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Abstract

This paper discusses a ’scenario’ approach to prove decay-rate stability of discrete-time polytopic linear parameter-varying
systems, dealing with sets of sequences of vertex models of different length. When all sequences have the same length, parameter-
trajectory dependent results in earlier literature are obtained as particular cases. The approach in this paper discusses ’classical’
stability, without the need of probabilistic ingredients present in other scenario-based ideas in literature. A numerical example
shows that the proposal achieves a sensible tradeoff between proven performance and computing requirements.
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1 Introduction

The work [15] presents a multi-step generalisation of ear-
lier results [4] on parameter-dependent Lyapunov func-
tions for discrete-time LPV systems. In fact, the pro-
posal in [15] is related to prior work, such as the path-
dependent Lyapunov function in [10, Thm 9.], k-sample
variation in [8,5] or the multi-instant approaches in [14].
These approaches propose considering increments of a
Lyapunov functions V (x(k+N))−V (x(k)) with N > 1.
The multi-instant approach has two main advantages
[5]: first, most conditions for a given N can be proved
to be less conservative than these for N/2, N/3, . . . and,
second, if a system is asymptotically stable, any strictly
positive-definite quadratic function, say, V (x) = xTx,
will fulfill V (x(k+N))−V (x(k)) < 0 for long enoughN .

The basic drawback of multi-instant approaches is that
the number of linear matrix inequality (LMI) constraints
exponentially increases with the horizonN . Scenario ap-
proaches have appeared in literature; in them, only a
subset of the vertex or scheduling parameter trajecto-
ries is analyzed with substantially lower computational
cost. This is the main motivation of the present work.

Probabilistic approaches to robust control assess the risk
of constraint violation [3,1,6]; these ‘risky’ approaches
will not be considered this work. Alternatively, the paper
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[12] presents a scenario approach in which probabilistic-
complete scenarios provide mean-square stability and re-
cursive feasibility guarantees for model predictive con-
trol of Markov-jump linear systems, with no ‘risk’ of di-
vergence/infeasibility, without requiring the full rN sce-
nario needed in [11] for the same problem.

The objective of this work is discussing the analogous of
[12] for a LPV formulation, with a standard worst-case
(i.e., not probabilistic) geometric decay-rate guarantee.
Basically, a subset of vertex sequences of possibly differ-
ent length will be enough to guarantee stability. In this
way, stability analysis results of [15] and related works
will be a particular case of the proposal here, in the same
way as results in [11] were a particular case of [12].

2 Preliminaries and notation

Consider a discrete-time LPV system:

x(k + 1) = A(ξ(k))x(k), k ∈ N ∪ {0} (1)

where x ∈ Rn is the state vector, and ξ(k) is a vector of
time-varying scheduling parameters such that

A(ξ(k)) =

r∑
i∈I

ξi(k)Ai ∀ k ≥ 0 (2)

where Ai are denoted as vertex models, I := {1, . . . , r},
and the scheduling parameters ξ(k) lie in the standard
simplex ∆ := {ψ ∈ Rr :

∑
i∈I ψi = 1,∀i ∈ I ξi ≥

0}. An amplification factor σ will be defined as σ :=
maxi∈I σ(Ai) where σ denotes the maximum singular
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value. A direct consequence of the definition of σ, de-
noting the Euclidean norm as ‖ · ‖2, is the fact that

‖x(k + η)‖2 ≤ ση‖x(k)‖2. (3)

Definition 1 System (1) achieves a rate 1 γ > 0 if, for
any parameter trajectory ξ : N→ ∆, for any x(0), there
exists c > 0 such that

‖x(k)‖2 ≤ c · γk · ‖x(0)‖2 (4)

We will denote as γ∗ the minimum γ for which (4) holds.

