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1. Introduction 

 

The Prototype Verification System (PVS) developed at SRI International is a tool for 

the development and analysis of formal specifications including a theorem prover. PVS 

does not only provide a theorem prover, it can also be used to declare specifications of 

digital systems. These declarations contain parts that can be automatically translated 

into executable code, reducing the errors typically introduced through manual coding. 

A prototype code generator (or translator) has been developed during the last years and 

presented in [1]. It translates PVS functional specifications (the input to the translator) 

into an intermediate language, called Why, and from there to multiple target 

programming languages such as Java, the output of the translator. 

A problem of PVS is that it does not support one of the most commonly and desirable 

features in programming languages, iteration. The alternative of iteration is recursion; 

so the users that want to define a loop are forced to use recursion. However, recursion 

has many drawbacks for execution such as function-call overhead and memory-

management issues. The problem arises when the translator generates the Java code of 

the recursive functions, because the final code will suffer these problems and a potential 

user would like to avoid them or, at least, reduce their impact.  

Therefore, it is desirable to modify the prototype code generator to be able to translate 

the PVS recursive functions into iterations in the target programming language. This is 

going to solve the problem mentioned before but also could improve any recursive call.  

 

1.1 Plan of the Thesis 

 

The thesis is organized as follows. In Chapter 2, we introduce the problem to be solved 

and in Chapter 3 we explain how we made the solution to work and the followed steps. 

In Chapter 4, the preliminaries of this thesis are presented, i.e., the main concepts that 

are important to know to understand what has been done. Then, Chapter 5 is the most 

important, where the development and the different decisions made to that development 

are explained. In Chapter 6, a tool demo is provided showing the translation in action. In 

this chapter, the reader can compare the translator before the changes were made and 

after them. Also, different cases to see how the translator behaves in diverse situations 

are shown. 
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2. Problem 

 

PVS does not support one of the most useful features of imperative programming, 

iteration. The PVS to Java prototype simply translates recursive PVS functions into 

recursive Java functions. Yet recursion has drawbacks that affect execution performance 

and program safety. For instance, the function-call overhead that results from the fact 

that each recursive call requires the return address and to operate on automatic 

variables.  In addition, another issue with recursion is memory management due to the 

fact that each function call requires saving information on the call stack.  

For the reasons mentioned above, it is desirable to modify the prototype code generator 

to translate PVS recursive functions into iterations.  Translating any recursive function 

into an iteration is an extremely difficult task that is of active interest to researchers and 

developers in both academia and industry. Consequently, we focus on the difficult, but 

more tractable problem of translating tail-recursive PVS functions into iterative Java 

procedures. In addition, to simplify translating the tail-recursion to iteration, we 

generate information that allows the translator to produce invariants and assertions to 

ease the verification of the generated code. 

Another problem that we have is how we are going to apply the solution in the existing 

translator code. The translator was built in such a way that when it analyzes the input 

theory it is also translating and printing in the new java file. We could take the final java 

code and then delete the tail recursive or we could modify directly the translator to have 

the final result that we want.  
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3. Methodology 

This thesis has been developed as part of a research stay in the NASA Langley Research 

Center and the National Institute of Aerospace (NIA) in 100 Exploration Way Hampton, 

VA 23666 from July 2011 to October 2011. 

The methodology that we have followed is: 

1. Reading documentation on the LISP functional programming language and the 

PVS theorem prover developed at SRI International. 

2. Reading documentation on the PVS to Java translator and running test cases to 

understand how the translator works. 

3. Analyzing the code of the PVS to Java translator, since this is the main target for 

changes. 

4. Investigating how recursion is translated into iteration in the literature and how 

tail recursive could be replaced by a loop. 

5. Devising how the translation from recursion to iteration can be included into the 

PVS to Java translator. 

6. Implementation of a first prototype of tail recursion elimination in the translator. 

7. Testing the prototype with several case studies, ensuring that the changes are 

working fine and the previous solution is not affected by these new changes. 

8. Reporting to the NASA and NIA supervisor and presentation of the tool to NIA 

fellows. 
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4. Preliminaries 

In this chapter we have collected from different articles the state of the art of the main 

concepts used in this work.  

 

4.1 PVS 

 

The Prototype Verification System (PVS) is a tool for the development and analysis of 

formal specifications. In this section we have merged information from [1] , [2] and [6]. 

The PVS system consists of a specification language, a parser, a type-checker, a prover, 

specification libraries, and various browsing tools. 

PVS provides an integrated environment for the development and analysis of formal 

specifications, and supports a wide range of activities involved in creating, analyzing, 

modifying, managing, and documenting theories and proofs. 

The specification language is based on classical higher order logic, augmented with a 

sophisticated type system that uses predicate subtypes and dependent types. It also has 

the capability to define algebraic data types. All functions that are defined in the 

specification language must be total, i.e., functions must be defined for all the input 

values. However, partial functions can be defined by restricting the domain of the 

function to a subtype using predicate subtyping. The many features of the PVS type 

system make it very powerful, but also make type checking in general undecidable. The 

theorem prover generates type correctness conditions (TCC's) for the undecidable parts 

of the type checking process. In practice, most of the TCC's are automatically 

discharged by the system. 

The PVS Environment 

PVS runs on SUN 4 workstations using Solaris 2, higher and PC systems running Linux 

or OS X. PVS is implemented in Common Lisp and the Emacs (Gnu Emacs or 

XEmacs) editors provide the interface to PVS. 

