) from 
the 30 samples for different voxel size and assignation values. 

53 



 

xxiii 

Empty cells correspond to combinations of metrics and voxel sizes 
that do not fit a negative exponential model. Smallest and highest 
values are represented by blue and red colors, respectively. 

Figure 2.16. TVar values for the different ALSFW metrics computed 
for the assignation values and voxel sizes. Smallest and highest 
values are represented by blue and red colors, respectively. 

55 

Figure 2.17. Variation of R2 values for AGB and CBH estimates for 
the different regression methods (Lin: linear, Sqrt: square-root-
transformed, Exp: exponential, Pow: power), pulse densities and 
voxel sizes. Red- and blue-colored cells represent the lowest and 
highest R2 values, respectively, for each attribute. 

57 

Figure 2.18. Estimation of AGB and CBH in an area of 1.5 × 1.5 km 
using maximum assignation value and voxel sizes of 0.25 m and 
0.75 m. Red rectangles highlight the side-lap effect on forest 
attribute values for a voxel size of 0.25 m. 

58 

Figure 3.1. Overall processing flowchart implemented to process 
ALSFW data and extract derived metrics. 

71 

Figure 3.2. Representation of ALSFW metrics MAX E, START PEAK 
and END PEAK. The waveform signal is represented in red, metric 
marks in black dashed lines, and MAX E with a green point. 

74 

Figure 3.3. Representation of the amount of energy from the 
different quarters of (a) height and (b) energy used for the 
computation of ALSFW metrics HEIGTH Qn and ENERGY Qn, 
respectively. The waveform signal is represented in red, metric 
marks in black dashed lines, and height and energy quarters filled 
in blue, green, orange and red. 

75 

Figure 3.4. Representation of voxel transects to describe ALSFW 
metrics (a) HFEV, (b) HFEVT, (c) FVU, and (d) NFVU. Voxel height 
is equal to 0.15 m and metric values for each column of voxels are 
written in black. Height thresholds in (b), (c), and (d) are user 
inputs. 

76 



 

xxiv 
 

Figure 3.5. Representation of ALSFW metrics EFEV, nEFEV and Hn. 
In this case percentiles 5, 25, 50, 75 and 95 are represented for the 
metric Hn. The waveform signal is represented in red, metric marks 
in black dashed lines, and EFEV filled in green. 

77 

Figure 3.6. Representation of ALSFW metrics N GS, N GS 
STARTPEAK, N GS ENDPEAK, GE, GRR, CHn and Rn, derived 
from the Gaussian decomposition. The waveform signal is 
represented in red, the resulting Gaussian iterative decomposition 
in blue dashed line, metric marks in black dashed lines, and GE 
filled in green. 

79 

Figure 3.7. Representation of ALSFW metrics BC, BCD, BCE, CD, CE 
and CER from the Gaussian iterative decomposition of the 
waveform signal. 

79 

Figure 3.8. Graphic user interface of WoLFeX and the five different 
sections: (a) Inputs, (b) Radiometric correction, (c) Voxelization 
parameters, (d) Metrics and (e) Execution. 

82 

Figure 3.9. Maps of (a) general location of the study area in Natural 
Park of Sierra de Espadán (Castellón, Spain), (b) flight stripes 
categorized by scan angle interval (0º-5º in orange and 15º-20º in 
yellow), and (c) sample and plot locations (square samples for 
analyzing radiometric differences in RWE are represented in 
yellow; and circular plots for analyzing estimation of forest fuel 
attributes in blue). 

84 

Figure 3.10. Example of field survey sheet from one of the plots 
used during the field campaign. 

86 

Figure 4.1. Location of plots registered (red) and plots used in the 
current study (yellow) within each study area: (a, c) in western 
Newfoundland, Canada, and (b, d) in the Castellón province, Spain 
(Background imagery: PNOA and WorldView-2). 

101 

Figure 4.2. Field photographs from the Newfoundland and Spain 
sites illustrating the varying densities of understory vegetation. 

102 



 

xxv 

Figure 4.3. Violin plots representing four structural attributes 
(canopy cover, understory, canopy height and stem density) from 
all available plots. Attribute values for plots retained for analysis 
are in red. Abbreviations: D-dense; M-moderate; S-sparse; VS-very 
sparse; A-absent. 

103 

Figure 4.4. Overview of the methodological approach. 106 

Figure 4.5. Selection of homologous points in canopy height 
surfaces (CHS) computed from (a) ALS and (b) TLS datasets prior to 
2D affine matrix transformation. Homologous points are 
represented in red and green color for ALS and TLS, respectively. 

108 

Figure 4.6. Depiction of number of theoretical beams crossing a 
given voxel (Nt), number of hits (Nh), and number of hits blocked 
prior to reaching a given voxel (Nb) for the TLS configuration. Red 
dots represent the hits, red lines the laser beams prior to be blocked, 
and dashed pink lines the theoretical laser beams after being 
blocked. 

110 

Figure 4.7. Description of the Gini index for (a) a general case, and 
two examples showing (b) equality (i.e., Gini index = 0) and (c) 
inequality cases (i.e., Gini index = 1), respectively. 

112 

Figure 4.8. Depiction of (a) separation between understory 
vegetation and overstory, (b) the filtering of NhALSFW vertical profiles 
corresponding to the lower strata from plot P3-NF and NhALSFW 
vertical profile, and (c) estimation of the Gini index from the 
resulting NhALS vertical profile. 

114 

Figure 4.9. Vertical profiles representing four plots of the 
Newfoundland site (a-d). The three figures from left to right 
represent: (i) the number of hits from ALS and cumulative Plant 
Area Density from TLS, (ii) a point cloud transect of one meter 
wide, and (iii) the rate of pulse reduction from the three 
configurations (i.e., TLS, ALSD and ALSFW). Dashed lines represent 
the limits of the lower strata (i.e., 0.5 and 4 m). 

115 



 

xxvi 
 

Figure 4.10. Vertical profiles representing four plots of the Spain site 
(a-d). The figures from left to right represent: (i) the number of hits 
from ALS and cumulative Plant Area Density from TLS, (ii) a point 
cloud transect of one meter wide, and (iii) the rate of pulse 
reduction from the three configurations (i.e., TLS, ALSD and ALSFW). 
Dashed lines represent the limits of the lower strata (i.e., 0.5 and 4 
m). 

116 

Figure 4.11. Vertical profiles representing the ratio (NhALS/PADTLS) 
between the Nh from ALS (i.e., ALSFW and ALSD) and cumulative 
PAD from TLS for a sample of plots. Dashed lines represent the 
limits of the lower strata (i.e., 0.5 and 4 m). 

119 

Figure 5.1. Plot locations (in yellow) in the study area. 137 

Figure 5.2. Overall processing flowchart implemented to 
characterize understory vegetation from ALSFW and TLS data. 

138 

Figure 5.3. Vertical transect showing the extraction from TLS point 
cloud of understory vegetation (in green) from overstory (in 
brown). 

140 

Figure 5.4. Graphical description to compute the understory 
attributes (Hmax, Hmean, C and V) at cell-level (i.e., 3.75 m) from a TLS 
point cloud. 

143 

Figure 5.5. Box and whiskers representing TLS understory 
attributes (mean height: Hmean, maximum height: Hmax, cover: C, and 
volume: V) categorized by dominant species (Pinus halepensis, 
Mixed Pinus pinaster and Quercus suber, and Pinus pinaster) and 
slope (low, medium, and high) from the 21 plots. 

144 

Figure 5.6. TLS and ALSFW derived four attributes (Hmean, Hmax, C 
and V) and field photographs extracted from three plots (P2-SP, P6-
SP, and P7-SP) with 15 m radius within the study area. Plots P6-SP, 
P7-SP, and P2-SP, represent low, moderate, and high degrees of 
understory cover, respectively. 

146 



 

xxvii 

Figure 5.7. ALSFW metrics selected for the estimation of the different 
attributes (Hmean, Hmax, C, and V) for cell- (3.75 m resolution) and 
plot-level (15 m radius) resolution, and for each height filter (NF: no 
filter, HF: height filter). The results from these regression models, as 
well as R2 values and pseudo-R2 (orange highlighted), are also 
included. 

148 

Figure 5.8. Regression graphs for the estimation of the different 
attributes (Hmean, Hmax, C and V) for each resolution (cell-level, 
mixed-effect (cell-level) and plot-level (15 m radius)) and for each 
height filter (NF: no filter, HF: height filter). Solid line represents the 
1:1 line. 

150 





 

xxix 

List of tables 
Table 2.1. Summary of existing studies about the influence of ALSD 
pulse density on estimates of forest attributes. 

24 

Table 2.2. Description of the ALSFW metrics. 41 

Table 2.3. Mean and standard deviation from the RMSE for the 
different forest attributes, voxel sizes and regression methods 
(linear, Sqrt: square-root-transformed, Exp: exponential, power). 

58 

Table 3.1. Description of ALSFW metrics available in WoLFeX. 72 

Table 3.2. Combination of datasets tested for Test 1 and 2. 86 

Table 3.3. RWE differences between the different scan angle 
intervals (0º-5º and 15º-20º). RMSE: root-mean-square error; nRMSE: 
normalized RMSE. 

88 

Table 3.4. RWE differences between the radiometrically uncorrected 
and corrected data. 

88 

Table 3.5. Prediction of forest fuel attributes (i.e., CFL, CH and 
CBH) using varied scan angle interval and radiometric correction. 

90 

Table 4.1. TLS data specifications. 104 

Table 4.2. Coefficient of correlation values between NhALS (i.e., 
NhALSFW and NhALSD) and PADTLS as reference at the lower strata. 

121 

Table 4.3. Gini index from NhALSFW and NhALSD vertical profiles for 
each plot from the Newfoundland and Spain sites. Plots are in 
ascending order according to the Gini index computed from 
NhALSFW. 

122 

Table 5.1. Summary of existing studies about the characterization of 
understory using ALS with overstory presence. 

133 

Table 5.2. Results of mixed-effect models for the estimation of the 
four understory attributes (Hmean, Hmax, C, and V). 

149 





 

xxxi 

List of equations 
Equation 1 32 

Equation 2 35 

Equation 3 36 

Equation 4 37 

Equation 5 37 

Equation 6 43 

Equation 7 45 

Equation 8 45 

Equation 9 46 

Equation 10 46 

Equation 11 46 

Equation 12 46 

Equation 13 80 

Equation 14 80 

Equation 15 80 

Equation 16 81 

Equation 17 113 

 





 

xxxiii 
 

Abstract 

Forest ecosystems are an important source of life and economic use, since 
they are large stores of carbon and a renewable raw material. Nevertheless, a 
poor forest management would considerably reduce these capacities and 
increase the risk of forest fires. In the last decades, remote sensing techniques 
have proven their capacity for forest management. Airborne laser scanning 
(ALS) provides horizontal and vertical information of different canopy layers. 
In particular, full-waveform airborne laser scanning (ALSFW), which registers 
the complete signal emitted by the sensor and backscattered, provides more 
information about the vertical forest structure than traditional or discrete 
airborne laser scanning (ALSD). However, ALSFW has received less attention 
than ALSD, due to its larger amount and complexity of data, and the lack of 
processing tools available. 

This thesis addresses the development of ALSFW processing and analysis 
methods to characterize the vertical forest structure, in particular, the 
understory vegetation. To answer this overarching goal, a total of six specific 
objectives were established: Firstly, the influence of pulse density, voxel 
parameters (i.e., voxel size and assignation value) and regression methods on 
ALSFW metric values and on estimates of forest structure attributes are analyzed. 
To do this, pulse density was randomly reduced and voxel parameters 
modified, obtaining ALSFW metric values for the different parameter 
combinations. These ALSFW metrics were used to estimate forest structure 
attributes with different regression methods. Secondly, a set of ALSFW data 
processing and analysis methods are integrated in a new software named 
WoLFeX (Waveform Lidar for Forestry eXtraction), including clipping, relative 
radiometric correction, voxelization and ALSFW metric extraction, and 
proposing new metrics for understory vegetation. Thirdly, the influence of the 
scan angle of ALS data acquisition and radiometric correction on the extraction 
of ALSFW metrics and on modeling forest fuel attributes is assessed. To do this, 
ALSFW metrics were extracted applying and without applying relative 
radiometric correction and using different scan angles. Fourthly, signal 
occlusion is characterized along the vertical forest structure using and 
comparing three different laser scanning configurations (ALSFW, ALSD and 
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terrestrial laser scanning: TLS), determining their limitations in the detection of 
vegetative material in two contrasted forest ecosystems: boreal and 
Mediterranean. To quantify signal occlusion along the vertical forest structure, 
a new parameter based on the percentage of laser beams blocked prior to reach 
a given location, the rate of pulse reduction, is proposed. Fifthly, the assessment 
of how understory vegetation density classes are detected and determined by 
different ALS configurations is done. Vertical distribution profiles at the lower 
strata described by ALSFW and ALSD are compared with those described by TLS 
as reference. Moreover, understory vegetation density classes are determined 
by applying the Lorenz curve and Gini index from the vertical distribution 
profiles described by ALSFW and ALSD. Finally, the new proposed voxel-based 
ALSFW metrics are applied and evaluated, using TLS-based attributes as a 
reference, to estimate understory height, cover and volume in a Mediterranean 
ecosystem. 

Results show that variations of ALSFW metric values may be reduced by 
either using a minimum pulse density or increasing the voxel size and 
modifying the assignation value. Given that forest attributes are estimated by 
ALSFW data, they are also influenced by pulse density, which may also be 
reduced by increasing voxel size and modifying the regression method. 
Additionally, ALSFW metric values and estimates of forest fuel attributes are also 
influenced by scan angle. This influence may be reduced, but not completely 
removed, by applying the radiometric correction.  

Detection of the vertical distribution was observed to be dependent on 
occlusion. The degree of occlusion may be quantified by the rate of pulse 
reduction along the vertical structure, and therefore, the reliability in the 
characterization of the vertical distribution may also be estimated. In this 
regard, ALS configurations (ALSD and ALSFW) demonstrated their capabilities 
to detect understory vegetation, although much more accuracy was obtained 
using ALSFW. The latter demonstrated its potential to detect and determine 
understory vegetation density classes in a boreal and a Mediterranean forest by 
using the Gini index, and to estimate the height, cover and volume of 
understory vegetation in a Mediterranean forest. 
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The use of ALSD data is adequate for most of the current ALS applications. 
However, and contrary to ALSFW, it presents some limitations in the 
identification and/or characterization of the intermediate and lower vegetation 
strata. These limitations in the detection of vertical strata can be identified and 
quantified by retrieving vertical profiles of rate of pulse reduction from 
different laser scanning configurations. On the other hand, the use of ALSFW 
data requires the identification of the appropriate parameters (i.e., optimal 
pulse density and voxel parameters) and the application of radiometric 
correction prior to any data processing. These results highlight the potential of 
ALSFW to replace TLS in the extraction of forest internal structure in wider areas. 
Nevertheless, despite ALSFW presents less limitations in the detection of 
intermediate and lower strata than ALSD, its signal occlusion may be significant 
in lower strata of forests with high canopies and very dense vegetation and 
internal structure (e.g., tropical areas), resulting in a lack of vegetative material 
identification. These findings in the characterization of the vertical forest 
structure, in particular the understory vegetation, are relevant for forestry 
applications such as wildfire mitigation, modeling fire behavior, planning forest 
thinning and maintenance tasks for wildfire reduction and biodiversity 
preservation, among others. 
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Resumen 

Los ecosistemas forestales son una importante fuente de vida y económica, 
por su capacidad para almacenar carbono y estar formados por una materia 
prima renovable. No obstante, la gestión forestal inapropiada puede reducir 
considerablemente estas capacidades y aumentar el riesgo de incendios 
forestales. En las últimas décadas, las técnicas de teledetección han demostrado 
su contribución a la gestión forestal. El láser escáner aerotransportado (ALS, por 
sus siglas en inglés) proporciona información horizontal y vertical de las 
diferentes capas del dosel arbóreo. En concreto, el láser escáner 
aerotransportado full-waveform (ALSFW), que registra la totalidad de la señal 
emitida por el sensor que es retrodispersada, proporciona mayor información 
que el láser escáner aerotransportado tradicional o discreto (ALSD) sobre la 
estructura vertical del bosque. Sin embargo, el ALSFW ha recibido menor 
atención que el ALSD, debido a la gran cantidad y complejidad de sus datos y a 
la falta de disponibilidad de herramientas para su procesado. 

Esta tesis aborda el desarrollo de métodos de procesado y análisis de datos 
ALSFW para la caracterización de la estructura vertical del bosque y, en 
particular, del sotobosque. Para responder a este objetivo general, se 
establecieron seis objetivos específicos: En primer lugar, se analiza la influencia 
de la densidad de pulso, de los parámetros de voxelización (tamaño de vóxel y 
valor de asignación) y de los métodos de regresión sobre los valores de las 
métricas ALSFW y sobre la estimación de atributos de estructura del bosque. Para 
ello, se redujo aleatoriamente la densidad de pulsos y se modificaron los 
parámetros de voxelización, obteniendo los valores de las métricas ALSFW para 
las diferentes combinaciones de parámetros. Estas mismas métricas ALSFW se 
emplearon para la estimación de atributos de la estructura del bosque mediante 
diferentes métodos de regresión. En segundo lugar, se integran métodos de 
procesado y análisis de datos ALSFW en una nueva herramienta llamada WoLFeX 
(Waveform Lidar for Forestry eXtraction) que incluye los procesos de recorte, 
corrección radiométrica relativa, voxelización y extracción de métricas a partir 
de los datos ALSFW, así como nuevas métricas descriptoras del sotobosque. En 
tercer lugar, se evalúa la influencia del ángulo de escaneo utilizado en la 
adquisición de datos ALS y la corrección radiométrica en la extracción de 



 

xxxviii 
 

métricas ALSFW y en la estimación de atributos de combustibilidad forestal. Para 
ello, se extrajeron métricas ALSFW con y sin corrección radiométrica relativa y 
empleando diferentes ángulos de escaneo. En cuarto lugar, se caracteriza la 
oclusión de la señal a lo largo de la estructura vertical del bosque empleando y 
comparando tres tipos diferentes de láser escáner (ALSFW, ALSD y láser escáner 
terrestre: TLS, por sus siglas en inglés), determinando así sus limitaciones en la 
detección de material vegetativo en dos ecosistemas forestales diferenciados: el 
boreal y el mediterráneo. Para cuantificar la oclusión de la señal a lo largo de la 
estructura vertical del bosque se propone un nuevo parámetro, la tasa de 
reducción del pulso, basada en el porcentaje de haces láser bloqueados antes de 
alcanzar una posición dada. En quinto lugar, se evalúa la forma en que se 
detectan y determinan las clases de densidad de sotobosque mediante los 
diferentes tipos de ALS. Se compararon los perfiles de distribución vertical en 
los estratos inferiores descritos por el ALSFW y el ALSD con respecto a los 
descritos por el TLS, utilizando este último como referencia. Asimismo, se 
determinaron las clases de densidad de sotobosque aplicando la curva Lorenz 
y el índice Gini a partir de los perfiles de distribución vertical descritos por 
ALSFW y ALSD. Finalmente, se aplican y evalúan las nuevas métricas ALSFW 
basadas en la voxelización, utilizando como referencia los atributos extraídos a 
partir del TLS, para estimar la altura, la cobertura y el volumen del sotobosque 
en un ecosistema mediterráneo. 

Los resultados muestran que las variaciones de los valores de las métricas 
ALSFW se pueden reducir empleando una densidad de pulso mínima o 
incrementando el tamaño de vóxel y modificando el valor de asignación. 
Debido a que los atributos forestales se estiman mediante datos ALSFW, también 
se ven influenciados por la densidad de pulsos. Esta influencia también se 
puede reducir incrementando el tamaño de vóxel o modificando el método de 
regresión. Asimismo, los valores de las métricas ALSFW y la estimación de 
atributos de combustibilidad forestal también se ven influenciados por el 
ángulo de escaneo. Esta influencia se puede reducir, pero no eliminar por 
completo, aplicando la corrección radiométrica. 

Por otro lado, se observó una dependencia en la detección de la distribución 
vertical con respecto a la oclusión. El grado de oclusión a lo largo de la 
estructura vertical se puede cuantificar mediante la tasa de reducción del pulso 
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y, por lo tanto, se puede estimar la fiabilidad en la caracterización de la 
distribución vertical. En este sentido, el ALS (ALSD y ALSFW) demostró ser útil 
en la detección del sotobosque, obteniendo mucha mayor precisión con el 
ALSFW. Este último demostró su potencial para la detección y determinación de 
las clases de densidad de sotobosque en un bosque boreal y otro mediterráneo 
mediante el uso del índice Gini, así como para la estimación de la altura, la 
cobertura y el volumen del sotobosque en bosques mediterráneos. 

La utilización de los datos ALSD es suficiente para la mayoría de aplicaciones 
actuales del ALS. No obstante, y contrariamente al ALSFW, presenta algunas 
limitaciones en la identificación y/o caracterización de los estratos intermedios 
e inferiores de la vegetación. Estas limitaciones en la detección de los estratos 
verticales se pueden identificar y cuantificar mediante la extracción de perfiles 
verticales de la tasa de reducción del pulso para los diferentes tipos de láser 
escáner. Por otro lado, para la utilización de datos ALSFW es conveniente 
identificar los parámetros adecuados (densidad de pulso óptima y parámetros 
de voxelización) y aplicar una corrección radiométrica, como paso previo a 
cualquier procesado de datos. Los resultados destacan el potencial del ALSFW 
como sustituto del TLS en la extracción de la estructura interna del bosque en 
áreas extensas. No obstante, a pesar de que el ALSFW presenta menores 
limitaciones con respecto al ALSD en la detección de los estratos intermedios e 
inferiores, la oclusión de la señal puede ser significativa en los estratos inferiores 
de bosques que presenten doseles arbóreos altos y una gran densidad de 
vegetación en su estructura interna (por ejemplo, áreas tropicales), conllevando 
una falta de identificación del material vegetativo. Estos hallazgos en la 
caracterización de la estructura vertical del bosque y, en particular, del 
sotobosque, son relevantes para su aplicación en la planificación del desbroce 
de los bosques y de las tareas de mantenimiento para la prevención de los 
incendios forestales, la modelización del comportamiento del fuego o la 
conservación de la biodiversidad, entre otras aplicaciones. 
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Resum 

Els ecosistemes forestals són una important font de vida i econòmica, per la 
seua capacitat per emmagatzemar carboni i estar formats per una matèria prima 
renovable. No obstant això, la gestió forestal inapropiada pot reduir 
considerablement aquestes capacitats i augmentar el risc d’incendis forestals. 
En les darreres dècades, les tècniques de teledetecció han demostrat la seua 
contribució a la gestió forestal. El làser escàner aerotransportat (ALS, per les 
seues sigles en anglès) proporciona informació horitzontal i vertical de les 
diferents capes del cobricel arbori. En concret, el làser escàner aerotransportat 
full-waveform (ALSFW), que registra la totalitat del senyal emès pel sensor que és 
retrodispersada, proporciona major informació que el làser escàner 
aerotransportat tradicional o discret (ALSD) sobre l’estructura vertical del bosc. 
En canvi, l’ALSFW ha rebut menys atenció que l’ALSD, a causa de la gran 
quantitat i complexitat de les seues dades i a la falta de disponibilitat d’eines 
per al seu processament. 

Aquesta tesi aborda el desenvolupament de mètodes de processament i 
anàlisi de dades ALSFW per a la caracterització de l’estructura vertical del bosc 
i, en particular, del sotabosc. Per a respondre a aquest objectiu general, 
s’establiren sis objectius específics: En primer lloc, s’analitza la influència de la 
densitat de pols, dels paràmetres de voxelització (grandària de vóxel i valor 
d’assignació) i dels mètodes de regressió sobre els valors de les mètriques ALSFW 
i sobre l’estimació dels atributs d’estructura del bosc. Per a això, es reduí 
aleatòriament la densitat de polsos i es modificaren els paràmetres de 
voxelització, obtenint els valors de les mètriques ALSFW per a les diferents 
combinacions de paràmetres. Aquestes mètriques ALSFW s’empraren per a 
l’estimació d’atributs de l’estructura del bosc mitjançant diferents mètodes de 
regressió. En segon lloc, s’integraren mètodes de processament i d’anàlisi de 
dades ALSFW en una nova eina anomenada WoLFeX (Waveform Lidar for Forestry 
eXtraction) que inclou el processos de retallada, correcció radiomètrica relativa, 
voxelització i extracció de mètriques a partir de les dades ALSFW, així com noves 
mètriques descriptores del sotabosc. En tercer lloc, s’avalua la influència de 
l’angle de escaneig emprat en l’adquisició de les dades ALS i la correcció 
radiomètrica en l’extracció de mètriques ALSFW i en l’estimació d’atributs de 
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combustibilitat forestal. Per a això, s’extragueren mètriques ALSFW amb i sense 
correcció radiomètrica relativa i emprant diferents angles d’escaneig. En quart 
lloc, es caracteritza l’oclusió del senyal al llarg de l’estructura vertical del bosc 
emprant i comparant tres tipus diferents de làser escàner (ALSFW, ALSD i làser 
escàner terrestre: TLS, per les seues sigles en anglès), determinant així les seues 
limitacions en la detecció de material vegetatiu en dos ecosistemes diferenciats: 
un boreal i un mediterrani. Per a quantificar l’oclusió del senyal al llarg de 
l’estructura vertical del bosc es proposa un nou paràmetre, la taxa de reducció 
del pols, basada en el percentatge de rajos làser bloquejats abans d’arribar a una 
posició donada. En cinquè lloc, s’avalua la manera en la qual es detecten i 
determinen les classes de densitat de sotabosc mitjançant els diferents tipus 
d’ALS. Es compararen els perfils de distribució vertical en estrats inferiors 
descrits per l’ALSFW i l’ALSD respecte als descrits pel TLS, emprant aquest últim 
com a referència. A més a més, es determinaren les classes de densitat de 
sotabosc aplicant la corba Lorenz i l’índex Gini a partir dels perfils de distribució 
vertical descrits per l’ALSFW i l’ALSD. Finalment, s’apliquen i avaluen les noves 
mètriques ALSFW basades en la voxelització, emprant com a referència els 
atributs extrets a partir del TLS, per a estimar l’alçada, la cobertura i el volum 
del sotabosc en un ecosistema mediterrani. 

Els resultats mostren que les variacions dels valors de les mètriques ALSFW 
es poden reduir emprant una densitat de pols mínima o incrementant la 
grandària del vóxel i modificant el valor d’assignació. A causa de que els 
atributs forestals s’estimen mitjançant dades ALSFW, també es veuen influenciats 
per la densitat de polsos. Aquesta influència també es pot reduir incrementant 
la grandària del vóxel o modificant el mètode de regressió. Tanmateix, els valors 
de les mètriques ALSFW i l’estimació d’atributs de combustibilitat forestal també 
es veuen influenciats per l’angle d’escaneig. Aquesta influència es pot reduir, 
però no eliminar per complet, aplicant la correcció radiomètrica. 

Per altra banda, s’observà una dependència en la detecció de la distribució 
vertical respecte a l’oclusió. El grau d’oclusió al llarg de l’estructura vertical es 
pot quantificar mitjançant la taxa de reducció del pols i, per tant, es pot estimar 
la fiabilitat en la caracterització de la distribució vertical. En aquest sentit, l’ALS 
(ALSD i ALSFW) demostrà ser útil en la detecció del sotabosc, obtenint molta 
major precisió amb l’ALSFW. Aquest últim demostrà el seu potencial per a la 
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detecció i determinació de les classes de densitat de sotabosc en un bosc boreal 
i un altre mediterrani mitjançant la utilització de l’índex Gini, així com 
l’estimació de l’alçada, la cobertura i el volum del sotabosc en un boscos 
mediterranis. 

La utilització de les dades ALSD es suficient per a la majoria d’aplicacions 
actuals de l’ALS. En canvi, i contràriament a l’ALSFW, presenta algunes 
limitacions en la identificació i/o caracterització dels estrats intermitjos i 
inferiors de la vegetació. Aquestes limitacions en la detecció dels estrats 
verticals es poden identificar i quantificar mitjançant l’extracció de perfils 
verticals de la taxa de reducció del pols per als diferents tipus de làser escàner. 
D’altra banda, per a la utilització de dades ALSFW és convenient identificar els 
paràmetres adequats (densitat de pols òptima i paràmetres de voxelització) i 
aplicar una correcció radiomètrica, com a pas previ a qualsevol processament 
de dades. Els resultats destaquen el potencial de l’ALSFW com substitut del TLS 
en l’extracció de l’estructura interna del bosc en àrees extenses. No obstant això, 
malgrat que l’ALSFW presenta menors limitacions respecte a l’ALSD en la 
detecció d’estrats intermitjos i inferiors, l’oclusió del senyal pot ser significativa 
en els estrats inferiors de boscos que presenten cobricels arboris alts i una gran 
densitat de vegetació en la seua estructura interna (per exemple, àrees tropicals), 
comportant una falta d’identificació del material vegetatiu. Aquestes troballes 
en la caracterització de l’estructura vertical del bosc i, en particular, del sotabosc, 
són rellevants per a la seua aplicació en la planificació del desbrossament dels 
boscos i de les tasques de manteniment per a la prevenció dels incendis 
forestals, la modelització del comportament del foc o la conservació de la 
biodiversitat, entre d’altres. 
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Quercus ilex 
 
 

“Con el sol del otoño toda el agua 
de mi fontana vibra, 

y noto que sacando sus raíces 
huye de mí la encina.” 

 
Federico García Lorca 
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1.1. Background and research justification 
 

In ecology, the forest structure is defined as the horizontal and vertical 
distribution of the vegetation elements such as trees and shrubs (Kükenbrink et 
al., 2017). More specifically, these elements are composed by tree trunks, 
branches, twigs, leaves and deadwood, which interact with each other forming 
the forest structure. In terms of productivity, the forest structure may also be 
described by basal area, which is the area occupied by the cross-section of tree 
trunks at the diameter breast height (i.e., 1.3 m) by unit area, and tree height 
heterogeneity (Bohn and Huth, 2017). Forest structure may be altered by some 
disturbance regimes (Kimes et al., 2006), most of them related to anthropogenic 
processes. Some of these activities or occurrences are infrastructure building, 
timber production and wildfires (Guo et al., 2017). As a consequence, the 
affection gradient of disturbance regimes is variable along forested areas, and 
in addition, some species are more suitable to survive or regenerate under these 
conditions, while others will disappear (Devictor et al., 2008; Johnstone et al., 
2016). This leads to a more heterogeneous horizontal and vertical forest 
structures. The significance of forest structure is also clearly visible on several 
factors such as biodiversity and wildfire modeling. Disturbance regimes may 
cause microclimatic patterns and processes affecting distribution of bird species 
and wildlife habitats (Zimble et al., 2003; Hyde et al., 2005; Hyde et al., 2006; 
Lesak et al., 2011; Guo et al., 2017), modify biological process such as tree 
competition and growth (Drake et al., 2002; Coops et al., 2007), and condition 
the spread and severity of wildfires (Agee, 1996; Pollet and Omi, 2002; Graham 
et al., 2004; D.L. Peterson et al., 2005; Hyde et al., 2006; Prichard et al., 2010). 

