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Diabetes is a disease of great and rising prevalence, with the obesity epidemic being a significant contributing risk factor.
Duodenal-jejunal bypass liner (DJBL) is a reversible implant that mimics the effects of more aggressive surgical procedures, such
as gastric bypass, to induce weight loss. We hypothesized that DJBL also influences the glucose dynamics in type II diabetes, based
on the induced changes already demonstrated in other physiological characteristics and parameters. In order to assess the validity
of this assumption, we conducted a quantitative analysis based on several nonlinear algorithms (Lempel-Ziv Complexity, Sample
Entropy, Permutation Entropy, and modified Permutation Entropy), well suited to the characterization of biomedical time series.
We applied them to glucose records drawn from two extreme cases available of DJBL implantation: before and after 10 months. The
results confirmed the hypothesis and an accuracy of 86.4% was achieved with modified Permutation Entropy. Other metrics also
yielded significant classification accuracy results, all above 70%, provided a suitable parameter configuration was chosen. With the
Leave-One-Out method, the results were very similar, between 72% and 82% classification accuracy. There was also a decrease
in entropy of glycaemia records during the time interval studied. These findings provide a solid foundation to assess how glucose
metabolism may be influenced by DJBL implantation and opens a new line of research in this field.

1. Introduction It is also one of the greatest risk factors for cardiovascular
diseases. In addition, the economical impact of the associated

Diabetes mellitus is a chronic serious disorder that affects healthcare expenditure is enormous [2].

nearly a half billion people in the world, and its prevalence The global obesity epidemic is a relevant risk factor for

is expected to grow significantly in the coming years [1].  diabetes, among many other diseases. As a result, weight
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reduction methods have become a field of great medical
and scientific interest. Successful long-term weight loss
maintenance by strategies such as changing dietary habits,
or increasing physical activity, is difficult [3]. Other more
aggressive approaches are necessary, especially when a sig-
nificant weight reduction percentage is required, or more
serious health consequences are involved.

One of these approaches is the utilization of pharma-
cotherapy, which in the context of diabetes can be focused
on weight loss, or on glucose control, resulting in weight
loss as a side effect [4]. However, the long-term outcome
is very limited [5]. On the contrary, the most successful
strategies are based on surgical therapies. The gastric bypass
achieves permanent significant long-term weight reduc-
tion in most of the patients that underwent this surgery
[6].

Nevertheless, the gastric bypass is a very invasive pro-
cedure, with pre-, peri-, and postoperative risks and pos-
sible sequelae [7]. An intermediate solution is the so-
called Duodenal-jejunal Bypass Liner (DJBL). The DJBL is
a reversible implantable device used to mimic the effects
of gastric by-pass by preventing the contact of chymus
with duodenum and proximal jejunum and delivering it
in a less digested form to more distal parts of the intes-
tine. Obesity is a central physiopathological mechanism in
type 2 diabetes mellitus (T2DM), and thus DJBL has been
used to improve metabolic control in obese patients with
T2DM [8].

The effects of DJBL implantation are broad and dis-
parate. Many studies have assessed the impact of DJBL on
a number of physiological parameters [9-12]. We hypoth-
esized that DJBL must have an influence on the glu-
cose dynamics, as some studies about glucose variabil-
ity and DJBL have pinpointed [13]. These dynamics of
the glucose time series offer new insights into glucose
metabolism, and there seems to be a direct correlation
between (the loss of) variability in the glucose time series
and the degree of deterioration in glucose metabolism [14-
17].

The glucoregulatory system is effectively a complex
system, with several acting variables (caloric intake, exer-
cise), a number of active hormones (insulin, glucagon,
catecholamines, growth hormone, and incretins), and some
well-established feedback and feedforward loops [18, 19].
The analysis of such a complex physiological system can be
addressed using system dynamics characterization methods.
Several methods well suited to time series of limited duration
were used in this pilot study to characterize the effects of
DJBL. Sample Entropy (SampEn) is a robust measure of regu-
larity in sequences [20], whilst Lempel-Ziv complexity (LZC)
is an easy to compute nonlinear algorithm to estimate the
complexity in time series [21]. Permutation Entropy (PE) is
another complexity measure introduced by Bandt and Pompe
in 2002 [22] as a robust method to deal with real-world time
series. In spite of the proficiency of PE in time series analyses,
it neglects equalities within signals. Modified PE (mPE) was
proposed to address this shortcoming in the original PE
algorithm [23].
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2. Materials and Methods

2.1. Lempel-Ziv Complexity. In order to compute LZC from a
time series, the signal must first be converted into a sequence
of symbols. In this study, the signal was parsed into a binary
sequence using the median as the threshold (T};). For an input
time series X = {x}, x,...,x} of length L, the symbols in the
binary sequence P = {s},s,,...,s;} are created by

0 if X; < Td
Si = €))
1 if X; > Td

The binary sequence P is then scanned from left to right
to identify the different subsequences held within it and a
complexity counter c is increased by one every time a new
subsequence is found (a detailed description of the algorithm
can be found in [21]). This complexity counter needs to be
normalized to obtain a measure of complexity independent
of the length of the time series [24]:

c
- L/log,L 2)

LZC

LZC captures the dynamics of the time series by reflecting
the rate of new subsequences present within it.