Given system (1), we will define its associated switching
system as the LPV system fulfilling (1) and (2) with
the additional constraint of ξ ∈ {0, 1}r. It is well known
[9] that stability of this switching system is equivalent
to stability of the original LPV system (1), as the set
of trajectories of (1) coincides with the convex hull of
these from the switching system. Hence, on the sequel,
we need only studying x(k + 1) = Aikx(k), ik ∈ I, for
all vertex trajectories (i0, i1, . . . ) ∈ I∞, with I∞ being
the set of all infinite-length sequences of elements in I.

Numerical computations with infinite-length vertex se-
quences are not possible, so finite-length ones will be
introduced. Boldface notation will define an ordered se-
quence of vertex indices, i := (i0, . . . , iN−1), with ik ∈ I,
N being the sequence length, also referred to as ‘hori-
zon’. The above will be shorthanded to i ∈ IN , where
IN denotes the set of all sequences of length N , with
cardinality, i.e., number of sequences, card(IN ) = rN .
The set of all finite-length sequences will be denoted by
I∗ :=

⋃
N∈N IN . When several sequences of different

lentgh are involved, notation Ni will denote the length
of sequence i, with Ni :=∞ for i ∈ I∞.

Given an initial condition x(0) and a particular vertex
sequence i ∈ I∗ ∪ I∞, the trajectory of the switching
system under i will be defined, for 0 ≤ k ≤ Ni − 1, as:

xi(k + 1) := Aikxi(k) = Aik . . . Ai0x(0) (5)

understanding xi(0) := x(0). The switching system
achieving rate γ will be understood as verifying (4) re-
placing x(k) by xi(k), for all i ∈ I∞, and that is equiva-
lent to the LPV (1) achieving rate γ, as above discussed.

In order to shorthand expressions like (5), given a finite
sequence i ∈ I∗, we will introduce the product notation:

Ai := AiN−1
AiN−2

. . . Ai0 (6)

Last, P � 0 and P � 0 will denote positive-definite and
negative-semidefinite matrices, respectively.

1 If a system achieves a rate γ < 1, it is usually said that
it is stable with discrete decay rate γ. Trivially from (3), (1)
achieves any rate γ ≥ σ, motivating Corollary 1 later on.

Theorem 1 [15] If, given γ > 0, for all i ∈ IN , j ∈ IN ,
there exist positive definite matrices Pi � 0 such that the
r2N linear matrix inequalities

ATi PjAi − γ2NPi � 0 (7)

hold, then the LPV system (1) achieves a rate γ. Con-
versely, if (1) achieves a rate γ∗, for any γ > γ∗, horizon
N ≥ log c/(log γ− log γ∗) makes conditions (7) feasible.

Proof: The first statement is a straightforward decay-
rate generalisation of [15, Th. 1] and it will be a particu-
lar case of the more general Theorem 2, presented in next
section. Regarding the second statement, (4) implies
that, for all i ∈ IN , for allN ≥ 1,ATi Ai−c2(γ∗)2NI � 0.
If there exists N such that c2(γ∗)2N ≤ γ2N , the asser-
tion is proved; such N always exists if γ > γ∗, trivial
manipulations result in the inequality in the statement.
�

The objective of this communique is achieving compara-
ble results to Theorem 1 with a significantly lower num-
ber of LMIs than the r2N + rN needed in it.

3 Main result: scenario approach

Definition 2 A ’scenario’, denoted by Θ, will be defined
as a finite set of finite-length sequences, i.e., Θ ⊂ I∗.
Each individual sequence may have a different horizon,
the scenario horizon will be defined asNΘ := maxi∈ΘNi.

Definition 3 The leading fragment of i ∈ I∗ ∪ I∞
with length N ′ ≤ Ni will be defined as the sequence
(i0, . . . , iN ′−1) comprised of the first N ′ elements of i. A
scenario Θ will be said to be complete if, for every se-
quence j ∈ I∞, there exists a sequence 2 in Θ that is a
leading fragment of j.