 

1.1.1. Fire modeling 
 

The fire environmental triangle is made up of three legs: topography, 
weather conditions and fuel (Countryman, 1972). Topography and weather 
conditions play a more decisive role in fire behavior (Pollet and Omi, 2002). 
However, fuel, which is related to forest structure, is the only leg that may be 
manipulated (Agee, 1996). Given that the other two legs of the fire 
environmental triangle may not be controlled, they must be considered prior to 
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fuel treatments (D.L. Peterson et al., 2005). For instance, fuel treatments vary 
according to elevation, aspect and slope (i.e., topography), and humidity, 
temperature and wind speed (i.e., weather conditions). Fuel treatment 
techniques have been used by forest managers for decades. However, not all 
forests are at risk of severe wildfires, but drier forests require fuel treatments to 
control fire hazard (Agee and Skinner, 2005). These fuel treatment techniques 
aim therefore to reduce intensity (i.e., heat release per unit distance and unit 
time) and severity (i.e., related to post-fire vegetation survival) of wildfires 
(Agee, 1996; Arkle et al., 2012). These techniques are even more necessary in the 
last years, since fire frequencies have decreased owing to fire exclusion, 
harvesting and different land use practices, leading to an increment of fuels 
potentially hazardous for large wildfires (Viedma et al., 2018). Fires may be 
divided into three types: ground, surface and crown fires (Werth et al., 2011). 
Ground fires are related to soil organic horizons, surface fires to low vegetation, 
woody fuel, moss, lichen and litter, and crown fires to canopies (Graham et al., 
2004; Weise et al., 2018). Crown fires are the most severe fires, and they are the 
main threat to ecological and human values as well as challenging for fire 
management, hence reducing these fires facilitates the suppression and reduces 
the likelihood of having large wildfires (Lecina-Diaz et al., 2014). Crown fires 
depend on the arrangement of available fuel from the ground to the canopy 
(D.L. Peterson et al., 2005), and this available fuel between the two strata is 
known as ladder fuel (National Wildfire Coordinating Group, 2005). Therefore, 
more severe wildfires take place in spots where there is a high presence of 
understory and regeneration of trees connected to trees densely stocked, 
resulting in crown fires spread from crown to crown (Pollet and Omi, 2002). 
Regarding the existing fuel treatment techniques to reduce wildfires intensity 
and severity, two of the most used techniques are thinning and prescribed fires. 
Thinning allows for carrying out a more precisely planned forest structure, 
while prescribed fires burn imprecisely low vegetation and lower branches 
from overstory (Graham et al., 2004). The most effective approach to reduce 
crown fires events by fuel treatments is by increasing the height to live crown, 
reducing fuels and canopy bulk density, and increasing distance between 
canopies (Graham et al., 1999). To do this, the most adequate strategy is 
applying both fuel treatment techniques mentioned: thinning and then 
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prescribed fires (Graham et al., 1999; Pollet and Omi, 2002; Agee and Skinner, 
2005). Thinning removes small diameter trees (Pollet and Omi, 2002) and 
modifies canopy and ladder fuels, and then lower branches from overstory, 
woody fuel, litter and plant remains from thinning may be removed with 
prescribed fires (Harrod et al., 2009). As a result of modifying forest structure, 
crown fire severity and intensity are reduced, since vertical (i.e., ladder fuel) 
and horizontal (i.e., fire crown to crown) continuities are disrupted (Arkle et al., 
2012). 

In order to assess ongoing or upcoming fuel treatments, wildfire behavior 
may be modeled. To do this, the three legs of the fire environmental triangle 
(i.e., fuel, topography and weather conditions) are inputs into the models to be 
predicted (Agee, 1996). Topography consists of information about slope, aspect 
and elevation, which may all be extracted from a Digital Terrain Model (DTM), 
a raster file where each pixel value represents its elevation. Weather conditions 
consists of temperature, humidity, wind direction and speed, and actual values 
from a given scenery or arbitrary data may be used. Fuel, which consists of 
estimating living and dead biomass, requires efforts, since it is dynamic and 
changing (Schmidt et al., 2016; Davis et al., 2017). There are three concepts that 
are often employed mistakenly: fire model, fuel type and fuel model. A fire 
model is a mathematical model which describes the evolution and behavior of 
the fire; fuel types are the result of clustering vegetation according to a set of 
attributes such as vegetation density, loading and height, which determine the 
fire spread; and fuel models are the values of the attributes describing each fuel 
type (Arroyo et al., 2008). Fire models are divided into four types: physical, 
physical-statistical, statistical, and probabilistic models (Albright and Meisner, 
1999). Physical fire models, such as Albini (1986), are based on the physics of 
combustion, however, they require such amount of detailed data that they are 
not usually employed (Albright and Meisner, 1999). Physical-statistical fire 
models join statistical correlation and physics. Among these fire models, there 
are Rothermel’s (Rothermel, 1972) and Fire Behavior Prediction (FBP) (Forestry 
Canada, 1992) fire models, which are two of the most widely employed. 
Statistical fire models are based on test fires to predict fire parameters such as 
fire intensity and rate of spread. Lastly, probabilistic fire models provide 
contingency tables, which are used to predict the rate of spread by means of the 
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fuel type, fuel moisture and wind speed (Albright and Meisner, 1999). These fire 
models are implemented in decision support systems (Andrews and Queen, 
2001), providing a prediction of fire parameters such as rate of spread, fire 
intensity and fuel moisture (Arroyo et al., 2008). Several decision support 
systems have been developed in different countries and providing different 
outputs. Most of the decision support systems consist of fire danger systems, in 
other words they provide a prediction of fire parameters or a gradient of fire 
hazard from weather, topography and fuel data. The McArthur Grassland Fire 
Danger Rating System (McArthur, 1966; McArthur, 1967) from Australia, the 
National Fire Danger Rating System (NFDRS) (Deeming et al., 1972; Deeming 
et al., 1977) from USA and, the Canadian Forest Fire Danger Rating System 
(CFFDRS) (Stocks et al., 1989) from Canada, are developed from experimental 
wildfires and rate the risk of wildfires at broad scales. They use weather 
parameters or indices, such as the Canadian Fire Weather Index (FWI) (Wagner, 
1985; Wagner, 1987) for the CFFDRS, and fuel information to predict wildfire 
danger and potential over large areas. One of the most used decision support 
systems is BEHAVE (Burgan and Rothermel, 1984; Andrews, 1986) and its 
subsequent update BehavePlus (Andrews, 2009; Andrews, 2014) from USA, 
which predicts fire parameters at a local scale. Other decision support systems 
such as NEXUS (Scott, 1999), FlamMap (Stratton, 2006) and Crown Fire 
Initiation and Spread (CFIS) (Alexander et al., 2006) use weather, topography 
and fuel information to assess crown fire spread and intensity through a 
number of indices predicted from a surface-crown fire system (Scott, 2006). In 
addition to BEHAVE, Fire Area Simulator (FARSITE) (Finney, 1998) is one of 
the most widely used decision support systems. FARSITE differs from the 
above mentioned decision support systems, since it provides a representation 
of the evolution of the fire perimeter over time in a Geographical Information 
System (GIS) format. As input data, it requires a more specific information from 
the tree crowns (i.e., canopy bulk density, canopy base height, canopy cover and 
canopy height), since models for surface and crown fire behavior are integrated. 
In addition to FARSITE, Wildfire Analyst (Ramírez and Monedero, 2011) also 
represents the evolution and intensity of the fire over time to analyze the 
firefighting capabilities of a wildfire. This tool implements the fire model 
proposed by Rothermel (1972) and further modified by Albini (1976), and 
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accepts Scott and Burgan (2005) fuel models as well as other custom fuel models. 
Decision support systems require fire models to predict fire hazards, but also 
fuel types to include the variability of tree species and vertical and horizontal 
forest structure. There are many fuel type classifications according to 
ecosystems and countries. Some of the most widely employed are NFDRS 
(Deeming et al., 1977), Northern Forest Fire Laboratory (NFFL) (Albini, 1976; 
Burgan and Rothermel, 1984) and Fuel Classification System (FCCS) (Sandberg 
et al., 2001) from USA; FBP system fuel types (Forestry Canada, 1992) from 
Canada; and Prometheus (Prometheus, 1999) from Europe, which is adapted 
from NFFL for Mediterranean ecosystems. These fuel type classifications are 
employed in the above mentioned decision support systems. For instance, 
NFDRS fuel type classification is employed by NFDRS, NFFL by BEHAVE and 
FARSITE, and FBP system fuel types by CFFDRS (Arroyo et al., 2008). Instead 
of fuel type classifications, which are clusters of forest attribute values, more 
specific values of some forest attributes may also be employed as inputs in some 
decision support systems to predict wildfire behavior (García et al., 2011) 
(hereafter referred as forest fuel attributes). These forest fuel attributes describe 
the vertical and horizontal forest structure as well as the fuel load, and are 
canopy bulk density, canopy fuel load, canopy height, canopy base height, and 
canopy cover (Cruz et al., 2003; Graham et al., 2004). Canopy bulk density 
corresponds with the amount of fuel per unit of volume (Keane et al., 2005). It 
is one of the most significant attributes to predict crown fire behavior, since it is 
related to the spread rate between crowns (Cruz et al., 2003; Riaño et al., 2004; 
Keane et al., 2005; Skowronski et al., 2011). Canopy fuel load is defined as the 
amount of fuel that may potentially be consumed per unit of area (Skowronski 
et al., 2011). Canopy bulk density and canopy fuel load may be extracted direct 
or indirectly. Direct methods are referred to destructive sampling to quantify 
biomass, which is costly and difficult to implement (García et al., 2011). Once 
direct methods are carried out, allometric equations may be generated using 
forest biometric measurements (i.e., diameter at breast height: DBH, height, and 
tree species) as independent variables and biomass from direct methods as 
dependent variables (García et al., 2011; Skowronski et al., 2011). These 
allometric equations facilitate estimation of fuel attributes at field campaigns. 
Canopy height may have different definitions. It may be defined as either the 
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average height of the 100 tallest trees in a hectare (Assmann, 1961; Assmann, 
1970) or the maximum height where a minimum value of canopy bulk density 
is reached (Reinhardt et al., 2006). Canopy height influences on wind speed 
reduction and fuel moisture content, and therefore it indirectly affects on crown 
fire occurrence (Reinhardt et al., 2006). Canopy base height is the lowest height 
where fuel may potentially be consumed (Cruz et al., 2003; B. Peterson et al., 
2005; García et al., 2011). This attribute is crucial to predict crown fires, it defines 
the gaps between understory vegetation and tree crowns (Graham et al., 2004; 
Keane et al., 2005). Some studies (Graham et al., 2004; Keane et al., 2005; García 
et al., 2011) mention canopy cover as another significant forest fuel attribute. It 
is defined as the proportion of land covered by tree crowns from a zenithal view 
(García et al., 2011). Canopy cover is related to the potential for fire spread 
between crowns (Graham et al., 2004; García et al., 2011). Therefore, there is a 
set of attributes (i.e., canopy bulk density, canopy fuel load, canopy height, 
canopy base height, and canopy cover) that may be used as inputs in decision 
support systems to predict wildfire spread more accurately, instead of fuel type 
classifications. 

Fires not only spread horizontally, but also vertically among the different 
vertical strata. Nevertheless, fire models for the mentioned decision support 
systems (e.g., FARSITE, BEHAVE) represent the spread of wildfires in a two-
dimensional space. Therefore, these tools do not include heterogeneity of crown 
fuels, which results in the most dangerous wildfires (Parsons et al., 2011); and 
only predict the wildfire behavior considering the interaction fuel-atmosphere 
(Mell et al., 2007), which involves that they only require the terrain, wind and 
fuel parameters as input. On the other hand, more recent tools for predicting 
wildfire behavior, such as WFDS (Wildland-Urban Interface Fire Dynamics 
Simulator) (Mell et al., 2007) and Firetec (Linn, 1997; Linn et al., 2002), use 
physical fire models based on computational fluid dynamics methods (Sullivan, 
2009; Hoffman et al., 2016), which include 3D simulations of wildfire behavior. 
These tools not only consider the interaction fuel-atmosphere, but also the 
interactions fuel-fire and fire-atmosphere. These interactions consist of the 
generation of combustion gases and their fluxes and the reaction of fire and its 
plume to local winds, respectively, which have an influence on the fire spread 
(Mell et al., 2007). Therefore, these tools simulate fuels and wildfire behavior 
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with much more detail (Pimont et al., 2016). Nonetheless, given that these tools 
consider vegetation fuels as heterogeneous, they require more information from 
the different vertical strata (Mell et al., 2011), such as the three-dimensional 
distribution of fuels from individual trees and understory vegetation (Pimont 
et al., 2016). 

However, this new generation of 3D fire behavior models needs more 
precise and detailed information related to the abovementioned fire fuel 
attributes, so new remote sensing techniques and systems, in particular those 
based on laser scanner (aerial and terrestrial) should be explored to fill the gap 
between the high 3D resolution required by the new fire behavior models and 
the current capabilities offered by large area remote sensing systems. 

 

1.1.2. Estimation of fuel attributes using discrete airborne laser 
scanning 

 

Forest fuel attributes have been traditionally estimated by field campaigns 
and destructive sampling, which are very costly and limited to small spatial 
extents (Hyde et al., 2005; Riaño et al., 2007). Therefore, mapping forest fuel 
attributes over large areas was a tedious and inaccurate task. Nevertheless, the 
use of remote sensing techniques has facilitated this task in the last decades. 
Remote sensing techniques, and more specifically laser scanning, have 
demonstrated their potential to estimate vertical and horizontal forest structure, 
and other forest attributes (Dubayah and Drake, 2000; Lim et al., 2003; Wulder 
et al., 2012; Hevia et al., 2016; Bottalico et al., 2017). Laser scanning consists of a 
sensor installed on a platform (i.e., airborne: ALS, spatial, terrestrial: TLS, drone, 
backpack, etc.) emitting thousands of laser pulses per second and registering 
the laser response from intercepted objects. Laser scanning data collected are 
stored in 3D point cloud format, providing X, Y, Z coordinates and an intensity 
value related to the physical properties of the intercepted object and the laser 
wavelength. These data are known as discrete laser scanning. Regarding ALS, 
many studies have demonstrated the capacity of discrete ALS (ALSD) to 
estimate forest fuel attributes. Riaño et al. (2003) described the existing 
relationship between some ALSD metrics and forest fuel attributes canopy bulk 
density, canopy fuel load, canopy height, canopy base height and canopy cover. 
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Riaño et al. (2004) went a step further and estimated at plot- and tree-level the 
mentioned forest fuel attributes, except for canopy cover, by using a single ALSD 
metric as independent variable in regression models. Andersen et al. (2005) 
estimated the same forest fuel attributes, however, they used several metrics in 
the regression models instead of using a single one. Similar to Riaño et al. (2004), 
Morsdorf et al. (2006) only used a single ALSD metric, but in this case to estimate 
canopy cover, and using hemispherical photographs as field data. Popescu and 
Zhao (2008) estimated canopy height and canopy base height at tree-level using 
a new voxel-based approach. On the other hand, Hopkinson and Chasmer 
(2009) also estimated canopy cover by using hemispherical photographs as field 
data, and they carried out the analysis in seven different sites distributed in five 
Canadian ecozones. Erdody and Moskal (2010) used ALSD metrics alone and in 
combination with high resolution color near-infrared aerial imagery to estimate 
canopy bulk density, canopy fuel load, canopy height and canopy base height. 
They found that combination of ALSD and imagery performed the best results, 
however, accuracy of ALSD alone in estimating forest fuel attributes 
outperformed the use of imagery alone. Zhao et al. (2011) also estimated forest 
fuel attributes using ALSD data and analyzing how the accuracy varies when 
using different machine learning models. They observed that Support Vector 
Machine and Gaussian processes reached better results than traditional 
approaches such as linear regression. Finally, Hevia et al. (2016) observed an 
influence of thinned and unthinned plots on ALSD metrics. Overall, estimate 
results show a high correlation between ALSD metrics and forest fuel attributes, 
resulting in a coefficient of determination (R2) around 0.81±0.07, 0.80±0.19, 
0.93±0.04, 0.79±0.06 and 0.74±0.01 for canopy bulk density, canopy fuel load, 
canopy height, canopy base height and canopy cover, respectively, in the 
studies analyzed. As previously mentioned, these attributes are key forest 
attributes used as inputs in decision support systems to predict wildfire 
behavior. Therefore, ALSD has demonstrated its potential to estimate key forest 
fuel attributes over large areas, being widely employed since it reduces 
considerably time and work with respect to traditional field campaigns. 
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1.1.3. Full-waveform airborne laser scanning 
 

Among laser scanning technology, full-waveform laser scanning goes one 
step further than discrete laser scanning. Instead of a discrete 3D point cloud, 
full-waveform laser scanning registers the complete signal emitted by the 
sensor and it is stored in wave form (Mallet and Bretar, 2009). Waveform 
amplitude values depend on the wavelength and physical properties of the 
intercepted objects (Song et al., 2002; Guo et al., 2011; Hermosilla et al., 2014a), 
and angle of incidence (Kukko et al., 2008). Contrary to discrete laser scanning, 
full-waveform laser scanning provides a continuous response along the 
trajectory of the laser pulse, and hence more information is provided from the 
different vertical strata of the vegetation (Mallet and Bretar, 2009). For instance, 
understory vegetation, which is key for ladder fuels to spread fire from surface 
to crowns, is retrieved in more detail by full-waveform laser scanning 
(Anderson et al., 2016; Hancock et al., 2017). In the last decades, several studies 
have been carried out using airborne (ALSFW) and spaceborne full-waveform 
laser scanning. For the latter, it is worth mentioning Geoscience Laser Altimeter 
System (GLAS), which was the first laser scanning for continuous global earth 
observation, onboard the Ice, Cloud, and land Elevation Satellite (ICESat) until 
2008. This system had a large footprint size (~50-65 m), and was originally 
launched to study changes in ice sheets, atmospheric properties and clouds 
(Abshire et al., 2005; Mallet and Bretar, 2009). Nevertheless, it has also been 
successfully used to estimate forest fuel attributes thanks to registering the full-
waveform (Lefsky et al., 2007; García et al., 2012). Regarding ALSFW systems, 
they can be divided according to its footprint size. Scanning Lidar Imager of 
Canopies by Echo Recovery (SLICER) and its improved version, Laser 
Vegetation Imaging Sensor (LVIS) (Blair et al., 1999), are two prototypes 
developed by NASA with a footprint size of 5-15 m and 5 m, respectively. These 
systems were designed to characterize the vertical forest structure and forest 
fuel attributes with promising results (Lefsky et al., 1999; Means et al., 1999; 
Harding et al., 2001; Drake et al., 2003; Hyde et al., 2005). Compared to laser 
scanning systems with a small footprint size (i.e., < 1 m), laser beams with a 
large footprint size are less intercepted by vegetation strata and reach the 
ground (Fieber et al., 2015). Nevertheless, their wide footprint size limits its 
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resolution in retrieving the vertical forest structure, and its high pulse energy 
and low pulse rate limit its spatial sampling (Wulder et al., 2012). Regarding 
ALSFW systems with a small footprint size, some studies have demonstrated the 
potential of ALSFW to estimate forest attributes (Cao et al., 2014; Hermosilla et 
al., 2014a), including some of the forest fuel attributes (i.e., canopy bulk density, 
canopy fuel load, canopy height and canopy base height). A few studies have 
assessed the accuracy differences between ALSD and ALSFW for the estimation 
of some forest fuel attributes, finding more accurate results for ALSFW 
(Anderson et al., 2016; Hancock et al., 2017). Nevertheless, despite of its 
potential to characterize understory vegetation and structure, ALSFW has 
received less attention than ALSD because of three main limitations: (i) 
ignorance of data, (ii) large amount of data, and (iii) lack of processing tools. 
Ignorance of data is reflected in users, researchers, forestry consulting 
companies and some companies in charge of data collection. This is due to the 
relative novelty of ALSFW data and the shortage of researchers working on this. 
Simultaneously, the latter is due to the large amount of data to deal with, which 
makes tests much longer and powerful processors are often required. 
Additionally, the lack of processing tools makes that most researchers must 
have programming skills to research on ALSFW applications. This situation may 
be starting to change with the recent launching of the new full-waveform laser 
scanning system, called Global Ecosystem Dynamics Investigation (GEDI), 
onboard the International Space Station (ISS) (Dubayah et al., 2020). Some new 
processing tools to process GEDI data, such as rGEDI for R (Silva et al., 2020) 
and Gedi for Python (Camacho, 2020), along with the availability of data, will 
allow more users to investigate the potential of full-waveform laser scanning to 
characterize the vertical forest structure and forest fuel attributes. 

 

1.2. Aims and objectives 
 

The general objective of this thesis is the development of processing and 
analysis methods based on full-waveform airborne laser scanner data to 
characterize the vertical forest structure, in particular the understory vegetation. 
It arises from the need to reduce the limitations and to present the potential of 
ALSFW in forestry applications. 
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Simultaneously, six hypotheses are raised with their respective six specific 
objectives to reach the main objective. These hypotheses and specific objectives 
are as follows: 

Hypothesis 1: Computation of ALSFW metrics through the voxelization 
procedure, and subsequently the prediction of forest structure attributes, are 
influenced by a variable pulse density. This influence may be reduced by 
modifying the voxel parameters (i.e., voxel size and assignation value). 

Objective 1: To analyze the influence of pulse density, voxel parameters and 
regression methods on ALSFW metric values and on forest structure attributes 
estimates, identifying those parameters and quantifying their relations to be 
able to tune their values in order to considerably reduce this influence in 
practice.  

 

Hypothesis 2: Understory vegetation in Mediterranean forests is a key strata in 
characterizing wildlife habitats and mitigation of forest fires. Metrics to detect 
and characterize understory vegetation are crucial for modeling forest fuel 
attributes and forest structure, and ALSFW is a more suitable technique to 
capture information from understory. There is a lack of ALSFW processing tools 
integrating these tasks and able to perform radiometric correction of data. 

Objective 2: To compile a set of methods to process and analyze ALSFW data, 
including the relative radiometric correction of the data to reduce the effect of 
the different angles of incidence and local altitude variations during the data 
acquisition process, the extraction of most ALSFW metrics as proposed in the 
literature, as well as new metrics focused on understory vegetation, integrating 
them in a new software available to use for the scientific community. 

 
Hypothesis 3: The scan angle has an influence on the amplitude values of the 
waveforms, and therefore on the ALSFW extracted. The application of 
radiometric correction is expected to reduce these differences in the amplitude 
values. As well as ALSFW metric values, forest fuel attributes estimated using 
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these metrics may also be influenced by scan angle differences, and radiometric 
correction is expected to reduce this effect. 

Objective 3: To assess the influence of the scan angle of ALS data acquisition 
and the application or not of a radiometric correction on (i) the extraction of an 
ALSFW metric; and (ii) modeling three of the most relevant forest fuel 
attributes—canopy fuel load (CFL), canopy height (CH), and canopy base 
height (CBH). 

 

Hypothesis 4: ALS and TLS configurations are limited to detect lower and 
upper strata, respectively, because of the position of the sensors. This limitation 
depends on the forest ecosystem and density. 

Objective 4: Characterize the signal occlusion along the vertical forest structure 
using different laser scanning configurations (i.e., ALSD, ALSFW, and TLS) in 
contrasted ecosystems with different canopy covers to determine how reliable 
the resulting vertical distribution profiles are, based on the amount of occlusion 
and the lack of information. 

 

Hypothesis 5: Given that ALSFW registers the complete signal going through the 
vertical forest structure, and ALSD is a simplification of ALSFW, understory 
vegetation can be detected and its density determined more accurately with 
ALSFW than with ALSD. 

Objective 5: Determine how understory vegetation density classes can be 
detected and further determined by ALS configurations, and whether ALSFW 
allows the detection and determination to a level of detail beyond ALSD 
capability. 

 

Hypothesis 6: The new described ALSFW metrics in objective 2 may be used to 
accurately characterize the height, cover and volume of understory vegetation 
in a Mediterranean ecosystem.  
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Objective 6: Apply and validate the new metrics described in objective 2 
derived using a voxel based approach to estimate understory height, cover, and 
volume in a Mediterranean forest ecosystem, proposing some practical 
recommendations for further development and testing ALSFW metrics. 
 

1.3. Thesis outline 
 

This thesis is divided into six chapters, being this first chapter an 
introduction to the state-of-the-art and to the topics discussed in more detail in 
chapters 2-5. These four chapters are based on edited versions of four 
international scientific publications, one national scientific publication, and 
eight published conference papers. Lastly, the sixth chapter compiles the 
conclusions of the thesis, as well as raises possible lines for future research 
taking the current thesis as reference. 

Figure 1.1 shows the development of the different chapters of the thesis in 
chronological order and their relation to the different publications carried out. 
The first two publications (one conference paper and one national scientific 
publication) described the estimation of forest attributes using ALSFW, and how 
the accuracy of these estimates depends on the regression models used. This 
leaded to find the existing influence of pulse density on ALSFW metrics and on 
the estimate of forest attributes, which is addressed in Chapter 2. The thesis is 
divided in a methodological part (Chapters 2 and 3), including the development 
of a software tool, and the application and analysis of ALSFW for the 
characterization and detection of understory vegetation (Chapters 4 and 5). 

In Chapter 2, the problem of the influence of pulse density on ALSFW metrics 
and on the estimate of forest attributes is addressed. As previously mentioned, 
a side-lap effect due to pulse density variation was detected when estimating 
forest attributes. In this chapter, the variation of the most common ALSFW 
metrics and of the estimates of forest attributes when forcing the variation of 
the pulse density, voxel parameters (i.e., voxel size and assignation value) and 
regression methods are analyzed. This analysis allows for better understanding 
the side-lap effect and how it can be reduced.  
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Figure 1.1. Chronological diagram and structure of the research. Publications are 
colored according to the chapter they belong, and the four core publications are in bold 
and the edges highlighted. 

In Chapter 3, the influence of the scan angle and the relative radiometric 
correction on ALSFW metrics and on the estimates of forest fuel attributes is 
assessed. This analysis and other ALSFW data processing may be done in a new 
processing tool called WoLFeX (Waveform Lidar for Forestry eXtraction), which 
is also presented and described in this chapter. This processing tool is the basis 
for the application of methods in order to characterize understory vegetation 
presented in the following chapters. 

In Chapter 4, the ability of two airborne platforms (ALSD and ALSFW) and 
one terrestrial platform (TLS) to characterize vertical forest structure is assessed, 
linking it with a new method to estimate signal occlusion in the different strata. 
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Moreover, the suitability of ALSD and ALSFW to determine understory 
vegetation density classes is also assessed, which is challenging for airborne 
platforms due to occlusion caused by overstory. All these analyses are carried 
out in two contrasted ecosystems (boreal and Mediterranean). 

In Chapter 5, the line of Chapter 4 is followed, and it is focused on the 
characterization of understory vegetation in a Mediterranean forest using 
ALSFW. The height, cover and volume of understory vegetation are estimated, 
and the results evaluated using TLS as reference data. 

In Chapter 6, the conclusions of the different chapters are compiled to 
provide a global conclusion of the thesis. In addition to mentioning the most 
relevant points of the thesis, this chapter also discusses possible further research 
by continuing the line of the thesis.



 

 



 

 

 

 

 

Chapter 2 

 

Influence of methodological parameters on full-waveform 
ALS metrics and forest attributes prediction  

Edited version of: 

Crespo-Peremarch, P., Ruiz, L.Á., Balaguer-Beser, Á., Estornell, J., 2018. Analyzing the 
role of pulse density and voxelization parameters on full-waveform LiDAR-derived 

metrics. ISPRS Journal of Photogrammetry and Remote Sensing, 146. 453-464. 
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In this chapter, the effect that ALSFW pulse density, voxelization parameters 
(i.e., voxel size and assignation value), and regression methods have on ALSFW 
metric extraction and on the subsequent estimate of forest attributes are 
analyzed. This effect related to a variable pulse density due to differences in 
flight stripes overlap is called side-lap effect, and it is visually observed as a 
stripe where ALSFW metrics and forest attributes estimated differ from their 
neighborhood, although forest attributes are actually similar. Side-lap effect 
may lead to obtain wrong results when voxelizing ALSFW data. Hence, knowing 
the causes of side-lap effect and how to reduce it is fundamental to use properly 
ALSFW data for forestry applications by the voxelization procedure. 
 

2.1. Introduction 
 

ALS data (i.e., ALSD and ALSFW) are not homogeneous along a study area. 
Several factors such as scan angle, range from sensor to registered objects, 
topography or objects’ structure prevent ALS point cloud from forming a 
regular mesh. Moreover, side-lap areas (i.e., where two or more flight stripes 
overlap), which are required to reduce occlusion, increase pulse density, and for 
flight stripes georeferencing, have a higher pulse density (see Figure 2.1). These 
pulse density variations affect metrics extracted from ALSFW and the subsequent 
forest attributes estimates. Therefore, ALSFW metrics extracted in two areas with 
identical forest features but different pulse densities may differ. In addition, 
given that forest attributes are estimated by using ALSFW metrics in regression 
models, the estimates are influenced by pulse density variations as well. 

The influence of ALSD pulse density on estimates of forest attributes was 
analyzed in several studies (Table 2.1). All these studies present variations in 
estimates of forest attributes, however, since they were focused on different 
ecosystems and used different ranges of pulse densities, variations have 
different scales. Gobakken and Næsset (2008), Magnussen et al. (2010) and 
Jakubowski et al. (2013) observed that estimated attributes were not 
significantly affected by density until dropping 0.25 points·m-2 in the first study, 
and 1 pulse·m-2 in the last two. Analyzing specific groups of attributes, 
Magnussen et al. (2010), González-Ferreiro et al. (2012), Strunk et al. (2012), 
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Figure 2.1. Representation of the ALS density variation and subsequent side-lap effect 
in the ALSD point cloud from (a) a zenithal view and (b) a vertical transect, and (c) in 
the estimation of the ALSFW metric RWE (Return Waveform Energy). 

Treitz et al. (2012), Jakubowski et al. (2013) and Varo-Martínez et al. (2017) did 
not find significant influence of pulse density on attributes related to height, 
such as: mean, dominant, tree and Lorey’s height, and mean height to live 
crown. According to Strunk et al. (2012) and Treitz et al. (2012), attributes related 
to tree density (i.e., number of stems and stem density) were not significantly 
affected either. However, Magnussen et al. (2010) observed on the reliability 
ratio that stem density was affected using low pulse densities. The reliability 
ratio was defined by Hansen et al. (2015) as the variance of a metric among 
sample plots divided by the total variance of the metric (i.e., the variance among 
sample plots plus the average variance within the plot). Regarding attributes 
related to trunk size, such as quadratic mean diameter (Treitz et al., 2012), DBH 
(Jakubowski et al., 2013), and basal area (Magnussen et al., 2010; González-
Ferreiro et al., 2012; Strunk et al., 2012; Treitz et al., 2012; Jakubowski et al., 2013; 
Ruiz et al., 2014; Varo-Martínez et al., 2017), had no significant differences 
between different pulse densities, except for the basal area in a tropical forest in 



INFLUENCE OF METHODOLOGICAL PARAMETERS ON FULL-WAVEFORM ALS METRICS AND 
FOREST ATTRIBUTES PREDICTION 

 

23 

a study carried out by Manuri et al. (2017). Among volume attributes (i.e., 
volume over bark, stem volume, gross total and merchantable volume), only 
volume over bark in González-Ferreiro et al. (2012) was significantly affected 
by pulse density variations. Additionally, Jakubowski et al. (2013) for shrub 
cover and height variables, Ruiz et al. (2014) for canopy cover, and Silva et al. 
(2017) for aboveground carbon, observed that they were not significantly 
affected either. Lastly, stem biomass and aboveground biomass were influenced 
by ALSD pulse density in an Atlantic and tropical forest (González-Ferreiro et 
al., 2012; Manuri et al., 2017) but Treitz et al. (2012) did not find significant 
differences in aboveground biomass in a boreal forest using different densities. 
Overall, mass-related attributes such as aboveground biomass (AGB) are more 
influenced by pulse density than height attributes, although another factor 
affecting tree density, basal area and volume is the type of ecosystem. 

The influence of pulse density on forest attributes estimated from ALSD 
metrics has been widely studied in different ecosystems, however, less attention 
has been paid to how ALSD metrics are influenced. Roussel et al. (2017) 
mentioned that even when the values of estimated attributes are stable for 
different pulse densities, ALSD metrics are affected, since they are measures and 
are not statistically fitted. Gobakken and Næsset (2008) and other authors, such 
as Hansen et al. (2015) and Roussel et al. (2017), analyzed the effects of pulse 
density on ALSD metrics. The first study computed height (e.g., percentiles, 
maximum, mean and coefficient of variation) and density metric differences 
between the initial point density (i.e., 1.13 points·m-2) and thinned data (i.e., 0.25, 
0.13 and 0.06 points·m-2) at different sample sizes. They observed that the 
maximum height metric had large variations between point densities, these 
variations being even larger when point density decreased. The remaining 
metrics did not have a clear pattern. Hansen et al. (2015) computed seven ALSD 
metrics: mean, maximum, variance, percentiles 10 and 90 of the above ground 
heights, and the proportion of points above the ground and above the mean. 
They observed that most of the metrics were not influenced by pulse densities, 
except for the maximum elevations that decreased with lower pulse densities. 
However, the reliability ratio increased for all the metrics as pulse density 
increased, until reaching a threshold where it remained stable. A possible 
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explanation for this might be that mean values of ALSD metrics did not vary 
much due to pulse density. In contrast, the standard deviation increased for 
lower pulse densities, and hence the reliability ratio varied as well. Roussel et 
al. (2017) also analyzed how maximum height varied for different pulse 
densities. They concluded that metric variations were not only subject to pulse 
density, but additionally to ALS footprint size and canopy shape. The flatter the 
top canopy (i.e., fewer singularities), the lesser the difference between pulse 
densities. Pre-processing of ALSD and ALSFW data differ due to data 
characteristics. While ALSD metrics can be recomputed by simply varying the 
number of points (i.e., pulse density), pre-processing of ALSFW data is more 
complex and there are other parameters that may also be considered. This 
complexity may explain why the influence of pulse density on ALSFW metrics 
and on estimate of forest attributes have received less attention. Furthermore, 
some published studies have analyzed the evolution of ALSFW metrics by 
artificially reducing the pulse density. Crespo-Peremarch et al. (2016) observed 
side-lap effect in adjacent areas that were compared pairwise, with similar 
forest features but having different densities. It was found that ALSFW metrics 
were influenced by density variations caused by flight stripe side-lap areas. A 
standard pre-processing method for ALSFW metric extraction is voxelization 
(Hermosilla et al., 2014b). Once pseudo-vertical waveform is generated, ALSFW 
metrics can be extracted. Changing the voxel size and the assignation value may 
diminish the side-lap effect without modifying the pulse density. Increasing the 
voxel size reduces the number of empty voxels, avoiding gaps in the pseudo-
vertical waveform. On the other hand, changing the assignation value can avoid 
outliers from amplitude values, which is more likely when the voxel size 
increases. 

