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Highlights 

 Physically crosslinked chitosan-HAp hydrogel was prepared by NaHCO3 

 In situ apatite synthesis in chitosan ensured application of low NaHCO3 quantity 

 The gelation time of chitosan-HAp/NaHCO3 system is approximately 4 minutes 

 Cells encapsulated within chitosan-HAp/NaHCO3 show high viability 

 

 

Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system 

 

Anamarija Rogina, Antonia Ressler, Igor Matić, Gloria Gallego Ferrer, Inga Marijanović, 

Marica Ivanković, Hrvoje Ivanković 

 

Abstract 

The development of bioactive injectable system as cell carrier with minimal impact on 

viability of encapsulated cells represents a great challenge. In the present work, we propose a 

new pH-responsive chitosan-hydroxyapatite-based hydrogel with sodium bicarbonate 

(NaHCO3) as the gelling agent. The in situ synthesis of hydroxyapatite phase has resulted in 

stable composite suspension and final homogeneous hydrogel. The application of sodium 

bicarbonate has allowed non-cytotoxic fast gelation of chitosan-hydroxyapatite within 4 

minutes, and without excess of sodium ions concentration. Rheological properties of 

crosslinked hydrogel have demonstrated possible behaviour as ‘strong physical hydrogel’. 

The live dead staining has confirmed good viability and dispersion, as well as proliferation of 

encapsulated cells by the culture time. Presented preliminary results show good potential of 

chitosan-hydroxyapatite/NaHCO3 as a cell carrier, whose impact on the cell differentiation 

need to be confirmed by encapsulation of other cell phenotypes. 

 

Keywords: chitosan, hydroxyapatite, pH-responsive hydrogel, rheology, cell encapsulation.  

 

1. Introduction 

Cell-assisted therapy within scaffolds can allow faster tissue regeneration. Minimally invasive 

procedure used during such surgical therapy is a major advantage for medical care. The most 

widely investigated systems in such medical treatments are in situ gelling hydrogel-based 

matrices, since they have possibility to act as cell vehicles and do not require processing in 
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specific geometrical shape. Injectable hydrogels hold great potential in bone defect 

reconstruction due to their ability to take the shape of the cavity and fill irregular defects, and 

to minimize the cell adhesion problems by simple incorporation into solution prior to injection 

(Bi, Cheng, Fan, & Pei, 2010; Li et al., 2016). Hydrate nature of such gels allows mimicking 

the natural structure of the in vivo tissue environment, thus, they are ideal microenvironments 

for cell proliferation and differentiation (Kumar et al., 2014). The development of an ideal in 

situ forming injectable hydrogel has to meet several criteria including solubility in aqueous 

medium with gelation occurring under physiological conditions, no release of harmful by-

products upon gelation, and sufficiently rapid gelation rate for clinical efficacy (Tan & Marra, 

2010). Injectable hydrogels possess thermodynamically active functional groups sensitive to 

temperature, pH or irradiation stimuli resulting in physical or chemical sol−gel transition 

without harming the surrounding tissue (Amini & Nair, 2012).  

Chitosan-based injectable systems show great diversity in their composition which allows 

formation of chemical or physical hydrogels by UV irradiation, high temperature or higher pH 

(Yan et al., 2010; Cao et al., 2015; Ta, Dass & Dunstan, 2008; Yasmeen, Lo, Bajrachary & 

Roldo, 2014). The large focus has been made on chitosan injectable gels based on 

thermosensitive sol−gel transition initiated by β-glycerophosphate salt at body temperature 

invented by Chenite et al. (Chenite, Buschmann, Wang, Chaput & Kandani, 2001), 

accompanied by genipin introduction as network reinforcement (Songkroh et al., 2015), and 

other synthetic or natural polymers (Sa-Lima, Caridade, Mano & Reis, 2010).   

The lack of appropriate stimuli to direct osteogenic differentiation of chitosan-based 

injectables often result in limited bone formation; therefore incorporation of bioceramic 

particles could overcome this drawback (Chen, Tsai & Liao, 2013; Kim et al., 2007). Such 

improvement of biological stimulation of chitosan-based materials is a long-lasting field of 

interest and has lunched numerous investigations (Ji, Kuo, Wu, Yang & Lee, 2012; Huang et 

al., 2011a, b; Moreira, Carvalho, Mansur & Pereira, 2016; Baskar & Kumar, 2011, 

Muzzarelli, 2011) indicating suitable microenvironment for osteogenic gene expression. The 

potential application of chitosan-hydroxyapatite based scaffolds, thermosensitive hydrogel 

and drug carriers as engineered tissues, has been proven by large number of in vitro and in 

vivo assays. The addition of hydroxyapatite phase into chitosan-based material has indicated 

better cell and protein adhesion, enhanced cell proliferation and higher osteogenic gene 

expression (Frohbergh et al., 2012; Peter et al., 2010). Moreover, stem cell culture on 
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chitosan-hydroxyapatite scaffolds modified by growth factors has been proposed as good 

strategy for bone tissue reconstruction (Liu et al., 2013). 

pH and thermosensitive chitosan-based injectables have been classified as slow in situ 

forming gels increasing the risk of biological toxicity to surrounding tissue and defined as low 

pH hydrated states compromising the viability of encapsulated cells (Couto, Hong & Mano, 

2009). In this study, we are proposing a new pH-sensitive chitosan-based hydrogel providing 

neutral environment suitable for cell encapsulation. Our previous studies (Rogina, Rico, 

Gallego Ferrer, Ivanković & Ivanković, 2016a; Rogina et al., 2016b) have proved non-

cytotoxic and osteogenic properties of chitosan-hydroxyapatite systems prepared as highly 

pre-formed porous scaffolds. Likewise, suitable hydroxyapatite fraction of 30% (w/w) has 

been indicated by stronger osteoinduction of mouse MC3T3-E1 preosteoblasts and human 

mesenchymal stem cells in longer culture. Therefore, we wanted to explore the ability of this 

chitosan-hydroxyapatite system as a hydrogel for cell delivery with minimal invasive surgery 

for bone tissue engineering. The in situ synthesis of calcium phosphate phase within chitosan 

matrix has resulted in pH higher than initial chitosan solution and subsequently ensured cell 

viability during encapsulation and hydrogel crosslinking. The application of sodium 

bicarbonate as a gelling agent has not produced any toxic by-products which may harm the 

viability of encapsulated cells. The physical crosslink was obtained as a result of glucosamine 

deprotonation with good resistance to applied shear deformation. The live dead staining 

indicated good cell distribution and viability during 7 days of culture. To the best of our 

knowledge, this is the first time that a chitosan-hydroxyapatite system with these 

characteristics is presented. Furthermore, the information of acidity of chitosan-based 

hydrogel as an important feature for cell surviving was stated, which similar investigations 

have not provided.     