For instance, with r = 2, {(1, 1), (1, 2), 2} is complete,
whereas the scenario Θ := {(1, 1, 1), (1, 2), 2} is not, as
j = (1, 1, 2, . . . ) does not have any leading fragment in
Θ: indeed, (1) 6∈ Θ, (1, 1) 6∈ Θ, (1, 1, 2) 6∈ Θ. In Section
4, scenarios in (16) are, too, complete. The scenario IN ,
denoted in the sequel as the full scenario of horizon N ,
is, evidently, complete; actually, Theorem 2, the main
result of this note, reduces to Theorem 1 if Θ = IN .

Theorem 2 Consider a complete scenario Θ, and γ >
0. If, for all i ∈ Θ, for all j ∈ Θ, there exist positive
definite matrices Pi � 0 such that

2 If such a sequence in Θ is unique, the scenario will be
called non-redundant ; these scenarios can be equivalently
considered as tree structures [12]. Such tree structure is not
formally needed in the developments here, but, nevertheless,
non-redundant scenarios are recommended, to avoid induc-
ing conservatism due to unneeded LMI constraints in Theo-
rem 2 below (details omitted for brevity).
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ATi PjAi − γ2NiPi � 0 (8)

the LPV system (1) achieves a rate γ.

Proof: As discussed in Section 2, by convexity argumen-
tations, a given rate for (1) is guaranteed if it is proven
for its associated switching system. Thus, in the rest of
the proof, states and trajectories will refer to the latter.

Completeness of Θ ensures that any vertex trajectory of
the switching system will start with a vertex sequence in
Θ. In other words, using notation in (5), for all t ∈ I∞,
there exists i ∈ Θ such that, xt(Ni) = xi(Ni). Thus,
under the completeness assumption, if (8) is feasible, for
any trajectory xt(k) of the switching system (starting in
an arbitrary x(0)), for all j in Θ, we have:

xt(Ni)
TPjxt(Ni) ≤ γ2Ni · x(0)TPix(0)

which can be equivalently rewritten as

max
j∈Θ

xt(Ni)
TPjxt(Ni) ≤ γ2Ni · x(0)TPix(0)

Maximising the right-hand side of the above inequality
over all sequences in Θ, we can assert:

max
j∈Θ

xt(Ni)
TPjxt(Ni) ≤ γ2Ni max

j∈Θ
x(0)TPjx(0) (9)

In summary, considering the Lyapunov-like function

V (x) := max
j∈Θ

xTPjx. (10)

expression (9) proves that there exists a finite time in-
stant in the future ν1 = Ni ≤ NΘ such that

V (xt(ν1)) ≤ γ2ν1V (x(0)) (11)

Now, let us denote as t′ := (tν1 , tν1+1, tν1+2, . . . ) ∈ I∞
the infinite-length trailing fragment of sequence t ob-
tained by removing its first ν1 leading elements. Repeat-
ing the argumentation with t′ (i.e., conceptually, setting
the time origin at ν1), completeness of Θ ensures, again,
that there exists a finite ν2 such that:

V (xt(ν2 + ν1)) ≤ γ2ν2V (xt(ν1)) (12)

and, hence, using (11) at the right-hand side,

V (xt(ν2 + ν1)) ≤ γ2(ν2+ν1)V (x(0)) (13)

As, actually, the argumentation can be repeated ad in-
finitum, that proves that there exist a sequence of ‘Lya-
punov sampling instants’, Υ := (η0, η1, η2, . . . ), being
η0 = 0, ηm :=

∑m
j=1 νj , m ∈ N, such that

V (xt(ηm)) ≤ γ2ηmV (x(0)) ∀m ≥ 0 (14)

and the ‘dwell-time’ verifies ηm+1 − ηm = νm+1 ≤ NΘ.