The PVS Language 

The specification language of PVS is built on higher-order logic; i.e., functions can take 

functions as arguments and return them as values, and quantification can be applied to 

function variables. There is a rich set of built-in types and type constructors, as well as a 

powerful notion of subtype. Specifications can be constructed using definitions or 

axioms, or a mixture of the two. 
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Specification Files and the PVS Context 

PVS specifications are ordinary ASCII text prepared and modified using a text editor-

usually the Emacs editor that acts as the interface to PVS. A PVS specification consists 

of any number of such files, each of which containing one or more theories or datatypes. 

PVS specification files have the .pvs extension. 

Typechecking 

The PVS typechecker analyzes theories for semantic consistency and adds semantic 

information to the internal representation built by the parser. The type system of PVS is 

not algorithmically decidable; theorem proving may be required to establish the type-

consistency of a PVS specification. The theorems that need to be proved are called type-

correctness conditions (TCCs). TCCs are attached to the internal representation of the 

theory and displayed on request. 

 

 

Figure 1 - PVS Code Multiplication example 

 

4.2 Why 

 

“Why” is a software verification platform. In this section we have collected information 

from [1] and [7].  

Basically, the Why tool takes annotated programs written in a very simple imperative 

programming language of its own, produces verification conditions and sends them to 

existing provers (proof assistants such as Coq, PVS, etc. or automatic provers such as 

Simplify, CVC Lite, etc.). 

Why builds a functional interpretation of the imperative program given as input, 

containing both a computational and a logical part. Using this information, the tool 

applies a Hoare logic and Dijkstra's calculus of weakest preconditions to generate proof 

obligations. Why's input language, which is also called Why, is based on Milner's ML 

programming language and has imperative features, such as references and exceptions, 

and functional features, such as higher-order functions.  
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The “Why” tool is used as the back-end of verification condition generators. Indeed, the 

same team that develops Why also develops the tools Krakatoa and Caduceus, which 

are front-ends for Java and C verification condition generators, respectively. 

 

4.3 Translator from PVS to Java – Code generator 

 

The translator described in [1] which is a code generator prototype to translate from 

PVS code to multiple target languages, is presented and the translation process is 

described.   

The input to the code generator is a declarative specification written in PVS. Since this 

work aims at a wide range of applications, the target language is not fixed. Indeed, the 

tool first generates code in Why, an intermediary language for program verification. 

The current prototype generates Java annotated code from Why code. In the future, the 

generator may be extended to support other functional and imperative programming 

languages. 

In order to increase confidence in the generated code, the generator annotates the code 

with logical assertions such as pre-conditions, post-conditions, and invariants. These 

assertions are extracted from the declarations, definitions, and lemmas in the formal 

model. Therefore, the generated code can be the input of a verification condition 

generator such as Krakatoa. Krakatoa generates proof obligations for several theorem 

provers, including PVS. The generated PVS proof obligations are different from the 

original PVS specification. However, if the original specification has been shown to be 

correct, discharging the proof obligations is a relatively easy task. The annotated code is 

also amenable to static analysis, software model checking, and automated test 

generation. 

In Figure 2 the scheme that represents the process of the translator is presented. 
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PVS2Why

PVS
Specification

Why2Java

Why 
program

Java 
program

 

Figure 2 - Translator scheme 

 

4.3.1 Code generation 

For the most part, the translation from a declarative PVS specification into the Why 

language is straightforward. Each language construct in the functional subset of the PVS 

specification language has an almost immediate counterpart in the Why language. 

Indeed, like PVS, Why can be used as a purely functional programming language. 

In order to ease the translation, the Why language has been extended with several 

features such as records, tuples, and a simple notion of modules. Although records and 

tuples could be defined in the logic part of the language, they have been added as 

syntactic sugar and treated similarly to arrays. Modules provide a naming scope for a set 

of Why declarations. They correspond directly to the parameterized theories in PVS and 

allow for modularity in the generated programs. A more general notion of module that 

includes the notion of interface is currently being added to the Why core language. 

4.3.2 Interface 

 

In this section, we are going to show how the translator can be executed.  

The translator is a console application, so the interface is a command-line interface. To 

execute the translator we need to write the following command: 

 pvs2why –j file.pvs 

o pvs2why is the translator command to execute it. 

o –j is to select the option to translate to Java. 
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o file.pvs is the input file that contains the PVS theory 

In Figure 3 an execution example is shown. 

 

 

Figure 3 - Interface example 

When we execute the translator, if there is not any problem, we are going to receive a 

notification that the new java file is created. 

If there are errors in the PVS file, the tool will report the error provided by the PVS 

system. 

4.4 Tail recursion 

 

First of all, to define a tail recursion we need to recall a tail call from [4] and [5]. 

A procedure call F is a tail call if its caller C does not do any additional processing after 

F. C must return the same value than F (if there is any). Tail calls are significant 

because C no longer needs any of the data on the stack (except the return address) and 

could be discarded or reused by F. 

A call is tail recursive if it is a tail call and is directly recursive. Therefore, there is tail 

recursion when a recursive call is the last thing a function does. 

 

4.5 Tail Recursion removal - Recursive vs Iteration  

 

The main focus of this thesis is tail recursion removal. That is, transforming a tail 

recursive function into an iterative procedure. To achieve this goal, we modify the 

prototype PVS to Java translator so that as it transforms tail recursive functions into java 

code. We have included details from [5]. 
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In [5] the removal of tail recursion is described as an optimization that often is done by 

hand at source level. It describes an implementation in a C compiler and its benefits and 

compares them with removing by hand at source level.  