Crespo-Peremarch et al. (2016) observed that the side-lap effect in ALSFW metrics 
had an effect on forest attribute estimates as well, given that the latter are 
estimated through ALSFW metrics. This influence was visually observed for a 
large area, resulting in a wrong mapping of forest attributes, with presence of 
side-lap effect due to pulse density variation. Therefore, correcting side-lap 
effect is essential to properly estimate forest attributes. Comparing ALSFW 
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metrics obtained using different pulse densities may help to better understand 
how metrics are influenced and to reduce side-lap effect. 

In this chapter, in section 2.2, the study area and the data used to carry out 
the analyses are described. In section 2.3, the different processing steps followed 
from raw data to the analyses of side-lap effect are enumerated. In section 2.4, 
the results of how side-lap effect influences on the ALSFW metrics and on the 
estimate of forest attributes are shown. In section 2.5, the discussion of the 
results is addressed. Finally, in section 2.6, the conclusions of this chapter are 
presented. This chapter sets out the Hypothesis 1: “Computation of ALSFW 
metrics through the voxelization procedure, and subsequently the prediction of 
forest structure attributes, are influenced by a variable pulse density. This 
influence may be reduced by modifying the voxel parameters (i.e., voxel size 
and assignation value)”. To demonstrate this hypothesis, Objective 1 is 
addressed in this chapter: analyze the influence of pulse density, voxel 
parameters and regression methods on ALSFW metric values and on forest 
structure attributes estimates, identifying those parameters and quantifying 
their relations to be able to tune their values in order to considerably reduce this 
influence in practice. 
 

2.2. Study area and data 
 

The study area (2,258 ha) is located in Panther Creek (Oregon, USA) (Figure 
2.2), in the Cascade mixed forest ecoregion (Bailey, 1980). The dominant species 
is Douglas-fir (Pseudotsuga menziesii) very occasionally mixed with other 
conifers such as western red cedar (Thuja plicate), western hemlock (Tsuga 
heterophylla) and grand fir (Abies grandis), and broad-leaved species such as 
bigleaf maple (Acer macrophyllum) and red alder (Alnus rubra). Tree heights are 
variable due to harvesting, being up to 60 m. Altitudes in the total extent of the 
study area range from 100 to 700 m. 

ALSFW data were acquired in July 2010 using a Leica ALS60 over 3,264.51 ha, 
with a pulse density ranging from 2 to 168 pulses·m-2, and an average of 10.4 
pulses·m-2 (Figure 2.2c). Data were registered at an average flight altitude of 900 
m above ground level, at 105 kHz pulse frequency, and with a scan angle of ±14º 
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Figure 2.2. (a) Study area location in the USA Pacific Northwest, (b) flight trajectories, 
sample (green) and plot (blue) locations within the study area limits (red), and (c) pulse 
density. 

from nadir. The study area was covered with flight stripe side-lap of ≥50% 
(≥100% overlap). Waveform amplitudes were recorded in 256 bins with a 
temporal sample spacing of 2 ns (i.e., 0.3 m) and a footprint size of ~0.25 m. In 
addition, a DTM with 1 m spatial resolution was provided by the company that 
registered ALSFW data, and its vertical accuracy assessed using 33 GPS ground 
control points, obtaining a root-mean-square error (RMSE) of 0.19 m. 

Regarding field works, a total of 84 circular plots with 16 m radius were 
measured. Within each plot, the dominant species and every tree with a DBH 
greater than 2.5 cm were registered. As a result, there were 47 plots where 
Douglas-fir was dominant, and 37 with mixed species. Afterwards, forest 
attributes were estimated using collected field data and allometric equations 
described by Standish et al. (1985). 
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2.3. Methods 
 

Two main analyses were carried out: the influence of side-lap effect on (i) 
ALSFW metrics and (ii) on the estimate of forest attributes. 

The overall strategy followed to analyze the influence of side-lap effect on 
ALSFW metrics and on the estimate of forest attributes is illustrated by the flow 
diagram of Figure 2.3. Six procedures were applied to carry out the analyses. As 
the first procedure (1), a radiometric correction and denoising were required 
prior to any analysis including ALSFW metrics. The second procedure (2) 
consisted of a pulse density reduction so as to simulate the pulse density 
variation of side-lap effect in samples. As the third procedure (3), ALSFW data 
were clustered into voxels, where different sizes and assignation values (i.e., 
voxel parameters) were tested to assess its influence on side-lap effect. The forth 
procedure (4) involved the extraction of the different ALSFW metrics from the 
voxelization carried out with different pulse densities and voxel parameters. As 
the fifth procedure (5), the first analysis is based on how the side-lap effect 
influences on the ALSFW metrics extracted in Procedure 4. The evolution of 
ALSFW metrics is analyzed as pulse density and voxel parameters are modified. 
The last procedure firstly involved estimation of forest attributes (6a) from 
ALSFW metrics extracted in Procedure 4. Lastly, the second analysis involved 
analyzing the evolution of accuracy in the estimation of forest attributes by also 
modifying pulse density and voxel parameters (6b). 
 

2.3.1. Radiometric correction and waveform denoising 
 

Prior to voxelization, the radiometric correction is a key pre-processing step 
for ALSFW data (Procedure 1), since the metrics extracted depend on the 
amplitude values of the waveform. These amplitude values registered vary 
according to sensor and atmospheric factors, as well as the local angle of 
incidence and the range from the sensor to the object intercepted. Thus, an object 
may be registered with different amplitude values depending on these factors. 
The goal of the radiometric correction is to reduce these differences of 
amplitude values to make amplitude values independent of these factors. 
Moreover, the radiometric correction also allows for converting digital numbers  
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Figure 2.3. Overall processing flowchart implemented to analyze the side-lap effect on 
ALSFW metrics and on the estimate of forest attributes. 

of amplitude values to physical units such as reflectance by means of ground 
truth data from targets. Therefore, there are two main approaches of 
radiometric correction: relative and absolute. The relative radiometric 
correction reduces radiometric differences between flight stripes due to some 
factors such as the local angle of incidence or the range to the object registered. 
The absolute radiometric correction however also reduces radiometric 
differences between data acquired in different days and with different sensors 
(Wagner, 2010), and allows for converting amplitude values to physical units. 
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To deal with this correction, properties from targets distributed along the study 
area are required (e.g., targets or paved roads). In this research, the relative 
radiometric calibration was considered, since ground-truth data from targets 
were not available and there were no paved roads whose radiometry was 
known. Equation 1, described by Kashani et al. (2015), considers the distance 
from the sensor to the registered object and the angle of incidence. The angle of 
incidence depends on the scan angle, the slope and the aspect (Figure 2.4). 
Knowing these values, the angle of incidence may be calculated for those ALSFW 
returns corresponding to the ground. However, objects present on the ground, 
such as trees, do not follow the terrain slope. In general, trees grow vertically, 
and their branches almost horizontally. Since it is unfeasible to know the angle 
of incidence on tree leaves and branches without an accurate external data (e.g., 
TLS), for the computation of the angle of incidence the terrain slope is 
considered for ALSFW ground returns, and a null slope (i.e., 0%) for the rest of 
ALSFW returns. 

𝐴𝐴𝐶𝐶 = 𝐴𝐴 ∗
𝑅𝑅𝑖𝑖𝑛𝑛

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛
∗

1
cos𝛼𝛼

 

Equation 1 

where AC = corrected amplitude, 

 A = amplitude to be corrected, 

 Ri = range from the sensor to the object, 

 Rref = reference range set to 1,000 m for this study, 

 n = power of the range, 

 α = local angle of incidence. 

After the radiometric correction, waveforms still contain noise. The process 
followed to remove it was the one described by Hermosilla et al. (2014b) 
(Procedure 1). This process consists of first discarding noisy waveforms, and 
then removing noise from non-noisy waveforms. In this process, waveforms are 
tagged as noisy when all the amplitudes are below a threshold defined as the 
mean plus four times the standard deviation of the waveform amplitudes  
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Figure 2.4. Relation between the angle of incidence at the ground (α0) and at a branch 
(α1), the scan angle (β), and the range from the sensor to ALSFW return corresponding 
with the ground (Ri). 

(Lefsky et al., 2005). All these waveforms are removed, and only the rest of 
waveforms (i.e., non-noisy) are used for the next step. For the remaining 
waveforms, two denoising filters may be applied. First, noise, defined as 133% 
of the mode of the amplitudes, is subtracted from each amplitude value of the 
waveform. Then, a Gaussian filter is applied to eliminate the remaining noise. 
The new amplitude values slightly differ from the original ones (Hancock et al., 
2015), however, the shape and proportion of the waveform is kept, and 
therefore ALSFW data values are not highly influenced. 
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2.3.2. Pulse density reduction 
 

For the first analysis (i.e., analyzing the influence of side-lap effect on ALSFW 
metrics), a total of 30 samples were selected from the study area where conifers 
were dominant (Figure 2.2b). These samples were located where pulse density 
was higher (i.e., side-lap areas) in order to be able to test a higher number of 
pulse density variations. Despite the fact that in side-lap areas scan angles are 
usually higher, we assumed the influence of scan angle negligible after the use 
of the radiometric correction. The polygon samples were square-shaped with 
an area of 804.25 m2 each, this is the equivalent area of 16 m radius circular plots. 
For the second analysis (i.e., analyzing the influence of side-lap effect on 
estimate of forest attributes), a subsample of 36 conifer-dominant plots from the 
84 measured was selected (Figure 2.2b) to work with plots having the highest 
pulse densities, and then testing a higher number of pulse density variations as 
well. In this thesis, we differentiate between the terms “sample” and “plot”, 
requiring the latter ground-truth data from field works. 

The analysis of the side-lap effect on ALSFW metrics requires forcing a pulse 
density reduction (Procedure 2) to assess its influence in samples whose forest 
attributes remain constant. In this way, the effect due to a pulse density 
variation may be assessed in more detail, since several pulse densities may be 
tested. This is a crucial processing step, since although some adjacent samples 
may have similar forest attributes, only identical forest attributes may be 
guaranteed using the same sample. Pulse density may be calculated by 
identifying the number of pulses in a sample and its area (Equation 2). The 
number of pulses in the sample may be easily calculated by counting the 
number of first or last returns in the sample. To force a pulse density reduction, 
it is needed to calculate the number of pulses in the sample by knowing the 
pulse density to reach and the area of the sample. Afterwards, the new number 
of pulses calculated are randomly selected among all the pulses in the sample 
(see Figure 2.5). This resulting new dataset is therefore voxelized in the next 
section to assess the side-lap effect at the new pulse density indicated.  

Pulse densities tested differ according to the analysis. Samples from the 
analysis of the side-lap effect on ALSFW metrics were located in areas with higher  
 



INFLUENCE OF METHODOLOGICAL PARAMETERS ON FULL-WAVEFORM ALS METRICS AND 
FOREST ATTRIBUTES PREDICTION 

 

35 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

Equation 2 

 

Figure 2.5. Examples of gradual reduction of pulse density, representing values of 20, 
4, and 2 pulses·m-2 from left to right. 

pulse densities, therefore a wider range of pulse densities could be tested. The 
pulse density was reduced from 16 to 2 pulses·m-2 with an interval of 1 pulse·m-

2, resulting in 15 different density values. The initial pulse density was selected 
considering the maximum and common pulse density value found in the 30 
samples. Plots from the analysis of the side-lap effect on the estimate of forest 
attributes correspond with areas where field data are available. Because of this, 
the selection of plots for the analysis is restricted, and therefore a smaller range 
of pulse densities could be tested. In this case, the maximum and common pulse 
density value was set to 9 pulses·m-2 to work with 36 plots. The pulse density 
was reduced from 9 pulses·m-2 to 1 pulse·m-2 every 0.5 pulses·m-2. 
 

2.3.3. Voxelization 
 

Once ALSFW data have been radiometrically corrected and noise removed, 
and selected according to pulse density, voxelization procedure (Procedure 3) 
may be carried out. However, prior to voxelization a height normalization is 
required to avoid mixing different vertical strata. The DTM described in section 
2.2, and generated from the original pulse densities was used for height 
normalization. Up to this point, the terms “waveform” or “pulse” have been 
employed, since denoising and pulse density reduction was done at waveform-
level. However, voxelization requires a point cloud, and this is obtained from 
the discretization of the waveforms. Waveforms are defined by a set of bins 
(Figure 2.6), which have an amplitude that is provided either in the LAS file or 
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in a WDP file. Nevertheless, XYZ coordinates of each bin must be calculated 
prior to voxelization. To do this, XYZ coordinates from at least one return 
belonging to the waveform, the return point waveform location of this return 
(i.e., offset in time units from the first bin of the waveform to the return point 
location), the temporal sample spacing value (i.e., distance between two 
consecutive bins), and the waveform line parameters Xt, Yt and Zt are required. 
All these data may be retrieved from the LAS file and are described in Figure 
2.6. Firstly, the coordinates of the anchor point (i.e., the first bin of the 
waveform) (see Figure 2.6) must be calculated (Equation 3). To do this, the XYZ 
coordinates of the anchor point are calculated from the known coordinates of 
the return point, the waveform line parameters, and the offset between the 
anchor and the return point: 

XA = XRi – Xt * RPWL 

YA = YRi – Yt * RPWL 

ZA = ZRi – Zt * RPWL 

Equation 3 

where XA, YA, ZA = XYZ coordinates of the anchor point in meters, 

 XRi, YRi, ZRi = XYZ coordinates of the return point i in meters, 

 Xt, Yt, Zt = waveform line parameters, 

RPWL = return point waveform location, which is the offset in 
picoseconds (10-12) between the anchor and the return point i. 

Secondly, XYZ coordinates of all the bins contained in the waveform may 
be calculated from the anchor point coordinates (Equation 4). To do this, the 
offset in each dimension between the anchor point and the corresponding bin is 
calculated using the waveform line parameters, the relative position of the 
corresponding bin in the waveform from the anchor point, and the distance 
between two consecutive bins. Next, this offset in each dimension is added to 
the corresponding coordinate of the anchor point: 
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Xi = XA + Xt * i * TSS 

Yi = YA + Yt * i * TSS 

Zi = ZA + Zt * i * TSS 

Equation 4 

where Xi, Yi, Zi = XYZ coordinates of current bin in meters, 

 XA, YA, ZA = XYZ coordinates of the anchor point in meters, 

 Xt, Yt, Zt = waveform line parameters, 

i = bin position with respect to the anchor point (i.e., i = 0 for the anchor 
point), 

TSS = temporal sample spacing in picoseconds (10-12). 

Following this procedure, XYZ coordinates from each bin of each waveform 
may be calculated. These coordinates together with its amplitude value yield to 
a discrete point cloud from ALSFW data, which may be further voxelized. 

Voxelization is a procedure to drastically reduce the amount of data and 
facilitate the extraction of metrics. It consists of clustering data within voxels, 
which are 3D pixels or rectangular prisms (Figure 2.7a). A voxel must be defined 
by its XYZ dimensions. Usually, X and Y dimensions coincide, however Z 
dimension may differ, since horizontal and vertical accuracies differ in ALS 
systems. To process ALSFW data, XY dimensions are related to the footprint size 
of the laser pulse and the pulse spacing, while Z dimension is defined by the 
temporal sample spacing value (see Equation 5). 

𝑆𝑆 = 𝑐𝑐 ×  
𝑇𝑇𝑇𝑇𝑇𝑇

2
 

Equation 5 

where S = distance in meters between two consecutive bins, 

 c = speed of light in m·s-1, 

 TSS = temporal sample spacing in seconds. 



CHAPTER 2 

 

38 

 

Figure 2.6. Description of waveform elements. 

On the other hand, an assignation value must also be assigned for the 
voxelization. This is the statistical procedure (i.e., maximum, mean, median, 
etc.) employed to calculate the resulting voxel value from all the data contained 
inside (Figure 2.7b). Therefore, to carry out the voxelization procedure is 
necessary to set two voxel parameters: voxel size and assignation value. As a 
result, a regular voxel grid with their corresponding voxel values is obtained 
(Figure 2.7a). 

Different voxel sizes and assignation values were tested in the analyses. In 
the analysis of side-lap effect on ALSFW metrics, 14 voxel size variations in XY 
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Figure 2.7. Representation of (a) 3D matrix of voxels, and (b) voxelization of point 
cloud data within a voxel with different statistical procedures. 

dimensions were tested: 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.05, 1.15, 1.25, 
1.35, 1.45 and 1.55 m. The minimum voxel size was equal to the footprint size. 
The voxel size in Z dimension was not modified, and the vertical distance 
between waveform bins, based on the temporal sample spacing of the ALS 
system, was respected. Therefore, the voxel size in Z dimension was 0.3 m, 
calculated from the temporal sample spacing (see Equation 5). In addition, the 
voxel value was computed using five different statistics (maximum, mean, 
median, percentiles 90 and 95) for all the waveform bins within each voxel. In 
the analysis of side-lap effect on the estimate of forest attributes, three voxel 
sizes were tested: 0.25, 0.5 and 1 m. As in the first analysis, Z dimension of 
voxels was calculated from the temporal sample spacing (i.e., 0.3 m) (see 
Equation 5). However, only maximum as the assignation value was tested for 
this second analysis to keep the significance of the maximum amplitudes from 
the original waveforms when generating the pseudo-vertical waveforms 
(Hermosilla et al., 2014b). 
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2.3.4. Extraction of ALSFW metrics 
 

Once voxelization has been carried out, pseudo-vertical waveforms must be 
generated. Although it is a step prior to the extraction of ALSFW metrics, they 
are considered in the same procedure (Procedure 4). The generation of pseudo-
vertical waveforms was proposed by Hermosilla et al. (2014b) to standardize 
the acquisition of ALSFW metrics from different flight stripes and off-nadir scan 
angles. Most of the emitted pulses have off-nadir angles, and hence they have a 
horizontal displacement. In order to remove this horizontal displacement, the 
standardization of the pseudo-vertical waveform consists of generating new 
waveforms from the voxel values along a voxel column from the top of the 
canopy to the ground (Figure 2.8). As all these new waveforms have a vertical 
direction, they all represent the vertical profile of the vegetation from a nadir 
angle. As a result, a regular grid of waveforms with a vertical direction is 
generated, where each voxel column contains a pseudo-vertical waveform. 

 

Figure 2.8. Extraction of the voxel column and the corresponding pseudo-vertical 
waveform from the 3D matrix of voxels. 

Once waveforms from different scan angles have been standardized using 
pseudo-vertical waveforms, ALSFW metrics may be extracted (Procedure 4). 
Some of the most employed metrics were proposed by Duong (2010) and further 
described by Cao et al. (2014). These metrics are HOME (Height Of Median 
Energy), WD (Waveform Distance), NP (Number of Peaks), ROUGH 
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(ROUGHness), HTMR (Height/Median Ratio), VDR (Vertical Distribution 
Ratio), RWE (Return Waveform Energy), and FS (Front Slope), which are 
described in Table 2.2 and Figure 2.9. All these metrics were extracted from each 
pseudo-vertical waveform, resulting in a regular grid where each voxel column 
contains the values of these metrics (Figure 2.10). To carry out an area-based 
approach (ABA) based on either plots, where field data have been acquired, or 
samples, to assess metric variations, metric values were obtained by calculating 
the mean and the standard deviation of each metric value within the area 
delimited by either the plot or the sample. As a result, 16 metrics were computed 
with an ABA from the initial eight metrics: HOMEµ, HOMEσ, WDµ, WDσ, 
NPµ, NPσ, ROUGHµ, ROUGHσ, HTMRµ, HTMRσ, VDRµ, VDRσ, RWEµ, 
RWEσ, FSµ, and FSσ. These resulting ALSFW metrics with an ABA were used 
for further assessment of metric variations and estimation of forest attributes. 

Table 2.2. Description of the ALSFW metrics. 

Metric Description 
HOME Height of the waveform centroid 

WD Height of the waveform 
NP Number of peaks in the waveform 

ROUGH Offset between the waveform height and the height of the first peak 
HTMR HOME/WD 
VDR (WD-HOME)/WD 
RWE Integral of the waveform amplitudes 

FS Vertical angle from the beginning of the waveform to the amplitude of the first peak 
 

2.3.5. Analysis of the influence of side-lap effect on ALSFW metrics 
 

In this section, the influence of side-lap effect of ALSFW metrics was 
analyzed. Firstly, it was analyzed how metric values vary as a function of pulse 
density; and secondly, as a function of voxel parameters (i.e., voxel size and 
assignation value). 
 

2.3.5.1. Variation of ALSFW metrics related to pulse density 
 

Once ALSFW metrics were computed for every sample, voxel size, assignation 
value and pulse density, its variation related to the pulse density was analyzed 
(Procedure 5). The goal was to analyze variations of ALSFW metrics modifying 
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Figure 2.9. Graphical description of six of the eight ALSFW metrics (HOME, WD, NP, 
ROUGH, RWE and FS) extracted from a pseudo-vertical waveform. The other two 
(HTMR and VDR) are computed as a combination of others. 

 
the three mentioned parameters (i.e., voxel size, assignation value and pulse 
density). Among the eight ALSFW metrics previously described, only six of them 
(HOME, WD, NP, ROUGH, RWE and FS) were analyzed in this analysis, since 
the other two (HTMR and VDR) depend on HOME and WD. Firstly, the 
variation related to pulse density for several samples at different voxel sizes and 
assignation values was observed. As this variation followed a negative 
exponential distribution, the least squares method was used to find the most 
appropriate parameter values, fitting a negative exponential model (Equation 
6). In this model, based on the exponential semivariogram model (David, 1977), 
ALSFW metric values (y = dependent variable) tend to remain stable around a sill 
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Figure 2.10. Resulting values from the extraction of (a) HOME, (b) NP, (c) VDR and 
(d) RWE ALSFW metrics in a specific area of 500 × 500 m. 

with a slight positive slope at a given pulse density (x = independent variable). 
The formula of the negative exponential function is as follows: 

𝑦𝑦 = 𝑎𝑎 + 𝑐𝑐 × ( 1 −  𝑒𝑒𝑒𝑒𝑒𝑒−
3𝑥𝑥
𝑏𝑏 ) 

Equation 6 

where x = value of density in pulses·m-2, 

 y = value of the ALSFW metric, 

 a = value of y at which x = 0 in the negative exponential model, 
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 b = value of x where y reaches the 95% of the sill value, 

c = range of y between a and the value of y at which the function is 
stabilized then,  

a + c = y value of the sill. 

On the other hand, each sample has different values for ALSFW metrics, due 
to vegetation variability. Therefore, with the aim of working with all 30 samples, 
a function was fitted for each sample separately. Instead, a function for each 
sample individually was fitted, and then the model results from the 30 samples 
clustered by ALSFW metric, voxel size and assignation value was averaged. As a 
result, 12,600 different models were computed (i.e., 30 samples × 6 ALSFW 
metrics × 14 voxel sizes × 5 assignation values) resulting 420 averaged results 
(i.e., 6 ALSFW metrics × 14 voxel sizes × 5 assignation values). Only negative 
exponential models with a convergence tolerance of < 1 × 10-5 in the iterative 
fitting process were used for the study. Validation was carried out using the 
Jackknife procedure described by Duda et al. (2012), which utilizes a leave-one-
out procedure. Results were evaluated using the coefficient b, which shows the 
minimum pulse density where ALSFW metrics hardly vary, and the Jackknife 
bias, which shows the average of the deviations after removing one observation 
at each iteration. 
 

2.3.5.2. Variation of ALSFW metrics according to voxel size and assignation value 
 

As seen in the previous section, analyzing variability of ALSFW metrics as 
pulse density increases provides the minimum pulse density (MPD) where 
metrics stay steady, corresponding to the coefficient b of the negative 
exponential model. In addition, analyzing the variability using different voxel 
sizes and assignation values may help to diminish the influence of the pulse 
density (Procedure 5). Total Variation (TVar) (Equation 7) (Harten, 1983) can be 
used instead of the variability of ALSFW metric values for the different pulse 
densities explained in the previous section. The TVar computes the sum of 
differences between adjacent values. Hence, the lower the TVar value, the less 
variability the ALSFW metric has due to the pulse density. The formula of the 
TVar is as follows: 
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𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  � �𝑦𝑦𝑝𝑝𝑝𝑝+1 − 𝑦𝑦𝑝𝑝𝑝𝑝�
16−1

𝑝𝑝𝑝𝑝=2
 

Equation 7 

where y = value of the metric in a given pulse density (pd) and, 

 pd = pulse density. 

Given that ALSFW metrics and assignation values have, in practice, a 
different range of values, ALSFW metrics were rescaled independently for each 
possible combination of metric and assignation type. A modified version of the 
feature scaling method was used (Equation 8) to standardize data. In our case, 
the minimum value was equal to zero to keep the minimum TVar value as zero: 

𝑦𝑦 =  
𝑥𝑥 −𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) −𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥)
 / 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥)  = 0 

Equation 8 

where y = standardization of the ALSFW metric value, 

 x = ALSFW metric value, 

min(x) = minimum ALSFW metric value grouped by ALSFW metric and 
assignation value, in our case modified to min(x) = 0, 

max(x) = maximum ALSFW metric value grouped by ALSFW metric and 
assignation value. 

Afterwards, the TVar was computed from the 30 samples by averaging 
every ALSFW metric, voxel size and assignation value. 
 

2.3.6. Analysis of the influence of side-lap effect on the estimate of 
forest attributes 

 

The second analysis involved the assessment of side-lap effect when 
estimating forest attributes (Procedure 6b). To do this, accuracies of forest 
attribute estimates were compared by reducing pulse density in plots and 
testing different voxel sizes and regression methods. Prior to this analysis, the 
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estimation of forest attributes using ALSFW metrics as independent variables in 
the regression models was carried out (Procedure 6a). In this analysis, two forest 
attributes were estimated: AGB and canopy base height (CBH), being mass- and 
height-related attributes, respectively. Contrary to the previous analysis, the 
eight ALSFW metrics previously described were used as independent variables. 
The mean of each metric within each plot was computed and further used as 
variable in the regression models. Before generating the regression models, a 
selection of ALSFW metrics was performed only for the highest pulse density 
(i.e., 9 pulses·m-2) and each regression method. The four regression methods 
tested were linear, square-root-transformed (sqrt), exponential and power, 
whose models are presented in Equation 9, Equation 10, Equation 11 and 
Equation 12, respectively. These selected metrics were used for all the pulse 
density reductions and voxel sizes in order to better compare how it affects 
estimates without using different explanatory variables. The process followed 
for the metric selection was to compare the Akaike Information Criterion (AIC) 
(Akaike, 1973) of all the possible models with a maximum of three ALSFW 
metrics as independent variables.  

𝑦𝑦 =  𝑎𝑎0 + 𝑎𝑎1 × 𝑥𝑥1 + 𝑎𝑎2 × 𝑥𝑥2 + ⋯+ 𝑎𝑎𝑛𝑛 × 𝑥𝑥𝑛𝑛 

Equation 9 

�𝑦𝑦 =  𝑎𝑎0 + 𝑎𝑎1 × 𝑥𝑥1 + 𝑎𝑎2 × 𝑥𝑥2 + ⋯+ 𝑎𝑎𝑛𝑛 × 𝑥𝑥𝑛𝑛 

Equation 10 

𝑦𝑦 =  𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎0+𝑎𝑎1×𝑥𝑥1+𝑎𝑎2×𝑥𝑥2+⋯+𝑎𝑎𝑛𝑛×𝑥𝑥𝑛𝑛) 

Equation 11 

𝑦𝑦 =  𝑎𝑎0 × 𝑥𝑥1𝑎𝑎1 × 𝑥𝑥2𝑎𝑎2 × … × 𝑥𝑥𝑛𝑛𝑎𝑎𝑛𝑛 

Equation 12 

where y = dependent variable (i.e., forest attribute to estimate), 

x1, x2, …, xn = independent variables (i.e., ALSFW metrics) 

a0, a1, a2, …, an = coefficients to be adjusted. 
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Once ALSFW metrics were selected, the four regression models described 
(i.e., linear, square-root-transformed, exponential and power) were generated 
for each pulse density and voxel size. Finally, regression models were evaluated 
by comparing R2, and RMSE, and using leave-one-out cross-validation. 
 

2.4. Results 
 

This section presents the results of the analysis of side-lap effect on ALSFW 
metrics and on the estimate of forest attributes. Firstly, variations in ALSFW 
metrics were analyzed by modifying pulse density and voxel parameters (i.e., 
voxel size and assignation value). Secondly, differences in evaluation 
parameters (i.e., R2 and RMSE) of forest attribute estimates were analyzed when 
modifying pulse density, voxel size and regression methods. 
 

2.4.1. Analysis of the influence of side-lap effect on ALSFW metrics 
 

Figure 2.11 shows how the pseudo-vertical waveform and the ALSFW metrics 
from the same voxel column vary modifying the pulse density, voxel size and 
assignation value. The lower the pulse density, the more null values and the less 
details appear in the pseudo-vertical waveform. However, changes in the 
waveform due to pulse density reduction seem to be less noticeable when voxel 
size increases to 1.25 m, except for the median assignation value. In addition, 
pseudo-vertical waveforms using the median assignation are smoother than 
those using the maximum assignation. Analyzing values of ALSFW metrics for 
the same voxel size, HOME, WD, ROUGH and FS do not show significant 
variations. On the contrary, NP and RWE are more variable. 
 

2.4.1.1. Variation of ALSFW metrics related to pulse density 
 

Figure 2.12 and Figure 2.13 show the variation of HOME, WD, NP, ROUGH, 
RWE and FS in one sample for the different pulse densities with the maximum 
assignation and voxel size of 0.25 and 0.75 m. In the case of 0.25 m (Figure 2.12a), 
the trend fits a negative exponential model for all the metrics. This does not 
occur using a voxel size of 0.75 m for metrics HOME and FS (Figure 2.12a and 
Figure 2.13c). The negative exponential function shows that metric values 
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Figure 2.11. Examples of pseudo-vertical waveforms at voxel column-level and ALSFW 
metric values for different pulse densities (20, 10 and 5 pulses·m-2), voxel sizes (0.25 
and 1.25 m) and assignation values (maximum and median). 
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Figure 2.12. Variation of (a) HOME in meters, (b) WD in meters and (c) NP, related 
to pulse density in one sample for the maximum assignation value and a voxel size of 
0.25 m (left column) and 0.75 m (right column). The black points represent the values 
computed and the red curve the fitted negative exponential model. The values of HOME 
in the right column do not fit a negative exponential model. 

progressively increase as pulse density increases, until they reach the sill of the 
curve, being for example for HOME at 9-10 pulses·m-2 (in this case the MPD was 
7.11 pulses·m-2). However, the difference of metric values obtained at the lowest 
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and largest pulse density decreases with a voxel size of 0.75 m, therefore metric 
values become more stable increasing the voxel size. 