 

2. Materials and methods 

2.1. Materials 

Chitosan (Cht, Mw = 100 – 300 kg/mol, deacetylation degree = 0.95 – 0.98, Acros Organics), 

calcium carbonate (CaCO3, calcite; TTT), urea phosphate ((NH2)2CO–H3PO4; Aldrich 

Chemistry), acetic acid (HAc; POCH), sodium bicarbonate (NaHCO3, Gram-Mol) were all of 

analytical grade and sterilized by UV light, autoclave or sterile filters (0.22 µm). 

 

2.2. Synthesis of pH-responsive composite hydrogel 
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The starting chitosan-hydroxyapatite suspension (Cht-HAp) was prepared with 30% (w/w) of 

hydroxyapatite phase (HAp) by in situ precipitation reactions, based on our previous study 

(Rogina, Rico, Gallego Ferrer, Ivanković & Ivanković, 2015): 1.2% (w/w) of chitosan 

solution was prepared in 0.36% (w/w) acetic acid solution. In situ formation of hydroxyapatite 

was obtained by wet precipitation reaction from calcium and phosphate starting materials. To 

obtain final HAp weight ratio of 30% (w/w), specific amount of calcite as calcium source and 

appropriate amount of urea-phosphate as a phosphate source were added to chitosan solution, 

with respect to the hydroxyapatite Ca/P ratio of 1.67. Reaction was continued for 4 days at  

50 °C. 

pH-responsive hydrogel was obtained using the sodium bicarbonate (NaHCO3) as gelling and 

neutralization agent (figure 1) with concentration range of 0.040 – 0.067 mg/L. Synthesized 

Cht-HAp suspension was cooled down to 10 °C by an ice bath and subsequently homogenized 

with NaHCO3 solution for 10 sec by stirring at 1700 rpm. The gelation process of Cht-HAp 

suspension was then initiated by incubation at 37 °C. Final physically crosslinked samples 

were designated as Gel-L, Gel-M and Gel-H for low (0.040 mg/L), medium (0.053 mg/L) and 

high (0.067 mg/L) concentration of NaHCO3, respectively. Additional modification of gelling 

agent solution was applied for the hydrogel with higher concentration of gelling agent: 

sodium bicarbonate was dissolved in basal α-MEM (minimum essential medium) to obtain the 

concentration of 0.067 mg/L which was used for preparation of hydrogel, as previously 

described, designated as Gel-H-m. The composition of prepared crosslinked hydrogels is 

summarized in table 1. The preparation of physically crosslinked chitosan-HAp hydrogel is 

illustrated in figure 1. 

 

 

2.3. Characterization of pH-responsive hydrogels 

The Fourier transform infrared spectra (FTIR) of crosslinked hydrogels dried at 40 °C were 

recorded by attenuated total reflectance (ATR) spectrometer for solids with a diamond crystal 

(Bruker Vertex 70) at 20 °C over the spectral range of 4000 – 400 cm-1, with 24 scans and 4 

cm-1 of resolution. 

Mineralogical composition of crosslinked hydrogels dried at 40 °C was investigated by X-ray 

diffraction analysis (XRD) using a Shimadzu XRD-6000 diffractometer with Cu Ka radiation 

operated at 40 kV and 30 mA, in the range of 5° < 2θ < 70° at a scan speed of 0.2°/s. 
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Identification of crystal phases was done by ICDD (International Centre for Diffraction Data) 

card catalogue.  

The pH of chitosan-HAp system was measured before and after gelation process on Schott 

CG 842 pH-meter using BlueLine 14 electrode with a precision of 0.01. Immediately after 

homogenizing the gelling agent at 10 °C, the pH of chitosan-HAp/NaHCO3 system was 

measured. The pH of physically crosslinked hydrogel was determined after 24 h of gel 

incubation at 37 °C. 

The morphology of crosslinked hydrogels was imaged by the scanning electron microscope 

TESCAN Vega3SEM Easyprobe at electron beam energy of 10 keV. Prior to imaging, 

hydrogels were frozen at -80 °C, lyophilized and sputtered with gold and paladium for 120 s. 

 

2.4. Rheological properties 

Rheological experiments were performed on a rheometer Discovery HR-2 Hybrid Rheometer 

(TA Instruments) at 37 °C with a Peltier plate and a solvent trap cover. The measurements 

were carried out on samples of 20 mm in diameter and with gap of 0.940 mm between the 

plane plates. To determine gelation time, time sweep oscillatory measurements at an angular 

frequency of = 1.26 rad/s (0.2 Hz) and 2% of strain were performed at 37 °C. 

Then, an amplitude test on physically crosslinked hydrogel was carried out at frequency of 0.2 

Hz with a strain range from 0.01% to 100%. The results indicated that a deformation of 2% is 

within the linear viscoelastic range, such that the storage modulus (G') and loss modulus (G") 

were independent of the strain amplitude. Therefore, a constant strain (2%) frequency sweep 

test was performed within frequency range of 0.1 – 800 rad/s. 

Rheological tests were performed on four replicas, while final curves were depicted as 

average values of individual measurements. The error bars were excluded from the final 

graphs for the sake clarity. 

 

2.5. Cytotoxicity evaluation 

To investigate the biocompatibility of physically crosslinked hydrogels, cytotoxicity 

evaluation was performed on mouse embryonic fibroblast cells. Fully crosslinked samples (n 

= 3) were incubated with basal α-MEM medium at 37 °C for 24 h. After incubation, the 

supernatant was collected, filtered through sterile filter (0.22 µm) and used for cell feeding.  
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Meanwhile, mouse embryonic fibroblast cells were thawed from liquid nitrogen and seeded 

into a 75 cm3 culture flask to achieve confluence. After 3 days cells were trypsinized with 

Tripsin/EDTA to obtain a cell suspension divided on 1.7 × 102 cells/well in 96-well plate, and 

incubated in humidified incubator with 5% CO2 at 37 °C. After 24 h, cells were fed with 

supernatant from crosslinked samples and incubated for 24, 48 and 72 h. Basal α-MEM 

medium was used as a negative control. Quantitative cell viability was determined by staining 

with (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay (MTT) at 570 nm 

using ThermoLabSystems MultiskanEX Microplate Reader. 