When the callee returns from a tail call, the caller will immediately return as well, just 

passing the return value of the tail call, if there is any.  For that reason, the caller just 

needs the return address. Any other environment data stored in the stack frame is not 

useful and could be deleted. 

If it is not necessary to return the control to the caller, the procedure call could be 

replaced with a simple jump. The argument passing is going to be replaced with 

assignments and the stack frame can be overwritten and reused. 

The steps proposed in [5] are: 

a) insert assignments where needed to simulate argument passing, 

b) add a label at the beginning of the function body,  

c) replace the tail-recursive call with a goto to that label. 

In [5], they are thinking in the implementation in a C code and that is why they use the 

GOTO label. Our work is focused on Java and there is no GOTO label, so we need to 

find an alternative to this label and we do not have another alternative than a  loop. 

 

4.5.1 Performance 

 

The original function has stack space linear in the length of the input string. Each call 

required pushing a return address, as well as saved registers, onto the stack. Also, on 

return the function had to pop each stack frame in turn, and execute one return for each 

call. In the transformed version, space usage is constant and the call and return sequence 

is executed only once. 

The use of tail recursion and recursion in general, can make life significantly easier for 

the programmer. Many problems are solved most readily with recursive algorithms, and 

recursive algorithms are often shorter and clearer than their iterative counterparts. While 

some functions can be converted to iteration at the source level fairly cleanly, in other 

cases this conversion is not intuitive or reduces the readability of the code. 

With the benefit of automatic tail-recursion removal, both the tail-recursive and hand-

optimized, iterative version will compile to equivalent machine code. This optimization 

allows us to preserve elegance at the source level, without sacrificing efficiency in the 

compiled program. 

The qualitative observation that recursive code is often clearer is backed up by some 

quantitative data. Benander, Benander, and Sang in [8] performed a study of debugging 
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performance in undergraduates, using recursive and iterative solutions for the same 

problems. They presented students with logically incorrect C programs for searching 

and copying linked lists, and asked them to debug them by inspection, which they argue 

remains the primary method of debugging once the problem has been isolated to a small 

segment of code. They found that students were significantly more likely to correctly fix 

the bugs in the recursive programs than in the iterative program. Their study lends 

support to the claim that some programs are more elegantly expressed in a recursive 

form, even in C, where iteration is traditionally favored. 

In a tail recursive function, stack space grows in O(n), where n is the depth of recursion. 

However, this optimization removes the procedure call and recycles the same stack 

frame, which ensures constant use of stack space. Programs which otherwise might have 

run out of stack space can, after optimization, execute to completion. 

While the abundance of memory on desktop PC and servers makes this a minor 

concern, in embedded environments, where memory usage is a significant constraint, 

this may prove to be a greater benefit. 
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5. Solution 

 

In this section we present the solution to the problem described in Section 2, to remove 

the tail recursion. First, we identify and present an algorithm to remove tail recursion. 

The presentation illustrates how to manually remove tail recursion so as to convey the 

idea of the algorithm. Second, we discuss the implementation including the need to 

modify the existing PVS to Java translator code base without modifying its behavior in 

undesirable ways. 

It is really important to understand the translator input and how the translator manages 

it. The input is a PVS file that contains a theory. This theory contains a function defined 

in PVS that is translated to Java. But the translator does not treat this input theory 

function as text, it parses it and creates an appropriate data structure representation. 

Then in the translator we are going to query this data structure that is composed by 

fields. 

 

5.1 Algorithm 

 

In [4] and [5] there is a description of how to replace tail recursive by iteration. Based 

on that the steps that we have to follow to replace the tail recursive with iteration are: 

1. Surround the function body with a “while(true)” loop 

2. Delete the tail recursive call 

3. Set parameters to their new values where the tail recursive was. We have to 

insert assignments where needed to simulate argument passing 

Neither in [4] nor [5] there is any mention to what happened in step 3 when the value of 

a parameter “a” is used to set the new value of other parameter “b” and the value of “a” 

was changed before. For example 

someFunction(a,b,c){ 

      … 

      return  someFunction(a+1, a+b, c)] 

} 

Following the 3 steps mentioned before the result of the function translation is going to 

be: 
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someFunction(a,b,c){ 

      … 

      a=a+1 

      b= a+b 

      c= c 

} 

Therefore, before step 3, it is necessary to backup the values in temporary variables 

because one parameter could be used in more than one input parameter and its value 

must be always the one at the moment the recursive call is done.  

We are replacing the value of “a” and we need the previous value. So, we should do that 

in any of these 2 ways: 

 

someFunction(a,b,c) 

… 

a’=a+1 

b’= a+b 

c’= c 

a=a’ 

b=b’ 

c=c’ 

 

 

or 

someFunction(a,b,c) 

… 

a’=a 

b’=b 

c’=c 

a=a’+1 

b= a’+b 

c= c 

 

Also, we should add another step (at the beginning) to identify the tail recursive call. 

So, we have five identified steps in our algorithm: 

Step 1. Identify the tail recursive call 

Step 2. Surround the function body with a “while(true)” loop 

Step 3. Delete the tail recursive call 

Step 4. Backup the parameters values in temporary variables 

Step 5. Set parameters to their new values 

This describes how to perform the transformation manually while the remainder of this 

section describes our effort to automate this approach by modifying an existing 

translator prototype. 
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5.2 Implementation 

 

In this section we are going to describe how we have implemented the five steps 

described before.  