Let us now prove that (4) holds, both in sampling instant
and in intermediate ones. Note that V (x) fulfills

µl · ‖x‖22 ≤ V (x) ≤ µu · ‖x‖22,

where

µl = min
i∈Θ

min eig(Pi), µu = max
i∈Θ

max eig(Pi),

being eig(·) the set of eigenvalues. As µl > 0, (14) entails

‖xt(ηi)‖2 ≤
√
µu
µl
γηi‖x(0)‖2. (15)

From (3), we can ensure that, for all t ∈ I∞, intermedi-
ate states xt(k), with ηm ≤ k ≤ ηm+1 fulfill:

‖xt(k)‖2 ≤
√
µu
µl

σk−ηmγηm‖x(0)‖2

=

√
µu
µl

σk−ηmγηm−kγk‖x(0)‖2 =

√
µu
µl

(
σ

γ

)k−ηm
γk‖x(0)‖2

so, if γ ≥ σ, we can bound
(

σ
γ

)k−ηm
≤ 1, and otherwise

we can bound
(

σ
γ

)k−ηm
≤
(

σ
γ

)NΘ

. Thus, if we denote:

c :=

√
µu
µl
·max

(
1,

(
σ

γ

)NΘ
)

we have ‖xt(k)‖2 ≤ cγk‖x(0)‖2 for all t ∈ I∞, for all
k ∈ N, so we proved the rate γ for the switched system
and, henceforth, for the original LPV system (1). �

Corollary 1 Let us denote as γ∗Θ the minimum γ so that
conditions in Theorem 2 are feasible for a scenario Θ,
and γ̄min := maxi∈Θ max(abs(eig(Ai)))

1/Ni , and γ̄sv :=
maxi∈Θ σ(Ai)

1/Ni .Then, γ̄min ≤ γ∗ ≤ γ∗Θ ≤ γ̄sv ≤ σ.

Proof: It is well known that the system’s rate γ∗ can-
not be smaller than the one associated to the dominant
eigenvalue of any transition matrix Ai, thus γmin ≤
γ∗. Proof of Theorem 2 ensures γ∗ ≤ γ∗Θ. Now, in an
analogous way to (3), setting P = I, the inequality
ATi Ai−κ2i I � 0 holds for κi greater than or equal to the
largest singular value of Ai, denoted as σ(Ai); the maxi-
mum over i ∈ Θ justifies γ∗Θ ≤ γ̄sv. Elementary submul-
tiplicative singular-value properties prove γ̄sv ≤ σ. �

Discussion. Note that, considering γ as decision vari-
able, Theorem 2 is a generalised eigenvalue problem;
Corollary 1 sets up initial bounds for a bisection algo-
rithm to minimise γ. The number of LMIs is s(s + 1),
being s := card(Θ). The number of decision variables
(DV) is 1

2n(n+ 1) ∗ s.

Note also that V (x) in (10) does only depend on the
state, instead of the parameter-memorised version of [15]
or other trajectory-dependent proposals in literature;
similar argumentations to eliminate past parameter tra-
jectory dependence appear in, for instance, [13, p. 13]
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or [2, Thm. 3]. Note that, formally, V (x) is not a Lya-
punov function as it only decreases ‘from time to time’,
at irregularly-spaced instants (trajectory-dependent).
Note also that possibly less conservative options for
the maximum-of-quadratics (10) may be posed, using
S-procedure multipliers [7]; however, such multipliers
render the problem into non-convex bilinear matrix
inequalities, so the approach will be pursued no further.

Scenario generation/growth.

The above results consider Θ as given, a priori. Finding
the lowest-cardinality scenario proving a given rate by
brute force is not an option, as the number of scenar-
ios grows hugely with horizon N ; thus, this section will
present some heuristics guiding the scenario choice.

First, Theorem 2 reduces conservatism as scenario
horizon gets longer, in a particular way discussed
next. Square bracket notation [i, j,k, . . . ] will stand for
the concatenation of sequences, with resulting length
Ni +Nj +Nk + . . . ; for instance, given sequences i and
j, we let [i, j] := (i0, i1, . . . , iNi−1, j0, j1, . . . , jNj−1).

Corollary 2 Assume that conditions in Theorem 2 are
feasible for given Θ and γ. Consider any sequence j built
as the concatenation of M arbitrary sequences in Θ, i.e.,
j = [i[1], . . . , i[M ]], with i[q] ∈ Θ, q = 1, . . . ,M . Then,
the LMI

ATj PhAj − γ2NjPi[1] � 0

is feasible for any h ∈ Θ.