 

2.6. Viability and distribution of encapsulated cells 

Mouse fibroblasts were expanded in 75 cm3 flasks and incubated in a 5% CO2 humidified 

atmosphere at 37 °C until confluence. α-MEM medium supplemented with 10% fetal bovine 

serum (FBS) and 1% penicillin/streptomycin was used as culture medium. After confluence, 

cells were harvested and encapsulated within the hydrogel at a density of 1 × 106 cells/200 µL 

of gelling Cht-HAp/NaHCO3 suspension. The investigated hydrogel was synthesized under 

sterile conditions form chemicals previously sterilized by UV light for 15 min (chitosan), 

autoclave (calcite) or filtered through sterile filters (acetic acid solution, urea phosphate 

solution and NaHCO3 solution).  

Prior to the cell encapsulation, 10 mL of synthesized Cht-HAp suspension was cooled down 

to 10 °C in an ice bath and kept at the same temperature and sterile conditions until cell 

encapsulation. Then, 1.5 mL of sterilized NaHCO3/α-MEM solution with concentration of 

0.067 mg/L, previously cooled down at 10 °C, was added as gelling agent. Immediately after 

homogenizing the Cht-HAp/NaHCO3 system at 10 °C under sterile conditions, harvested cells 

were resuspended within. Cells resuspended in Cht-HAp/NaHCO3 system were quickly 

seeded onto 24-well plate and incubated at 37 °C for 5 min to induce gelation. Afterwards, 2 

mL of culture medium was added to each well and incubated for 1, 2, 3 and 7 days. The 

culture medium was refreshed every three days.  

Qualitative cell viability and distribution was evaluated by live dead assay using 

Live/Dead®Viability/Cytotxicity Kit (Invitrogen). Cultured samples were washed two times 

with sterile Dulbecco’s phosphate buffer saline solution (DPBS) and incubated with 2 µmol/L 

calcein acetoxymethyl (calcein-AM) and 4 µmol/L ethidium homodimer (EthD-1) in 

humidified atmosphere with 5% CO2 at 37 °C for 30 min. Live cells (stained in green) and 
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dead cells (stained in red) were analyzed by fluorescence microscope Axiovert 200 M, Zeiss, 

Göttingen, Germany with AxioVision software 4.5. 

 

2.7. Statistical analysis  

All experiments were performed in triplicate or more. Quantitative results are expressed as 

mean ± standard deviation. Statistical analysis was performed using one-way ANOVA test to 

determine significant differences. A value of p < 0.05 was considered statistically significant. 

 

3. Results  

3.1. The composition identification and morphology of hydrogels 

The characterization of prepared systems was carried out by FTIR spectroscopy and XRD 

mineralogical analysis. Figure 2a represents FTIR spectra of starting suspension (Cht-HAp) 

and dried crosslinked hydrogels with different concentration of gelling agent (Gel-L, Gel-M,  

Gel-H and Gel-H-m).  

Absorption bands characteristic for hydroxyapatite are clearly visible in all systems: 

absorption band at 1020 – 1014 cm-1 attributed to asymmetric stretching of phosphate band, 

band at 962 cm-1 associated to symmetric stretching of phosphates, bands at 599 – 595 and 

559 – 555 cm-1 attributed to asymmetric PO4
3- bending vibrations. Additionally, other calcium 

phosphate phases founded in Cht-HAp and crosslinked hydrogels with lower gelling agent 

concentration can be indicated by the weak absorption band at 525 – 520 cm-1 corresponding 

to HPO4
2- group, usually associated with dicalcium hydrogenphosphate dehydrate (DCPD) 

(Maity et al., 2011). On the other hand, Gel-H hydrogel shows absorption band at 875 cm-1 

which could correspond to CO3
2- or HPO4

2- ion substitution in HA structure leading to 

formation of non-stoichiometric calcium-deficient HA (CDHA) or formation of additional 

calcium phosphate phase, OCP (octacalcium hydrogenphoshate pentahydrate). However, 

higher fraction of NaHCO3 as gelling agent leads to increase of carbonate ions within the 

hydrogel which could also result in CO3
2- specific absorption band (Lafon, Champion & 

Bernache-Assollant, 2008).  

Along with characteristic bands for calcium phosphate phases, typical chitosan groups are 

found at 1670 – 1660 cm-1 corresponding to amid I (carbonyl band of amid) and at 1567 – 

1552 cm-1 attributed to amid II (amino band of amid) (Pawlak & Mucha, 2003).   
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As expected, XRD analysis confirmed coexistence of several calcium phosphate phases in 

Cht-HAp suspension and crosslinked hydrogels. The diffraction pattern of Cht-HAp revealed 

coexistence of octacalcium phosphate and hydroxyapatite (OCP-HAp) which could be 

explained by formation of biphasic inorganic mixture or OCP-HAp interlayered crystals 

(figure 2b). The structural similarity of OCP and hydroxyapatite has been previously used for 

predictions of the epitaxial growth and formation of lamellar mixtures by these two minerals. 

The previous diffraction studies have confirmed diffraction patterns of independent crystals of 

OCP and HAp (Brown, Lehr, Smith & Frazier, 1962). Likewise, the shift of (h00) position, 

depended on the Ca/P ratio of interlayer, is occurring as a consequence of diffraction peak 

interaction (Brown, Schroeder & Ferris, 1979). This maximum shift was detected for the 

plane (300) at 2 = 33.4° of prepared systems with respect to the position of the same 

maximum at 2 = 32.9° of hydroxyapatite standard (ICDD 9-432). Therefore, mixed structure 

of Cht-HAp consisting of apatitic lamellas sandwiching an OCP lamella is assumed. Slightly 

acidic nature of starting Cht-HAp suspension (pH = 5.88; table 2) has provided precipitation 

of another calcium phosphate phase, dicalcium phosphate (DCPD), indicated by FTIR 

spectroscopy. However, the presence of very low diffraction intensity at 2 = 11.4° points out 

very low concentration of DCPD in terms of few crystals within the inorganic mixture.  