It is important to understand that we have not developed the tail recursive elimination as 

a separate algorithm, but we have modified the existing translator code in different 

places. The main reason of this is because the translator was built in such a way that 

when it analyzes the input theory it is also translating and printing in the new java file. 

So if we had created a separate algorithm, we would have taken the final java file and 

then apply the tail recursive elimination. The problem of this is that we are losing 

important information that the PVS theory provides and also it is more complicated 

because we need to create a Java parser.  

5.2.1 Running the program 

 

The translator interface, presented in Section 4.3.1, was modified to give the user the 

option to remove the tail recursive or not. We add a new flag “t”, that indicates if the 

user wants to delete the tail recursive calls. This will set the variable *tail-recursive-

flag* and start to run the translator on tail recursive remove mode. 

The modified code is displayed in Chapter 9. 

 

5.2.2 Step 1 - Identify the tail recursive call 

 

We need to identify if the function has a tail recursive call. If there is not any tail 

recursive call, the function will not be modified and the translator is going to be 

executed as always. 

As it is mentioned in Section 4.4 a call is tail recursive if: 

 it is directly recursive 

 it is a tail call  

We must check both issues to identify a tail recursive call. 
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5.2.2.1 Check if it is recursive 

 

To check if it is recursive, we are going to do it in two places in the input code: in the 

function signature and in the call declaration. 

In the function signature 

 

Figure 4- PVS Code Recursive and non-tail call example 

In PVS, if you want to define a recursive function it must be explicitly indicated in its 

signature with the term RECURSIVE. In Figure 4 we can see an example of this, where 

the Multiplication is defined as a recursive function.  

As we said before, we are not looking to the function as text, but the function is 

represented by a structure that contains different fields. There is more than one field in 

the function definition that we can use to deduce that the function is recursive. The field 

“recursive-signature” is the only one that implies it directly, so we are going to use that 

one, because probably is going to avoid some misunderstanding in the future. The 

function isrecursiveDefined was created in pvs2why.lisp to check this field as it is 

shown in Figure 5.  

 

Figure 5 – LISP Code for isrecursiveDefined function 

When the translator found a function in the input, it is declared creating an instance of 

the class why-function.  In this project, we have created two new fields in the structure 

and we have added a new constructor just to store the information if we found that the 

function is recursive. 
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Figure 6 – LISP  code for why-function 

 

As it is shown in Figure 6, we have created two new fields (the last two) in the structure 

why-function: 

 isRecursive: a Boolean that declares if the function is recursive 

 measure:  store the measure defined in PVS for the recursive function. 

We have to set these new fields when the object is created.  Just to be compatible with 

the previous solution we are going to keep the same input parameters in the constructor, 

called mk-why-function, and create a new constructor for the recursive functions, called 

mk-why-function-recursive. 

In the call declaration 

The other place to check if the function is recursive is in the call declaration. For 

example in Figure 4, we can see that the call “Multi(a,b-1)” is calling a function with 

the same signature and parameters  of the function where we are. 

To check this, we create a new method isRecursiveCall showed in Figure 7. 

 

Figure 7 – LISP code for isRecursiveCall method 

We just check that the identifiers and the length of the arguments are the same. 
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5.2.2.2 Check if it is a tail call  

 

We check if a call is a tail call in a simple way. How we are translating functions? If the 

return statement is the function call, then it is a tail call. If the return statement is 

something else, it means that it is going to do something else before return and that is 

not a tail call. So, we changed the translator where the return sentence is translated and 

if we found a call there, it is a tail call. The modified code can be found in Figure 9. 

For example, PVS code in the Figure 4 is not going to be a tail call because the return 

sentence is a+Multi(a,b-1).  

 

Figure 8 – PVS Code for recursive and tail call example 

In Figure 8 there is an example of a tail call. The translator is going to take the return 

statement MultiTail(a,b-1,result+a) and realize that is a function call. 

 

 

5.2.3 Step 2 - Surround the function body with a while loop 

 

If in Step 1 we identify a tail recursive call, we are going to continue with Step 2. If not, 

the translator must behave as before these changes. 

As we explained before to convert the recursive function to iteration we are going to 

surround the function body with a while(true) loop. 

We found in write-java-function the place the translator starts to translate the body, so if 

we are going to insert the while(true) block, if it must be there. 

The translator was built in such a way that when it analyzes the input theory it is also 

translating and printing in the new java file. If we are going to delete the tail recursive 

we must insert the while(true) block at the function beginning, so we need to know if it 

is tail recursive or not before start printing in the new file. We could do this in 2 ways: 

1. Make an analysis of the function before starting the translation to know if it is tail 

recursive and then start the translation knowing whether it is tail recursive or not 
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2. Store the translation result of the body in a temporal stream. If we found a tail 

recursive call, delete that and replace it what we saw before. Then print in the Java 

file the “while” block and then copy from the temporal file the result of the 

translation. We must correct the indentation because there is a new block. If it is not 

tail recursive we copy directly the body without adding the “while” block.  

We took the second option because it is less complicate to do and requires less encoding 

time.  

 

Figure 9 – LISP Code for write-java-function surrounding the body function 

In Figure 9 we can see how we store the translation result in the variable body-string-

output. If in the process we identify a tail recursive call (*tail-recursive* variable) we 

are going to insert the while loop. If not, the translator is going to behave as before the 

changes. 