Proof: As Aj = Ai[M] . . . Ai[2]Ai[1] , and Nj =
∑M
p=1Ni[p] ,

we can state that

ATj PhAj = ATi[1] . . . A
T
i[M−1]A

T
i[M]PhAi[M] . . . Ai[2]Ai[1]

≤ γ2Ni[M] ·ATi[1] . . . A
T
i[M−1]Pi[M]Ai[M−1] . . . Ai[2]Ai[1] ≤

...

≤
(
γ
2
∑M−1

p=1
N

i[p]

)
ATi[1]Pi[2]Ai[1] ≤

(
γ2Nj

)
Pi[1]

�

Corollary 3 If, given γ, conditions in Theorem 2 are
feasible for Θ, so they are for any complete scenario Θ′

whose sequences can be expressed as a concatenation of
those in Θ. Hence, γ∗Θ′ ≤ γ∗Θ.

Proof: For any j ∈ Θ′, partitioned as in Corollary 2,
the corollary proves that the choice Pj := Pi[1] renders a
feasible solution for conditions in Theorem 2 with Θ′. �

Remark: the above corollary can be used to prove fea-
sibility of the ‘product’ scenario ΘM defined as the
one whose sequences are the concatenation of exactly
M sequences in Θ, with card(ΘM ) = card(Θ)M ;
full-scenario is the particular case in [5] proving that
γ∗I(κN) ≤ γ∗IN , κ ∈ N. For brevity, details are omitted.

Algorithm 1

(1) Set Θ[1] = I. Set k = 1, γ = 0, γ̃ = +∞.
(2) Compute γ∗Θ[k]

, by minimising γ in Th. 2.

(3) Compute lower bound γ̄min (Cor. 1) for scenario Θ[k].
(4) Let γ = max(γ, γ̄min), γ̃ = min(γ̃, γ∗Θ[k]

).

(5) If γ̃ − γ < ε, END; we proved γ∗ ∈ [γ, γ̃].
(6) Find the sequences yielding active constraints:

i′ := arg max
i∈Θ[k]

max
j∈Θ[k]

eig(ATi PjAi − γ∗ΘPi).

(7) Branch them either by incrementing its horizon one
unit, or by appending every sequence of Θ[k]; denote
the resulting scenario as Θ[k+1]. Let k = k + 1.

(8) Go to step 2.
*In step 5, ε > 0 is a small enough termination tolerance.

Scenario branching. Corollary 3 proves feasibility of
a scenario obtained from ‘branching’ (in the tree-like
analogy of [12]) a complete and non-redundant Θ, re-
placing one of its sequences by the concatenation of it
with each of the sequences in Θ, resulting in a new sce-
nario Θ′ with card(Θ′) = 2 · card(Θ)−1. Alternatively,
replacing i by a set of r new sequences [i, j], j ∈ I, yields
a new complete scenario Θ′, increasing the horizon by 1,
and the cardinality by r−1. This branching is convenient
to avoid large increases in cardinality and horizon, and
it has been used in the examples, but it does not guar-
antee monotonic performance improvement γ∗Θ′ ≤ γ∗Θ
as the first option does.

Scenario growth algorithm. A sensible use of The-
orem 2 will, in most cases, start with Θ = I. In order
to approach the minimum rate γ∗ for (1), longer scenar-
ios should be sought, trying to avoid to the full scenario.
The above-discussed branching can be used for such pur-
pose; however, selecting a sequence to branch needs some
thought. Inspired in Corollary 1, the sequence to branch
may be chosen as i′ := arg maxi∈Θ σ(Ai)

1/Ni , i.e., any of
those yielding γ̄sv, to build an scenario with low singular
value bound. As a possibly better alternative, given Θ
and its best provable rate γ∗Θ, the sequences to branch
may be selected by choosing the ones associated to ac-
tive LMI constraints. Indeed, the latter branching ap-
proach has been integrated into Algorithm 1, proposing
an iterative scenario growth mechanism until a termi-
nation criteria is met (the exact decay γ∗ of system (1)
is found if the smallest γ∗Θ[k]

coincides with the largest

eigenvalue-based bound γ̄min).