The mineralogical composition of crosslinked hydrogels has not been significantly changed 

after introducing the NaHCO3 as gelling agent, although, structural changes of crystalline 

phase were noted by the alteration of diffraction maxima shape (figure 2b). The basic 

structure proposed for OCP phase is a layered structure composed of apatitic and hydrate 

lamellas in which water molecules are loosely bonded and being able to enter or leave OCP 

lattice. Nonetheless, this region is capable to transport calcium or other ions that can be 

incorporated into resulting apatitic product during transformation or hydrolysis of OCP 

(Mathew & Takagi, 2001). The gelation mechanism of crosslinked hydrogels is based on 

hydrolysis of NaHCO3 in slightly acid environment releasing the sodium and carbonate ions 

which can be substituted within apatite lattice. Such cationic and anionic substitution can 

result with dimensional changes of crystal lattice in terms of a- or c- axis decrease. Moreover, 

the pH values of fully crosslinked hydrogels at 37 °C (table 2) do not show significant 

difference by changing the concentration of NaHCO3, which provided similar environment 

for thermodynamically depended calcium phosphate phases.  
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Beside the possibility of Na+ and CO3
2- (HCO3

-) incorporation into apatitic layer, the 

formation of sodium carbonate (Na2CO3) and sodium acetate (CH3COONa) as products of 

hydrogel gelation process is assumed. However, the lack of its identification as a crystalline 

phase in figure 3 can be explained by the possible formation of amorphous domains non-

detectable by the X-ray diffraction. 

 

 

The pH measurement of physically crosslinked hydrogels confirmed physiological 

environment at 37 °C which could allow encapsulation of cells without affecting their 

viability. Likewise, theoretical concentrations of sodium ions calculated from the final 

composition of physically crosslinked hydrogels are in the range of 61.9 – 103.5 mmol/L 

which is below the reference values of sodium in interstitial fluid and plasma (125 – 135 

mmol/L) (Schrier, 2010). Thus, injection of such hydrogel into damaged tissue site would not 

impair the homeostasis.   

The increase of gelling agent concentration has impacted on hydrogels’ initial pH values 

measured at the moment of homogenizing Cht-HAp/NaHCO3 system, however, significant 

difference in pH of fully crosslinked systems did not occurred. Sodium bicarbonate is known 

for its application as a buffering agent in essential tissue culture medium with pH values 7.3 – 

7.5. This corresponds to the effect of maintaining the pH value of crosslinked hydrogels with 

different concentration of gelling agent without any disintegrations of the hydrogel or phase 

separation.  

Preliminary trials of gelation time (data not shown) have pointed out the faster gelation time 

with higher NaHCO3 concentration. Considering the application of cellular hydrogels, we 

have focused on the hydrogel system with the highest gelling agent concentration. Also, to 

provide essential nutrients during the cell encapsulation, gelling agent solution was modified 

by α-MEM medium (Gel-H-m hydrogel). Such modification has resulted in uniform 

composition of Gel-H-m hydrogel with hydroxyapatite as only inorganic phase, confirmed by 

diffraction maxima at 2 = 26° and 32° (figure 2b). Higher pH value of crosslinked Gel-H-m 

hydrogel (pH = 7.70) has provided complete transformation of primary formed calcium 

phosphate phases (OCP and DCPD) into hydroxyapatite. Additionally, highly porous 

structure is characteristic for lyophilized Gel-H-m hydrogel (figure 3) which is essential 

parameter for oxygen, nutrients and metabolic waste diffusion. The characteristic cauliflower 

morphology consisted of nanometric plate-like hydroxyapatite crystals homogeneously 

distributed can be observed.  
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3.2. Rheological behaviour of pH-responsive hydrogel  

The correlation of storage (G') and loss modulus (G") of Gel-H-m hydrogel with shear 

parameters is depicted in figure 4. 

As seen from figure 4a, the rapid modulus increase is observed within 4 min from adding the 

gelling agent, after which G' is slightly rising. The crosslinking nature of prepared hydrogel 

reveals gelation in a percolating manner that brings another influencing parameter on kinetics 

of gelation, which is the geometry of initial solution. The hydration of chitosan should be 

favoured in acetate form in which formation of a complex between glucosamine groups and 

acetate anion is highlighted (Boucard, Viton & Domard, 2005). It is assuming that lower 

solubility and acidity of acetic acid and its salt, along with complex stability could be a reason 

for fast gelation of chitosan-based hydrogel. At low pH, chitosan chains become polycationic 

owing protonated amine groups (–NH3
+) which cause electrostatic repulsion between the 

chains. This repulsion also depends on deacetylation degree which is influencing parameter of 

chitosan gelation. However, this repulsion is partially screened by the hydroxyapatite 

particles. The presence of sodium bicarbonate is responsible for pH increase due to formation 

of mild base salt [Cht-NH3
+][HCO3

-], and carbon dioxide production that would lead to 

chitosan deprotonization. At this point, charge repulsion is reducing while intra- and inter-

chain interactions contribute to the reinforcement of chitosan network. Finally, chain 

entanglements were developed by generated hydrogen bonding between deprotonated –NH2 

and –OH groups; and interactions of of N-acetyl groups and main polysaccharide backbone 

(Chiu et al., 2009; Rinaudo, 2006; Osada & Kajiwara, 2001).  

Evaluation of storage modulus of Gel-H-m hydrogel as a function of time has implied the 

effect of hydroxyapatite particles on shear strength of composite hydrogel. At 1200 seconds 

of time sweep measurement, storage modulus of the gel is around 100 Pa. Similarly, storage 

modulus of chitosan/NaHCO3 system with NaHCO3 concentration of 0.08 mol/L, prepared by 

Liu et al. (Liu, Tang, Wang & Guo, 2011), shows comparable value at the same test point. It 

is important to emphasize that NaHCO3 concentration in Gel-H-m hydrogel is almost eight 

times lower (0.013 mol/L) than in chitosan/NaHCO3 hydrogel prepared by Liu et al., which 

indicates positive influence of hydroxyapatite on storage modulus of Gel-H-m gel.  

The intersection of elastic and viscous modulus has been widely accepted to determine the gel 

point. However, such strategy cannot be applied for presented hydrogel since intersection is 
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appearing at very beginning of rheological measurement. The cross section where 

interpolations of initial and ending region of G' ─ t curve meet (Poveda-Reyes et al., 2016) is 

defined as gelation time of ~260 sec (figure 4b), while rheological parameters of physically 

crosslinked hydrogel are evaluated at frequency of 0.2 Hz and 2% of strain at 37 °C: G' = 

102.20 ± 9.02 Pa; G" = 4.33 ± 0.37 Pa and loss factor (tan δ) = 0.042 ± 0.04. 

 The large difference between G' and G" (figure 4c) confirms elastic behaviour of investigated 

hydrogel. Moreover, the wide storage modulus plateau in frequency range (figure 4d) with 

ratio G'/G" >> 1 defines Gel-H-m as a ‘true gel’ (Picout & Ross-Murphy, 2003; Nilsen-

Nygaard, Strand, Varum, Draget & Nordgard, 2016).  