 

5.2.4 Step 3 - Delete the tail recursive call 

 

This step is the easiest one. In the same place that we have explain in Step 1 how a tail 

recursive call is detected we can delete the recursive call. As it is shown in Figure 10, if 

we detect a tail recursive call we are not going to write the return sentence and besides 

of that we call the method delete-recursive-call. This method is explained and 

developed in the next two steps. 
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Figure 10 – LISP Code for how we identify the tail recursive call 

 

5.2.5 Step 4 - Backup the parameters values in temporary variables 

 

As we explain in section 5.1, we need to backup the parameters values in temporary 

variables because they can be used to set the new parameters values (in Step 5) and we 

need the previous value.  

In the method delete-recursive-call, showed in Figure 11, we have made this step and 

the next one. First we collect the parameters with its identifier and type and the function 

call arguments values that are going to match these parameters in the collection loopvar. 

Therefore, the collection loopvar it is going to have the following tuple:  

(parameter-type, parameter-identifier, new-value) 

As we have explained in Section 5.1, we have two ways to do the backup but we choose 

to backup the new values besides to backup the old variables because it was easier to 

implement.  

The thing to do in the backup is to store the new values that are passed in the function 

call in temporary variables. Taking the elements in the collection we are going to use 

the following template: a b = c. “a” is going to be parameter type and can be found in 

parameter-type. Variable “b” is the temporary variable identifier and is going to be 

formed with the parameter-identifier plus “temp”. Variable“c” is the new variable 

value, found in new-value. In Lisp, to replace a value with some variable we use the 

symbol “~a”. So in the code the template is going to be like this: ~a ~atemp = ~a 

Owing to some indentation issues we separate the first element of the collection in 

carloopvar and the rest of the collection in cdrloopvar, because the first one not need 

indentation. 
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Figure 11 – LISP Code for delete-recursive-call method 

 

5.2.6 Step 5 - Set parameters to their new values 

 

We need to set the parameters with their new values to restart the loop and simulate the 

recursive function. 

In Step 4, we backed up the new parameter values in temporary variables. Now we need 

to use these temporary variables to replace the parameters values.  

As it is shown in Figure 11, the template used in this case is ~a~a = ~atemp, where the 

first element is just an indentation space, the second and the last one the parameter-

identifier.  
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6. Tool demo 

In this chapter, it is possible to see the translator in action with the new function of tail 

recursive elimination. 

We can compare the translator before the changes that were made and after that. 

Actually, the translator was modified in such a way that you can choose if you want to 

delete the tail recursive or not, so if you do not want to eliminate the tail recursive the 

translator is going to behave as before this project. 

Also in this chapter, several case studies are shown to see how the translator behaves in 

different situations.  

 

6.1 Input 

 

The input of this example execution is a PVS theory called calculator. This theory is 

written in PVS language, as it is explained in Section 4.1, PVS is a system that contains 

its own language. The theory is located in one file called calculator.pvs and actually this 

file is the real input. This theory is showed in Figure 12. 

The calculator theory is a specification of a simple calculator with three simple 

operations: Additional, Summation and Multiplication. We have one more case of each 

Summation and Multiplication, one tail recursive and other not. This is just to prove that 

the translation is working fine with different cases. So, in total we have 5 functions in 

this theory and that is what we are going to translate to Java. 
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Figure 12 – PVS Code Input example: Calculator 
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6.2 Execution & Output 

 

In this section we are going to execute the translator with the input presented in the 

previous section. First we are going to translate without the tail recursive elimination, 

just to know how it works. Then we are going to execute with the new functionality and 

delete the tail recursive. 

 

6.2.1 Translator demo without the tail recursive elimination 

 

In this section, we translate the input theory presented in Figure 12 without the tail 

recursive elimination, just to know how the translator works without the new 

functionality that we made. Also, this test is useful to prove that after the changes are 

made, the translator without the tail recursive elimination still works fine. 

As is shown in Figure 13, to execute the translator the command needed is: 

 pvs2why –j calculator.pvs 

 

Figure 13 - executing translator without tail recursive elimination 

 

As it is shown in Figure 13 the execution output is stored in calculator.java. This file 

contains the PVS to Java translation, where the PVS theory is represented by a Java 

class showed in Figure 14. 
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Figure 14 – Java Code Output example without tail recursive elimination 
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6.2.2 Translator demo with the tail recursive elimination 

This section is the most important of the tool demo. We are going to execute the 

translation with the functionality of tail recursive elimination. This means that if in the 

PVS theory there is any tail recursion, it should be eliminated and replaced by an 

iteration. 

As it is shown in Figure 15, to execute the translator the command needed is: 

 pvs2why –j –t calculator.pvs 

 

 

Figure 15 - executing translator WITH tail recursive elimination 

As it is shown in Figure 15 the execution output is stored in calculator.java. This file 

contains the PVS to Java translation with the tail recursive elimination where the PVS 

theory is represented by a java class showed in Figure 16. 
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Figure 16 - Java Code Output example with tail recursive elimination 
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7. Conclusion and Future Work 

We have presented the work developed at NASA Langley Research Center and National 

Institute of Aerospace with Alwyn Goodloe as the NASA Supervisor from July 2011 to 

October 2011. The internship was very satisfactory both personally and academically. 

The work requested was finished on time and the problem described was solved. We 

executed many test cases not only to know if the new changes were working fine but 

also to ensure that the features developed before were not affected and still worked fine. 

The test cases were showed to the NASA staff and they approved the final result. 

 

Future work has been identified to be investigated. One of the most important issues and 

with a lot of interest in the NASA staff is to transform regular recursive functions to tail 

recursive function. This is useful because then we could apply the solution offered in 

this work to many more PVS models use by NASA. So, we could transform any regular 

recursion to iteration. 