 

 

Figure 2.13. Variation of (a) ROUGH in meters, (b) RWE and c) FS in degrees, related 
to pulse density in one sample for the maximum assignation value and a voxel size of 
0.25 m (left column) and 0.75 m (right column). The black points represent the values 
computed and the red curve the fitted negative exponential model. The values of FS in 
the right column do not fit a negative exponential model. 
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After generating the fitted models for every sample, Figure 2.14 shows the 
average of the adjusted MPD values from the 30 samples where the 
corresponding ALSFW metric remains stable (i.e., the b coefficients from the 
negative exponential models (see Equation 6)); and Figure 2.15 shows the 
standard deviation of the MPD for all samples. All the models obtained a 
Jackknife bias lower than 1.56×10-13 in the validation procedure for the three 
coefficients of the negative exponential model (i.e., a, b and c). This means that 
there were not outliers after applying the leave-one-out procedure. It is 
important to remark that the negative exponential models were generated using 
sample data from 2 to 16 pulses·m-2. Hence, variation of ALSFW metric values 
estimated out of this range are extrapolations, and as such the resulting MPD 
values higher than 16 pulses·m-2 must be considered carefully. Additionally, 
empty cells in Figure 2.14 and Figure 2.15 correspond to combinations of metrics 
and voxel sizes that do not fit a negative exponential model. NP, ROUGH, and 
RWE are the metrics with highest MPD values (MPD ϵ [42.2, 46.2], MPD ϵ [18.7, 
21.3], and MPD ϵ [60.2, 89.7] pulses·m-2, respectively, for a voxel size of 0.25 m), 
while HOME, WD and FS have the lowest (MPD ϵ [7.1, 7.2], MPD = 9.6 and MPD 
ϵ [3.9, 4.1] pulses·m-2, respectively, for a voxel size of 0.25 m). Every ALSFW 
metric remains asymptotically stable at lower pulse densities as voxel size 
increases. For instance, the MPD decreases from 7.1 to 3.4 pulses·m-2 for HOME; 
from 9.6 to 8.4 pulses·m-2 for WD; from 45.5 to 15.4 pulses·m-2 for NP; from 21 to 
4.6 pulses·m-2 for ROUGH; and from 60.2 to 5.3 pulses·m-2 for RWE. However, 
WD has low values for voxel sizes of 0.35 and 0.45 m (MPD ϵ [8.4, 8.5]), but they 
increase again as the voxel size also increases (MPD = 13.5 pulses·m-2). Results 
also show that for low MPD values (i.e., MPD ϵ [3.9, 5.6]), variation of ALSFW 
metrics does not fit a negative exponential trend for high voxel sizes. This 
behavior is observed with HOME, ROUGH, RWE and FS, except for ROUGH 
using the maximum assignation value. In these cases, ALSFW metric values tend 
to slightly decrease as pulse density increases. 

Comparing different assignation values, HOME, WD, NP and FS have 
similar MPD values; however, ROUGH and RWE were influenced differently. 
Both ROUGH and RWE remain stable at lower pulse densities using the median 
as assignation value, but they present more variation using the maximum, 
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Figure 2.14. Average minimum pulse density (MPD; i.e., coefficient b from the 
negative exponential model) from the 30 samples for different voxel sizes and 
assignation values. Empty cells correspond to combinations of metrics and voxel sizes 
that do not fit a negative exponential model. Values in bold correspond to MPD values 
higher than 16 pulses·m-2 (i.e., the maximum pulse density from sample data used to 
generate the negative exponential model). Smallest and highest values are represented 
by blue and red colors, respectively. 

percentiles 90 and 95. For instance, RWE has a MPD value of 5.3 pulses·m-2 using 
the median assignation and a voxel size of 1.25 m, while the MPD value was 
18.6 using the maximum and the same voxel size. 
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Figure 2.15. Average standard deviation of minimum pulse density (MPD; i.e., 
coefficient b from the negative exponential model) from the 30 samples for different voxel 
size and assignation values. Empty cells correspond to combinations of metrics and 
voxel sizes that do not fit a negative exponential model. Smallest and highest values are 
represented by blue and red colors, respectively. 

Analyzing the average of the standard deviation of the MPD from the 30 
samples (Figure 2.15), all the values are low (between 1 and 2.6 pulses·m-2) 
except for NP and RWE with small voxel sizes. These ALSFW metrics have large 
standard deviations for small voxel sizes ([6.7, 8.6] and [5.8, 11] pulses·m-2, 
respectively), diminishing the values for larger voxel sizes ([1.9, 2.3] and [1.0, 
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1.2] pulses·m-2, respectively). However, the standard deviation of ROUGH 
using the maximum assignation increases as voxel size increases. High standard 
deviation value of MPD are related to high MPD values. 
 

2.4.1.2. Variation of ALSFW metrics according to voxel size and assignation value 
 

Figure 2.16 shows the TVar value defined by Equation 7 and Equation 8, for 
every ALSFW metric computed at the different voxel sizes and assignation 
values. Overall, HOME, WD and FS present the lowest TVar values (TVar ϵ 
[0.03, 0.27], TVar ϵ [0.06. 0.28] and TVar ϵ [0.10, 0.28, respectively), while NP, 
ROUGH and RWE present higher values (TVar ϵ [0.24, 0.36], TVar ϵ [0.14, 0.52] 
and TVar ϵ [0.12, 0.45], respectively) using small voxel sizes. TVar values of 
HOME, WD, NP for maximum, RWE for mean and median, and FS, decrease as 
voxel size increases compared to the lowest voxel size (i.e., 0.25 m). These values 
range from 0.27 to 0.04 for HOME, from 0.28 to 0.06 for WD, from 0.33 to 0.30 
for NP with the maximum assignation value; from [0.40, 0.45] to [0.12, 0.17] for 
RWE with the mean and median assignation values; and from [0.26, 0.28] to 
[0.10, 0.14] for FS. NP TVar values do not vary significantly as voxel size 
increases, the values being [0.24, 0.32] at 0.25 m, and [0.27, 0.30] the lowest TVar 
values at other voxel sizes. Regarding RWE, the TVar values are minimal at the 
lowest voxel size using the maximum, percentiles 90 and 95 as assignation 
values. Nevertheless, TVar values are particularly high at the lowest voxel size 
using the mean and median assignation value, and become low for the largest 
voxel sizes, especially with the median. In addition, TVar values from ROUGH 
steeply increase as voxel size increases, varying from [0.14, 0.23] at 0.25 m to 
[0.38, 0.52] at 1.55 m. 

Regarding the assignation values, HOME and WD present little or no 
differences. However, NP, ROUGH and RWE have different TVar values 
depending on the assignation values. NP has the lowest value at 0.25 m for the 
median assignation value (TVar = 0.24 m). The lowest TVar values of ROUGH 
are reached using the maximum, percentiles 90 and 95. Finally, RWE TVar 
values have the largest differences between assignation values, the mean and 
median being completely different from the others. 
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Figure 2.16. TVar values for the different ALSFW metrics computed for the assignation 
values and voxel sizes. Smallest and highest values are represented by blue and red 
colors, respectively. 

 

2.4.2. Analysis of the influence of side-lap effect on the estimate of 
forest attributes 

 

Figure 2.17 shows R2 values obtained in AGB and CBH estimates for the 
different regression methods, pulse densities and voxel sizes. Regarding AGB, 
the voxel size of 1 m has the highest and less affected results by pulse density 
variations for all the regression methods. R2 values range between 0.72-0.87, 
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0.81-0.88 and 0.83-0.89 for a voxel size of 0.25, 0.5 and 1 m, respectively. 
Additionally, for a voxel size of 1 m, R2 variations along the different pulse 
densities with a same regression method are 0.01-0.04, while variations are 0.03-
0.13 and 0.01-0.05 for a voxel size of 0.25 and 0.5 m, respectively. On the other 
hand, sqrt regression is also unaffected by pulse density at a lower voxel size 
(i.e., 0.5 m), varying up to 0.01. Overall, sqrt has the highest R2 values, ranging 
between 0.87-0.88, and 0.88-0.89 for a voxel size of 0.5 and 1 m, respectively. On 
the other hand, R2 values from CBH estimates stay steady until 1.5 pulses·m-2, 
where they suddenly drop with a R2 variation up to 0.11, except for 0.25 m with 
power and exponential regressions. For CBH estimates, the power regression is 
more constant for all the voxel sizes than the linear, sqrt and exponential 
regressions. R2 variations for the power regression are between 0.02-0.04, while 
variations of linear, sqrt and exponential regressions range between 0.05-0.11, 
0.10-0.15 and 0.05-0.05, respectively. 

Table 2.3 shows the mean and standard deviation of the RMSE obtained 
from AGB and CBH estimates. Analyzing AGB results, the smaller the voxel 
size, the larger the RMSE and the more variability. For a voxel size of 0.25 m, 
mean and standard deviation values of RMSE range between 87.5-102.1 Mg·ha-

1 and 2.9-11.1 Mg·ha-1, respectively, while for a voxel size of 1 m, mean and 
standard deviation values of RMSE range between 80.6-91.1 Mg·ha-1 and 0.7-3.2 
Mg·ha-1, respectively. In addition, sqrt regression has the lowest RMSE, being 
80.6 Mg·ha-1 with a standard deviation of 1.2 Mg·ha-1 for a voxel size of 1 m. 
Conversely, CBH has lower RMSE differences between voxel sizes and less 
variable. For all the voxel sizes, mean and standard deviation values are 
between 4.6-5.2 m and 0.1-0.3 m, respectively. Hence, CBH results do not 
depend on voxel size. In this case, power regression has the lowest RMSE, being 
4.5 m with a standard deviation of 0.1 m for a voxel size of 1 m. In general, the 
behavior of RMSE is coincident with that of the R2 values. 

Figure 2.18 shows the estimation of AGB and CBH in a small area of 1.5 × 
1.5 km with two different voxel sizes (0.25 and 0.75 m) and the maximum as 
assignation value. Estimation with a voxel size of 0.25 m shows that side-lap 
effect (highlighted with red rectangles) is present on both forest attributes. On  
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the contrary, the use of a larger voxel size (i.e., 0.75 m) shows that this side-lap 
effect is reduced or disappears. 

 

 

Figure 2.17. Variation of R2 values for AGB and CBH estimates for the different 
regression methods (Lin: linear, Sqrt: square-root-transformed, Exp: exponential, Pow: 
power), pulse densities and voxel sizes. Red- and blue-colored cells represent the lowest 
and highest R2 values, respectively, for each attribute. 
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Table 2.3. Mean and standard deviation from the RMSE for the different forest 
attributes, voxel sizes and regression methods (linear, Sqrt: square-root-transformed, 
Exp: exponential, power). 

Methods 
AGB (Mg·ha-1) CBH (m) 

0.25 m 0.5 m 1 m 0.25 m 0.5 m 1 m 
Lineal 92.6±2.9 88.4±1.6 86.6±0.7 4.8±0.1 4.8±0.2 4.5±0.2 
Sqrt 87.5±3.2 82.1±1.2 80.6±1.2 5.0±0.3 4.9±0.3 4.6±0.2 
Exp. 102.1±11.1 93.0±3.7 91.1±3.2 5.1±0.1 5.2±0.1 5.0±0.1 

Power 97.4±4.0 87.2±2.8 82.4±1.1 4.6±0.1 4.7±0.1 4.5±0.1 

 
 

 

Figure 2.18. Estimation of AGB and CBH in an area of 1.5 × 1.5 km using maximum 
assignation value and voxel sizes of 0.25 m and 0.75 m. Red rectangles highlight the 
side-lap effect on forest attribute values for a voxel size of 0.25 m. 

 

 



INFLUENCE OF METHODOLOGICAL PARAMETERS ON FULL-WAVEFORM ALS METRICS AND 
FOREST ATTRIBUTES PREDICTION 

 

59 

2.5. Discussion 
 

Key results indicate that variations of ALSFW metrics due to pulse density 
differences can be foreseen, and therefore their impact reduced by setting a 
MPD, modifying the voxel size and/or the assignation value used. Additionally, 
forest attributes estimated from ALSFW metrics are apparently much less 
influenced by side-lap effect. However, this effect is present when estimating 
forest attributes in larger areas and must also be considered. Hence, 
modification of the voxel parameters may help to diminish the side-lap effect in 
a particular study area, and therefore to obtain a more accurate estimate of 
forest attributes. 

Results showed that variations of ALSFW metrics related to pulse density have a 
negative exponential behavior, especially with small voxel sizes. Usually, there 
is a MPD from which metric values are stabilized. In new acquisitions of ALSFW 
data, this MPD should be the minimum pulse density value registered by the 
sensor to avoid the side-lap effect. However, the MPD is not constant for every 
ALSFW metric, voxel size or assignation values employed. Therefore, in practice, 
either the most affected ALSFW metrics should be avoided for estimation of 
forest attributes, the voxel size increased, the assignation value or the regression 
method modified. 

On the other hand, when ALSFW data have already been acquired, pulse 
density cannot be increased, and therefore other strategies are required, such as 
modifying voxel parameters. Our results showed that increasing the voxel size 
and/or modifying the assignation value can make ALSFW metrics more stable. 
The probability that larger voxels are crossed by at least one waveform is higher, 
avoiding the gaps in the voxel columns that may alter values of ALSFW metrics. 
Therefore, side-lap effect is influenced by pulse density, which, together with 
the voxel size, is directly related to the number of waveforms crossing each 
voxel. Hence, a trade-off between increasing voxel size to reduce side-lap effect 
and a substantial loss of resolution should be considered. Regarding the 
assignation value, its effect on the stability of ALSFW metrics depends on the 
chosen metrics. Some standard ALSFW metrics, such as RWE, have unstable 
behavior, whereas some others, such as WD, have not. In general, the increment 
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of the voxel size and the change of the assignation value reduce the variation of 
ALSFW metrics. 

MPD values determine the minimum pulse density required to obtain stable 
ALSFW metrics. However, the variation trend of some ALSFW metrics does not 
follow a negative exponential model. Additionally, in some metrics (e.g., WD) 
higher values of MPD do not correspond to higher values of TVar. Therefore, 
the introduction of TVar complements the MPD as an indicator of the variability 
of the ALSFW metric due to pulse density changes. 

Regarding different behavior among ALSFW metrics, NP and RWE are more 
sensitive to pulse density changes than the rest. The lack of one or more voxel 
values means fewer peaks and a different sum of amplitudes in the wave. On 
the contrary, HOME, WD, ROUGH (at lower voxel sizes) and FS are less 
affected, since they are metrics that are related either to the height or to the top 
texture of the canopy, where the laser energy from airborne sensors arrives 
without occlusion. WD only requires a proper estimation of the height of the 
beginning of the waveform (top of the canopy), and it is well determined if the 
waveform intersects with the top of the trees. HOME calculation involves the 
beginning of the waveform as well as the height of the median energy. The latter 
is usually well registered, since it often corresponds to the densest vertical layer 
(see HOME values in Figure 2.11). ROUGH and FS calculation required the 
beginning of the waveform, and the position and amplitude of the first peak. 
Therefore, HOME, WD, ROUGH and FS vary if some voxel columns have no 
data due to a low pulse density. In order to avoid this, an increment of the voxel 
size is required. 

In addition, there is remarkable disparity in values of ALSFW metrics using 
different assignation values. MPD and TVar values from WD do not vary, since 
the beginning of the waveform does not vary by modifying the assignation 
value. HOME has slight differences, since the height of the median energy may 
vary depending on the assignation employed. NP also presents minor variation, 
since the pseudo-vertical waveform has more singularities when the maximum 
assignation value is employed, ROUGH also has some differences due to 
possible variation of the first peak. RWE is the most variable ALSFW metric. As 
it is computed as the sum of amplitudes of a waveform, the sum of maximum 
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values may substantially differ from the sum of median values, for instance. A 
normalized metric may be used in order to avoid these differences. A possible 
approach could be to calculate a normalized RWE (nRWE) following Equation 
8, where x is equal to RWE, and min(x) and max(x) are the minimum and 
maximum RWE values, respectively, for each assignation value. Thus, nRWE 
values from different assignation values would be comparable. Finally, FS may 
present small differences, since the amplitude and position of the first peak can 
vary as well. 

To summarize, in order to reduce the side-lap effect in this scenario, the 
increment of the voxel size is recommended for HOME, WD, FS, and RWE for 
the mean and median assignation values, but not for ROUGH and RWE when 
maximum, percentiles 90 and 95 assignation values are used. Besides, 
depending on the voxel size, the selection of the assignation value has to be 
considered for RWE. According to results, NP might be discarded for estimating 
forest attributes because of its sensitivity to pulse density. Observing Figure 2.14 
and Figure 2.16, MPD, voxel size and assignation values can be selected to 
minimize the side-lap effect in areas with similar vegetation types and densities. 
When planning a ALS project, a MPD around 10 pulses·m-2, a voxel size of 0.75 
m or similar, and the mean or median voxel assignation seem to optimize 
general performance. This combination of parameters provides the minimum 
values of MPD for most of the ALSFW metrics (Figure 2.14), except for NP. 
However, if ALSFW data are already available and the pulse density cannot be 
increased, the maximum assignation and a voxel size of about 0.75 m would be 
the most efficient option in terms of reduction of side-lap effect Figure 2.16. 

Results are analogous to those of previous studies using ALSD. In these 
studies, a similar tendency for R2 (Jakubowski et al., 2013; Manuri et al., 2017), 
reliability ratio (Magnussen et al., 2010; Hansen et al., 2015) and maximum 
height metric (Roussel et al., 2017) was found. These values stabilize as pulse 
density increases. 

On the other hand, estimate of forest attributes are also influenced by side-
lap effect, given that influenced ALSFW metrics are used as independent 
variables in the regression models. Nevertheless, the influence of side-lap effect 
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is apparently lower on forest attributes, since the plots used for the analysis are 
located where field data are available, and therefore there might not be a 
variability in pulse density; and because forest attributes are statistically fitted 
and errors minimized by using regression models. However, side-lap effect is 
clearly present when forest attributes are estimated for large areas. 

In the same way that the influence of side-lap effect depends on the ALSFW 
metrics, estimate of forest attributes are influenced differently. For instance, 
mass-related attributes (e.g., AGB) are more influenced by voxel size to reduce 
side-lap effect, while height-related attributes (e.g., CBH) are more influenced 
by the regression methods. Increasing the voxel size around 1 m makes that 
accuracy to estimate AGB does not vary as pulse density decreases. On the other 
hand, the use of the power and exponential regression methods makes the 
accuracy to estimate CBH more constant. 

These results are coherent with those reported by González-Ferreiro et al. 
(2012) and Jakubowski et al. (2013) with ALSD. They also observed a lower 
variation in precision for attributes related to height than for mass- and cover-
related attributes as pulse density decreases. 

Modeling variations of ALSFW metrics related to the pulse density is relevant 
to remove or reduce the side-lap effect when mapping or estimating metrics and 
forest attributes. Depending on the ALS data acquisition step, different 
strategies can be followed. First, if ALSFW data have not been acquired yet, a 
minimum pulse density that keeps ALSFW metrics stable may be set. Second, if 
ALSFW data have already been acquired, variation of ALSFW metrics can be 
reduced by increasing the voxel size to a certain extent, and/or using a specific 
assignation value. In this case, the pulse density cannot be increased, therefore 
voxel parameters that provide more stable metrics should be used. Finally, if 
some forest attributes do not respond to these strategies and reducing the side-
lap effect is not possible, then either they should be avoided for further 
regression models or other regression methods should be employed, especially 
in height-related attributes. 
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2.6. Conclusions 
 

In this chapter, the variation of ALSFW metrics and estimates of forest 
attributes according to the pulse density, voxel parameters and regression 
methods has been analyzed. This variation is common due to side-lap areas that 
are registered with a higher pulse density, and is known as “side-lap effect”. 
Our results suggest that ALSFW metric variations related to pulse density can be 
modeled in most cases using a negative exponential model, and therefore there 
is a threshold at which their values stabilize. From this point, a minimum pulse 
density can be set to avoid the side-lap effect. In addition, modifying voxel 
parameters (i.e., voxel size and assignation value) reduces the side-lap effect 
when pulse density cannot be increased, e.g., when ALSFW data have already 
been acquired. Thus, an increment of the voxel size is recommended for HOME, 
WD, FS and RWE for the mean and median assignation values. Nevertheless, 
small voxel sizes make ROUGH and RWE for maximum, percentiles 90 and 95 
more stable. On the other hand, the choice of the assignation value must be 
considered depending on the voxel used for RWE. However, NP is sensitive to 
pulse density variations and they cannot be reduced through voxel parameters, 
and therefore should be avoided for further analyses. Regarding estimates of 
forest attributes, mass-related attributes are more influenced by pulse density 
than height attributes. This influence however can also be reduced by increasing 
the voxel size. On the contrary, height-related attributes are influenced by the 
regression methods used for the estimate. The results presented in this chapter 
have practical relevance in order to avoid the side-lap effect when estimating 
forest attributes using ALSFW data. Further studies could focus on analyzing the 
effect of these parameters on different ecosystems with different dominant 
species, as well as the effect of the emitted pulse energy, footprint size, and 
vertical structure on ALSFW metrics, since they also influence the penetration of 
laser pulses. 
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In this third chapter, a software tool (WoLFeX) that integrates methods for 
processing ALSFW data and extracting object-oriented metrics is presented. 
Additionally, the influence of the relative radiometric correction and the 
acquisition scan angle (i) on the ALSFW metric RWE, and (ii) on the estimation 
of three forest fuel attributes (canopy fuel load: CFL, canopy height: CH, and 
CBH) are tested and evaluated. The lack of ALSFW software and the fact that 
most of them do not include radiometric correction or computing specific 
metrics for understory vegetation, makes WoLFeX a significant tool to work 
with ALSFW data and to use it in the next sections of this thesis. 
 

3.1. Introduction 
 

As mentioned in Chapter 2, an essential pre-processing step before 
generating ALSFW metrics is the radiometric correction. Radiometric correction 
or calibration is a term widely used in remote sensing imagery. The goal of this 
correction is to reduce errors in the acquired digital values of the pixels due to 
atmospheric or sensor factors (Xu et al., 2019). This process is fundamental when 
dealing with images acquired from different sensors or in different days 
(Mafanya et al., 2018). Additionally, radiometric correction may involve 
converting digital numbers to physical units (Chander et al., 2009). This process 
is less extended for ALS data, however, it is an essential step for ALSFW due to 
the reliance between ALSFW metrics and amplitude values (Wagner, 2010). The 
use of ALSFW data without radiometric correction may lead to modified ALSFW 
metrics, and consequently modified estimates of forest fuel attributes. In this 
case, the goal of the radiometric correction is to provide amplitude values 
independent of the angle of incidence, range from the sensor to the target, as 
well as sensor and flight day atmospheric conditions. Attending to Briese et al. 
(2012), there are two main types of radiometric correction of ALSFW: (i) 
correcting radiometric differences between flight lines without auxiliary data 
(i.e., relative correction) or (ii) using a surface whose approximate reflectance 
values are known or using measured reflectance values from ground targets 
(i.e., absolute correction). The use of any of these corrections, which depends on 
the available data and the presence of well-known surfaces, has been pointed 



CHAPTER 3 

 

68 

out by some authors as a relevant pre-processing step of ALSFW datasets 
(Wagner, 2010; Sevara et al., 2019). 

There are several processing tools available to retrieve ALSD metrics, which 
are further used to predict forest fuel attributes. Two well-known software tools 
are FUSION/LDV (McGaughey, 2014) and LAStools (Isenburg, 2017). Additional 
libraries for processing ALSD data are available in different programming 
languages (e.g., lidR in R as used by Roussel and Auty (2017); laspy in Python 
[http://laspy.readthedocs.io/en/latest/]), such that users can customize their 
own tool for specific needs. However, due to the complexity of the use of ALSFW 
data and the non-standard level of its use and application, there is a very limited 
number of processing tools available for ALSFW data, both at open or 
commercial levels. Researchers working on ALSFW have developed their own 
tools for specific purposes, while others have made their tools available. Zhou 
and Popescu (2019) developed an R package named waveformlidar to process 
and visualize ALSFW data. This package allows for processing ALSFW data 
through two different strategies: (i) by means of deconvolution or 
decomposition of waveforms, therefore providing ALSD point clouds with more 
information (e.g., echo width); and (ii) generating dense point clouds from 
waveforms, self-named as "hyper point clouds”. Furthermore, some commonly 
used ALSFW metrics, including those proposed by Duong (2010), may also be 
retrieved by voxelizing the hyper point clouds through the waveformlidar 
package. Miltiadou et al. (2019) created another open source software tool to 
process ALSFW and hyperspectral imagery data called DASOS. This tool 
visualizes a polygon representation from voxelized ALSFW data and computes 
ALSFW metrics at the voxel column level. Most of these metrics are related to 
height, distance between voxels, and number of empty/full voxels, except for 
the maximum and average intensity value of the voxel column. Another 
available tool for ALSFW data processing is OPALS (Orientation and Processing 
of Airborne Laser Scanning Data) (Pfeifer et al., 2014). This tool computes an 
ALSFW decomposition, but not specific ALSFW metrics from the whole waveform 
amplitudes. Apart from ALSD, LAStools allows for the visualization of ALSFW 
data through PulseWaves (Isenburg, 2012) by representing the trajectories of the 
pulses. Among the software tools mentioned, only waveformlidar and OPALS 
include the radiometric correction, with the relative radiometric correction 
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being recently included in OPALS (Sevara et al., 2019). However, more tools are 
needed in order to cope a wider range of metrics able to better characterize 
forest structure (e.g., understory vegetation metrics), as well as to offer a more 
straightforward approach for the radiometric correction for raw ALSFW data. 

In this chapter, in section 3.2, the different steps to process ALSFW data using 
the methodology based on voxelization and generation of pseudo-vertical 
waveforms to extract ALSFW metrics are described. In addition, a set of ALSFW 
metrics proposed in the literature and others in this study are enumerated. In 
section 3.3, it is shown the software tool WoLFeX and how ALSFW data 
processing and metric extraction described in previous sections may be carried 
out. In section 3.4, it is shown an application example of WoLFeX where the 
influence of scan angle and the relative radiometric correction of ALSFW data on 
one ALSFW metric and the estimate of three forest fuel attributes is analyzed. 
Finally, in section 3.5, the conclusions of this chapter are presented. This chapter 
sets out the Hypotheses 2 and 3: “Understory vegetation in Mediterranean 
forests is a key strata in characterizing wildlife habitats and mitigation of forest 
fires. Metrics to detect and characterize understory vegetation are crucial for 
modeling forest fuel attributes and forest structure, and ALSFW is a more 
suitable technique to capture information from understory. There is a lack of 
ALSFW processing tools integrating these tasks and able to perform radiometric 
correction of data” and “The scan angle has an influence on the amplitude 
values of the waveforms, and therefore on the ALSFW extracted. The application 
of radiometric correction is expected to reduce these differences in the 
amplitude values. As well as ALSFW metric values, forest fuel attributes 
estimated using these metrics may also be influenced by scan angle differences, 
and radiometric correction is expected to reduce this effect”, respectively. To 
demonstrate these hypotheses, Objectives 2 and 3 are addressed in this chapter: 
(i) compile a set of methods to process and analyze ALSFW data, including the 
relative radiometric correction of the data to reduce the effect of the different 
angles of incidence and local altitude variations during the data acquisition 
process, the extraction of most ALSFW metrics as proposed in the literature, as 
well as new metrics focused on understory vegetation, integrating them in a 



CHAPTER 3 

 

70 

new software available to use for the scientific community, and (ii) assess the 
influence of the scan angle of ALS data acquisition and the application or not of 
a radiometric correction on the extraction of an ALSFW metric, and model three 
of the most relevant forest fuel variables—canopy fuel load (CFL), canopy 
height (CH), and canopy base height (CBH). 
 

3.2. ALSFW data processing 
 

One the most common methodologies proposed to process ALSFW data to 
study and model the three-dimensional structure of forests is the one based on 
voxelization and generation of pseudo-vertical waveforms (Hermosilla et al., 
2014b), which has been described in more detail in sections 2.3.3 and 2.3.4. 

The overall strategy followed to process ALSFW data and extract derived 
metrics is illustrated by the flow diagram of Figure 3.1. This strategy coincides 
with some procedures of the strategy followed in Chapter 2 (Figure 2.3). As the 
first procedure (1), radiometric correction and denoising were required prior to 
any treatment of ALSFW data. The second procedure (2) consists of voxelizing 
ALSFW data to generate pseudo-vertical waveforms and the third procedure (3) 
in extracting ALSFW metrics. The last procedure (4) computes ALSFW metrics 
from a pseudo-vertical waveform scale to an object scale (i.e., samples or plots). 

As mentioned in the previous chapter, the first ALSFW processing step 
consists of the radiometric correction of the amplitude values contained in each 
waveform bin (Procedure 1). This is especially critical for ALSFW, since the 
metrics extracted to create the models are directly related to the amplitude 
values. The approach followed to do the relative radiometric calibration is 
described in section 2.3.1. 

After the radiometric correction, a denoising process is needed to remove 
the noise due to the system registration process (Procedure 1). The process 
followed is the one described in section 2.3.1. 

Next step is the voxelization of ALSFW data (Procedure 2), which is described 
in section 2.3.3. 
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Figure 3.1. Overall processing flowchart implemented to process ALSFW data and 
extract derived metrics. 

Once voxelization is carried out, pseudo-vertical waveforms are obtained 
based on the amplitude values of a same column of voxels (Procedure 3), 
correcting off-nadir waveforms. The description of how to generate the pseudo-
vertical waveforms following Hermosilla et al. (2014b) and how to extract the 
derived metrics is described in more detail in section 2.3.4. 

After generation of pseudo-vertical waveforms, ALSFW metrics may be 
extracted. Among the ALSFW metrics enumerated, we proposed 13 new metrics: 
kurtosis, height of the first empty voxel (HFEV), height of the first empty voxel 
from a threshold (HFEVT), energy to the first empty voxel (EFEV), normalized 
energy to the first empty voxel (nEFEV), filled voxels at the understory (FVU), 
normalized number of filled voxels at the understory (NFVU), bottom of canopy 
(BC), bottom of canopy distance (BCD), bottom of canopy energy (BCE), canopy 
distance (CD), canopy energy (CE), and the canopy energy ratio (CER) and 
perform an exhaustive compilation of those proposed by previous recent 
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studies (Kimes et al., 2006; Duncanson et al., 2010; Duong, 2010; Zhang et al., 
2011). All of them are available in the software tool. The ALSFW metrics 
implemented can be divided into seven categories: height, energy, peaks, 
understory, percentiles, Gaussian decomposition, and others. Table 3.1 
describes the different ALSFW metrics classified by category. 

Table 3.1. Description of ALSFW metrics available in WoLFeX (adapted from Crespo-
Peremarch and Ruiz (2020)). 

Category Name Description Units Reference 

H
ei

gh
t WD Waveform distance m 

Duong (2010) 
ROUGH Roughness of outermost canopy m 

HEIGHT Qn Proportion of energy at the nth elevation 
quarter 

- 
Duncanson et 

al. (2010) 

En
er

gy
 

RWE Return waveform energy DN Duong (2010) 
MAX E Maximum energy DN 

Duncanson et 
al. (2010) 

VARIANCE Variance of energy DN2 
SKEWNESS Skewness of energy - 

ENERGY Qn Proportion of energy at the nth energy 
quarter 

- 

KURTOSIS Kurtosis of energy - This study 

Pe
ak

s 

NP Number of peaks - Duong (2010) 

START PEAK Distance between the beginning of the 
waveform and the height of MAX E 

m 
Duncanson et 

al. (2010) 
PEAK END Distance between the height of MAX E 

and the ground 
m 

U
nd

er
st

or
y 

HFEV Height of the first empty voxel m 

This study 

HFEVT Height of the first empty voxel from a 
given threshold m 

EFEV Energy from the ground to the first 
empty voxel 

DN 

nEFEV Energy from the ground to the first 
empty voxel divided by RWE 

- 

FVU Number of filled voxels at the 
understory 

- 

NFVU 
Number of filled voxels at the 

understory divided by the total number 
of voxels 

- 

Pe
rc

en
til

es
 

Hn (H50 = 
HOME) Height at the nth percentile of energy m 

Kimes et al. 
(2006) 

* DN: Digital Number 
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Table 3.1. (cont.) Description of ALSFW metrics available in WoLFeX (adapted from 
Crespo-Peremarch and Ruiz (2020)). 