 

 

3.3. Biological evaluation of pH-responsive hydrogel 

3.3.1. Cytotoxicity test  

One of the simplest biological characterization of potential tissue regeneration materials is 

cytotoxicity evaluation. The MTT test was performed on mouse embryonic fibroblasts 

cultured with Gel-H-m supernatant up to 3 days. Similar absorbance of investigated hydrogel 

and negative control (α-MEM without previous contact with material) indicates no harmful 

effect and good biocompatibility of Gel-H-m hydrogel (figure 5). 

 

3.3.2. Live dead assay of encapsulated cells 

The live dead assay of cells encapsulated within Gel-H-m hydrogel (figure 6) points out good 

cell viability which increases with the culture time. The fibroblast cells are homogeneously 

dispersed without forming the agglomerates. The predominant factor for injectable cell 

carriers is the quantity of dead cells or cells being in apoptosis. It is important to emphasize 

that number of dead cells determined by the fluorescence micrographs remained practically 

the same during whole culture experiment which indicates suitable environment for cell 

growth and proliferation. Quantification analysis performed by counting live and dead cells 

has confirmed good cell viability determined as a percentage of live cells with respect to the 

total cells counted in both channels. The cell viability has increased by the culture time, with 

good initial trend from 76.4% at day 1, 80.3% at day 2, to 87.9% at day 3, and stagnation at 

day 7 with 83.0% of live cells. 
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The cell homogeneity through the crosslinked Gel-H-m hydrogel can imply the absence of 

chemical or physical barrier After 7 days of culture; small defects in terms of small cracks 

were noticed on the surface of the hydrogels.  

4. Discussion 

In situ synthesis of hydroxyapatite is a hydrothermal precipitation reaction based on 

transformation mechanisms of primary formed calcium phosphate species. The slightly acid 

conditions of prepared starting Cht-HAp suspension with pH value of ~5.9 have affected the 

kinetics and mineralogical composition of the final inorganic phase. Since dicalcium 

phosphate (DCPD) and octacalcium phosphate (OCP) are thermodynamically stable at pH 2 – 

6.5 and 5.5 – 7, respectively, their coexistence with hydroxyapatite is expected (Dorozhkin, 

2009). Hydroxyapatite is known to be stable calcium phosphate phase at physiological 

conditions. However, the stability decreases with nonstoichiometry (CaP ≠ 1.67) caused by 

the presence of impurities within the lattice, such as carbonate ions, which are responsible for 

better materials bioresorption in physiological conditions (Suzuki, 2013). This can lead to 

decrement in crystal size, which usually increases materials dissolution, and induces 

physicochemical changes and possible formation of another phase. Calcium phosphate-

hydroxyapatite system (DCPD-OCP-HA) is confirmed in crosslinked hydrogels Gel-L, Gel-M 

and Gel-H. Former evidences have confirmed osteoconductivity of OCP with ability to 

enhance bone regeneration in bone defect of various animal models. Moreover, implantation 

of OCP-material into bone tissue may emulate the onset of bone formation by osteoblasts in 

terms of morphological features of initial bone deposition (Ban, Jinde & Hasegawa, 1992). 

Previous X-ray diffraction analysis confirmed that implanted OCP tends to gradually convert 

to apatite in various bone sites or subcutaneous tissue. Even though the pH values of 

physically crosslinked hydrogels are beyond thermodynamically stable environment for 

dicalcium phosphate (DCPD), its existence was found in trace. However, thermodynamically 

metastable calcium phosphates are avoided by the modification of gelling agent solution, 

which was confirmed by hydroxyapatite as only mineralogical phase in Gel-H-m crosslinked 

system.  

Several possible interactions have been proposed to explain the gelation behaviour of chitosan 

based systems, which might also be suitable for the investigated system. As illustrated in 

Figure 1 prior to addition of sodium bicarbonate (NaHCO3) as the gelling agent, in situ 

synthesized HAp-chitosan suspension need to be cooled down. Sodium bicarbonate is known 

as a weak base. Slightly acid environment of chitosan-HAp system favours dissociation of 
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sodium bicarbonate that releases hydrogen carbonate ions (HCO3
-) responsible for carbon 

dioxide production and pH increase. An equilibrium between protonated (Cht-NH3
+) and 

deprotonated (Cht-NH2) chitosan unit is also responsible for generation of CO2, as proposed 

by Liu et al. (Liu, Tang, Wang & Guo, 2011). Such neutralization reaction would reach 

different balance depending on the temperature and the release of CO2, which controls the 

sol–gel transition. Although the sol–gel transitions in chitosan/NaHCO3 appeared to be 

thermally-sensitive upon the temperature increase, these systems performed actually the pH-

induced gelation process. The decrease of the apparent charge density of chitosan chains 

reduces the electrostatic repulsion between chitosan molecules allowing the formation of the 

three-dimensional chitosan network due to physical junctions of hydrogen bonds. The 

physical crosslinking based on neutralization is irreversible at physiological pH and low 

temperature; however, acidic environment will cause protonation of amine groups and reverse 

reaction. 

Physically crosslinked hydrogels based on neutralization mechanism cannot exhibit high 

shear strength as chemically crosslinked chitosan hydrogels. According to Borzacchiello and 

Ambrosio (Borzacchiello & Ambrosio, 2007), chemical and physical gels can be 

distinguished by their mechanical spectra. Typical spectrum of chemically crosslinked gel is 

characterized by almost horizontal straight line were G' and G" curves are frequency 

independent and parallel; and fulfil the G"/G' ratio lower than 0.1. On the other hand, they 

classify the gel with G"/G' ratio higher than 0.1 as a physical (weak) gel, such as proteins and 

polysaccharide networks. Additionally, physically crosslinked hydrogels can be subdivided 

into strong with permanent physical bond at given conditions; and weak gels with reversible 

links formed form temporary associations between chains (Gulrez, Al-Assaf & Phillips, 

2011). Likewise, strong physical gels behave as viscoelastic solids at both small and large 

deformations with strains up to 25%, while weak physical gels respond at deformation strains 

up to 5% (Co & Marangoni, 2012). The viscoelastic behaviour of Gel-H-m hydrogel was 

observed in the range of strain deformation up to approximately 10%, after which storage 

modulus started to slightly increase (figure 4b). Considering G"/G' ratio of 0.042 and linear 

viscoelasticity above 5% of strain deformation, Gel-H-m hydrogel could behave as strong 

physical gel. 