Another desirable feature is that the user could choose which recursive definition must 

be transformed into iteration. Right now, the translator transforms all the tail recursive 

functions in the theory. Some labels could be available to the user to mark which 

recursive definition has to be translated into iteration. 

This work is also an important help to the project described in [1]. In that project, the 

translator uses the information of PVS declarations to extract pre-conditions and pos-

conditions and put them in the Java code to be verifiable. In the PVS recursive 

declarations the measure of a recursive function must be declared. In our work when we 

analyze some function to know if it is recursive, we are storing the measure information 

and it could be used to generate the annotated code. 
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9. Code 

 

In this chapter, the developed code is presented. We are going to show only the relevant 

functions and not the entire code. The whole code is available from 

http://research.nianet.org/fm-at-nia/PERICO/ 

9.1 pvs2why-init.lisp 
… 

 (in-package :pvs) 

 

(defvar *pvs2why-version* "") 

(defvar *why-decls-trace* nil) 

(defvar *why-types-trace* nil) 

(defvar *pvs2why-trace* nil) 

(defvar *pvs2why-unique-names* nil) 

(defvar *why-krakatoa* nil) 

(defvar *tail-recursive* nil) 

(defvar *tail-recursive-flag* nil) 

(defvar *function-definition* nil) 

 

 

(let* ((pvs2why-dir (environment-variable "PVS2WHYPATH")) 

       (filename   (environment-variable "PVS2WHYFILENAME")) 

       (filedir    (environment-variable "PVS2WHYFILEDIR")) 

       (pvsfile    (format nil "~a/~a.pvs" filedir filename)) 

       (packlist   (read-from-string (environment-variable "PVS2WHYPACK"))) 

       (debug      (read-from-string (environment-variable "PVS2WHYDEBUG"))) 

       (krakatoa   (read-from-string (environment-variable "PVS2WHYKRAKATOA"))) 

       (xml        (read-from-string (environment-variable "PVS2WHYXML"))) 

       (java       (read-from-string (environment-variable "PVS2WHYJAVA"))) 

       (c          (read-from-string (environment-variable "PVS2WHYC"))) 

       (attachment-file (environment-variable "PVS2WHYATTACHMENTS"))        

       (*pvs2why-version* (environment-variable "PVS2WHYVERSIONMSG")) 

       (*pvs2why-trace* debug) 

       (*why-decls-trace* debug) 

       (*why-types-trace* debug) 

       (*why-krakatoa* krakatoa) 

       (*noninteractive* t) 

       (*tail-recursive-flag* (read-from-string (environment-variable 

"TAILRECURSIVEELIMINATION"))) 

       (current-prefix-arg t))   

  (multiple-value-bind  

    (val err) 

    (ignore-errors 

     (change-context (probe-file filedir)) 

     (dolist (pack packlist) (load-prelude-library pack)) 

     (typecheck-file filename nil nil nil t) 

     (init-semantic-attachments pvs2why-dir "Prelude-Attachments.txt") 

http://research.nianet.org/fm-at-nia/PERICO/
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     (init-semantic-attachments filedir attachment-file) 

     (let* ((theories (theories-in-file filename))) 

       (format t "~%***~%*** Processing ~a via ~a~%***~%" pvsfile  

               *pvs2why-version*) 

       (dolist (theory theories) 

         (when (or xml (and (not java) (not c))) 

           (pvs2xml filename theory *pvs2why-version*) 

           (format t "*** ~a (~a) --> ~a/~a.xml~%"  

                   theory pvsfile filedir theory)) 

         (when c 

           (pvs2c filename theory *pvs2why-version*) 

           (format t "*** ~a (~a) --> ~a/~a.c~%" 

                   theory pvsfile filedir theory)) 

         (when java  

           (pvs2java filename theory *pvs2why-version*) 

           (format t "*** ~a (~a) --> ~a/~a.java~%"  

                   theory pvsfile filedir theory)))) 

     t) 

    (when err  

      (format t "~%*** ~a (~a)~%" err pvsfile) 

      (bye -1))) 

  (fresh-line) 

  (bye)) 

 

9.2 pvs2why.lisp 

Changes in: pvs2why-resolution-destructive 

;; destructive variant. Main difference is the analysis of the *output-vars* 

(defun pvs2why-resolution-destructive (op-decl formals body range-type) 

  (when *pvs2why-trace* 

    (format t "Function: pvs2why-resolution-destructive ~a ~{ ~a ~} ~a~%" op-decl formals range-

type)) 

  (let* ((*destructive?* t) 

         (*output-vars* nil) 

         (bind-ids (pvs2why-make-bindings formals nil)) 

         (declared-type range-type) 

         ;  (dummy (format t "### Startnig with body")) 

         (cl-type ;(pvs2why-type (type op-decl))) 

         (let ((domain  

                (loop for var in formals 

                      collect  

                      (if (assoc (declaration var)  

                                 *output-vars* :key #'declaration) 

                          (pvs2why-type (type var)) ; unique! 