2.2. Permutation Entropy. PE is a method measuring the
entropy within a time series based on the probability of
occurrence of all possible permutations of a certain length
within it [22]. With the exception of LZC, all other methods
used in this study require the selection of values for different
input parameters. In the case of PE, the computation relies
on the selection of the embedding dimension 7 and the time
delay I. The choice of embedding dimension # is determined
by the number of samples available, as the number of
permutations must be less than the length of the time series
(ie,n! < L) [22].

In order to compute PE as follows [23], embedding
vectors need to be created from the original time series as
follows:

X; = [xi’xi+l"">xi+(n—l)l] (3)

For each embedding vector, the lowest data point in
the embedding vector is assigned a 0, the second lowest 1,
and on until all data points in the embedding vector have
been replaced with their ranking order. Once all possible
embedding vectors in the time series have been created and
ranked, PE can be calculated by applying Shannon’s Entropy
to quantify the proportion of possible permutations within
the time series:

k
PE (n,]) = - ) P,InP, (4)

A=1

where k is the number of different subsequence ranked
vectors in the original time series and PA is the fraction of the
subsequence ranked vectors. A less regular signal will have a
greater range of embedding vectors and, therefore, a higher
PE.
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2.2.1. Modified Permutation Entropy. One limitation of the
original PE algorithm is that it ignores any repeated values
in the embedding vector, assigning the first repeated value
in the vector a lower integer in the ranking than subsequent
repeats. This was addressed with the introduction of Modified
Permutation Entropy (mPE) [23], in which repeated values
are given the same ranking value. Then, entropy is evaluated
applying Shannon’s entropy as is done in PE [23].

2.2.2. Input Parameter Selection. The outcome of PE will be
influenced by the choice of embedding dimension n and delay
I. A greater value of n will give a greater possible range of
ranking vectors and, therefore, a greater resolution. It has
been recommended to use a range of values from n = 3
to 7 but the total number of permutations (given by n!)
must be less than the length of the original time series [22].
However, small embedding dimensions might be too small
to accurately track the dynamical changes in a signal [25].
Hence, PE and mPE were computed with n = 4 to 6. In terms
of the time delay, a value of 1 was chosen as this would retain
the original relationships between data-points [23].

2.3. SampEn. SampEn was first defined in [20]. SampEn
starts by creating a set of embedded vectors x; of length m:

X; = {20 Xyt s Xt } ®)

wherei = 1,..., L-m+1. The distance between subsequences
is then defined as d;; = max(|x;,, — xj.l), with 0 < k <
m — 1, j # i. According to a predefined threshold r, two
subsequences are considered similar if d[X,, (i), X,,, (/)] < r.
This similarity is quantized for two consecutive subsequence
lengths (m and m + 1), with B;(r) number of j such that
d(X,, (i), X,,(j))] < r, and A;(r) number of j such that
d[X,,1(0), X,,11(j)] < r. These two values B and A enable
the computation of the statistics associated with SampEn:

B ()= -——B, (1)

" 1 o

B (r)=m;Bi (r)

AT = — A *
ir_L—m—l i\

1 L-m

A" (r) = Y AT ()
i=1

from which the final value for SampEn can be obtained:

SampEn (m,r) = Nliinoo (—log [ 2:: ((:)) ] )

A™(r) ] 7)
B™ (r)

SampEn (m,r,L) = —log [

(for finite time series)

The length L is usually given by the acquisition stage, but
the parameters m and r must be carefully chosen to ensure an

optimal performance of SampEn relative to class separability.
This selection will be detailed in Section 2.3.1.

2.3.1. Input Parameter Selection. The optimal selection of
regularity estimators parameters m and r is still an open
question. Frequent recommendations suggest adopting a
parameter configuration in the vicinity of m = 2 and r =
0.2 [26]. Nevertheless, this selection is lacking in terms of
genericity, as many works have already demonstrated [27-31].

Although computationally more expensive, we varied
SampEn parameters from 1to 3 for m and from 0.01 to 0.30 for
r,in 0.01 steps (r was not multiplied by the standard deviation
of the sequences since they were normalised in advance, zero
mean, and unitary standard deviation). This enabled us to
avoid the possible bias in the results due to the selection of a
specific method for SampEn parameter optimization, despite
still looking at regions usually recommended for m and r
[20, 26, 32].

2.4. Experimental Dataset. The database containing the
experimental data of glucose time series was drawn from a
database used to assess the endocrine effects of DJBL [13].
There were 91 records from 30 participants with type II
diabetes (20 men and 10 women, aged between 33 and 65).
This database contained records taken before implantation
(baseline, BL-, and 27 records), 1 month after implantation
(01IM+, 24 records), 10 months after implantation (10M+,
24 records), and 3 months after device removal (03M-, 16
records). Sampling frequency was 5 minutes. An example of
records from each class in this database is shown in Figure 1.
A very detailed description of the subjects can be found in the
original paper [13].