Based on previously reported physical hydrogels, our Gel-H-m crosslinked hydrogel 

possesses 1.5-fold higher storage modulus with respect to the storage modulus of similar 

physically crosslinked chitosan-based system with 30% (w/w) of bioglass nanoparticles and β-

glycerophosphate as a gelling agent prepared by Couto et al. (Couto, Hong & Mano, 2009). 
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One of the important features of cellular hydrogels is their acidity which influences the 

cellular behaviour during encapsulation and first stages of cell viability before the 

implantation. The pH of biological medium would be favourable physiological environment 

for encapsulated cells; although pH range of 6.8 – 8 (Hinderling & Hartmann, 2005) (6.9 – 

7.8 (Ceccarini & Eagle, 1971)) is determined to be acceptable for cell surviving and viability. 

Even at lower concentration of gelling agent, and with modification of gelling agent solution, 

prepared crosslinked hydrogels could provide environment suitable for cell surviving 

 Looking at the potential application as a cell carrier and delivery, prepared hydrogel 

has to maintain cell viability during their suspension and hydrogel crosslinking process. 

Chitosan-based hydrogel are know for their low pH value during hydrated state which can 

compomise cell viability before delivering them to the damage site (Chenite et al., 2002). 

However, in situ synthesis of hydroxyapatite phase has resulted in higher pH value of starting 

suspension, which has facilitated the preparation of hydrogel without applying excessive 

amount of gelling agent. Comparing the high cell death of rBMSCs encapsulated within 

chitosan-hydroxyapatite/Na2CO3 injectable hydrogel recently prepared by Li et al. (Li, Liu, 

Ding & Xie, 2014), we have successfully maintained the cell viability during encapsulation 

and culture by combining the chitosan-hydroxyapatite system with NaHCO3/α-MEM as the 

gelling agent.  

Bearing in mind good biocompatibility, presented Cht-HAp/NaHCO3 system might show 

potential as a cell carrier for bone tissue engineering. The synthesis of such system does not 

involve complex and potentially cytotoxic crosslinking reactions which could disminish the 

viability of encapsulated cells. The buffering ability of sodium bicarbonate as gelling agent 

was benefit to obtain mild and neutral crosslinked hydrogel suitable for cell surviving. 

Furthermore, in situ precipitation of hydroxyapatite provides lower acidity of chitosan 

solution which facilitates the preparation of physically crosslinked hydrogel with reduced 

concentration of gelling agent.  

   

5. Conclusions 

This work presents novel chitosan-hydroxyapatite hydrogel physically crosslinked with 

sodium bicarbonate. The in situ synthesis of apatite phase has facilitated the physical 

crosslinking reaction by reducing the acidity of chitosan solution. Consequently, significantly 

lower amount of sodium bicarbonate was required to obtain fast gelation of chitosan-

hydroxyapatite hydrogel with respect to the previously reported similar studies. Positive cell 

encapsulation indicates possible application of prepared hydrogel as a cell carrier. However, 
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further studies involving biodegradability assay using animal model, and encapsulation of 

stem or preosteoblastic lineage needs to be performed in order to confirm the usage of these 

hydrogels as bone tissue engineering materials. 

 

Acknowledgements 

This work has been supported in part by the Croatian Science Foundation under the project 

IP-2014-09-3752. The authors want to thank Carlos Garcia Fernández from TA Instruments 

for helping with rheological measurements. G. Gallego Ferrer is grateful for the financial 

support of the Spanish Ministry of Economy and Competitiveness through the MAT2016-

76039-C4-1-R project (including Feder funds). 

 

 

References 

Amini, A. A., Nair, L. S. (2012). Injectable hydrogels for bone and cartilage repair. 

Biomedical Materials, 7, 24105 – 24118. 

Ban, S., Jinde, T., Hasegawa, J. (1992). Phase transformation of octacalcium phosphate in 

vivo and in vitro. Dental Materials Journal, 11, 130 – 140. 

Baskar, D., Balu, R., Kumar, T. S. S. (2011). Mineralization of pristine chitosan film through 

biomimetic process. International Journal of Biological Macromolecules, 49, 385 – 389. 

Bi, L., Cheng, W., Fan, H., Pei, G. (2010). Reconstruction of goat tibial defects using an 

injectable tricalcium phosphate/chitosan in combination with autologous platelet-rich plasma. 

Biomaterials, 31, 3201 – 3211. 

Borzacchiello, A., Ambrosio, L. (2007). Structure-property relationships in hydrogels, in 

Hydrogels: biological properties and applications, ed. R. Barbucci, Springer-Verlag, Milan, 

Italy. 

Boucard, N., Viton, C., Domard, A. (2005). New aspects of the formation of physical 

hydrogels of chitosan in a hydroalcoholic medium. Biomacromolecules, 6, 3227 – 3237. 

Brown, W. E., Lehr, J. R., Smith, J. P., Frazier, A. W. (1962). Crystallographic and chemical 

relations between octacalcium phosphate and hydroxyapatite. Nature, 196, 1050 – 1055. 

Brown, W. E., Schroeder, L. W., Ferris, J. S. (1979). Interlayering of crystalline octacalcium 

phosphate and hydroxyapatite. Journal of Physical Chemistry, 83, 1385 – 1388. 

Cao, L., Cao, B., Lu, C., Wang, G., Yu, L., Ding, J. (2015). An injectable hydrogel formed by 

in situ cross-linking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues 

for cartilage tissue engineering. Journal of Materials Chemistry B, 3, 1268 – 1280. 

Ceccarini, C., Eagle, H. (1971). pH as a determinant of cellular growth and contact inhibition, 

PNAS, Proceedings of the National Academy of Sciences, 68(1), 229 – 233. 



17 
 

Chen, J.-P., Tsai, M.-J., Liao, H.-T. (2013). Incorporation of biphasic calcium phosphate 

microparticles in injectable thermoresponsive hydrogel modulates bone cell proliferation and 

differentiation. Colloids and Surface B: Biointerfaces, 110, 120 – 129. 

Chenite, A., Buschmann, M., Wang, D., Chaput, C., Kandani, N. (2001). Rheological 

characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydrate 

Polymers, 46, 39 – 47. 

Chenite, A., Chaput, C., Wang, D., Combes, C., Buschmann, M. D., Hoemann, C. D., Leroux, 

J. C., Atkinson, B. L., Binette, F., Selmani, A. (2002). Novel injectable neutral solutions of 

chitosan form biodegradable gels in situ. Biomaterials, 21, 2155 – 2161. 

Chiu, Y.-L., Chen, S.-C., Su, C.-J., Hsiao, C.-W., Chen, Y.-M., Chen, H.-L., Sung, H.-W. 

(2009). pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: In 

vitro characteristics and in vivo biocompatibility. Biomaterials, 30, 4877 – 4888.  