                          (pvs2why-type (type var))))) 

               (range (pvs2why-type range-type))) 

           (mk-why-function-type domain range))) 

    (cl-body (if (not body) 

                 nil ; abstract function 

                 (pvs2why* body (pairlis formals bind-ids) nil declared-type))) 

    ;  (dummy (format t "Done with body")) 
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    (hash-entry (gethash op-decl *why-destructive-hash*)) 

    (precondition (if *why-krakatoa* 

                      (pvs2why-preconditions formals (pairlis formals bind-ids)) 

                      nil)) 

    (postcondition (if *why-krakatoa* 

                       (pvs2why-postcondition (declared-type op-decl)) ; range-type) 

                   nil)) 

  (cl-defn  (if (isrecursiveDefined op-decl) 

                (mk-why-function-recursive (why-info-id hash-entry) bind-ids cl-body cl-type 

precondition postcondition t (measure op-decl)) 

                (mk-why-function (why-info-id hash-entry) bind-ids cl-body cl-type precondition 

postcondition) 

                ) 

            ) 

  ;  (cl-defn  (mk-why-letrec (id op-decl) bind-ids cl-body cl-type)) 

  (old-output-vars (why-info-analysis hash-entry))) 

    ;        (format t "~%Defining (destructively) ~a with ~%type ~a ~%as ~a" (id op-decl) cl-type 

cl-defn) 

    ;   (when *pvs2why-trace* 

    ;      (format t "Defining XML: ~a~%" (why2String* cl-defn))) 

    (setf (why-info-type hash-entry) cl-type 

          (why-info-definition hash-entry) cl-defn 

          (why-info-analysis hash-entry) *output-vars*) 

    cl-defn 

    )) 

;    (unless (equalp old-output-vars *output-vars*) 

;      (pvs2why-resolution-destructive op-decl formals body range-type)))) 

 

;; if the field "recursive-signature" exists, the function is recursive 

;; but it could be done in other different ways.   

(defun isrecursiveDefined (op-decl) 

  (when t 

     (format t "Function: isrecursiveDefined: ~a trans: ~a resultado: ~a recursive-signature: ~a 

~%" op-decl (format nil "~a ~%" op-decl) (eq (search "#<def-decl" (format nil "~a ~%" 

op-decl)) 0) (slot-exists-p op-decl 'recursive-signature))) 

;  (eq (search "#<def-decl" (format nil "~a ~%" op-decl)) 0) 

   (slot-exists-p op-decl 'recursive-signature) 

) 

9.3 why.lisp 
 

(defcl why-function (why-def) 

  (parameters :type list) ; List of why-binding 

  (return-type :type why-type) 

  (type :type why-type) 

  (body :type why-expr) 

  (precondition :type why-expr) 

  (postcondition :type why-expr) 

  isRecursive 

  (measure :type why-expr)) 

 

(defun mk-why-function (identifier parameters expr type precondition postcondition) 
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  (when *why-decls-trace* 

    (format t "mk-why-function ~a ~a ~a ~a ~%" identifier parameters expr type)) 

  (make-instance  

   'why-function 

   :why-identifier (mk-why-identifier identifier :context type)    

   :parameters (list-bindings parameters (domain type)) 

   :return-type (range type) 

   :type type 

   :precondition precondition 

   :postcondition postcondition 

   :body expr 

   :isRecursive nil 

   )) 

; 

;** COMMENT-MCORDINI is the same that mk-why-function but for recursive functions 

(defun mk-why-function-recursive (identifier parameters expr type precondition postcondition 

isRecursive measure) 

  (when *why-decls-trace* 

    (format t "mk-why-function-recursive ~a ~a ~a ~a isRecursive: ~a measure: ~a ~%" identifier 

parameters expr type isRecursive measure)) 

  (make-instance  

   'why-function 

   :why-identifier (mk-why-identifier identifier :context type)    

   :parameters (list-bindings parameters (domain type)) 

   :return-type (range type) 

   :type type 

   :precondition precondition 

   :postcondition postcondition 

   :body expr 

   :isRecursive isRecursive 

   :measure measure  

   ))  

 

9.4 why2java.lisp 
 

  (defun write-java-function (file def) 

    (when *pvs2why-trace* 

      (format t "Function: write-java-function ~%" )) 

    (if (and (and (and *why-krakatoa* 

                       (eq (identifier (return-type def)) 'int)) 

                  (body def)) 

             (not (parameters def))) 

        (indent file (format nil "~%")) 

        (progn 

           

          (when (or (precondition def) (postcondition def)) 

            (indent file (format nil "/*@~%"))) 

          (when (precondition def) 

            (indent file (format nil "  @ requires ~a;~%" (why2java-predicate-string* (precondition 

def))))) 

          (when (postcondition def) 
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            (indent file (format nil "  @ ensures ~a;~%" (why2java-predicate-string* (postcondition 

def))))) 

          (when (or (precondition def) (postcondition def)) 

            (indent file (format nil "  @*/~%"))))) 

    (let ((header 

           (if (and (and (and *why-krakatoa* 

                              (eq (identifier (return-type def)) 'int)) 

                         (body def)) 

                    (not (parameters def))) 

               (format nil "public static final ~a ~a" 

                       (why2java-type* (return-type def)) 

                       (identifier def)) 

               (format nil "public ~:[abstract ~;~]~a ~a(" 

                                                         (body def) 

                                                         (why2java-type* (return-type def)) 

                                                         (identifier def))))) 

          (indent file header) 

          (when (parameters def) 

            (open-block (length header)) 

            (why2java* file (car (parameters def))) 

            (dolist (param (cdr (parameters def))) 

              (format file ",~%") 

              (indent file) 

              (why2java* file param)) 

            (close-block)) 

          (cond ((body def) 

                 (if (and (and *why-krakatoa* 

                               (eq (identifier (return-type def)) 'int)) 

                          (not (parameters def))) 

                     (format file " = ~a;" 

                             (why2java-string* (body def))) 

                     (progn 

                       (format file ") ") 

                     (block-java 

                      file 

                      (let* ((*function-definition* def)) 