Category Name Description Units Reference 

G
au

ss
ia

n 
D

ec
om

po
si

tio
n 

N GS Number of Gaussian curves in the 
waveform 

- 

Duncanson et 
al. (2010) 

N GS 
STARTPEAK 

Number of Gaussian curves between the 
beginning of the waveform and the 

height of the boundary 
- 

N GS 
ENDPEAK 

Number of Gaussian curves between the 
height of the boundary and the ground 

- 

GE Ground energy extracted from the 
ground Gaussian curve 

DN 

Zhang et al. 
(2011) 

GRR Ground return ratio: GE divided by 
RWE 

- 

CHn Elevation of the nth quarter of energy, 
excluding the ground Gaussian curve 

m 

Rn CHn divided by WD - 
AGS Average Gaussian curve slope - 

SGS Standard deviation Gaussian curve 
slope 

- 

MSGS Modified standard deviation Gaussian 
curve slope 

- 

BC Bottom of canopy: elevation of the first 
canopy Gaussian curve 

m 

This study 

BCD 
Bottom of canopy distance: distance 

from the beginning of the waveform to 
BC 

m 

BCE Bottom of canopy energy: energy from 
the beginning of the waveform to BC 

DN 

CD 
Canopy distance: distance from the 
beginning of the waveform to the 

boundary between ground and canopy 
m 

CE Canopy energy: energy excluding GE DN 

CER Canopy energy ratio: CE divided by 
RWE 

- 

O
th

er
s 

HTMR Height/median ratio: HOME divided by 
WD 

- 

Duong (2010) 
VDR Vertical distribution ratio: WD minus 

HOME divided by WD 
- 

FS 
Front slope: vertical angle from the 
beginning of the waveform to the 

amplitude of the first peak 
degrees 

* DN: Digital Number 
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ALSFW metrics HOME, WD, NP, ROUGH, RWE and FS are described 
graphically in Figure 2.9 from section 2.3.4, and HTMR and VDR depend on 
HOME and WD. The other ALSFW metrics mentioned are described below in 
different figures, due to the large number of metrics. 

Figure 3.2 shows the representation of MAX E, START PEAK and PEAK 
END. Generally, waveform peaks with the maximum energy correspond to the 
ground. However, if most of the energy is intercepted prior to reach the ground, 
maximum energy may be located in the denser vegetation strata. Therefore, 
these metrics not only provide information about the presence of vegetation and 
detection of the ground, but also about the densest strata. MAX E corresponds 
with the maximum energy of the waveform, which in this example is located at 
a height of 7.2 m. START PEAK is the distance between the beginning of the 
waveform and the height of the maximum energy, while END PEAK is the 
distance between the height of the maximum energy and the ground. 

 

Figure 3.2. Representation of ALSFW metrics MAX E, START PEAK and END PEAK. 
The waveform signal is represented in red, metric marks in black dashed lines, and MAX 
E with a green point. 

Figure 3.3 shows the amount of energy from the different height and energy 
quarters in Figure 3.3a and b, respectively. These quarters of height and energy 
are computed from the distance (i.e., WD) and the maximum energy of the 
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waveform (i.e., MAX E), respectively. Height quarters provide information 
about the distribution of the vegetation along the vertical structure. Energy 
quarters represent if the energy is focused on one peak or distributed in 
different strata. Afterwards, ALSFW metrics HEIGHT Qn and ENERGY Qn are 
computed as the ratio of energy contained in the corresponding quarter divided 
by the total amount of energy (i.e., RWE). 

 

Figure 3.3. Representation of the amount of energy from the different quarters of (a) 
height and (b) energy used for the computation of ALSFW metrics HEIGTH Qn and 
ENERGY Qn, respectively. The waveform signal is represented in red, metric marks in 
black dashed lines, and height and energy quarters filled in blue, green, orange and red. 

HFEV and HFEVT are related to the understory height and analyze the 
pseudo-vertical waveform in the vertical dimension from the ground upwards. 
HFEV is computed as the height from the ground to the first filled voxel 
(defined as an amplitude higher than a given number provided by the user 
(Figure 3.4a). To account for lower shrubs close to the ground and a more open 
understory, the HFEVT calculates the height of the first filled voxel above a 
given threshold (Figure 3.4b). FVU and NFVU are related to understory cover. 
FVU examines if there are any filled voxels between two given heights (Figure 
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3.4c), and NFVU is the number of filled voxels divided by the number of voxel 
between these two heights (Figure 3.4d). 

 

Figure 3.4. Representation of voxel transects to describe ALSFW metrics (a) HFEV, (b) 
HFEVT, (c) FVU, and (d) NFVU. Voxel height is equal to 0.15 m and metric values for 
each column of voxels are written in black. Height thresholds in (b), (c), and (d) are user 
inputs. 

Following with the ALSFW metrics related to understory, EFEV and nEFEV 
are represented in Figure 3.5. These two metrics are related to the properties of 
the understory. EFEV is the sum of amplitudes from the ground to the 
understory height, which corresponds to HFEV. The nEFEV is a relative 
measure, and is equal to the EFEV divided by the sum of amplitudes of the 
whole waveform (i.e., RWE). Additionally, the ALSFW metric Hn is also 
represented in Figure 3.5 with different percentiles. To compute this metric, it 
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is necessary to check at which height a given percentile of energy is reached. 
The height of percentile 50 of energy (i.e., H50) is equal to HOME. 

 

Figure 3.5. Representation of ALSFW metrics EFEV, nEFEV and Hn. In this case 
percentiles 5, 25, 50, 75 and 95 are represented for the metric Hn. The waveform signal 
is represented in red, metric marks in black dashed lines, and EFEV filled in green. 

The following ALSFW metrics are based on the Gaussian iterative 
decomposition of the waveform. This decomposition consists of splitting the 
original waveform into different Gaussian curves, until the difference between 
the original waveform and the resulting Gaussian curves is below a given 
tolerance (Hofton et al., 2000). ALSFW metrics related to the Gaussian iterative 
decomposition were designed by Zhang et al. (2011) for large footprint ALSFW, 
and Hancock et al. (2015) showed that Gaussian iterative fitting was the most 
accurate method comparing energy values for large footprint ALSFW. However, 
in this study the potential of these metrics as descriptors for forestry 
applications was tested, since according to Hancock et al. (2015), energy 
differences for the Gaussian iterative method and small footprint ALSFW were 
small as well (i.e., nRMSE (normalized root-mean-square error) = 1.37%). In the 
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example represented in Figure 3.6, the original waveform is split into three 
Gaussian curves, therefore N GS is equal to three. After applying the Gaussian 
iterative decomposition to the waveform signal, the other ALSFW metrics 
represented in Figure 3.6 and Figure 3.7 require the computation of the 
boundary between ground and canopy curves (Zhang et al., 2011). The height 
of this boundary is defined as the height at the ground curve plus 1.5 times its 
standard deviation, being the ground curve the one with the highest amplitude 
located in the half of the waveform with the lowest heights. Once ground and 
canopy curves are identified, ALSFW metrics N GS STARPEAK and N GS 
ENDPEAK are computed as the number of Gaussian curves above and below 
the boundary, respectively (Figure 3.6). GE is equal to the amount of energy 
between the ground and the boundary, and GRR is the proportion between this 
amount of energy at the ground curve and the total amount of energy (i.e., 
RWE). At the canopy curve, CHn are computed as the height of the different 
energy quartiles from the canopy curve energy, and Rn are the proportion 
between the different CHn metrics and the total height of the waveform (i.e., 
WD). 

Also from the Gaussian iterative decomposition Figure 3.7 represents ALSFW 
metrics BC, BCE, BCD, CD, CE and CER. BC is defined as the height from the 
ground to the first Gaussian curve above the boundary. BCE is the energy from 
the ground to BC, and BCD is the distance from BC to the top of the canopy. 
These metrics are related to understory, since it is assumed that the first energy 
peak excluding the ground must be related to either the understory or the 
canopy base. Regarding the overstory, CD is the distance between the beginning 
of the waveform and the boundary. CE is the energy from the beginning of the 
waveform to the boundary. CER is equal to CE normalized by the total energy 
of the waveform (i.e., RWE).  

Finally, there is a set of ALSFW metrics (AGS, SGS and MSGS) related to 
overstory and proposed by Zhang et al. (2011). These metrics are also extracted 
from the Gaussian iterative decomposition, but only from the Gaussian curves 
above the boundary (i.e., the canopy). Prior to the computation of these metrics, 
the slope of each Gaussian curve must be calculated as the ratio between the 
amplitude and the standard deviation of each Gaussian curve (Equation 13).  
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Figure 3.6. Representation of ALSFW metrics N GS, N GS STARTPEAK, N GS 
ENDPEAK, GE, GRR, CHn and Rn, derived from the Gaussian decomposition. The 
waveform signal is represented in red, the resulting Gaussian iterative decomposition 
in blue dashed line, metric marks in black dashed lines, and GE filled in green. 

 

Figure 3.7. Representation of ALSFW metrics BC, BCD, BCE, CD, CE and CER from 
the Gaussian iterative decomposition of the waveform signal. 
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Next, AGS, SGS and MSGS metrics may be computed (Equation 14, Equation 
15 and Equation 16, respectively). 

𝑆𝑆𝑖𝑖 =  
𝐴𝐴𝑖𝑖
𝜎𝜎𝑖𝑖

 

Equation 13 

where i = current Gaussian curve above the boundary, 

Si = slope of the current Gaussian curve i, 

Ai = amplitude of the current Gaussian curve i, 

σi = standard deviation of the current Gaussian curve i. 

𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑆𝑆̅ =  �𝑆𝑆𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Equation 14 

where i = current Gaussian curve above the boundary, 

Si = slope of the current Gaussian curve i, 

 n = number of Gaussian curves above the boundary. 

𝑆𝑆𝑆𝑆𝑆𝑆 =  ∆𝑆𝑆 =  �
1
𝑛𝑛
�(𝑆𝑆𝑖𝑖 − 𝑆𝑆̅)2
𝑛𝑛

𝑖𝑖=1

 

Equation 15 

where i = current Gaussian curve above the boundary 

Si = slope of the current Gaussian curve i, 

 𝑆𝑆̅ = mean slope of the Gaussian curves above the boundary, 

 n = number of Gaussian curves above the boundary. 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  ∆𝑆𝑆′ =  ��
𝐸𝐸𝑖𝑖
𝐸𝐸𝑇𝑇

(𝑆𝑆𝑖𝑖 − 𝑆𝑆̅)2
𝑛𝑛

𝑖𝑖=1

 

Equation 16 

where i = current Gaussian curve above the boundary 

Si = slope of the current Gaussian curve i, 

 𝑆𝑆̅ = mean slope of the Gaussian curves above the boundary, 

 Ei = energy of the current Gaussian curve i, 

ET = total energy of the Gaussian curves above the boundary (i.e., 
∑ 𝐸𝐸𝑖𝑖𝑛𝑛
𝑖𝑖=1 ), 

 n = number of Gaussian curves above the boundary. 
 

3.3. Software tool 
 

The software tool WoLFeX is designed to perform all the processing steps 
described in previous sections, from the relative radiometric correction of 
ALSFW data to the extraction of ALSFW metrics for generating either regression 
or classification models, which can be further applied in larger study areas. 

WoLFeX is divided into five sections (Figure 3.8): Inputs, Radiometric 
correction, Voxelization parameters, Metrics and Execution. In the Inputs 
section, the user selects the ALSFW data files, typically LAS files (version 1.3 and 
point format 4), the DTM for the height normalization, and a workspace to save 
the outputs. In order to process a smaller area, data may be clipped using the 
limits saved in shapefile format with a polygon geometry. In addition, if the clip 
area is representing objects such as plots or segmented trees, an id field from 
the shapefile must be selected in the Inputs section to identify the different 
processed objects in the output statistics. To apply a radiometric correction of 
the data, the trajectory files related to the LAS files must be selected. This 
trajectory files can be in *.txt or *.trj format and they are needed to compute the  
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Figure 3.8. Graphic user interface of WoLFeX and the five different sections: (a) Inputs, 
(b) Radiometric correction, (c) Voxelization parameters, (d) Metrics and (e) Execution. 

trajectory of each waveform. When the format is *.txt, the user should select the 
fields containing the GPS time, X, Y, and Z coordinates, and specify if there is a 
header in the text file. For both formats (*.txt and *.trj), the user should introduce 
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a range of reference and a power n as described in Equation 1 in section 2.3.1. 
On the other hand, WoLFeX also allows for filtering by scan angle intervals 
without selecting trajectory files. This option can be used to process a narrower 
range of scan angles to minimize the effect of a wide range of incidence angles 
on radiometric values. The third section allows for the selection of the voxel size 
and the assignation value. In the Metrics section, the user can select the specific 
ALSFW metrics to compute. Lastly, the Execution sections allows for the selection 
of the different processing steps that the user wants to execute, as well as the 
output format (*.csv or *.tif) for the metrics. In addition, this is the section where 
the completed steps or possible error messages are printed after the execution 
of the process. 
 

3.4. Case of study: Influence of radiometric correction and 
forest fuel modeling 

 

3.4.1. Material and methods 
 

In this application example, we tested the effect of the relative radiometric 
correction of ALSFW data on modeling forest fuel attributes for different scan 
angle intervals using the described software tool WoLFeX. The study area was 
located in the Natural Park of Sierra de Espadán, 30 km west of the 
Mediterranean Sea in eastern Spain (Figure 3.9a). The region is highly 
mountainous with steep hillsides, where elevation ranges from sea level to 1,100 
m within few kilometers. Because of its topography and orientation, Sierra de 
Espadán Natural Park receives higher annual rainfall than its local 
surroundings, which combined with its unique geomorphology makes it a 
regional hotspot for biodiversity. The total area of the Natural Park is 31,000 ha 
with our foci sites covering 12% (3,741.5 ha). The dominant species are Aleppo 
pine (Pinus halepensis), maritime pine (Pinus pinaster), cork oak (Quercus suber), 
and holm oak (Quercus ilex).  

ALSFW data were acquired on September 16th 2015 over 7,465.53 ha using a 
LiteMapper 6800 with an average pulse density of 14 pulses·m-2. Data were 
acquired at a flight altitude between 600 and 820 m above ground level, at 300 
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Figure 3.9. Maps of (a) general location of the study area in Natural Park of Sierra de 
Espadán (Castellón, Spain), (b) flight stripes categorized by scan angle interval (0º-5º 
in orange and 15º-20º in yellow), and (c) sample and plot locations (square samples for 
analyzing radiometric differences in RWE are represented in yellow; and circular plots 
for analyzing estimation of forest fuel attributes in blue). 

kHz pulse frequency, and with a scan angle of ± 30º. The study area was flown 
over with contiguous flight stripe side-lap between 55% and 77%. After 
processing, waveforms were provided in a variable number of bins (80-160-240 
bins) depending on what height the pulse intercepted the vegetation, with a 
temporal sample spacing of 1 ns (0.15 m) and a footprint size of 0.24 m. In 
addition, ALSFW data were discretized by the service provider (IMAO, France) 
using the Gaussian pulse estimation computation method to extract ALSD data, 
resulting in an average point density of 36 points·m-2. The vertical accuracy of 
the ALSD, verified using a set of ground control points located in open flat areas, 
was 4.3 cm (RMSE). Afterwards, ALSD data were used to create the DTM. 

Samples differed according to the test. Firstly, the influence of radiometric 
correction and scan angle on the values of ALSFW metrics was analyzed in Test 
1. To do this, 20 square samples of 75 m side (i.e., 5,625 m2) were selected in 
areas registered from different scan angles but with similar pulse densities. 
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Secondly, 22 circular plots of 15 m radius (i.e., 706.86 m2) from a total of 70 were 
selected for Test 2, where the influence of the application of the radiometric 
correction and scan angle on modeling forest fuel attributes was analyzed. 
Selected plots also needed to be registered from different scan angles and field 
data to estimate the forest fuel attributes. The locations of the 42 samples and 
plots for both tests is shown in Figure 3.9c. Ground-truth data collected from 
the 22 plots of Test 2 included DBH from trees with a value greater or equal to 
5 cm, height and CBH from the seven trees with largest DBH, and tree species 
(see field survey sheet in Figure 3.10). Afterwards, allometric equations 
provided by Montero et al. (2005) were used to compute the reference data of 
three forest fuel attributes: CFL, CH, and CBH. 

ALSFW metrics were extracted using WoLFeX, as described in section 3.2, for 
the different combinations of scan angle intervals and relative radiometric 
corrections. Radiometric correction reduces the effect of energy loss of the pulse 
due to different factors such as range (i.e., distance from the sensor to the target), 
attenuation (because of penetration of pulse through vegetation), and angle of 
incidence (slope and target orientation) (Kashani et al., 2015). Given that the 
RWE metric represents the sum of the waveform amplitudes from the beginning 
of the canopy to the ground, it is highly sensitive to pulse energy losses along 
the trajectory. For this reason, and in order to avoid redundancies in the test, 
only this metric was selected as a good indicator to evaluate the influence of 
scan angle and radiometric correction on ALSFW metrics. Hence, RWE metric 
was extracted for the samples of Test 1, while all the metrics from Table 3.1 were 
extracted for the plots of Test 2. The two scan angle intervals tested were 0º-5º 
and 15º-20º, in an attempt to differentiate between nadir and off-nadir pulses, 
respectively. Although the greater the scan angle, the greater the influence on 
radiometric values, we selected a maximum scan angle of 20º to have enough 
samples with enough size for the test. Four options were considered for the 
relative radiometric correction: uncorrected data, and corrected data varying 
the power n of Equation 1 in section 2.3.1 (i.e., n=2, n=3 and n=4). Hence, eight 
different datasets were computed (i.e., the combination of the two scan angle 
intervals and the four options for the relative radiometric correction) for the two 
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sets of samples and plots (i.e., Test 1 and 2) (Table 3.2). 

 

Figure 3.10. Example of field survey sheet from one of the plots used during the field 
campaign. 

Table 3.2. Combination of datasets tested for Test 1 and 2. 

  Scan Angle Interval 

  0º-5º 15º-20º 

R
ad

io
m

et
ri

c 
C

or
re

ct
io

n Uncorrected (1) (2) 

n=2 (3) (4) 

n=3 (5) (6) 

n=4 (7) (8) 
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In Test 1, the mean values of RWE were computed for each sample at the 
different combinations. The RWE value variations were computed as the 
differences at sample-level between two combinations. The combinations 
compared had the same radiometric correction but different scan angle interval 
(i.e., (1)-(2), (3)-(4), (5)-(6) and (7)-(8) in Table 3.2). Additionally, the corrected 
data with a given scan angle interval were compared to their corresponding 
interval of uncorrected data (i.e., (3)-(1), (4)-(2), (5)-(1), (6)-(2), (7)-(1) and (8)-(2) 
in Table 3.2). Results were evaluated using the RMSE of these differences and 
the nRMSE, computed as the RMSE divided by the range of RWE values in the 
sample. 
 

3.4.2. Results and discussion 
 

Table 3.3 shows the RWE differences between the different scan angle 
intervals by means of RMSE and nRMSE. Results show that differences in RWE 
values between scan angle intervals decreased when relative radiometric 
correction was applied and as power (n) increases. For instance, uncorrected 
data had an RMSE of 262.29, while corrected data had a value of 117.41 and 
93.25 for a power n=3 and n=4, respectively. This means that the influence of the 
scan angle on the metric value was smaller when using radiometrically 
corrected data, but it is not completely removed. On the other hand, results in 
Table 3.4 show that differences between uncorrected and corrected data 
increased as the power n increased, and the effect of the radiometric corrections 
on the metrics was more obvious at small scan angle intervals. For instance, 
differences between corrected data with a power n=2 and a scan angle interval 
of 0º-5º were equal to 183.86, while using the same scan angle interval and a 
power n=4 differences were equal to 299.29. Moreover, using the same power n, 
but a scan angle interval of 15º-20º resulted in differences of 90.74 and 164.43, 
respectively. This means that the larger the power n and the smaller the scan 
angle, the larger the correction that is applied to the uncorrected data. 
Analyzing Equation 1 in section 2.3.1, this occurred in this study since the range 
reference used was larger than the rest of ranges; otherwise it would be the 
opposite. 
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Table 3.3. RWE differences between the different scan angle intervals (0º-5º and 15º-
20º). RMSE: root-mean-square error; nRMSE: normalized RMSE. 

Radiometrically 
corrected data 

Power n 
Comparison 
(Table 3.2) 

Differences between 0º-5º 
and 15º-20º 

RMSE nRMSE 
No - (1)-(2) 262.29 15.40% 
Yes 2 (3)-(4) 150.71 13.32% 
Yes 3 (5)-(6) 117.41 11.21% 
Yes 4 (7)-(8) 93.25 11.74% 

 
Table 3.4. RWE differences between the radiometrically uncorrected and corrected 
data. 

Scan angle interval Power n 
Comparison 
(Table 3.2) 

Differences between 
Uncorrected and Corrected 

Data 
RMSE nRMSE 

0º-5º 
2 

(3)-(1) 183.86 9.98% 
15º-20º (4)-(2) 90.74 5.39% 
0º-5º 

3 
(5)-(1) 248.31 13.48% 

15º-20º (6)-(2) 128.57 7.63% 
0º-5º 

4 
(7)-(1) 299.29 16.25% 

15º-20º (8)-(2) 164.43 9.76% 
 

For the Test 2, the mean and the standard deviation of all the ALSFW metrics 
described in section 3.2 were computed at plot-level using WoLFeX. As a result, 
the software tool provided a *.csv file that was used as input file in statistical 
software. All possible combinations of linear regression models with a 
maximum of three metrics were computed, finally selecting the model with the 
minimum AIC. Among the selected ALSFW metrics, those proposed in the 
present thesis (i.e., KURTOSIS, HFEV, HFEVT, EFEV, nEFEV, FVU, NFVU, BC, 
BCD, BCE, CD, CE, and CER) were among the most selected, and therefore they 
had an influence on estimating forest fuel attributes. For instance, KURTOSIS 
and HFEVT were selected to estimate CFL and CBH, BC and CD for CH and 
CBH, EFEV for CFL, HFEV, nEFEV, NFVU and BCD for CH, and CE for CBH. 
Afterwards, a model was obtained for each of the three forest fuel variables (i.e., 
CFL, CH, and CBH), each combination of scan angle interval (i.e., 0º-5º and 15º-
20º), and each radiometric correction type (i.e., uncorrected and corrected data 
with a power n = 2, n = 3, and n = 4). The linear regression models were evaluated 
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using leave-one-out cross-validation and computing the R2, RMSE, nRMSE and 
coefficient of variation (CV). Table 3.5 shows the prediction results of the forest 
fuel attributes (i.e., CFL, CH, and CBH) using varied scan angle interval and the 
radiometric correction. The prediction of CFL was considerably improved when 
a radiometric correction was applied with a higher power n for both scan angle 
intervals, varying R2 from 0.62 to 0.79 and from 0.68 to 0.85 for scan angle 
intervals of 0º-5º and 15º-20º, respectively. However, CBH prediction results did 
not improve, or even slightly worsened, when a radiometric correction was 
applied. In this case, differences were also smaller compared to CFL, and as in 
the CH predictions, results were similar for a scan angle interval of 15º-20º. The 
test shows that the influence of the radiometric correction was smaller 
predicting height attributes, such as CH and CBH, than in predicting mass-
related attributes, such as CFL. Height attributes are fixed at a specific point on 
the waveform, usually a maximum or minimum, while mass-related attributes 
are described using the complete waveform profile. Therefore, the latter are 
more subject to radiometric values. Additionally, the difference between 
uncorrected and corrected data for the three forest fuel attributes was smaller 
when the scan angle interval was 15º-20º than when it was 0º-5º. A previous 
analysis (Morsdorf et al., 2008) found that parameters corrected by radiometric 
correction such as flying altitude and incidence angle have an influence on 
estimates of biophysical vegetation properties (i.e., tree height, crown width, 
fractional cover, and leaf are index). However, the influence of scan angle was 
not as apparent here, probably due to the use of small scan angles. Additionally, 
other studies also mentioned the radiometric correction as a key step in using 
backscattered measurements to estimate geophysical vegetation properties or 
similar analyses (Wagner, 2010; Sevara et al., 2019). 
 

3.5. Conclusions 
 

In this chapter, we presented and described a software tool named WoLFeX, 
designed to process ALSFW data, which includes a wide range of new proposed 
ALSFW metrics. We assessed the influence of radiometric correction on ALSFW 
metrics and on the estimates of forest fuel attributes through WoLFeX. 
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This tool allows for clipping, radiometrically correcting, voxelizing the 
original ALSFW waveforms, creating pseudo-vertical waveforms and extracting 
an exhaustive set of object-oriented metrics. These metrics are saved into a *.csv 
file that can be used as an input file for generating either regression or 
classification models, such as forest fuel attributes or fuel types, respectively. 
Among these metrics, those related to the understory vegetation are the most 
remarkable, since they have not been considered by other processing tools so 
far, and they allow for the location and quantification of understory vegetation, 
which is a key parameter for the characterization of fire behavior in 
Mediterranean forests. Processing ALSFW is more challenging than ALSD, since 
it registers the complete return of the signal, and therefore it allows for a better 
detection of the lower strata. 

From the case of study of WoLFeX software, different models of forest fuel 
attributes (CFL, CH, and CBH) were generated, varying processing parameters 
related to radiometric correction and scan angle interval of ALSFW data 
acquisition. These tests showed that differences in metric values measured from 
nadir and off-nadir were reduced when a relative radiometric correction was 
applied. The improvement of the models obtained when the relative 
radiometric correction of the data was applied was noteworthy – from R2=0.62 
up to R2=0.79 in the case of CFL. However, height attributes (i.e., CH and CBH) 
were less strongly influenced by a relative radiometric correction, presenting 
only subtle differences. 

The software WoLFeX, freely available for download at 
[http://cgat.webs.upv.es/software/], is an alternative for processing ALSFW data 
in an integrated manner. It includes the relative radiometric correction of the 
data, which plays an important role in reducing radiometric differences 
between different scan angles and may be essential for estimating some forest 
fuel attributes. It also extracts multiple new and previously proposed metrics to 
generate models that characterize forest structure. Among these metrics, the 
most remarkable are those related to understory vegetation, due to the potential 
of ALSFW to register the complete vertical forest structure. This opens a wide 
range of applications in environmental sciences, forestry and fire ecology. 

http://cgat.webs.upv.es/software/
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In the fourth chapter, three points are examined for a boreal and a 
Mediterranean forest with contrasted conifer canopy densities: (i) the 
characterization of the vertical distribution and occlusion from three laser 
scanning configurations: ALSFW, ALSD, and TLS; (ii) the comparison in the 
detection of understory vegetation by ALSFW and ALSD using TLS as reference; 
and (iii) the use of a methodological procedure based on the Gini index concept 
to determine understory vegetation density classes from both ALSFW and ALSD 
configurations. Estimating occlusion along the different vertical strata allows 
for a better prediction of the limitations of laser scanning configurations in 
registering forest structure. On the other hand, detection and determination of 
understory vegetation density classes with ALS configurations is relevant for 
several applications such as characterizing wildlife habitats, assessing timber 
productivity and improving silvicultural decision-making in support of 
wildfire mitigation, all of them over large areas. 
 

4.1. Introduction 
 

Signal occlusion is the main limitation in acquiring fully comprehensive 
laser scanning datasets in forested environments. Signal occlusion occurs when 
the object to sample is partially or completely obscured by an intervening object. 
The presence and amount of signal occlusion found in a laser scanning dataset 
depends greatly on the scanning configuration (i.e., above-canopy for aerial or 
near-ground for terrestrial), vegetation cover and density, and its complexity 
(Watt and Donoghue, 2005). Signal occlusion can therefore limit the detection 
of forest’s horizontal and vertical distribution of vegetation, particularly in 
dense forested environments. It is important to note that signal occlusion is not 
to be confounded with forest cover. While forest cover refers to the proportion 
of forest covered by the vertical projection of tree crowns, signal occlusion refers 
to the shadow (lack of laser signal) caused by canopy elements. Several 
strategies have been tested to reduce signal occlusion such as increasing the 
number of flyovers for ALS (Kükenbrink et al., 2017), combining data from 
multiple sensors (Giannetti et al., 2018), or sampling the plot with multiple scans 
from varying viewpoints with a TLS (Martin-Ducup et al., 2017). Another way 
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to deal with signal occlusion in TLS data is to divide the point cloud space into 
voxels and compute the Plant Area Density (PAD) for each voxel (Béland et al., 
2014; Pimont et al., 2018). Analyzing signal occlusion and its effects on the 
estimation of forest structural attributes is essential in understanding the 
limitations of different laser scanning and sampling configurations, and 
therefore sampling designs to best minimize signal occlusion. 

Although signal occlusion is present in all laser scanning datasets, ALS and 
TLS systems have nonetheless demonstrated their capability to characterize 
forest attributes with great precision and accuracy. As mentioned previously in 
the overall introduction, ALSD and ALSFW are now used operationally to 
estimate stand attributes for a wide range of forest ecosystems, and classify tree 
species and forest canopy fuels, receiving ALSFW less attention due to the data’s 
greater complexity and the current lack of processing tools. In comparison with 
ALS data, TLS data can provide a more detailed point cloud of a forest structure, 
albeit from a different viewpoint. For applications in forested environments, the 
useful portion of the TLS point cloud extent is often limited (10 – 30 m) with a 
hemispherical view around the sensor. Withstanding that, many studies have 
demonstrated the capabilities of TLS to estimate and extract forest stand 
attributes (Watt and Donoghue, 2005; Moskal and Zheng, 2011; Kankare et al., 
2013; Srinivasan et al., 2015; Liang et al., 2016; Ravaglia et al., 2019), and fewer 
on the classification of tree species (Othmani et al., 2013; Lin and Herold, 2016; 
Torralba et al., 2018). 

Since ALS and TLS sensors acquire data from differing positions relative to 
the forests canopy, different occluded forest strata can be observed in their point 
clouds. Consequently, it is of interest to compare their independent 
effectiveness to detect the forests horizontal vertical distribution, and estimate 
forest structural attributes. Several studies provide a base for comparison 
between three laser scanning configurations: ALSD, ALSFW and TLS. These 
studies generally show that CH estimations are more accurate using ALS than 
TLS (Hilker et al., 2010), while characterization of the foliage profile is estimated 
with more accuracy by TLS, especially in the lower strata (Chasmer et al., 2006; 
Hilker et al., 2010), where understory vegetation is found. On the other hand, 
other studies concur on a more accurate estimation of forest structural attributes 
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from ALSFW than ALSD for CH (Anderson et al., 2016), AGB (Nie et al., 2017), 
stand volume (Lindberg et al., 2012), and the classification of species 
composition (Torralba et al., 2018). 

A common challenge in predicting forest structure from ALS data is finding 
associated reference data from which reliable error estimation is possible. Most 
studies on forest structure variable use a combination of field measurements 
and allometric relationships as reference data (González-Ferreiro et al., 2012; 
Treitz et al., 2012; Ruiz et al., 2014). However, in cases where 3D assessments of 
vegetative material are required, it can be beneficial to use TLS data as a 
reference as these can be difficult and often logistically challenging to quantify 
directly from field activities. TLS data often represent the best available 
information to describe forest elements (Martin-Ducup et al., 2016; Ravaglia et 
al., 2019), being sampled in much more detail when compared with ALS. 
However, there are important discrepancies between ALS and TLS point clouds 
that need to be acknowledged. Looking at a vertical profile of data points in 
relative terms, ALSD point clouds have far more hits within the upper canopy 
and on the ground, while most of the hits for TLS point clouds are located at the 
lower crown, trunks-stems, understory, and ground. These differences in 
sampling capabilities lead to estimation divergences (Chasmer et al., 2006). In 
general, ALSD point clouds tend to under-represent the lower strata. While 
correlation between ALSD and TLS point clouds has been found to be 0.48 for 
heights below 20 m, it reached 0.87 when only the upper canopy (z > 20 m) was 
considered (Hilker et al., 2010). As for CH, estimation from ALSD and TLS were 
generally similar: (i) an underestimation of 1 m by the TLS in a mixed forest in 
Ontario, Canada (Chasmer et al., 2006), (ii) a correlation of 0.94 between 
estimations from both datasets in a pine-dominated forest in South-Korea (Jung 
et al., 2011), and (iii) a correlation near 1 in a coniferous forest on Vancouver 
Island, BC, Canada (Hilker et al., 2010). Conversely, few studies found ALSD 
more suited to estimate CH than TLS with an R2 of 0.96 and 0.86, respectively in 
a lodgepole pine forest in Alberta, Canada (Hilker et al., 2012). Therefore, there 
are situations where ALS and TLS may not accurately estimate the entire 
vertical forest structure, primarily due to signal occlusion. This signal occlusion 
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problem is more severe for ALS than it is for the TLS because of the much 
smaller number of laser pulses. Fortunately, the beam width and the multiple 
return configuration mitigate this problem. Consequently, sampling understory 
vegetation is comparably far more comprehensive from TLS than it is from ALS. 
TLS data are therefore suitable reference data for the estimation of understory 
structural attributes and preferred over using traditional sampling techniques, 
which can be laborious and time consuming. 