4 Example

Consider a LPV system with vertex matrices given by 3 :

A1 =

(
0.9520 0.0936

−0.9358 0.8584

)
, A2 =

(
0.9996 0.0824

−0.0082 0.6699

)
,

3 A1 and A2 are the same as in [15, Ex. 1].
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A3 =

(
0.9 0.1

−0.1 0.6

)
.

The minimum feasible rate γ∗Θ, computed by bisection
(tolerance < 10−6) with full scenarios, i.e., applying
Theorem 1, as well as the number of involved sequences,
LMIs and computation time 4 are:

Th.1:[15] NΘ 1N 2 3 4

γ∗Θ 1.00362 0.99867 0.99754 0.99754

Num. seq. 3 9 27 81

LMIs|time(s) 12|4.8 90|9.4 756|38 6642|340
NThe gray column, with γ∗Θ ≥ 1, highlights that stability can-
not be proven with the chosen scenario.

As max(|eig(A2)|) = 0.99754, and γ∗I3 = 0.99754 we
have γ∗Θ = γ̄min, hence we have found the actual γ∗ of
the LPV system, so there is no surprise in numerically
finding that scenarios with larger horizon do not improve
over this result.

Now, starting with Θ[1] := I = {1, 2, 3} and using Algo-
rithm 1, we get the following scenarios in the three first
iterations 5 , and the numerical results below:

Θ[1] = { (1), (2), (3) },

Θ[2] = { (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3) },

Θ[3] = { (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2), (1, 3), (2, 1),

(2, 2, 1), (2, 2, 2), (2, 2, 3), (2, 3), (3) } (16)

Alg. 1: NΘ 1 2 3 4

γ∗Θ 1.00362 0.998667 0.99754 0.99754

Num. seq. 3 Θ[1] 7 Θ[2] 11 Θ[3] 13

LMIs|time(s) 12|4.8 56|5.4 132|7.8 182|9.3

So, 132 LMIs (instead of 756 with I3) suffice to find γ∗.

From Theorem 1, a large enough horizon will prove any
γ > γ∗ with P = I; thus, more conservative LMIs were,
too, set up, with a common Pi ≡ P . Now, Algorithm
1 finds the optimal rate γ∗ = 0.99754 with a scenario
with maximum horizon 19, comprising a total of 87 se-
quences (88 LMIs, 5.3 seconds computing time). The full
scenario I19 has 1 + 319 = 1.16 · 109 LMIs (intractable).
The scenario I6 (729 sequences) can just prove a rate of
1.0032 with common P , with 39 s of computation time.

4 Code was not optimised for speed, so execution time is just
illustrative when compared to other scenarios. Used software:
yalmpip R20180817, sedumi 1.3, and Matlab R2018a, run-
ning on an i7-4790K CPU with default options. The number
of decision variables is three times the number of sequences,
except in the quadratic Lyapunov function case, in which it
is equal to 3, regardless of the scenario.
5 Underline highlights ’branched’ sequences to generate the
next scenario, overline marks the resulting ’child’ sequences.
As γ∗Θ[3]

= γ∗ there is no need of branching to depth 4, tested

only for illustration (Algorithm 1 would stop with Θ[3]).

5 Conclusions

This paper generalises some multi-step and trajectory-
dependent Lyapunov functions for stability analysis of
LPV/switching systems in earlier literature: instead of
considering a full scenario, with exponential complexity
as the horizon increases, results in this work can use a set
of sequences of different length. Expanding an standard
‘horizon 1’ scenario with a suitable branching, the results
can prove the same performance than earlier ‘full sce-
nario’ literature, with significantly lower computational
cost.
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