Co, E., Marangoni, A. G. (2012). Structured organogels based on vegetable oils and 

surfactants-structures, characterization and applications, in: Nanotechnologies for 

solubilisation and delivery in foods and cosmetics pharmaceuticals, eds: N. Garti and I. Amar-

Yuli), DEStech Publications, Inc. Lancaster, USA. 

Couto, D. S., Hong, Z., Mano, J. F. (2009). Development of bioactive and biodegradable 

chitosan-based injectable systems containing bioactive glass nanoparticles. Acta 

Biomaterialia, 5, 115 – 123. 

Dorozhkin, S. V. (2009). Nanodimensional and nanocrystalline apatites and other calcium 

orthophosphates in biomedical engineering, biology and medicine. Materials, 2, 1975 – 2045. 

Frohbergh, M.E., Katsman, A., Botta, G.P., Lazarovici, P., Schauer, C.L., Wegst, U.G.K., 

Lelkes, P.I. (2012). Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked 

with genipin for bone tissue engineering. Biomaterials, 33, 9167 – 9178. 

Gulrez, S. K. H., Al-Assaf, S., Phillips, G. O. (2011) Hydrogels: methods of preparation, 

characterisation and applications, in: Progress in molecular and environmental bioengineering 

- from analysis and modeling to technology applications, ed. A. Carpi, InTech, DOI: 

10.5772/24553. 

Hinderling, P. H., Hartmann, D. (2005). The pH dependency of the binding of drugs to 

plasma proteins in man. Therapeutic Drug Monitoring, 27, 71 – 85. 

Huang, Z., Feng, Q., Yu, B., Li, S. (2011). Biomimetic properties of an injectable 

chitosan/nano-hydroxyapatite/collagen composite. Materials Science and Engineering C, 31, 

683 – 687.  

Huang, Z., Yu, B., Feng, Q., Li, S., Chen, Y., Luo, L. (2011). In situ-forming chitosan/nano-

hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. 

Carbohydrate Polymers, 85, 261 – 267. 

Ji, D.-Y., Kuo, T.-F., Wu, H.-D., Yang, J.-C., Lee, S.-Y. (2012). A novel injectable 

chitosan/polyglutamate polyelectrolyte complex hydrogel with hydroxyapatite for soft-tissue 

augmentation. Carbohydrate Polymers, 89, 1123 – 1130. 



18 
 

Kim, S.-S., Ahn, K. M., Park, M. S., Lee, J.-H., Choi, C. Y., Kim, B.-S. (2007). A 

poly(lactide coglycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. 

Journal of Biomedical Materials Research Part A, 80, 206 – 215 

Kumar, D., Gerges, I., Tamplenizza, M., Lenardi, C., Forsyth, N. R., Liu, Y. (2014). Three-

dimensional hypoxic culture of human mesenchymal stem cells encapsulated in a 

photocurable, biodegradable polymer hydrogel: A potential injectable cellular product for 

nucleus pulposus regeneration. Acta Biomaterialia, 10, 3463 – 3474. 

Lafon, J. P., Champion, E., Bernache-Assollant, D. (2008). Processing of AB-type carbonated 

hydroxyapatite Ca10-x(PO4)(6-x)(CO3)(x)(OH)(2-x-2y)(CO3)(y) ceramics with controlled 

composition. Journal of European Ceramic Society, 28, 139 – 147. 

Li, H., Ji, Q., Sun, Y., Xu, Q., Song, W., Li, W., Li, D., Deng, P., Hu, F., Yang, J. (2016). 

Accelerated bony defect healing based on chitosan thermosensitive hydrogel scaffolds 

embedded with chitosan nanoparticles for the delivery of BMP2 plasmid DNA. Journal of 

Biomedical Materials Research Part A, in press, doi: 10.1002/jbm.a.35900. 

Li, F., Liu, Y., Ding, Y., Xie, Q. (2014). A new injectable in situ forming hydroxyapatite and 

thermosensitive chitosan gel promoted by Na2CO3. Soft Matter, 10, 2292 – 2303. 

Liu, H., Peng, H., Wu, Y., Zhang, C., Cai, Y., Xu, G., Li, Q., Chen, X., Ji, J., Zhang, Y. 

(2013). The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds 

by effects on integrin-BMP/Smad signaling pathway in BMSCs, Biomaterials, 34, 4404 – 

4417. 

Liu, L., Tang, X. M., Wang, Y. Y., Guo, S. R. (2011). Smart gelation of chitosan solution in 

the presence of NaHCO3 for injectable drug delivery system, International Journal of 

Pharmaceutics, 414 (1-2), 6 – 15. 

Maity, J. P., Lin, T.-J., Cheng, H. P.-H., Chen, C.-Y., Reddy, A. S., Atla, S. B., Chang, Y.-F., 

Chen, H.-R., Chen, C.-C. (2011). Synthesis of brushite particles in reverse microemulsions of 

the biosurfactant surfactin. International Journal of Molecular Sciences, 12, 3821 – 3830. 

Mathew, M., Takagi, S. (2001). Structures of biological minerals in dental research. Journal 

of Research of the National Institute of Standards and Technology, 106, 1035 – 1044. 

Moreira, C. D., Carvalho, S. M., Mansur, H. S., Pereira, M. M. (2016). Thermogelling 

chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for 

tissue engineering. Materials Science and Engineering C, 58, 1207 – 1216. 

Muzzarelli, R. A. A. (2011). Chitosan composites with inorganic, morphogenetic proteins and 

stem cells, for bone regeneration. Carbohydrate Polymers, 83, 1433 – 1445. 

Nilsen-Nygaard, J., Strand, S. P., Varum, K. M., Draget, K. I., Nordgard, C. T. (2016). 

Chitosan: gels and interfacial properties. Polymers, 7, 552 – 579. 

Osada, Y., & Kajiwara, K. (2001). Gels Handbook 1: The fundamentals. (1st ed.) New York: 

Academic Press. 

Pawlak, A., Mucha, M. (2003). Thermogravimetric and FTIR studies of chitosan blends. 

Thermochimica Acta, 396, 153 – 166. 



19 
 

Peter, M., Ganesh, N., Selvamurugan, N., Nair, S.V., Furuike, T., Tamura, H., Jayakumar, R. 

(2010). Preparation and characterization of chitosan-gelatin/nanohydroxyapatite composite 

scaffolds for tissue engineering applications, Carbohydrate Polymers, 80, 687 – 694. 

Picout, D. R., Ross-Murphy, S. B. (2003). Rheology of biopolymer solution and gels. 

Scientific World Journal, 3, 105 – 121. 