Within the vertical distribution of the forest, detection of the lower strata 
can be challenging from ALS sensors, especially from ALSD as a results of signal 
occlusion from the overstory (Anderson et al., 2016). Nonetheless, ALSD has 
proven to discriminate presence and absence of understory vegetation with 
promising accuracy, e.g., with R2’s of 0.83 (Martinuzzi et al., 2009), 0.77 (Hill and 
Broughton, 2009), 0.74 (Wing et al., 2012), and 0.48 (Morsdorf et al., 2010), and 
has been demonstrated to be more accurately estimated by ALSFW than ALSD 
(Hancock et al., 2017; Torralba et al., 2018). In contrast, point clouds from TLS 
provide a large amount of detail on understory vegetation due to the position 
of the sensor (Liu et al., 2017). However, most studies have focused on the ability 
of TLS to characterize shrubs in ecosystems absent of overstory (Vierling et al., 
2013; Olsoy et al., 2014; Greaves et al., 2015); few have focused on characterizing 
the understory vegetation from forested ecosystems (e.g., Chen et al. (2016)). 
Furthermore, few studies have estimated understory cover with ALSFW using 
TLS as reference data and obtained a nRMSE of 24% (Hancock et al., 2017). 
Nevertheless, a limited amount of studies have compared the ability to estimate 
understory vegetation presence or distribution from three different laser 
scanning datasets (i.e., ALSFW, ALSD and TLS) (e.g., Hancock et al. (2017) and 
Torralba et al. (2018)). These studies confirmed that ALSFW and TLS are both 
capable of estimating the spatial distribution of understory vegetation in more 
detail than using ALSD data, e.g., with overall accuracies of 86.4% and 77.3%, 
respectively (Torralba et al., 2018). These results demonstrate the potential of 
combining ALSFW and TLS data in a workflow that estimates the spatial 
distribution of the understory vegetation beyond what can be estimated from 
ALSD data. However, these results were limited in their application as they were 
assessed in a fragmented urban forest and an open Mediterranean forest. 
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In this chapter, in section 4.2, the characteristics of both study areas and laser 
scanning configurations are described. In addition, the different processing 
steps followed to characterize the vertical distribution and occlusion, to 
compare the detection of understory vegetation from ALSFW and ALSD, and to 
determine the understory vegetation density through the Gini index and ALS 
data are described and enumerated. The results obtained following the different 
processing steps are shown in section 4.3. In section 4.4, the discussion of the 
results is addressed. Finally, in section 4.5, the conclusions of this chapter are 
presented. This chapter sets out the Hypotheses 4 and 5: “ALS and TLS 
configurations are limited to detect lower and upper strata, respectively, 
because of the position of the sensors. This limitation depends on the forest 
ecosystem and density“ and “Given that ALSFW registers the complete signal 
going through the vertical forest structure, and ALSD is a simplification of 
ALSFW, understory vegetation can be detected and its density determined more 
accurately with ALSFW than with ALSD”, respectively. To demonstrate these 
hypotheses, Objectives 5 and 6 are addressed in this chapter: (i) characterize the 
signal occlusion along the vertical forest structure using different laser scanning 
configurations (i.e., ALSD, ALSFW, and TLS) in contrasted ecosystems with 
different canopy covers to determine how reliable the resulting vertical 
distribution profiles are based on the amount of occlusion and the lack of 
information, and (ii) determine how understory vegetation density classes can 
be detected and further determined by ALS configurations, and whether ALSFW 
allows the detection and determination to a level of detail beyond ALSD 
capability. 
 

4.2. Material and methods 
 

4.2.1. Study areas 
 

Two study areas were selected based on their contrasting canopy densities 
and understory vegetation presence. Both sites are conifer dominated, albeit, 
structurally very different. Our first study area (111,257 ha) is located in a Boreal 
Shield Ecozone in western Newfoundland and Labrador, Canada (Figure 4.1). 
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The ecoregion is dominated (~70%) by forest land and is located within the most 
eastern boreal forest region of North America. Balsam fir (Abies balsamea (L.) 
Mill) is the dominant tree species of the regions followed by Black spruce (Picea 
mariana (Mill.) Britton, Sterns & Poggenb.). White birch (Betula papyrifera 
Marsh.), yellow birch (Betula alleghaniensis Britton), white spruce (Picea glauca 
(Moench) Voss) and eastern larch (Larix laricina (Du Roi) K. Koch) are present 
to a much lesser extent. The relief is gently undulating to hilly with elevation 
ranges between ~30 m and 640 m. Forest understory is extremely variable 
depending on stand density and age, soil conditions, status of regeneration and 
silvicultural treatments such as precommercial thinning (e.g., Figure 4.2 – 
Newfoundland, sparse understory). Understory vegetation can be composed of 
tree saplings and seedlings, ferns (e.g., Dryopteris carthusiana (Vill.) HP Fuchs) 
and to a lesser extent ericaceous shrubs (e.g., Kalmia angustifolia L., Rhododendron 
groenlandicum (Oeder) Kron & Judd, Vaccinium spp.). 

The second study area is located in a Mediterranean forest in the Natural 
Park of Sierra de Espadán (Spain), and coincides with the one described in 
section 3.4.1. The presence of understory in this study area is very variable, 
mainly depending on the dominant species and soil properties. Understory 
vegetation is dominated by the following shrubs and flowering plants: 
rosemary (Rosmarinus officinalis L.), tree heath (Erica arborea L.), brezo (Erica 
multiflora L.), Mediterranean buckthorn (Rhamnus alaternus L.), kermes oak 
(Quercus coccifera L.) and mastic (Pistacia lentiscus L.). Figure 4.2 illustrates 
examples of different understory scenarios. 
 

4.2.2. Forest plots 
 

Circular plots were established with a radius of 11.28 m and 15 m for the 
Newfoundland and Spain sites, respectively. Plot center locations for both sites 
were measured with a GPS RTK with an average accuracy of ~0.40 m. As 
mentioned in section 3.4.1, tree species, living status, DBH, height and CBH 
were measured at all plot locations. For the Newfoundland site, 59 established 
experimental plots from Luther et al. (2019) were made available with 
associated ALSD and ALSFW data, while 70 established experimental plots were 
made available with similar data for the Spain site (Figure 4.1c and d). Among 
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Figure 4.1. Location of plots registered (red) and plots used in the current study 
(yellow) within each study area: (a, c) in western Newfoundland, Canada, and (b, d) in 
the Castellón province, Spain (Background imagery: PNOA and WorldView-2). 

these experimental plots, a structurally representative sample of ten plots was 
selected per site for TLS sampling by maximizing the variability of canopy cover 
and understory vegetation for analysis in this chapter. Regarding canopy cover, 
we estimated it all plot locations from the proportion of ALSD first hits to total 
hits above 2 m per McGaughey (2014). Then, plots with a percentage of first hits 
above 70% were classified as having dense canopy cover, between 40% and 70% 
as having a sparse canopy cover, and below 40%, as having a very sparse 
canopy cover. Furthermore, we assigned understory vegetation density classes 
at plot locations through field interpretations and classified plots as having 
dense, moderate, sparse, or absence of understory vegetation (Figure 4.2). 
Figure 4.3 illustrates the variability in structure from all conifer dominated plots 
and the structural representativeness of the retained plots. 
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Figure 4.2. Field photographs from the Newfoundland and Spain sites illustrating the 
varying densities of understory vegetation. 



COMPARATIVE ASSESSMENT OF THE VERTICAL DISTRIBUTION OF FOREST COMPONENTS USING 
FULL-WAVEFORM AIRBORNE, DISCRETE AIRBORNE AND DISCRETE TERRESTRIAL LASER 

SCANNING 

 

103 

 

Figure 4.3. Violin plots representing four structural attributes (canopy cover, 
understory, canopy height and stem density) from all available plots. Attribute values 
for plots retained for analysis are in red. Abbreviations: D-dense; M-moderate; S-sparse; 
VS-very sparse; A-absent. 

 

4.2.3. Laser scanning data 
 

In this chapter, we analyzed laser scanning data obtained from three 
differing configurations, namely ALSD, ALSFW and TLS. The ALS data obtained 
for the Newfoundland site were acquired between August 15th and September 
24th 2016 with a Riegl LMS-Q680i. The approximate flight altitude was 1,000 m 
above ground level with an approximate speed of 100 knots. Data were acquired 
with a pulse frequency of 330 kHz and a scan angle range of ± 30º. Not excluding 
waterbodies, the overall average laser scanning pulse density was 7.34 pulses·m-
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2. ALSFW data were discretized by the service provider (Leading Edge 
Geomatics, Canada) using the Gaussian pulse estimation computation method 
to extract ALSD data. Average point densities of 16 points·m-2 were observed at 
plot locations for ALSD. 

ALS data at the Spain site used in this chapter were the same used and 
described in section 3.4.1. 

The TLS data were collected using a FARO FOCUS 3D 120 phase-based 
scanner (see specifications in Table 4.1) using a multi-scan configuration on both 
sites, recording only the first hit with an angular density between pulses of 
0.0036 degree. TLS data for the Newfoundland site were acquired between June 
and August 2017 while the TLS data for the Spain site were acquired between 
September 29th and October 23rd, 2015. To minimize signal occlusion, each plot 
was scanned from nine positions: one at plot center, four at ~15 m from the 
center in each cardinal direction (i.e., N, W, S, E), and four at ~7.5 m and ~6 m 
from the center in each primary intercardinal direction (i.e., NW, SW, SE, NE) 
for the Spain and Newfoundland sites, respectively. Each scan identified a 
minimum of three co-registration spherical targets common with adjacent 
scans. Co-registration of the 9 scans was performed using FARO SCENE 
software version 6.2 (FARO, Lake Mary, FL). The resulting co-registered point 
cloud comprised, on average, 392 × 106 hits. 

Table 4.1. TLS data specifications. 

Specification Value 
Sensor FARO FOCUS 3D 120 

Accuracy ± 2 mm at 25 m 
Range 0.6-120 m 

Pulse frequency 97 Hz 

Scan angle Horizontal: 300º 
Vertical: 360º 

Wavelength 905 nm 
Beam divergence 0.19 mrad 
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4.2.4. Overview of the methods 
 

An overview of the methodological approach and associated procedures is 
presented in Figure 4.4. First, ALSFW data were denoised and georeferenced in 
order to create an ALSFW point cloud compatible with the ALSD and TLS point 
clouds (Procedure 1). We then proceeded with the co-registration of the three 
laser scanning datasets: ALSFW, ALSD and TLS (Procedure 2). Once co-
registered, all the point clouds were represented independently in voxel grids 
(Procedure 3a). Sampling of each voxel by the laser beams depends primarily 
on three variables: (i) the number of theoretical laser beams passing through the 
voxel (Nt), (ii) the number of these theoretical beams that were occluded prior 
to reaching the voxel (Nb), and (iii), the number of hits actually returned from 
these beams within the voxel (Nh). We then estimated these variables for each 
voxel of the three datasets (Procedure 3b) in order to derive the vertical 
distribution profiles from ALS (NhALS for both ALSD (NhALSD) and ALSFW 
(NhALSFW) datasets) (Procedure 3c) as well as the Plant Area Density from TLS 
(PADTLS) (Procedure 3d), which is the projected surface of the vegetated 
materials (wood and leaves). In order to quantify and compare signal occlusion 
within the three laser scanning datasets, we computed for each the rate of pulse 
reduction of Nt as the proportion of beams blocked prior to reaching the voxel 
(Nb/Nt) (Procedure 3e). A height normalization was then applied to NhALS, 
PADTLS, and the rate of pulse reduction from ALSFW, ALSD and TLS (Procedure 
4). This created a coherent vertical leveling between these estimated variables 
from which we produced vertical profiles of NhALS, PADTLS and the rate of pulse 
reduction (Procedures 5a and 5b). These vertical profiles were used to analyze 
the relationship between the detection of vegetative material in different strata 
from ALS and TLS configurations and the rate of pulse reduction. We computed 
the coefficient of correlation at lower strata (0.5 m ≤ z ≤ 4 m) to quantify the 
similarity of vertical profiles of NhALSFW and NhALSD with PADTLS. Afterwards, 
the lower strata of the NhALS vertical profiles were compared to determine 
which ALS configuration (i.e., ALSFW or ALSD) depicts the understory 
vegetation in more detail. An application of the Lorenz curve (Lorenz, 1905) and 
the Gini index (Gini, 1912) calculated from the NhALSFW and NhALSD vertical 
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profiles of the lower strata determined the density of understory vegetation, 
which we compared with field observations. 

 

Figure 4.4. Overview of the methodological approach. 
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4.2.5. Data processing 
 

4.2.5.1. Denoising 
 

Initial data were available in point cloud format for the ALSD and TLS 
configurations. Unlike ALSD return sensors which record backscattered energy 
at precisely referenced points in time and space, ALSFW sensors record 
backscattered energy as a nearly continuous signal in a full-waveform indexed 
bin. We therefore needed to create an ALSFW point cloud compatible with the 
ALSD and TLS point clouds. To do so, we removed the noise contained in the 
raw ALSFW waveforms and georeferenced the remaining bins (Procedure 1). The 
denoising procedure followed was the one described in section 2.3.1. 
Afterwards, we computed each bin’s XYZ coordinates following the procedure 
described in section 2.3.3. The resulting ALSFW data contained only significant 
waveforms with the noise removed from which we were able to create a 
georeferenced point cloud compatible with those from the two other 
configurations: ALSD and TLS. 
 

4.2.5.2. XY co-registration 
 

Considering that our main goal was to compare the data obtained from 
three different laser scanning configurations, it was necessary that all point 
clouds were co-registered in the same coordinate system (Procedure 2). Co-
registration is a critical step to ensure that the three point clouds can be 
compared in our analysis. Georeferencing of the ALS data followed common 
practice and was done by registering the flight trajectory coordinates from the 
airborne GPS to a set of ground control points. These ground control points 
allowed for an accurate georeferencing of the flight lines, and therefore the 
resulting waveforms and point clouds. Given that ALSD is derived from the 
ALSFW data, co-registration between these two datasets was not necessary. 

Co-registration of the TLS data to the ALS data was performed using the 
latter as reference. These data were co-registered on a plot-level basis. For each 
plot, Canopy Height Surfaces (CHS) were generated independently from both 
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ALSD and TLS data. The geometric distribution of tree crowns and canopy gaps 
guided the selection of homologous points from both CHS (see Figure 4.5). A 
2D affine matrix transformation was then computed from the homologous point 
coordinates and applied to the TLS point clouds. Only translation in the 
horizontal plane and rotation around the vertical axis were applied since the 
distance values from both laser scanner systems needed to be maintained, 
therefore not altering the scale. The RMSE of the 2D affine transformation was 
9 cm ± 4 cm and 7 cm ± 7 cm for the Newfoundland and Spain data, respectively. 

 

Figure 4.5. Selection of homologous points in canopy height surfaces (CHS) computed 
from (a) ALS and (b) TLS datasets prior to 2D affine matrix transformation. 
Homologous points are represented in red and green color for ALS and TLS, 
respectively. 

 

4.2.6. Estimating voxel sampling variables and the rate of pulse 
reduction 

 

The 3D space of the point clouds was discretized in voxels to produce 
vertical profiles (Procedure 3a) following section 2.3.3. The point density from 
the TLS point clouds was sufficiently high to allow the adoption of very small 
voxels (e.g., ~5 cm). However, assessing the capacity of each laser scanning 
configuration to detect understory vegetation required adopting a common 
voxel size: a trade-off between the fine vertical features of vegetation density 
and the availability of sufficient hits from laser scanning signal within a voxel. 
We therefore adopted a voxel size for all three datasets according to (i) the pulse 
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spacing of ALS in XY plane, (ii) the temporal sample spacing of ALSFW in the Z 
axis, and (iii), avoiding empty voxels in either datasets. The most suitable voxel 
size was determined to be 0.5 m in X, 0.5 m in Y and 0.15 m in Z (vertical). 

We first computed for all datasets the number of beams crossing the voxel 
(Nt), the number of hits within the voxel (Nh), and the number of beams 
blocked prior to reaching the voxel (Nb) (Procedure 3b) (see Figure 4.6). The 
computation approach of these three sampling variables differed between the 
TLS and ALS datasets due to their distinct sensor-signal-scene configurations. 
The approach taken for the TLS data used the one (first) hit per pulse of the TLS 
phase-shift technology. The approach taken for the ALS data assumed that all 
recorded hits were associated with an independent laser pulse having no cross-
section (i.e., a vector with no divergence). This, however, is an abstraction. In 
fact, multiple hits originate from the same beam. Hence, the sampling variables 
derived from TLS data are not directly comparable with those derived from ALS 
data. We therefore assumed the number of hits in each voxel to be a 
representation of the vertical forest distribution only from ALS for both NhALSD 
and NhALSFW (Procedure 3c) while the vertical forest distribution from TLS was 
represented by the cumulative PADTLS (Procedure 3d). In addition to Nt, Nh 
and Nb, the path length of all pulses crossing the voxel was estimated from the 
TLS data. The three voxel sampling variables and the path length of all pulses 
crossing the voxel allowed calculating PADTLS, in m2·m-3, for each voxel 
according to mathematical framework proposed by Pimont et al. (2018). We 
used a minimum of five pulses reaching a voxel (Nt-Nb ≥ 5) as a threshold for 
calculating PADTLS, otherwise the voxel was assigned as being occluded. A 
negligible number of TLS voxels were tagged as occluded due to the large voxel 
size relative to point density. 

In order to quantify signal occlusion caused by vegetation, we computed the 
rate of pulse reduction as the proportion of beams blocked prior to reaching the 
current voxel (Nb/Nt) (Procedure 3e). Knowing the rate of pulse reduction 
provides insight on the potential or drawbacks of the different laser scanning 
configurations. 
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Figure 4.6. Depiction of number of theoretical beams crossing a given voxel (Nt), 
number of hits (Nh), and number of hits blocked prior to reaching a given voxel (Nb) 
for the TLS configuration. Red dots represent the hits, red lines the laser beams prior to 
be blocked, and dashed pink lines the theoretical laser beams after being blocked. 

 

4.2.7. Extracting vertical forest distribution and rate of pulse 
reduction profiles 

 

In section 4.2.5, through the 2nd procedure, TLS data were co-registered only 
in XY (not in Z) to the ALSD data. Absolute heights of the canopy needed to be 
maintained in order to define the original laser pulse trajectories, which was 
critical in computing NhALSD, NhALSFW, PADTLS, and the rate of pulse reduction. 
However, in order to extract and make meaningful plot-level comparisons of 
the vertical profiles of these attributes (stored as 3D matrices of voxels), a co-
registration in the Z-axis was necessary (Procedure 4). Co-registration ensured 
that the base of each column of voxels was set to a common Z reference system 
where all ground voxels were set to a height of 0 m. Both the ALS and TLS 
datasets had their respective DTMs created with a cell size of 0.5 m. The DTMs 
for ALS data were generated from ALSD data. Classification of ground points 
was done using the Axelsson algorithm (Axelsson, 2000) implemented in 
LAStools (Isenburg, 2017). The DTMs for the TLS data were produced for every 
plot using an open source ground classification algorithm in Computree 
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(Piboule et al., 2015). Height normalization of the 3D matrices was therefore 
done with their respective DTM; e.g., NhALSD and NhALSFW were normalized to 
its respective ALS-derived DTM as PADTLS was normalized to its respective 
TLS-derived DTM. 

Next, we extracted vertical profiles of these 3D matrices to represent the 
vertical distribution of forest elements for each horizontal layer of voxels (i.e., a 
vertical bin with a height of 0.15 m). The value of each vertical bin was 
calculated as the sum of the voxel values of the corresponding horizontal layer 
for NhALSD, NhALSFW and PADTLS (Procedure 5a). The rate of pulse reduction was 
calculated as the average of the voxel values for that horizontal layer (Procedure 
5b). Only information 0.5 m above the ground was considered therefore 
removing values associated to an understory zone strongly influenced by soil 
micro-relief and very low vegetation. This procedure provided the normalized 
vertical profiles of NhALSD, NhALSFW and PADTLS, and the rate of pulse reduction. 

In order to assess how well we captured the vertical distribution profiles at 
different heights from ALS, we assessed the relationships between NhALS and 
PADTLS by means of ratios. To do so, we computed, plotted and compared the 
ratios between NhALS and PADTLS (i.e., NhALSD/PADTLS and NhALSFW/PADTLS). The 
resulting vertical profiles highlighted limitations in detecting the different 
vertical strata based on a unitless indicator. Higher values imply a higher 
detection of the vegetation, while lower values imply a more limited detection. 
 

4.2.8. Classifying the vertical distribution of understory vegetation 
from ALS data 

 

Once the vertical profiles were generated for NhALS, both ALS configurations 
(ALSD and ALSFW) were compared to detect the understory vegetation. The 
height range for this comparison was set between 0.5 m and 4 m to detect the 
lower strata through NhALS vertical profiles. The upper limit of 4 m deemed 
appropriate to capture high shrubs within our study sites. Detection of the 
understory vegetation was addressed through the characteristics of the NhALS 
vertical profiles, whose curvature depends on the presence of understory 
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vegetation. To quantify the curvature of the NhALS vertical profiles, we 
combined the fitting of the Lorenz curve (Lorenz, 1905) with the Gini index 
(Gini, 1912) (Procedure 6). The Gini index is a measure of statistical dispersion 
initially created to measure inequality of countries’ wealth. It is computed as 
the area between the curve and the equality line (i.e., 1:1 line) (see area A in 
Figure 4.7a) divided by the area below the equality line and delimited by the 
main axes (see area B in Figure 4.7). Figure 4.7b and c show the two extreme 
cases, i.e., complete equality (i.e., Gini index = 0) and complete inequality (i.e., 
Gini index = 1), respectively. Consequently, the Gini index quantifies the 
curvature of a distribution, or in our application, a vertical profile. The Lorenz 
curve and Gini index have been widely used in economics, but also in some 
forestry applications. For instance, Valbuena et al. (2013) and Valbuena et al. 
(2014) proposed several indicators describing tree size inequality related to 
vertical forest structure. These indicators were based on the combined analysis 
of the Lorenz curve from ALSD data, including the Gini index. In addition, the 
Gini index obtained from ALSD was proposed to identify differences in 
structural complexity of forests (Valbuena et al., 2016). 

 

Figure 4.7. Description of the Gini index for (a) a general case, and two examples 
showing (b) equality (i.e., Gini index = 0) and (c) inequality cases (i.e., Gini index = 1), 
respectively. 

In our study, each NhALS vertical profile (NhALSD and NhALSFW) is represented 
by a Lorenz curve. The Gini index was estimated from this Lorenz curve 
through the ratio A / (A + B) (Figure 4.7a and Figure 4.8b). To do so, we applied 
the following three steps: 

1. NhALS vertical profiles were first filtered to exclude overstory 
following the same procedure for ALSFW and ALSD. We discarded the 
NhALS values in the vertical profiles that had a height greater than the 
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first relative minimum of NhALS (see Figure 4.8b). Consequently, high 
shrubs were included in the analysis but lower crowns were excluded 
from the computation of the Gini index (see Figure 4.8a). 
 

2. NhALS values were then normalized between 0 and 1 using Equation 
17 (see Figure 4.8c). The normalization facilitated the comparison 
between plots since NhALS values are variable according to the 
different plots and acquisition configurations. 

 

𝑁𝑁ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑁𝑁ℎ𝐴𝐴𝐴𝐴𝐴𝐴 − min (𝑁𝑁ℎ𝐴𝐴𝐴𝐴𝐴𝐴)

max(𝑁𝑁ℎ𝐴𝐴𝐴𝐴𝐴𝐴) − min (𝑁𝑁ℎ𝐴𝐴𝐴𝐴𝐴𝐴)
 

Equation 17 

where NhALSnorm refers to the normalization (between 0 and 1) of 
NhALS. Also, min(NhALS) and max(NhALS) are the minimum and 
maximum values, respectively, of NhALS for the current plot between 
0.5 and 4 m. 

 
3. Finally, the Gini index was computed as the area between the curve 

and the equality line divided by the area below the equality line and 
delimited by the main axes (see Figure 4.8c).  

The PAD estimation of the lower strata from the TLS data is a far less 
affected by signal occlusion because of the position of the scanner. Therefore the 
PADTLS vertical profiles was used as a reference to compare the ability of ALSFW 
and ALSD to detect understory vegetation. NhALS vertical profiles were 
compared with PADTLS by calculating the correlation coefficient at lower strata 
(0.5 m ≤ z ≤ 4 m) and its significance using the Student’s t-test (Gosset, 1908). 
This coefficient is a unitless quantity, and therefore allows comparing different 
datasets with different units and orders or magnitude, such as NhALSFW, NhALSD 
and PADTLS vertical profiles. 



CHAPTER 4 

 

114 

 

Figure 4.8. Depiction of (a) separation between understory vegetation and overstory, 
(b) the filtering of NhALSFW vertical profiles corresponding to the lower strata from plot 
P3-NF and NhALSFW vertical profile, and (c) estimation of the Gini index from the 
resulting NhALS vertical profile. 

 

4.3. Results 
 

4.3.1. Forest vertical distribution and rate of pulse reduction 
profiles 

 

The data processing steps led to a representation of the vertical distribution 
and rate of pulse reduction profiles from the three laser scanning 
configurations, shown for a sample of plots from the Newfoundland and Spain 
sites in Figure 4.9 and Figure 4.10, respectively. Overall, results show that ALS, 
viewing the forest from the top-down, was more limited to sample the lower 
strata, while TLS, viewing the forest from bottom-up, was more limited to 
sample the top of the canopy. Despite these limitations, the vertical distribution 
profiles generally represented the forest’s vertical structure, capturing 
components of the different vertical strata. For instance, plot P5-SP (Figure 
4.10b) has a mixed presence of maritime pines and cork oaks. This 
heterogeneous vertical structure was represented by different peaks in 
associated PADTLS vertical profiles. Conversely, plots with a homogeneous 
vertical structure (e.g., plot P7-SP, Figure 4.10c) were represented by a single 
and well-defined peak in their associated vertical distribution profiles. A visual 
comparison between vertical distribution profiles (i.e., PADTLS, NhALSD and 
NhALSFW) and associated rate of pulse reduction with the one meter wide point 
cloud transects reveals an obvious correlation: both vertical profiles of element  
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Figure 4.9. Vertical profiles representing four plots of the Newfoundland site (a-d). The 
three figures from left to right represent: (i) the number of hits from ALS and cumulative 
Plant Area Density from TLS, (ii) a point cloud transect of one meter wide, and (iii) the 
rate of pulse reduction from the three configurations (i.e., TLS, ALSD and ALSFW). 
Dashed lines represent the limits of the lower strata (i.e., 0.5 and 4 m). 
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Figure 4.10. Vertical profiles representing four plots of the Spain site (a-d). The figures 
from left to right represent: (i) the number of hits from ALS and cumulative Plant Area 
Density from TLS, (ii) a point cloud transect of one meter wide, and (iii) the rate of pulse 
reduction from the three configurations (i.e., TLS, ALSD and ALSFW). Dashed lines 
represent the limits of the lower strata (i.e., 0.5 and 4 m). 
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distribution and point cloud density decreased as the rate of pulse reduction 
increased. The rate of pulse reduction profiles generally followed a distribution 
in the form of a sigmoid function or “S”-shaped curve, whose form, or 
increment of slope of the rate of pulse reduction, depended on the laser 
scanning configuration as well as the density of the upper canopy. For example, 
all plots with dense canopy cover (e.g., Figure 4.9a and b, Figure 4.10a, b and d) 
had rate of pulse reduction profiles following a clearly defined sigmoid 
distribution. However, converse trends were observed in the rate of pulse 
reduction from ALS and TLS: increasing rates of pulse reduction were 
associated with decreasing heights from ALS and increasing heights from TLS. 
Furthermore, in some instances, observed high values in the rate of pulse 
reduction were associated with very low values from the vertical distribution 
profiles (i.e., where PADTLS and/or NhALS reached or approached 0). This 
occurred more frequently for Newfoundland plots where conifer species on this 
site grow dense, creating a dense upper canopy (e.g., P2-NF and P4-NF in 
Figure 4.9a and b, respectively). For these plots, the rate of pulse reduction 
profiles transition to high values (i.e., 35-40% for TLS; 80-90% for ALS) at heights 
of ~10-13 m. Conversely, for plots with sparsely distributed vegetation, the rate 
of pulse reduction was very low. In conditions of sparse vegetation, the rate of 
pulse reduction curve followed the typical sigmoid distribution, however did 
not reach the high values observed from denser plots (e.g., P7-SP in Figure 
4.10c). Sparse and very sparse sites often displayed a relatively flat vertical line, 
terminating near ground by a steep high value (e.g., P6-NF and P10-NF in 
Figure 4.9c and d). Overall, but more specifically in dense canopy covers, an 
offset in the x-values from the midstory strata of PADTLS was observed relative 
to NhALS. This offset coincides with the large discrepancy in the number of hits 
returned by ALS and TLS systems from the midstory strata, where ALS did not 
detect tree stems to the same degree as TLS. On the other hand, little variability 
was observed in NhALSD vertical profiles in the lower strata, except in some cases 
where canopy cover was very sparse (e.g., P10-NF). The analysis of vertical 
distribution profiles from the lower strata generally showed lower NhALSD when 
compared to NhALSFW. In addition, similarity in overall shape, quantified and 
reported in section 4.3.2 by means of the coefficient of correlation, was greater 
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between NhALSFW and PADTLS than between NhALSD and PADTLS. Furthermore, 
NhALSFW value has an exponential increment as they approached the ground 
when understory vegetation was absent. This trend was less obvious in plot P4-
NF and most Newfoundland plots with higher rates of pulse reduction (> 80%). 

Considering TLS as reference, the ratios between NhALS and PADTLS in 
Figure 4.11 illustrate the limitations of ALS configurations in detecting the 
vertical distribution profiles at different heights based on a unitless indicator. 
Ratios were calculated as NhALS divided by PADTLS, therefore implying higher 
detection of vegetation as this ratio value increases. The highest values for the 
ratio calculated from NhALSD were observed in the upper strata for all plots 
(Figure 4.11). In most cases, ALSD incoming pulses were blocked by the 
dominant strata, generating signal occlusion beneath. ALSFW (NhALSFW/PADTLS) 
and ALSD (NhALSD/PADTLS) ratio values were most similar in the upper strata. 
Nevertheless, ALSFW ratio values below the dominant strata (i.e., intermediate 
and/or lower strata) remained high, while ALSD ratio value dropped. Generally, 
ALSD ratios dropped below 1 m, and in some cases below 2.5 m (e.g., P10-NF in 
Figure 4.11). 

 

4.3.2. Understory characterization from ALS 
 

In the previous subsection, it was observed that although the values of the 
vertical distribution profiles may differ between NhALS and PADTLS, they 
remained similar in terms of shape, albeit with different units and order or 
magnitude. This similarity in terms of shape of the vertical distribution profiles 
was quantified between NhALS and PADTLS by using the coefficient of correlation 
(see Table 4.2), which ultimately allows for determining whether understory 
vegetative material was detected. Coefficients of correlation were calculated 
between NhALS (i.e., NhALSFW and NhALSD) and PADTLS vertical profiles from the 
lower strata. Null coefficient of correlation values (e.g., observed from ALSD for 
plots P4-NF, P5-NF and P6-SP, and for plot P6-SP from ALSFW) were due to the 
fact that no values were registered at the lower strata, and therefore the 
standard deviations of the corresponding vertical profiles were equal to zero. 
Coefficients of correlation between NhALSFW and PADTLS were rarely below 90%, 
and all were considered to be significant correlations according to the Student’s  
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t-test (Table 4.2). The range of coefficients of correlation for ALSFW was between 
53.48% and 99.58%, with an average value of 90.11% and an associated standard 
error of 3.04%. On the other hand, with the exception of plot P9-NF, all 
coefficients of correlation between NhALSD and PADTLS were all lower or at par, 
with one correlation not being considered as significant (plot P7-SP). The range 
of coefficients of correlation for ALSD was between 30.60% and 97.36%, with an 
average value of 82.57% and an associated standard error of 4.29%. Regarding 
summary statistics of the differences in coefficients of correlation between 
ALSFW and ALSD, the range was between 22.01% and -68.36% (being negative 
values when coefficients of correlation for ALSFW were greater), with an average 
value of -9.50% and an associated standard error of 4.62%. Hence, although 
ALSFW detected understory vegetation with a much larger number of hits than 
ALSD (see Figure 4.9, Figure 4.10 and Figure 4.11), the latter still had a significant 
correlation with PADTLS. Remarkably, strong correlations between NhALSFW and 
PADTLS were observed for dense canopy cover plots from the Newfoundland 
site, where the rate of pulse reduction was large in lower strata. For instance, 
plots P2-NF and P4-NF had rates of pulse reduction ~84% for ALSFW at the lower 
strata and an associated coefficient of correlation with PADTLS equal to 98.50% 
and 93.39%, respectively. NhALSFW and NhALSD were equally correlated with 
PADTLS (i.e., < 1% of difference) in only a few plots having a dense canopy cover 
(plots P8-SP and P10-SP) and in a plot with very sparse canopy cover (plot P10-
NF). 
 