                        (if (and *tail-recursive-flag* (isRecursive def)) 

                            (progn  

                             (when *why-types-trace* 

                               (format t "*function-definition*: ~a ~%" *function-definition*)) 

                              (setq *tail-recursive* nil) 

                              (let*((body-string-output (with-output-to-string(tmpstream) 

                                        (why2java* tmpstream  (body def)) 

                                      ))) 

                                (if *tail-recursive* 

                                  (progn  

                                    ;if we are going to put some invariants to the loop, should be here 

                                    ;(when (measure def) 

                                      ;(indent file (format nil "/*@~%  @ maintaining ~a;~% @*/~%" (measure 

def)))) 

                                    (indent file "while(true)") 

                                    (block-java 

                                     file 
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                                     (identBlock file body-string-output) 

                                    ) 

                                  ) 

                                  (format file "~a~%"  

                                      body-string-output 

                                  ) 

                                 ) 

                              ) 

                            ) 

                            (why2java* file  (body def));not recursive -> like always 

                          ) 

                        ) 

                      ) 

                     )))  

          (t (format file ");~%"))))) 

 

(defmethod identBlock (file stringToIdent) 

  (with-input-from-string (tmps stringToIdent) 

   (loop for line = (read-line tmps nil) 

            while line do 

                (format file "~a~a~%" (make-string 4 :initial-element #\Space) line) 

       ) 

   ) 

) 

 

(defun why2java-list-tail (l) 

  (format nil "~{~a~#[~:;;~%~]~};~%"  l)) 

 

(defmethod  why2java* ((file stream) expr &optional noreturn) 

  (when *pvs2why-trace* 

    (format t "Function: why2java*-optional ~%" ))     

  (let* ((dummy (format t "Enter lifted expr: ~a~%" (why2java-string* expr))) 

         (lifted-expr (lift-let* expr)) 

         (dummy (format t "Leave lifted-expr : ~a~%" lifted-expr)) 

         (lexpr (car lifted-expr)) 

         (dummy (format t "Translated lifted-expr: ~a~%" (why2java-string* lexpr))) 

         (seq (cdr lifted-expr)) 

         (dummy (format t "Prefix: ~a~%" seq))) 

    (progn 

      (when seq 

        (why2java* file (if (eq (length seq) 1) 

                            (car seq) 

                            (mk-why-sequential-composition seq)) t )) 

      (indent 

       file 

       (if noreturn 

           (format nil "~a;~%" (why2java-string* lexpr)) 

           (progn(format t "this is the return ~a ~a ~a ~a ~a b~ab ~%"  

                         lexpr  

                         (identifier(why-identifier *function-definition*))  

                         (when (why-function-application? lexpr) (identifier (operator lexpr))) 

                         (when (why-function-application? lexpr) (length(parameters *function-

definition*)))(when (why-function-application? lexpr)(length(arguments lexpr))) 
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                         (when (why-function-application? lexpr)(progn (setq xuno (identifier(why-

identifier *function-definition*))) 

                                                                       (setq xdos (identifier(operator lexpr))) 

                                                                       (eql xuno xdos) 

                                                                  )) 

                       ) 

            ;;WE HAVE TO ASK IF ~a IS RECURSIVE --> tail recursive  

              (if (and *tail-recursive-flag* (isRecursiveCall lexpr)) 

                 (progn (setq *tail-recursive* t) (why2java-list-tail(delete-recursive-call lexpr))) 

                 (format nil "return ~a;~%"(why2java-string* lexpr)) 

                    

             ) 

           )))))) ;lexpr ;) 

 

;;check if the call of a function in lexpr is recursive 

(defmethod isRecursiveCall (lexpr) 

  (and  

       (why-function-application? lexpr) 

       (and (equal (identifier(why-identifier *function-definition*)) 

                   (identifier(operator lexpr)) 

            ) 

            (equal (length(parameters *function-definition*)) 

                   (length(arguments lexpr))) 

            ) 

  ) 

) 

 

;;replace the recursive call expr with the new values of the variables  

(defmethod delete-recursive-call (expr) 

  (append 

   (let* ((loopvar (loop for x in (parameters *function-definition*) 

                         for y in (arguments expr) 

                         collect (list (why2java-type* (type x)) (identifier (why-identifier x)) (why2java-

string* y)) 

                         ) 

                   ) 

          (carloopvar (car loopvar)) 

          (cdrloopvar (cdr loopvar)) 

          ) 

     (append 

       (list (format nil "~a ~atemp = ~a" (car carloopvar) (cadr carloopvar) (caddr carloopvar))) 

       (loop for z in 

         cdrloopvar 

         collect (format nil "~a~a ~atemp = ~a" (make-string (get-indent) :initial-element #\Space) 

(car z) (cadr z) (caddr z)) 

             ) 

       ) 

   ) 

   #| 

   (loop for z in 

         (loop for x in (parameters *function-definition*) 

               for y in (arguments expr) 
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               collect (list (identifier (why-identifier (type x))) (identifier (why-identifier x)) (why2java-

string* y))                                                               

               ) 

         collect (format nil "~a~a ~atemp = ~a" (make-string (get-indent) :initial-element #\Space) 

(car z) (cadr z) (caddr z)) 

   ) 

   |# 

   (loop for x in (parameters *function-definition*)  

         collect (format nil "~a~a = ~atemp" (make-string (get-indent) :initial-element 

#\Space)(identifier (why-identifier x)) (identifier (why-identifier x))) 

         )                      

   ) 

  ) 

 

 

 

 