Poveda-Reyes, S., Moulisova, V., Sanmartín-Masiá, E., Quintanilla-Sierra, L., Salmerón-

Sánchez, M., Gallego Ferrer, G. (2016). Gelatin-hyaluronic acid hydrogels with tuned 

stiffness to counterbalance cellular forces and promote cell differentiation. Macromolecular 

Bioscience, 16, 1311 – 1324. 

Rinaudo, M. (2006). Non-Covalent Interactions in Polysaccharide Systems. Macromolecular 

Bioscience, 6, 590 – 610.  

Rogina, A., Rico, P., Gallego Ferrer, G., Ivanković, M., Ivanković, H. (2015). Effect of in situ 

formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite 

scaffolds. European Polymer Journal, 68, 278 – 287. 

Rogina, A., Rico, P., Gallego Ferrer, G., Ivanković, M., Ivanković, H. (2016). In situ 

hydroxyapatite content affects the cell differentiation on porous chitosan/hydroxyapatite 

scaffolds. Annals of Biomedical Engineering, 44, 1107 – 1119. 

Rogina, A., Pribolšan, L., Hanžek, A., Gómez-Estrada, L., Gallego Ferrer, G., Marijanović, I., 

Ivanković, M., Ivanković, H. (2016). Macroporous poly(lactic acid) construct supporting the 

osteoinductive porous chitosan-based hydrogel for bone tissue engineering. Polymer, 98, 172 

– 181. 

Sa-Lima, H., Caridade, S. G., Mano, J. F., Reis, R. L. (2010). Stimuli-responsive chitosan-

starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for 

articular cartilage regeneration. Soft Matter, 6, 5184 – 5195. 

Schrier, R. W. (2010). Does ‘asymptomatic hyponatremia’ exist? Nature Reviews 

Nephrology, 6, 185.  

Songkroh, T., Xie, H., Yu, W., Liu, X., Sun, G., Xu, X., Ma, X. (2015). Injectable in situ 

forming chitosan-based hydrogels for curcumin delivery. Macromolecular Research, 23, 53 – 

59. 

Suzuki, O. (2013). Octacalcium phosphate (OCP)-based bone substitute materials. Japanese 

Dental Science Review, 49, 58 – 71. 

Ta, H. T., Dass, C. R., Dunstan, D. E. (2008). Injectable chitosan hydrogels for localised 

cancer therapy. Journal of Control Release, 126, 205 – 216. 

Tan, H., Marra, K. G. (2010). Injectable, biodegradable hydrogels for tissue engineering 

applications. Materials, 3, 1746 – 1767. 

Yan, J., Yang, L., Wang, G., Xiao, Y., Zhang, B., Qi, N. (2010). Biocompatibility evaluation 

of chitosan-based injectable hydrogels for the culturing mice mesenchymal stem cells in vitro. 

Journal of Biomaterials Application, 24, 625 – 637. 



20 
 

Yasmeen, S., Lo, M. K., Bajracharya, S., Roldo, M. (2014). Injectable scaffolds for bone 

regeneration. Langmuir, 30, 12977 – 12985.   

  



21 
 

 

Figure 1. Preparation of physically crosslinked chitosan-HAp hydrogel. For a detailed 

explanation see the Discussion section. 
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Figure 2. Characterization of prepared systems. a) FTIR spectra: phosphate bands 

characteristic for hydroxyapatite lattice are visible in spectra of starting suspension (Cht-HAp) 

and crosslinked hydrogels (Gel-L, Gel-M, Gel-H and Gel-H-m); b) XRD patterns: the patterns 

are shifted vertically for better clarity. Characteristic HAp (ICDD 9-432) diffraction maxima 

are depicted as (°), while OCP (ICDD 11-0293) as (*) and DCPD (ICDD 79-0423) as (#). 
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Figure 3. Microscopic imaging of crosslinked Gel-H-m hydrogel. a) 500×; a') 8000× of 

magnification.  
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Figure 4. Rheological characterization of Gel-H-m hydrogel at 37°C. Gel formation was 

monitored by time sweeps. a) and b) Storage (G') and loss (G") modulus as a function of time 

(a) A semilogarithmic plot; b) Estimation of the gelation time). The linear viscoelastic limit 

on physically crosslinked hydrogel was determined by strain sweep at a frequency of 0.2 Hz. 

c) Amplitude sweep data showing storage (G') and loss (G") modulus as a function of strain. 

d) Frequency sweep data at a constant strain of 2%. The curves represent average values 

obtained from four individual measurements. The error bars were excluded from the final 

graphs for the sake of clarity. Relative standard deviation of storage and loss modulus 

obtained in time sweep, strain sweep and frequency sweep tests is ±12.96, ±8.68, ±8.31 and 

±12.07 ±13.79%, ±6.00, respectively. 
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Figure 5. Cytotoxicity of supernatant of crosslinked Gel-H-m hydrogel. The viability of 

mouse fibroblasts cells at 1, 2 and 3 days of culture expressed by the absorbance. The basal α-

MEM medium was used as a negative control. The significant difference between two groups 

(*): p ˂ 0.05.  
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Figure 6. Live dead staining of encapsulated cells. The cell viability and distribution within 

crosslinked Gel-H-m hydrogel after 1, 2, 3 and 7 days of culture. Live cells are stained in 

green, dead cells are stained in red. Scale bar: 200 µm. 
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Table 1. The composition of crosslinked chitosan-hydroxyapatite/NaHCO3 hydrogels. 

Volume of crosslinked hydrogel (V), calculated weight (m) of chitosan, HAp and NaHCO3 in 

crosslinked hydrogel, calculated concentration (γ) of gelling agent per volume of crosslinked 

hydrogel. 

Samples 
V(gel), 

mL 

m(Cht), 

mg 

m(HAp), 

mg 

m(NaHCO3), 

mg 

γ(NaHCO3), 

mg/mL 

Solvent for 

gelling agent 

Cht-HAp 10 121.1 51.8 0 0 - 

Gel-L 11.5 121.1 51.8 7.8 0.7 water 

Gel-M 11.5 121.1 51.8 10.4 0.9 water 

Gel-H 11.5 121.1 51.8 13.0 1.1 water 

Gel-H-m 11.5 121.1 51.8 13.0 1.1 α-MEM 
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Table 2. The pH values of hydrogels (Gel-L, Gel-M, Gel-H): immediately after adding the 

gelling agent (T = 10 °C) and after complete gelation (T = 37 °C). 

 Cht-HAp Gel-L Gel-M Gel-H 

pH (10 °C) - 6.80 6.96 7.01 

pH (37 °C) 5.88 7.33 7.29 7.28 

 

 