4.3.3. Understory vegetation density classification 
 

Afterwards, the variation of the NhALS vertical profiles at the lower strata 
was quantified by means of the Gini index, whose values for ALSD and ALSFW 
are presented in Table 4.3. Generally, sparse understory vegetation densities 
had large Gini indices (i.e., gradual increments of NhALS), while dense 
understory vegetation had low Gini indices (i.e., steep increments of NhALS). 
Despite considerable differences between the structure of boreal and 
Mediterranean forests, the Gini index values confirmed a coherent behavior for 
both sites as a vegetation density indicator. Specific Gini index ranges derived 
from the NhALSFW vertical profiles were associated to understory vegetation 
density classes as follows: absent (91.63% ± 0.13), sparse (90.59% ± 2.23), 
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Table 4.2. Coefficient of correlation values between NhALS (i.e., NhALSFW and NhALSD) and PADTLS 
as reference at the lower strata. 

Site Plot ID Correlation NhALSFW-PADTLS (%) Correlation NhALSD-PADTLS (%) 

N
ew

fo
un

dl
an

d 

P1-NF 63.25 56.21 
P2-NF 98.50 97.36 
P3-NF 92.95 88.09 
P4-NF 93.39 NA 
P5-NF NA NA 
P6-NF 95.66 67.40 
P7-NF 98.09 87.29 
P8-NF 96.06 90.46 
P9-NF 69.77 91.78 

P10-NF 96.64 96.70 

Sp
ai

n 

P1-SP 96.89 92.31 
P2-SP 98.73 67.89 
P3-SP 99.58 91.13 
P4-SP 98.78 96.97 
P5-SP 94.96 84.02 
P6-SP  53.48 NA 
P7-SP 98.96 30.60* 
P8-SP 89.89 90.46 
P9-SP 84.37 82.16 
P10-SP 92.21 92.93 

* Correlation deemed not significant from Student’s t-test with a confidence level of 95%. 

moderate (84.31% ± 0.00), and dense (75.45% ± 7.86). Similarly, from the NhALSD 
vertical profiles, Gini index ranges were associated to understory vegetation 
density classes as follows: absent (97.69% ± 4.01), sparse (83.79% ± 12.31), 
moderate (53.38% ± 0.00), and dense (59.37% ± 16.71). Nevertheless, the Gini 
index class interval thresholds computed from ALSD were fuzzier, implying 
more overlap between classes, than those from ALSFW. Class intervals derived 
from computed Gini index values showed larger standard deviations for ALSD 
than ALSFW. Furthermore, misclassification between sparse and absent 
understory vegetation density classes occurred when derived with ALSD data. 
Some plots with a moderate or sparse understory had a Gini index from NhALSD 
lower than plots with a dense understory vegetation (e.g., P7-SP vs. P3-SP), 
which led to a misclassification. Similarly, plot P5-NF, with sparse understory 
vegetation, had a Gini index from NhALSFW larger than that observed for plots 
with absent understory, which also led to a misclassification. 
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Table 4.3. Gini index from NhALSFW and NhALSD vertical profiles for each plot from the 
Newfoundland and Spain sites. Plots are in ascending order according to the Gini index 
computed from NhALSFW. 

Plot 
ID 

Understory 
vegetation 

Canopy 
cover 

Gini index NhALSFW 
(%) 

Gini index NhALSD 
(%) 

P9-NF Dense Very Sparse 59.63 33.47 
P6-NF Dense Sparse 65.10 45.97 
P1-SP Dense Dense 72.65 55.04 
P2-SP Dense Very Sparse 74.98 51.21 
P7-NF Dense Very Sparse 75.74 89.94 
P4-SP Dense Dense 78.88 60.13 

P10-NF Dense Very Sparse 80.09 66.87 
P10-SP Dense Dense 80.12 69.82 
P8-NF Dense Sparse 83.03 45.25 
P3-SP Dense Dense 84.27 76.04 
P7-SP Moderate Sparse 84.31 53.38 
P8-SP Sparse Dense 86.83 64.14 
P2-NF Sparse Dense 90.55 79.33 
P3-NF Sparse Dense 90.57 90.71 
P5-SP Sparse Dense 90.61 77.81 
P1-NF Sparse Dense 91.14 94.91 
P4-NF Absent Dense 91.48 100.00 
P9-SP Absent Dense 91.67 93.06 
P6-SP Absent Dense 91.74 100.00 
P5-NF Sparse Dense 93.81 95.83 

 

4.4. Discussion 
 

In this chapter, we assessed the ability of different laser scanning 
configurations to estimate vertical forest structure, linking it with a new method 
to estimate signal occlusion in the different strata. In addition, we also assessed 
and compared the suitability of ALSFW and ALSD to classify in understory 
vegetation density classes. Key results highlighted the limitations inherent to 
different configurations in estimating vertical forest structure and the 
importance of signal occlusion. More specifically, in the lower strata, which is 
highly occluded by ALS configurations, understory vegetation density was 
successfully assessed through vertical canopy density profiles. Moreover, the 
analysis of vertical profiles from our testing plots demonstrated that ALSFW 
improved understory identification and density determination over ALSD. 
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Overall, our results confirmed the general trend largely accepted by the 
scientific community, which implies that laser scanning signal occlusion 
prevails in sectors blocked by dense canopy covers. Signal occlusion therefore 
depends largely on the laser scanning configuration: ALS, viewing the forest 
from the top-down, is more limited to sample the lower strata, while TLS, 
viewing the forest from bottom-up, is more limited to sample the top of the 
canopy (Hilker et al., 2010; Anderson et al., 2016). Regarding ALS 
configurations, canopy density of the upper layer is the single most important 
environmental factor in defining if sufficient airborne laser pulses reach the 
complete vertical range of the forest. Hence, signal occlusion can limit 
exhaustive sampling of the lower vertical strata with ALS data. In this sense, 
Maltamo et al. (2014) distinguished between signal occlusion and canopy cover 
as two different but related phenomena, both affecting the overestimation of 
CBH when using ALS. Conversely, for plots with sparsely distributed 
vegetation, the level of signal occlusion is very low. Consequently, estimation 
of the distribution of vegetative material is possible throughout the vertical 
range of the forest. In these cases, vertical distribution of forest materials can be 
estimated with high level of accuracy. LaRue et al. (2020) also observed that 
estimating canopy density of the lower strata is best achieved in open canopy 
covers for ALS configurations, because of the influence of signal occlusion 
caused by dense canopy covers. 

In cases where significant signal occlusion exists, ALS configurations 
detection of lower strata density capabilities are limited. The reliability of 
vertical distribution profiles is directly dependent on the level of signal 
occlusion. In this regard, we proposed to use the rate of pulse reduction as an 
indicator of the amount of signal occlusion occurring at various heights in the 
forest. Inferring the ability to detect vertical distribution from our reference 
dataset (PADTLS) and the plotted values of rate of pulse reduction profiles led us 
to propose a threshold of the rate of pulse reduction from which the estimation 
of the distribution of vegetative material is no longer possible. This threshold is 
variable and related to the density of the canopy cover, which remains plot-
specific. We noticed that NhALS values between the height with a rate of pulse 
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reduction above ~80-90% and the ground do not provide reliable estimates of 
vegetation density. A similar principle, reversed vertically, applies to TLS 
datasets where PADTLS between the height with a rate of pulse reduction above 
~35-40% and the top of the canopy. The slope of the rate of pulse reduction 
curve, which follows a sigmoid function, depends on the laser scanning 
configuration as well as the density of the upper canopy. Currently we suggest 
an approximate threshold for the rate of pulse reduction. The ability to define a 
more specific threshold may be tied to parameters of this sigma curve as a 
discriminating indicator of the overall signal occlusion and defining the vertical 
area where vegetation density can be estimated. 

ALSFW and ALSD data come from the same signal, however, further 
processing steps before obtaining the final product make them different. Using 
the complete (i.e., ALSFW) or the discretized (i.e., ALSD) signal in the detection 
of the top of the canopy is not significantly different to assess vegetation density. 
Nonetheless, ALSFW provided a definite advantage to detect vegetation density 
for intermediate and lower strata than ALSD. Lower strata are generally 
occluded due to overstory blocking incoming laser pulses. Consequently, 
NhALSD vertical profiles do not show much features in the lower strata, except in 
some cases where signal occlusion caused by overstory is low (e.g., very sparse 
canopy cover). Nevertheless, when using PADTLS as reference, NhALS (i.e., 
NhALSFW and NhALSD) vertical profiles correlations are considered as significant, 
albeit NhALSFW is more correlated. Although curve correlation is more accurate, 
and the number of hits much larger at the lower strata with ALSFW, our results 
confirmed that understory vegetation was captured by ALSD, albeit to a lesser 
extent and in plots with a high rate of pulse reduction (i.e., ~85%). Other studies 
have also found difficulties associated with ALSD to detect the internal forest 
structure (Chasmer et al., 2006; Hilker et al., 2010; Hilker et al., 2012). The higher 
potential of ALSFW when compared with ALSD to detect and determine 
understory vegetation density classes was also found in several studies 
(Hancock et al., 2017; Torralba et al., 2018). Our results confirm the potential of 
both ALS configurations to detect non-occluded strata (i.e., top of the canopy) 
and demonstrated the increased capability of ALSFW to detect strata with signal 
occlusion (i.e., intermediate and lower strata). Although ALSD may be used to 
estimate understory vegetation at a plot-level, the signal is generally weak in 
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dense canopies and hence limits the estimation of density in the lower strata at 
such fine spatial scales. 

Vertical profiles with NhALSFW display a systematic artefact near the ground 
in the form of an exponential increment, even if understory vegetation is absent. 
This increment depends mainly on two factors: the large number of hits from 
the ground and the hits from the understory vegetation. The histogram of hits 
from the ground usually follows a Gaussian curve for which the upper side can 
be merged by the hit from understory, if present. When understory is present, 
generally variation of the NhALSFW value relates to the understory vegetation 
density classes, whereas NhALSD are not responsive, except for open canopies 
with a rate of pulse reduction below ~50%. Regardless, the number of hits from 
the ground dominates to the point of masking the understory signal in most 
situations. Hence, although NhALSFW vertical profiles increase exponentially as 
they approach the ground for all the understory vegetation scenarios, variation 
of NhALSFW increment can be used to identify and determine understory 
vegetation density classes. 

We demonstrated the Gini index to be a useful and accurate indicator to 
determine understory vegetation density classes from either NhALS vertical 
profiles. Our results demonstrated that understory vegetation density classes 
can be identified and further grouped by processing the ALS data in both dense 
and porous forests. Despite strong signal occlusion at lower heights in the 
forest, ALS and especially ALSFW, the Gini index identifies understory densities. 
Additionally, Gini index thresholds established for understory vegetation 
densities coincide for both sites: boreal and Mediterranean. Thus, the 
understory vegetation density classes are represented by the following Gini 
value ranges from NhALSFW: below a value of ~85% for dense understory 
vegetation density, between ~85% and ~90% for sparse, and above ~90% for 
absent. Fortunately, and contrary to ALSD, misclassification from ALSFW is not 
occurring between sparse and other understory vegetation density classes. In a 
related study, Valbuena et al. (2012) discriminated forest structural types by 
using an application of the Lorenz curve and the Gini index based on the basal 
area and the number of trees. Apart from a Gini index of 0% and 100% 
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representing the complete equality and inequality, respectively, they also found 
that a value of 50% was relevant. This value represents a uniform distribution 
of the basal area of the trees. However, with our datasets, Gini index values 
from NhALSFW were all above 56%, since the Lorenz curves start increasing below 
the height considered as upper limit of the lower strata (i.e., 4 m), and therefore 
Gini index values are higher. Other indicators such as L-Skewness (Valbuena et 
al., 2017) and Shannon Index (Almeida et al., 2019) are complementary to Gini 
index. L-Skewness allows for quantifying the asymmetry of the Lorenz curve. 
This facilitates estimating mean height and absence of understory vegetation. 
Additionally, the Shannon index represents the diversity of the dataset using a 
variable as reference (e.g., species). Therefore, it would be feasible to use height 
thresholds as a variable to determine understory vegetation density classes. 
Nonetheless, when signal occlusion caused by overstory is important, the ability 
to use the Shannon or Gini indices is strongly compromised. It is therefore 
critical to estimate the level of signal occlusion by means of the rate of pulse 
reduction prior to carry out the analysis. 

We proposed a simple way to identify the understory vegetation layer and 
exclude the overstory. The procedures most frequently adopted in the literature 
apply a threshold at 2 m height assuming that it covers the understory 
vegetation. This procedure is non-discriminant, not plot-specific, and therefore 
it may exclude shrubs or include lower crowns. Instead, we propose 
considering the vertical distribution of gaps in the density profiles to identify a 
local minimum separating overstory from understory vegetation. This results 
in different height values delimiting understory vegetation from overstory, 
which for our dataset varied between 0.525 and 3.975 m. The accuracy of this 
procedure depends on vegetation homogeneity. This vertical gap assessment 
was done at a plot-level, but it can also be applied at a finer scale (e.g., at voxel-
column) if a minimum hit density is reached for all heights to avoid false gaps. 
The procedure we proposed is plot-specific and allows for an automatic height 
division of overstory and understory vegetation layers. 

Some limitations in the application of the developed methodological 
procedure are noteworthy. Currently, PAD estimates are limited to being 
derived from TLS data, as the estimation of PAD from ALS configurations is 
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currently not possible. The unbiased estimation of PAD from the mathematical 
framework proposed by Pimont et al. (2018) decreases significantly the 
influence of signal occlusion for a reliable representation of vertical profiles. 
Therefore, it is a useful reference to represent distribution of vertical structure. 
PAD estimation from all the configurations would have allowed for a 
comparison in the detection of the vertical distribution profiles. Unfortunately, 
no methods were currently available to estimate PAD from multiple returns 
ALS data. Nevertheless, the number of hits in the ALS data in the non occluded 
areas can be used as a unitless indicator (i.e., coefficient of correlation) 
comparable with PADTLS. Furthermore, we note that the Gini index was 
successful in determining understory vegetation density classes from both 
airborne and terrestrial laser scanning data, but cannot be implemented with 
emerging full-waveform spaceborne laser scanning data such as GEDI 
(Dubayah et al., 2020). GEDI emits four laser beams with a large footprint (~19-
25 m) that do not overlap. The method proposed in this chapter assumes that 
many laser beams cross a same voxel, and then the number of hits is used as a 
driving variable to calculate the Gini index. Nevertheless, other metrics based 
on return amplitude, and proposed in section 3.2 in Table 3.1, may be more 
suited to characterize understory vegetation on large areas with GEDI. 

Knowing the limitations of laser scanning configurations is fundamental to 
use laser scanning point clouds for the estimation of forest canopy structure. 
The most severe limitation is caused by signal occlusion by vegetative elements, 
which can be quantified with the rate of pulse reduction. Despite high level of 
signal occlusion in the lower strata for ALS configurations, the proposed 
method allows estimating presence and density of understory vegetation in 
both dense and porous canopies of boreal and Mediterranean forests through 
the Gini index applied to ALSFW data. This new indicator becomes one of the 
few options to characterize understory vegetation for ALS configurations, 
which has many implications for forest ecology and wildfire mitigation. 
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4.5. Conclusions 
 

In this chapter, the limitations and potentials of airborne and terrestrial laser 
scanning configurations to estimate the vertical forest structure have been 
assessed. We conclude that understory vegetation density classes can 
successfully be determined more accurately with ALSFW than with ALSD. More 
specifically, three key points stand out from this chapter. Firstly, the rate of 
pulse reduction profiles were demonstrated to be a good indicator to quantify 
occlusion along the vertical profile. This information can be used to determine 
the reliability of vegetation density estimates from different laser scanning 
configurations for specific vertical strata. Secondly, both ALS configurations 
(ALSD and ALSFW) showed their capability to detect understory vegetation, 
albeit significantly more accurately with ALSFW due to the greater number of 
hits registered in lower strata. This considerably lower number of hits registered 
from ALSD in the lower strata suggests that a forest plot would be the finest 
spatial scale (i.e., minimal mapping unit) for which understory vegetation can 
be successfully detected from ALSD, and hence, our methods could be applied 
to. Finer scales would inevitably lack sufficient registered hits in understory 
vegetation for accurate understory characterization. Finally, and thirdly, we 
demonstrated the use of the Gini index as a way to determine understory 
vegetation density classes from both ALS configurations, again, more accurately 
with ALSFW. Understory vegetation density classes (absent, sparse, moderate 
and dense) were defined through thresholds applied to the index for both 
ALSFW and ALSD. Computing the rate of pulse reduction and Gini index we 
characterized the vertical structure and understory vegetation of these 
structurally differing forests. The applications for which this contribution may 
be relevant are several, such as characterizing wildlife habitats, assessing timber 
productivity and improving silvicultural decision-making in support of 
wildfire mitigation. Further research is needed to better understand the 
relationships between estimates of PAD and vertical profiles of number of hits 
for ALS configurations, vertical profiles of rate of pulse reduction and 
classification of forest types, and the use of the Gini indicator to estimate 
presence and density of understory vegetation. 
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This chapter analyzes the characterization of understory vegetation by 
using ALSFW data in a Mediterranean forest. As described in chapter four, the 
use of these data allows for the extraction of detailed information in different 
vertical strata compared to ALSD, since the complete signal emitted by the 
sensor is registered. The characterization of understory vegetation over large 
areas by means of ALSFW is a key factor to map and better describe the vertical 
structure and wildlife habitats, as well as for the estimation of ladder fuels, 
which are determinant in fire behavior in some ecosystems, such as the 
Mediterranean. 
 

5.1. Introduction 
 

Understory vegetation is an essential component of forest ecosystems 
(Suchar and Crookston, 2010). Understory is critical for wildlife habitat, nesting 
and foraging (Hill and Broughton, 2009; Martinuzzi et al., 2009; Wing et al., 
2012), impacts overstory regeneration (Royo and Carson, 2006), provides 
protection against soil erosion (Suchar and Crookston, 2010), as well as mediates 
microclimatic conditions below the canopy. The height, cover, and condition of 
the understory are also key drivers of fire behavior through ladder fuels, which 
drive crown fires (Molina et al., 2011). These types of fires are the most 
dangerous in terms of economic impacts and tree death (Molina et al., 2009). 

Despite its importance, understory vegetation has conventionally been 
difficult to describe spatially, particularly over large areas (Wing et al., 2012). 
Traditional techniques, such as the line interception method (Canfield, 1941), 
often used in field surveys (Vierling et al., 2013), are very costly and only 
provide information over small spatial extents (Riaño et al., 2007). Airborne or 
satellite-borne passive optical remote sensing approaches can acquire data over 
large areas, but have limitations for characterizing vertical forest structure (Kerr 
and Ostrovsky, 2003; McDermid et al., 2005; Wulder and Franklin, 2012). 

Active remote sensing techniques, such as ALS, provide horizontal and 
vertical information of different canopy layers (Ruiz et al., 2018). Several studies 
have estimated characteristics of understory vegetation cover using ALSD (Table 
5.1). Most of these studies utilize classification approaches, where understory 
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vegetation is classified based on a set of characteristics derived from point cloud 
data (Hill and Broughton, 2009; Martinuzzi et al., 2009; Morsdorf et al., 2010). 
Less common approaches involve regression, where understory characteristics 
are mapped in a continuous fashion (Wing et al., 2012). Martinuzzi et al. (2009) 
defined and classified two categories of understory cover (above and below 
25%) using ALSD in a mixed temperate coniferous forest in Northern Idaho with 
an overall classification accuracy of 0.83 and a kappa value of 0.66. In a 
temperate deciduous woodland in Cambridgeshire (England), Hill and 
Broughton (2009) predicted the presence and absence of understory using two 
separate leaf-on and leaf-off ALS flights, with a pulse density of 0.5 pulses·m-2 
and 1 pulse·m-2, respectively. The overall accuracy and kappa value of the 
classification were 0.77 and 0.53, respectively. Morsdorf et al. (2010) classified 
different vertical layer strata using height and intensity from ALSD in a pine-
evergreen oak woodland in the French Mediterranean region, resulting in an 
overall accuracy of 0.48 for the shrub layer. More recently, Wing et al. (2012) 
estimated understory cover in an interior ponderosa pine forest in Northeastern 
California using ALSD with a mean density of 6.9 points·m-2. The authors 
introduced a new metric to characterize understory ALS points using a height 
and intensity filter, resulting in a proportion of explained variance of 0.74 and 
nRMSE of 22%. Kobal et al. (2015) also used ALSD and extracted a range of 
canopy gap and understory information such as canopy “sinkholes” and plant 
species richness beneath dense forest cover. Other studies estimated shrub 
height and cover in Central Portugal and the Spanish Mediterranean using 
ALSD (Riaño et al., 2007; Estornell et al., 2011). However, these sites were 
dominated by shrubland, where there is little overstory, which reduces the 
impact of resulting of overstory occlusion. 

Although ALSFW provides a full representation of the intercepted forest 
structure, since it registers the complete signal emitted by the sensor, few 
studies have demonstrated its capability to characterize understory vegetation 
(Table 5.1). Hancock et al. (2017) characterized voxelized understory cover in 
urban area (Luton, England) using ALSFW data. They proposed a new method 
to calibrate and validate results retrieved from ALSFW using TLS as reference 
and obtained an understory cover accuracy of 24% at 1.5 m horizontal and 0.5 
m vertical resolution. Harding et al. (2001) derived CHP retrieved from large  
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footprint ALSFW such as Scanning LiDAR Imager of Canopies by Echo Recovery 
(SLICER) and ground-based measures. Focusing on the understory strata, 
SLICER underestimated cover by 33% compared to ground-based measures. 
Comparing ALSFW to ALSD for more conventional forest inventory attribute 
estimation, Hermosilla et al. (2014a) found no statistical difference for many of 
the compared both technologies to estimate forest fuel and structure attributes. 
Cao et al. (2014) used ALSFW to estimate biomass components, finding that 
ALSFW explained more variability for crown biomass than ALSD, and that the 
combination of both datasets produced the best results. Fieber et al. (2015) 
applied a procedure based on Harding et al. (2001) to obtain the CHP, using 
small footprint ALSFW, and observed a strong relationship between laser 
scanning and field data with a mean R2 of 0.75. Lastly, Anderson et al. (2016) 
found that in an urban woodland landscape, CH estimated by ALSD was more 
biased, and intensity less accurate, than that provided by ALSFW. 

Compared to ALS, TLS can produce a higher number of laser returns due to the 
close range nature of the technology (Vierling et al., 2013). This allows analysis 
of understory structure in much more detail (Vierling et al., 2013). TLS systems 
can register denser point clouds in lower vegetation (e.g., terrain, canopy base 
and understory) (Chasmer et al., 2006; Hilker et al., 2010) and produce forest 
inventory information commensurate with field observations, registering data 
for > 97% of the trees in deciduous, coniferous and mixed forests (Maas et al., 
2008). However, despite its high accuracy, there is a lack of automatic 
algorithms to extract height and species from individual trees with TLS data 
(Liang et al., 2016). The highly detailed representation of the three-dimensional 
structure of the forest stand makes TLS point clouds an ideal dataset to 
characterize understory vegetation (Vierling et al., 2013; Greaves et al., 2015). 
TLS is often considered a much more efficient method than conventional field 
work, and it has successfully been proved as an effective and accurate approach 
to calibrate ALS-based models (Hopkinson et al., 2013; Hancock et al., 2017). 
However, because TLS is limited in its spatial coverage, it is restricted in its use 
as a forest management tool at broad spatial scales. 

In this chapter, in section 5.2, the understory characteristics of the study area 
and the datasets used are described. The different processing steps followed to 
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characterize understory vegetation using ALSFW and TLS as reference are 
enumerated in section 5.3. Results from the different tests to characterize 
understory vegetation are shown in section 5.4. In section 5.5, the discussion of 
the results is addressed. Lastly, in section 5.6, the conclusions of this chapter are 
presented. This chapter sets out the Hypothesis 6: “The new described ALSFW 
metrics in objective 2 may be used to accurately characterize the height, cover 
and volume of understory vegetation in a Mediterranean ecosystem”. To 
demonstrate this hypothesis, Objective 6 is addressed in this chapter: apply and 
validate the new metrics described in objective 2 derived using a voxel based 
approach to estimate understory height, cover, and volume in a Mediterranean 
forest ecosystem, proposing some practical recommendations for further 
development and testing ALSFW metrics. 
 

5.2. Study area and data 
 

The study area is located in eastern Spain, in a Mediterranean forest in the 
Natural Park of Sierra de Espadán (see Figure 3.9 and Figure 4.1). This study 
area coincides with the one described in section 3.4.1, whose characteristics of 
understory vegetation are further described in section 4.2.1. 

TLS data used in this chapter were previously described in section 4.2.3. 
Among the experimental plots registered by TLS, a structurally representative 
sample of 21 plots was selected (Figure 5.1) by maximizing the variability of 
dominant species and understory vegetation cover. Moreover, during TLS data 
acquisition, the maximum height of the understory was also assessed at each 
plot by trained forestry staff. This involved measuring the lower crown of the 
dominant and co-dominant trees, as well as the maximum height of the shrub 
and understory layer. This information was later used to provide the height 
threshold between understory and overstory in order to remove overstory point 
clouds from TLS data described in section 5.3.4. 

ALSFW data used in this chapter were previously described in section 3.4.1, 
and also further used in Chapter 4 as the second study area. 
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Figure 5.1. Plot locations (in yellow) in the study area. 

 

5.3. Methods 
 

In this chapter, we assess the capacity of ALSFW to characterize understory 
vegetation using voxel-based metrics in a Mediterranean forest. The overall 
strategy followed in this chapter is illustrated by the flow diagram of Figure 5.2. 
As the first procedure (1), ALSFW and TLS data must be co-registered to be in 
the same coordinate system in XY plane. In the second procedure (2a and 2b), 
heights from ALSFW and TLS data are respectively normalized to work with the 
same Z origin and to avoid the effect of relief in the characterization of the 
understory strata. The third procedure (3) involves denoising of ALSFW data to 
remove noise present in the signal registered. As the fourth procedure (4), the 
TLS point cloud is filtered to retrieve the understory strata, which is used as 
reference data in further procedures. The fifth procedure (5a and 5b) consists of 
the voxelization of ALSFW and TLS data for the extraction of the corresponding 
metrics and attributes, respectively. As the sixth procedure (6), ALSFW metrics 
are extracted from each pseudo-vertical waveform (i.e., voxel column), and then 
metrics are computed at cell- (6a) and plot-level (6b). The seventh procedure (7) 
consists of the extraction of understory attributes from the TLS voxelization 
used further to assess the characterization of understory vegetation from ALSFW 
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data at plot- (7a) and cell-level (7b). Finally, metrics from ALSFW as independent 
variables and understory attributes from TLS as dependent variables are used 
in regression models at plot- (8a) and cell-level (8b). In addition, other plot 
characteristics such as slope and dominant species are used in mixed-effect 
models (9) to characterize understory vegetation. 
 

 

Figure 5.2. Overall processing flowchart implemented to characterize understory 
vegetation from ALSFW and TLS data. 
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5.3.1. XY co-registration of ALSFW and TLS datasets 
 

Co-registration is a key step when dealing with different datasets from 
different sources. This co-registration in XY plane was done in this chapter by 
following the same procedure previously described in section 4.2.5.2. In this 
case, ALS data were also taken as the reference dataset, since its accuracy is 
higher than the one for TLS data. 
 

5.3.2. Height normalization 
 

Heights of the ALS and TLS datasets were normalized using DTMs derived 
from each of the point clouds (Procedures 2a and 2b, respectively) for a new co-
registration in Z plane, being 0 m the reference surface. In the case of ALS, 
classified ground points were provided by the vendor. These classified points 
were used to generate the corresponding DTM by means of LAStools (Isenburg, 
2017)(version 171017). TLS ground points were classified using a variation of 
the Axelsson (2000) algorithm implemented in LAStools. DTMs with a 
resolution of 0.3 m were generated and each dataset was then normalized. 
Height normalization of TLS point cloud was done by using LAStools, while 
normalization of ALSFW was done as described in Chapter 3, as a step of the 
ALSFW metric extraction implemented in WoLFeX. 
 

5.3.3. Denoising 
 

This procedure (Procedure 3) was the same followed and previously 
described in section 2.3.1. 
 

5.3.4. Extraction of understory point cloud 
 

TLS-based attributes characterizing the understory require two additional 
pre-processing steps (Procedure 4). First, points registered on tree trunks were 
removed using a combination of intensity filtering and manual point cloud 
editing. By examining the TLS point cloud intensity values it was found that 
returns with intensity value higher than 170 can be flagged as tree trunks. Using 
a point cloud editor, TLS returns adjacent to the trunks were also removed to 
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ensure points located on tree trunks were no longer included in the analysis. In 
the second pre-processing step returns located above the field-measured 
maximum understory height were removed (Figure 5.3). 

 

Figure 5.3. Vertical transect showing the extraction from TLS point cloud of understory 
vegetation (in green) from overstory (in brown). 

 

5.3.5. Voxelization 
 

This procedure (Procedures 5a and 5b) was the same followed and 
described in section 2.3.3. In this chapter, the horizontal size of the voxels was 
based on the results of Chapter 2 (i.e., 0.75 m), while the vertical dimension was 
calculated from the temporal sample spacing by using Equation 5 (i.e., resulting 
in 0.15 m). As assignation value, the maximum was the one selected. The goal 
of selecting this voxel size was to have the lowest number of empty voxels 
without a loss of accuracy. 
 

5.3.6. Extraction of ALSFW metrics 
 

The extraction of ALSFW metrics (Procedure 6) was done following the 
procedure previously described in section 2.3.4, where pseudo-vertical 
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waveforms are generated from voxelization and then metrics are extracted. 
Hence, ALSFW metrics were firstly extracted from the selected voxel size, i.e., 
0.75 × 0.75 × 0.15 m (henceforth referred to as 0.75 m). Then, the understory was 
characterized at two spatial scales; 3.75 × 3.75 × 0.15 m (i.e., 5 × 5 columns of 
voxels; henceforth referred to as 3.75 m), which is denoted as “cell-level” of 
understory vegetation (Procedure 5a), as well as at the broader plot-level scale 
(15 m radius) (Procedure 5b). 

The total number of ALSFW metrics extracted was 53, as described in section 
3.2 and Table 3.1. In addition, to better understand if limiting the calculation of 
the pseudo-vertical waveform metrics to lower components of the canopy 
enhances estimations of understory vegetation, a height filter was applied to 
ALSFW metrics. This height filter consisted of cutting off the pseudo-vertical 
waveform at a given height threshold, then extracting ALSFW metrics from the 
resulting pseudo-vertical waveform. The height threshold for the whole study 
was computed as 99% height of understory heights extracted from TLS data. 
Therefore, all the ALSFW metrics were computed on both the full pseudo-vertical 
waveform as well as a pseudo-vertical waveform limited to the height of the 
TLS understory height threshold. 

As all these metrics were computed for each column of voxels, mean and 
standard deviation was calculated at the corresponding cell– (Procedure 6a) and 
plot-level (Procedure 6b) as variables for the regression models. 
 

5.3.7. Extraction of understory attributes from TLS 
 

Four key attributes describing the understory vegetation were extracted 
from the TLS voxels: mean understory height (Hmean), maximum understory 
height (Hmax), understory canopy cover (C) and total volume (V), which is 
defined as three-dimensional space occupied by understory (Procedure 7). 
These four understory attributes were used as the observed variables and 
modeled with ALSFW derived predictors. 

To calculate the H max, we computed the 99% height of each 0.75 m column 
of voxels and then extracted the maximum within each 3.75 m side cells (cell-
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level) (Procedure 7b). Hmean was defined as the average of the 99% heights of 
each 0.75 m column of voxels across the 3.75 m cells. A proportion of filled voxel 
columns within each 3.75 m cell was used to describe C. A minimum threshold 
of 10 points was used to determine filled voxels in each column, and a minimum 
of one filled voxel was required to define a column as filled. A sum of all filled 
voxels in each column multiplied by the volume of the voxel was used as an 
estimate of V. A graphical description to compute these understory attributes at 
cell-level is showed in Figure 5.4. Moreover, Figure 5.5 shows these TLS 
attributes categorized by the dominant species and the slope of the plot. 
Dominant species had a high influence on all the understory attributes. 
Understory vegetation height, cover and volume were higher with presence of 
Pinus halepensis, and slightly lower with presence of Pinus pinaster compared to 
mixed Pinus pinaster and Quercus suber. These understory vegetation attributes 
were however less influenced by slope. In this case, median values were 
generally similar among the different slope categories, however, mean height 
and volume values were less dispersed as the slope increases.  

In addition to the cell level (3.75 m) (Procedure 7b), all attributes were also 
calculated at plot-level (15 m) (Procedure 7a). 
 

5.3.8. Linear regression models 
 

Linear regression was used to obtain predictive models of the four understory 
attributes, using ALSFW metrics as independent variables (Procedure 8). 
Attribute selection consisted of comparing the AIC of all possible model 
comparisons using a maximum of three ALSFW metrics in each model. Each plot 
was composed of 40 samples (i.e., cells). In order to reduce spatial 
autocorrelation, 10 samples per plot were randomly sampled, which resulted in 
210 samples at the cell-level (Procedure 8b) and 21 for the plot-level analysis 
(Procedure 8a). A total of 16 model sets were tested (4 understory TLS metrics 
× 2 resolutions (cell- and plot-level) × 2 sets of ALSFW metrics (with and without 
the TLS height filter)). Models were compared using the R2, RMSE, nRMSE and 
CV. In the case of C, which is a bounded variable between 0 and 1, we replaced 
linear regression with Beta regression (Ferrari and Cribari-Neto, 2004) where a 
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Figure 5.4. Graphical description to compute the understory attributes (Hmax, Hmean, C 
and V) at cell-level (i.e., 3.75 m) from a TLS point cloud. 

pseudo-coefficient of determination (pR2) was generated for these regression 
models. 
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Figure 5.5. Box and whiskers representing TLS understory attributes (mean height: 
Hmean, maximum height: Hmax, cover: C, and volume: V) categorized by dominant species 
(Pinus halepensis, Mixed Pinus pinaster and Quercus suber, and Pinus pinaster) and 
slope (low, medium, and high) from the 21 plots. 
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5.3.9. Linear mixed-effect models 
 

To assess if the ability of ALSFW to predict the TLS attributes was site 
dependent, a mixed-effect modeling approach was also undertaken (Procedure 
9), which involved developing statistical models containing both fixed and 
random effects (Crawley, 2012). The two known variables from each plot, slope 
and dominant species, were used as categorical class variables since both can 
affect the understory (see Figure 5.5). The slope was categorized in three groups: 
low, medium, and high. The dominant species were split into three groups as 
well: H (Pinus halepensis), P (Pinus pinaster), and M (Pinus pinaster + Quercus 
suber). Beatty (1984) found that microrelief could affect nutrient content, making 
mounds poorer and pits richer in biodiversity. Barbier et al. (2008) found that 
understory vegetation was highly affected by overstory species, since a number 
of environmental factors (e.g., light and nutrients) highly influence species. Both 
the model slope and intercept were allowed to vary (based on Gelman and Hill 
(2007)) while utilizing Nakagawa and Schielzeth’s (2013) steps with an update 
of Johnson (2014) to calculate two model estimators: marginal R2 (R2m) and 
conditional R2 (R2c) for model comparison, as well as standard RMSE and 
nRMSE for linear mixed-effect models. These 24 models (4 TLS understory 
attributes × 2 ALSFW metric datasets (with and without height filter) × 3 
combination of categorical variables (slope, dominant species, and both)) plus 
the 16 models explained above, resulted in 40 models in total for this study. 
 

5.4. Results 
 

The detection of pR2 of the understory cover (C) was 0.871. The R2 values of 
the predicted understory attributes were 0.957, 0.771, and 0.951, for Hmean, Hmax, 
and V, respectively. 

Figure 5.6 shows an example of the four TLS and ALSFW derived attributes 
of the understory with a site photograph for three plots within the study area. 
These three characteristic plots demonstrate low, moderate, and high degrees 
of understory cover (i.e., plots P6-SP, P7-SP, and P2-SP, respectively). 
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Figure 5.6. TLS and ALSFW derived four attributes (Hmean, Hmax, C and V) and field 
photographs extracted from three plots (P2-SP, P6-SP, and P7-SP) with 15 m radius 
within the study area. Plots P6-SP, P7-SP, and P2-SP, represent low, moderate, and 
high degrees of understory cover, respectively. 
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Figure 5.7 shows a table with the ALSFW metrics selected for the 16 
regression models (4 understory TLS attributes × 2 resolutions (cell- and plot-
level) × 2 set of ALSFW metrics (with and without the TLS height filter)) with 
corresponding R2, RMSE, nRMSE and CV values. Results indicate that the best 
model for Hmean and Hmax was developed at the plot-level using a height filter, 
and had R2 values of 0.957 and 0.771, respectively. These models also had the 
lowest RMSE and nRMSE (0.08 m and 7% for Hmean; 0.51 m, and 11% for Hmax, 
respectively). The best model for C was also developed at plot-level, with 
similar results with and without a height filter. Model performance was 
characterized by R2 = 0.871, RMSE = 0.09, nRMSE = 11%, CV = 12% when the 
height filter was used, and by R2 = 0.792, RMSE =0.07, nRMSE = 9%, CV = 9% 
without the height filter. Lastly, the plot-level model for V, without a height 
filter, was the most accurate and had R2 = 0.951, RMSE = 56.49 m3, nRMSE = 7% 
and CV = 9%. Among all models, Hmax modeled at cell-level had the lowest 
accuracy with a R2 of 0.447. 

The most frequently used metrics in the regression models included NFVU, 
FVU, nEFEV, EFEV, Hn, and MAX E, while WD, RWE, VARIANCE, ENERGY 
Qn, N GS, N GS ENDPEAK, CE, GRR, AGS, SGS, and MSGS were not included 
in any of the models. 

Results of the mixed-effect models that incorporated different combinations 
of categorical variables (slope, dominant species, and both) are shown in Table 
5.2. These results indicate that the highest accuracy was achieved for Hmean, with 
an nRMSE of 9%, for the model that used both categorical variables, as well as 
for the model that used only the dominant species. For all the understory 
attributes, using just the dominant species or both variables as categorical 
variables reached the best results. 

When compared to the results of the linear regression models (Figure 5.7), 
all understory attributes were predicted with higher accuracy. The 
improvement in nRMSE was about 1% for Hmean, 2% for Hmax, 7% for C, and 2-
3% for V. 

Figure 5.8 shows scatter plots of the TLS-based observed and ALSFW-based 
predicted attributes at cell- and plot-level, as well as using the mixed-effect  
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models. Predictions of Hmean, Hmax, and V to their respective observations were 
closer to 1:1 than C at the cell-level and when using mixed-effect models. 
Improvement between cell-level and mixed-effect models is especially visible 
for C. As demonstrated previously, results at the plot-level were more accurate 
than at the cell-level. 

Table 5.2. Results of mixed-effect models for the estimation of the four understory 
attributes (Hmean, Hmax, C, and V). 

Categorical 
variable 

Attribute Height 
filter 

R2m R2c RMSE nRMSE 
(%) 

CV (%) 

Slope 

Hmean 
NO 0.271 0.847 0.31 m 10 41 
YES 0.625 0.627 0.33 m 10 43 

Hmax 
NO 0.344 0.550 0.67 m 15 42 
YES 0.433 0.519 0.70 m 15 43 

C 
NO 0.466 0.670 0.21 21 27 
YES 0.238 0.793 0.21 21 26 

V 
NO 0.311 0.849 3.85 m3 14 31 
YES 0.068 0.943 4.58 m3 17 37 

Dominant 
species 

Hmean 
NO 0.394 0.666 0.30 m 9 40 
YES 0.526 0.606 0.31 m 10 41 

Hmax 
NO 0.294 0.421 0.67 m 15 41 
YES 0.397 0.575 0.67 m 15 41 

C 
NO 0.055 0.960 0.17 17 22 
YES 0.059 0.946 0.17 17 22 

V 
NO 0.191 0.876 3.61 m3 13 29 
YES 0.110 0.898 4.49 m3 17 36 

Slope + 
Dominant 

species 

Hmean 
NO 0.232 0.791 0.30 m 9 39 
YES 0.260 0.780 0.31 m 9 41 

Hmax 
NO 0.157 0.613 0.64 m 14 40 
YES 0.145 0.745 0.66 m 14 41 

C 
NO 0.032 0.972 0.15 15 20 
YES 0.036 0.961 0.16 16 20 

V 
NO 0.118 0.914 3.55 m3 13 29 
YES 0.035 0.967 4.26 m3 16 34 

 

5.5. Discussion 
 

In this chapter, a new methodology to characterize understory vegetation from 
ALSFW data has been described. This methodology was verified with TLS data 
acquired at key plot locations. Key results from this study indicate that 
understory cover, height, and volume were accurately predicted from ALSFW at 
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Figure 5.8. Regression graphs for the estimation of the different attributes (Hmean, Hmax, 
C and V) for each resolution (cell-level, mixed-effect (cell-level) and plot-level (15 m 
radius)) and for each height filter (NF: no filter, HF: height filter). Solid line represents 
the 1:1 line. 
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both the cell and plot scale when compared to the reference. 

Overall, the results showed a high performance of ALSFW for estimating 
Hmean, Hmax, C, and V, especially at plot-level. Hmean and V were modeled with 
highest accuracy, while poorer results were obtained for C and Hmax. These 
results suggest that Hmean had a higher performance than Hmax since mean values 
are smoother than maximum values, due to the latter being able to have extreme 
values. V results were close to Hmean, given that both attributes are directly 
related. Most of the C training values were close to 1, hence not being a 
distributed sample, causing poorer estimates of C. A possible solution to 
improve C estimate results is to increase the number of plots with an 
intermediate understory cover. Results at the cell-level were poorer since 
estimates were more sensitive to small changes due to the finer scale. Although 
results were lower at cell-level, these values were acceptable having in mind its 
resolution. 

A number of key findings were apparent. A height filter was applied in 
order to determine whether cutting off the pseudo-vertical waveform fragment 
that corresponds to understory enhanced estimations of understory vegetation 
characterization. Nevertheless, applying this filter to the ALSFW prior to metric 
calculation did not result in an improvement in accuracy when predicting Hmean 
at cell-level, as well as C and V at both scales. In addition, in those cases where 
results from height filter tests were higher, improvements compared to no 
height filter tests were small. This is likely due to the fact that contrary to ALSD, 
which has a limited number of digitized hits, ALSFW can fully discriminate 
height strata through decomposing the waveform. As a result, height thresholds 
for data processing are not needed. 

Estimation results of understory cover, height, and volume improved when 
mixed-effect models were applied using just the dominant species as variable, 
or combined with the slope. These results suggest that terrain slope alone has 
little influence on the prediction of the understory variables, however when 
combined with dominant species it has a more significant effect. 

With respect to the accuracy of the predictions, our results correspond to 
those of others (Hill and Broughton, 2009; Martinuzzi et al., 2009; Morsdorf et 
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al., 2010; Wing et al., 2012; Hancock et al., 2017). Most of the studies to date (Hill 
and Broughton, 2009; Martinuzzi et al., 2009; Morsdorf et al., 2010) have 
estimated the presence or absence of understory by applying a classification 
based approach. Contrastingly, Wing et al. (2012) estimated understory cover 
using regression models and found a R2 of 0.74, with a similar nRMSE as 
reported in our study (nRMSE = 22%), but used a resolution of 40.5 m2 and 
applied height and intensity filters. This study suggests that ALSFW can be used 
to estimate understory cover with a similar nRMSE, but with a higher resolution 
(i.e., 3.75 m or 14.06 m2) and without applying any filter. Alternatively, Hancock 
et al. (2017) obtained a similar accuracy (nRMSE = 24%) at finer scale (1.5 m 
horizontal and 0.5 m vertical resolution), but in an urban landscape. This 
suggests that understory cover can be extracted more accurately in urban 
environments, where vegetation is likely more intensively managed by 
humans. 

Scaling from the cell-level to the full plot showed an increase in accuracy 
and decrease in error when compared to the reference TLS predictions. In the 
case of Hmean, the R2 coefficient increased from 0.633 to 0.949, and from 0.447 to 
0.758 for Hmax. The R2 coefficient for C increased from 0.581 to 0.871, and from 
0.651 to 0.951 for V. From a modeling point of view, the most selected attributes 
were those developed in this thesis, especially at the finer scale. The newly 
created attributes were also used more frequently in the regression models at 
the plot scale, but they were selected by fewer models. Attributes from Gaussian 
iterative decomposition related to return energy were not selected, except for 
BCE. As Hancock et al. (2015) suggested, Gaussian iterative decomposition 
methods were poorer when extracting return energy from ALSFW when a small 
footprint is used because of the increase heterogeneity of the targets. Other 
methods such as the sum of waveform amplitude and spline may be used in 
further studies instead of the Gaussian iterative decomposition, since they are 
less time consuming and robust (Hancock et al., 2015). 

Hmean, Hmax, C, and V, can be represented as four layers that can be used in 
three key ways for fire behavior assessment. First, fire models need understory 
height. These layers give an accurate height that, with the CBH measure, can be 
used to calculate the gap between understory and overstory. This gap is 
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critically important for Mediterranean forests as it describes when a surface fire 
will likely become a crown fire (e.g., ladder fuel fires). Second, fire behavior 
depends on understory cover. Surface fire intensity is higher with larger 
amounts of understory, which is determined by cover and biomass. The latter 
of which was not able to be predicted in this study, since ground-based data 
from understory species registered by TLS were not available, as well as the lack 
of allometric equations for these species to predict biomass. Third, forest 
clearing in the Mediterranean for fire prevention consists of removing 
understory vegetation and creating controlled fires. Knowing the understory 
vegetation volume easily allows determination of how much volume will be 
removed during a fire, which can also be converted to biomass for other 
purposes. 
 

5.6. Conclusions 
 

In this chapter, a method to characterize the understory vegetation through 
ALSFW data in a Mediterranean forest has been presented. Our results suggest 
that the use of ALSFW provides an alternative to traditional or local techniques 
for understory characterization. ALSFW is able to accurately estimate understory 
vegetation attributes such as height, cover, and volume over large areas. These 
attributes reached very high R2 values at plot scale (mean height: R2 = 0.957, 
maximum height: R2 = 0.771, cover: R2 = 0.871, and volume: R2 = 0.951), but were 
slightly lower at cell-level (i.e., 3.75 m side) (mean height: R2 = 0.633, maximum 
height: R2 = 0.470, cover: R2 = 0.581, and volume: R2 = 0.651). The new proposed 
metrics in section 3.2 proved to be decisive for a more accurate characterization 
of the understory vegetation. This is an advantage to traditional or TLS 
techniques, which can only be collected in small areas and tend to be very costly. 
The results presented in this chapter are particularly important for forest 
management, as well as fire prevention and prediction. Further studies must be 
conducted in different ecosystems in order to assess the potential use of ALSFW 
for various tree and shrub densities and types, as well as predicting other 
attributes such as biomass, which is essential to analyze forest fire intensity. 
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6.1. Answers to the original research questions 
 

This thesis addressed the development of ALSFW processing and analysis 
methods to characterize the vertical forest structure, in particular the 
understory vegetation. 

ALSFW data have proven to be a powerful tool to characterize the entire 
vertical forest structure, since the complete signal emitted by the sensor and 
going through the different vertical strata is registered. The possibility of having 
all this information makes it possible for the user to analyze different vertical 
strata in more detail than with ALSD, where data are reduced by the Gaussian 
decomposition technique. Focusing on the understory strata, its 
characterization is challenging for ALS configurations due to occlusion of 
overstory, and crucial for forest fire mitigation and mapping wildlife habitats. 
ALSFW has proven to detect and characterize with more detail these strata than 
ALSD. Nevertheless, other aspects of ALSFW should be considered. The 
registration of the complete signal also involves a large amount of data that 
must be stored and managed, which implies availability of disk space and 
powerful processors. This drawback is disappearing, as more powerful 
computers with more storage capacity and cloud computing alternatives are 
being available. On the other hand, the creation and publication of new 
processing tools, such as WoLFeX, is expected to diminish the effect of the lack 
of ALSFW processing tools, which was a disadvantage until now.  

The main conclusions for each of the specific objectives enumerated in 
section 1.2 are as follows: 

Objective 1: To analyze the influence of pulse density, voxel parameters and 
regression methods on ALSFW metric values and on forest structure attributes estimates, 
identifying those parameters and quantifying their relations to be able to tune their 
values in order to considerably reduce this influence in practice. 

• Values of ALSFW metrics extracted following the voxelization 
procedure are subject to pulse density. This means that ALSFW metric 
values vary if the pulse density changes. This entails a problem since 
pulse density is variable due to different factors such as objects’ 
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occlusion, scan angle or flying speed. The variation of ALSFW metric 
values due to higher pulse density in side-lap areas is known as side-
lap effect, and this is not the same for all the ALSFW metrics, therefore 
some are more influenced than others. 

• Overall, this variation of ALSFW metric values follows a negative 
exponential distribution (Equation 6), being the variation lower as 
the pulse density increases. Therefore, variation of ALSFW metric 
values related to pulse density can be modeled using a negative 
exponential distribution to determine, through coefficient b, from 
which pulse density ALSFW metric values become stable. Hence, the 
coefficient b shows the minimum pulse density that should be used 
to avoid the side-lap effect. 

• On the other hand, if a minimum pulse density cannot be set (e.g., 
ALSFW data have already been acquired), modifying voxel 
parameters (i.e., voxel size and assignation value) may be used to 
reduce the side-lap effect. Overall, an increment of the voxel size, 
and the modification of the assignation value for some metrics, 
results in reduction of the side-lap effect. This is due to the fact that 
the probability that larger voxels are crossed by at least one 
waveform is higher, avoiding the gaps in the voxel columns that may 
alter values of ALSFW metrics. Hence, a trade-off between increasing 
voxel size to reduce side-lap effect and a substantial loss of 
resolution should be considered. 

• Regarding the different ALSFW metrics in more detail, the increment 
of the voxel size is recommended for HOME, WD, FS and RWE for 
the mean and median assignation values. Nevertheless, small voxel 
sizes make ROUGH and RWE for maximum, percentiles 90 and 95 
more stable. On the other hand, the choice of the assignation value 
must be considered depending on the voxel size used for RWE. 
However, NP is sensitive to pulse density variations and it cannot 
be reduced through voxel parameters, and therefore should be 
avoided for further analyses. 

• Forest attributes are estimated by using ALSFW metrics influenced by 
the side-lap effect; therefore, these attributes are also influenced by 
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the effect. Nevertheless, the influence of the side-lap effect on 
estimate of forest attributes is lower than on ALSFW metrics, since the 
former are statistically fitted, and errors minimized by using 
regression models. 

• However, the increment of the voxel size also diminishes the side-
lap effect on forest attributes. For instance, side-lap effect is lower in 
mass-related attributes when the voxel size is increased than in 
height-related attributes. In the latter, however, side-lap effect can 
be reduced more efficiently by changing the regression method 
used. 

Objective 2: To compile a set of methods to process and analyze ALSFW data, 
including the relative radiometric correction of the data to reduce the effect of the 
different angles of incidence and local altitude variations during the data acquisition 
process, the extraction of most ALSFW metrics as proposed in the literature, as well as 
new metrics focused on understory vegetation, integrating them in a new software 
available to use for the scientific community. 

• A new software tool named WoLFeX is presented and described. 
This software tool is designed to process ALSFW data, allowing for 
clipping, radiometrically correcting, voxelizing the original ALSFW 
waveforms, creating pseudo-vertical waveforms and extracting an 
exhaustive set of object-oriented metrics that can be used in 
regression and classification models as independent variables. 

• A wide range of ALSFW metrics is included in WoLFeX. New metrics 
for the characterization of understory vegetation have been 
proposed. These new metrics allow for the identification and 
quantification of understory vegetation, which is a key parameter for 
forest fires mitigation. 

Objective 3: To assess the influence of the scan angle of ALS data acquisition and 
the application or not of a radiometric correction on (i) the extraction of an ALSFW 
metric; and (ii) modeling three of the most relevant forest fuel variables—canopy fuel 
load (CFL), canopy height (CH), and canopy base height (CBH). 
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• Values of ALSFW metric RWE are influenced by the scan angle of the 
waveforms. Estimated values of RWE should be equal for a same 
sample; however, up to a nRMSE difference of 15.40% was observed 
in the estimate of RWE from waveforms acquired with extreme scan 
angles. 

• These differences in RWE values related to scan angle decrease when 
relative radiometric correction is applied, but they are not 
completely removed. The efficiency of radiometric correction is 
affected by the correction parameter power n (see Equation 1). Thus, 
differences quantified by nRMSE can be reduced in more than 4% 
using radiometrically corrected data. 

• Forest fuel attributes (CFL, CH and CBH) estimated from ALSFW 
metrics are also influenced by scan angle. Different values of forest 
fuel attributes are estimated for a same plot when using different 
scan angles. Nevertheless, estimates of forest fuel attributes are 
differently influenced by scan angles. For instance, mass-related 
attributes are more influenced than height attributes. 

• On the other hand, differences in estimates of forest fuel attributes 
due to scan angle are also reduced, and its accuracy improved, by 
applying radiometric correction. Again, estimates of mass-related 
attributes are strongly influenced, and its accuracy improved, by 
applying radiometric correction, while height attributes are little 
influenced. Forest fuel attributes are differently influenced since 
height attributes are fixed at a specific point on the waveform, 
usually a maximum or minimum, while mass-related attributes are 
described using the complete waveform profile. Therefore, the latter 
are more subject to radiometric values. 

Objective 4: Characterize the signal occlusion along the vertical forest structure 
using different laser scanning configurations (i.e., ALSD, ALSFW, and TLS) in 
contrasted ecosystems with different canopy covers to determine how reliable the 
resulting vertical distribution profiles are based on the amount of occlusion and the lack 
of information. 
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• Overall, results confirm the general trend largely accepted by the 
scientific community, which implies that laser scanning signal 
occlusion prevails in sectors blocked by dense canopies. Signal 
occlusion therefore depends largely on the laser scanning 
configuration: ALS, viewing forest from the top-down, is more 
limited to sample the lower strata, while TLS, viewing the forest 
from bottom-up, is more limited to sample the top of the canopy. 

• The rate of pulse reduction, which is the ratio between the number 
of blocked laser beams prior to reach a given voxel and the number 
of theoretical laser beams that should cross a given voxel, is a good 
indicator of occlusion. Therefore, vertical profiles representing the 
rate of pulse reduction allows for quantifying the occlusion in the 
different vertical layers. This involves assessing the reliability of the 
vegetative material detected from the different laser scanning 
configurations at the different vertical strata. 

• Comparing vertical profiles retrieved from the number of hits of 
ALSFW and ALSD, and taking PAD from TLS as reference, ALSD 
concentrates most of its data at the upper strata, since the dominant 
strata generates occlusion underneath. Despite this, the detection of 
the top of the canopy by ALSFW and ALSD are not significantly 
different. Nevertheless, detection of strata below the dominant strata 
(intermediate and/or lower strata) is enhanced by ALSFW. 

Objective 5: Determine how understory vegetation density classes can be detected 
and further determined by ALS configurations, and whether ALSFW allows for the 
detection and determination to a level of detail beyond ALSD capability. 

• Again, using the PAD from TLS as reference, vertical profiles at 
lower strata retrieved from the number of hits of ALSD and ALSFW 
data are both high correlated with vertical profiles of TLS. However, 
vertical profiles retrieved from ALSFW are significantly more 
accurate. This implies that vegetative material at lower strata (i.e., 
understory vegetation) are generally well detected by ALS 
configurations, but especially by ALSFW.  
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• Despite the correlations between the number of hits of ALS (i.e., 
ALSFW and ALSD) and the PAD from TLS are high, this is a unitless 
indicator, and therefore, it only considers the shape but not the order 
of magnitude of the vertical profiles at the lower strata. In this 
regard, ALSFW detects understory vegetation with a much larger 
number of hits than ALSD. This implies that lower strata, and 
therefore understory vegetation, is registered in more detail with 
ALSFW.  

• The considerably lower number of hits registered from ALSD in the 
lower strata with respect to those registered by ALSFW and TLS, but 
the significant correlation with TLS, suggests that understory 
vegetation can be successfully detected at plot-level but not at finer 
scales. The low density of ALSD point clouds cannot represent the 
complexity of each individual understory vegetation element. 
However, the significant correlation with TLS at plot-level shows 
that the presence of understory vegetation within the plot is 
generally detected. 

• The variation of the vertical profiles of the number of hits of ALS 
configurations at the lower strata depends on the density of 
understory vegetation. From up-bottom, gradual variations are 
related to sparse understory vegetation, while steep variations are 
related to dense understory vegetation. 

• The application of the Gini index quantifies how these variations in 
the vertical profile of the number of hits are. Therefore, this index 
can be used to determine the density of understory vegetation by 
using the ALS (i.e., ALSFW and ALSD) vertical profiles of the number 
of hits at the lower strata as input. Again, the determination of 
understory vegetation density is more accurate with ALSFW. Gini 
index class interval thresholds to determine understory vegetation 
density from ALSD are fuzzier, implying more overlap between 
classes, than those from ALSFW. 

• Despite strong signal occlusion at lower strata in the forest, ALS and, 
especially ALSFW, can be processed to identify understory densities 
with the Gini index. 
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Objective 6: Apply and validate the new metrics described in objective 2 derived 
using a voxel based approach to estimate understory height, cover, and volume in a 
Mediterranean forest ecosystem, proposing some practical recommendations for further 
development and testing ALSFW metrics. 

• Understory vegetation can be characterized very accurately in a 
Mediterranean ecosystem by using ALSFW metrics. Among the 
understory vegetation attributes used for the characterization, mean 
height and volume have the highest correlations, above the 
maximum height and cover. 

• Contrary to ALSD, and in order to enhance estimations of understory 
vegetation characterization, ALSFW data do not need to be cut off to 
exclude the waveform fragments that do not correspond to 
understory vegetation. This is likely due to the fact that contrary to 
ALSD, which has a limited number of digitized hits, ALSFW can fully 
discriminate height strata through decomposing the waveform. 

• The terrain slope alone has little influence on the prediction of 
understory vegetation cover, height, and volume. However, when 
combined with dominant species it has a more significant effect, and 
therefore, estimation results are improved. 

 

Overall, the use of ALSD data is adequate for most of the current ALS 
applications. Nevertheless, we have demonstrated that ALSFW is capable of 
going one step further in the identification and/or characterization of the 
intermediate and lower vegetation strata. This is crucial for applications such as 
wildfire mitigation, modeling fire behavior, planning forest thinning and 
maintenance tasks for wildfire reduction and biodiversity preservation, or 
mapping biodiversity. However, the use of ALSFW data requires the 
identification of the appropriate parameters, such as the optimal pulse density 
and processing parameters (i.e., voxel size and assignation value), as well as the 
application of radiometric correction prior to undertake any data processing.  

Analyzing the vertical forest structure and occlusion with terrestrial and 
airborne laser scanning configurations allowed us for a better understanding of 
a potential previously mentioned by other authors: the use of TLS to calibrate 
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ALSFW, thus the latter could replace TLS to retrieve information from forest 
internal structure massively, at broader scales. 

 Nevertheless, ALSFW still presents some limitations, such as signal occlusion 
due to dense vegetation. This may have particular importance in forests with 
high canopies and very dense vegetation and internal structure (e.g., tropical 
areas), where the energy from ALS pulses may not be sufficient to reach the 
ground or the lowest vegetation strata. 
 

6.2. Further research 
 

This research deepened into the use of ALSFW for the characterization of the 
vertical forest structure in different ecosystems. Several aspects were addressed 
such as the influence of pulse density on ALSFW metrics and on forest attributes 
estimates, and how this influence may be reduced; creation and description of 
a new processing tool to process ALSFW data, including this tool new proposed 
ALSFW metrics related to understory vegetation; the analysis of the influence of 
scan angle and the radiometric correction of ALSFW metrics and on the estimate 
of forest fuel attributes; the characterization of the vertical distribution and 
occlusion for different laser scanning configurations (ALSD, ALSFW and TLS); the 
comparison in the detection and determination of understory vegetation 
density with ALSD and ALSFW in two contrasted ecosystems; and the 
characterization of understory vegetation with ALSFW metrics in a 
Mediterranean ecosystem. This thesis may also be taken as the start point of 
further research to deepen even more into the use of ALSFW for the 
characterization of the vertical forest structure. 

Promising further research might be mainly focused on deepening into 
some aspects addressed in this thesis, such as the use of ALSFW data to estimate 
useful inputs for 3D simulations of wildfire behavior (e.g., WFDS and Firetec). 
These new 3D physical fire behavior models include the fuel-fire-atmosphere 
interactions, which require very accurate forest structure and fuel moisture 
information at voxel-level. Thus, it is important to classify and map forest 
species by combining ALSFW with other sensors (e.g., multispectral or 
hyperspectral), and to estimate forest structure parameters (canopy bulk 
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density, canopy base height, cover and height) at voxel-level following some of 
the methods presented in this thesis. On the other hand, it is also important to 
analyze the use of emerging ALSFW sensors and deep learning techniques, such 
as GEDI (Global Ecosystem Dynamics Investigation) and convolutional neural 
networks, respectively. Furthermore, new techniques for storing and processing 
ALSFW might also be addressed. 

Several interests for further research are proposed below: 

• Classification of forest species by using ALSFW and other sensors 
(e.g., multispectral or hyperspectral). 

• Estimation of CBD at voxel-level using ALSFW. 
• Identification of understory vegetation and ladder fuels, and 

quantification of their structural properties (i.e., volume and 
biomass) at voxel-level using ALSFW. 

• Analysis of the side-lap effect on different ecosystems with different 
dominant species. 

• Assessment of the effect of the emitted pulse energy and the 
footprint size on ALSFW values. 

• Study of the relationships between estimates of PAD and vertical 
profiles of number of hits for ALS configurations. 

• Analysis of the relationship between vertical profiles of rate of pulse 
reduction and classification of forest types and structure. 

• Validation of the characterization of understory vegetation with 
ALSFW data in different ecosystems. 

• During the development of this thesis, it has been observed that 
ALSFW data are not standardized. Firstly, this is reflected in how 
data are provided depending on the sensor and on the processing 
software used to generate LAS files from RAW files. For instance, 
line parameters of the waveforms (i.e., Xt, Yt and Zt), which describe 
the direction and location of the waveform, are sometimes 
represented differently. Secondly, given that LAS format was 
originally created for ALSD data, different hits belonging to one 
waveform are provided, which is redundant to represent the 
waveform. A standardization of a new LAS format for the 
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distribution of ALSFW data would be suitable. This new format 
would standardize the parameters present in the LAS file to 
represent the ALSFW data, as well as resulting in a reduction of 
memory and processing time.  

• Exploration of a new denoising process for ALSFW data based on the 
Fourier transform. This technique decomposes a waveform into its 
constituent frequencies. Therefore, some of these frequencies may 
be identified as noise and removed. 

• Comparison of new sources of full-waveform laser scanning data, 
such as GEDI (i.e., a space-borne laser scanning), with ALS data. In 
addition, given that ALS data are denser than those from GEDI, the 
latter could be calibrated using ALS data as reference. This would 
allow for the characterization of forest fuel and vertical forest 
structure in wider areas with time series using the wall-to-wall 
procedure, as it has been used for ALSD and Landsat data (Saarela 
et al., 2015). 

• Exploration of the use of convolutional neural networks to 
characterize the forest fuel and vertical forest structure with ALSFW 
data for estimating forest attributes or for classifying tree species 
and fuel types, etc. The development of 3D segmentation methods 
to identify individual trees or tree elements (e.g., trunk, crown, etc.) 
can also be relevant for future work in forest structure. 
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