As can be seen in Figure 1, the original records were
noisy, with missing samples, and missing epochs completely
atrandom. In order to avoid the influence of these artifacts on
the results, missing single samples were linearly interpolated
(mean substitution [33]). Records with less than 1440 samples
(5 days) were excluded from the experiments, since the
nonlinear methods used in the analysis are also very sensitive
to number of samples [28]. Record was then set to the central
1440 samples, if longer, to also avoid border effects [34] (tissue
equilibrium, measuring device configuration, calibration,
and stabilization). As a result of all this preprocessing, 60
records out of 91 were finally available. An example of
resulting signals is shown in Figure 2.

Nevertheless, these records have not been analysed yet
from a system dynamics standpoint, and our hypothesis was
focused first on the two, in principle, most different scenarios:
before DJBL implantation (BL-), and just before device
removal (I10M+). The rationale for this specific selection is
that one month after implantation it will arguably be more
difficult to find changes in glucose dynamics, due to the time
passed. After DJBL removal, the glucose metabolism tends to
return to that of the baseline period [11, 13]. Furthermore,
quantitative endocrine effects seem to confirm that main
differences are between these two stages, as shown in Table 1.
Thus, in this table, 4 out of the 5 physiological features
provide significant differences between 10M+ and BL-, giving
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FIGURE 1: Example of raw glycaemia records from the database. Records corresponding to baseline, 1 month, 10 months, and 3 months after
DJBL removal, are depicted. Sampling frequency was 5 minutes. Missing values were quite frequent (glucose readings spike down to 0 in the
plots). Records like those shown here representing 03M- and BL- classes will be omitted in the experiments due to their short length.
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FIGURE 2: Example of processed glycaemia records from the database. Single missing samples were linearly interpolated, longer missing
epochs were removed, and shorter than 5 day-time series were discarded. Samples were taken from the central part of the records to avoid
border effects. All these constraints are well featured in the changes that can be pinpointed with record 01M+ in this and previous Figure 1.
Records corresponding to baseline, 1 month, 10 months, and 3 months after DJBL removal, are depicted. Sampling frequency was 5 minutes.

quantitative support to the study selection. This support is in
terms of a significance analysis of these differences obtained
using Student’s t-test (¢ = 0.05, sample size of 30, and
normality not required [35]). As shown in the p column, only
the differences in hip circumference could not be considered
significant. The final experimental set was composed of 11

BL- records (positives P in the classification analysis) of 1440
samples and 1110M+ records (negatives N) of the same length.
These 22 records included the same 11 patients in both classes
to ensure a paired test (7 males, 4 females), and the others in
these classes were discarded. The dataset is relatively small,
but the implantation of DJBL and glucose monitoring for
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FIGURE 3: AUC values obtained for SampEn with m € [1,3] and » € [0.01,0.30]. Maximum is obtained for m = 3 and r = 0.09, with

AUC= 0.8430, and p = 0.0175.

TABLE 1: Main characteristics and parameters of the complete
database (Mean + STD). Original results are taken from [13].

BL- 10M+ p
Body weight (Kg) 129.7+44 117.3+43 p=0.0450
BMI (km/m?) 427+12  384+11  p<0.0001
Glucose (mmol/L) 12.3+0.7 845+0.5  p<0.0001
Hip circumference (cm) 132.8+3.5 126.2+2.8 p=0.2000
HbA, - (mmol/mol) 75.0+ 3.4 584+28 p<0.0001
HBGI (Variability) 12.8 £8.2 74+5.1 p =0.0367

TaBLE 2: Classification analysis results for PE in terms of highest
AUG, including sensitivity (proportion of 10M+ correctly iden-
tified), specificity (proportion of BL- correctly identified), and
accuracy (proportion of total cases correctly classified), and their
significance p.

n AUC p Sensitivity(%) Specificity(%) Accuracy(%)
6 0.7355 0.0244 63.6 90.9 77.3

TaBLE 3: Classification analysis results for mPE in terms of highest
AUC, including sensitivity, specificity, and accuracy, and their
significance p.

n AUC p Sensitivity(%) Specificity(%) Accuracy(%)
4 0.7438 0.0244 72.7 81.8 77.3
5 0.7769 0.0137 72.7 90.9 81.8
6 0.7851 0.0098 72.7 100 86.4

several days is very difficult and costly, in terms of workload,
time, and resources.

This table also includes a variability analysis result, the
High Blood Glucose Index (HBGI). This index attempts to
improve the assessment of glycaemic alterations through data
transformation and is a well-established tool to estimate the
risk of hyperglycaemia in diabetic patients. Average long-
term blood glucose values are not a very reliable tool for
glycemic control, but the analysis of short-term peaks and
valleys has proven to have a much more clinical relevance
[36]. HBGI provides an estimation of the hyperglycaemia
probability for the patients, and its differences have been
found to be statistically significant for BL- and 10M+ in this
case.

2.5. Class Separability Analysis. The separability of classes
BL- and 10M+ was assessed by means of the Area under
Curve (AUC) of the associated Receiver Operating Curve

(ROC), AUC-ROC. Statistical analyses based on paired
Student’s t-test or the Wilcoxon signed rank test, depending
on the distribution of the data, were performed to assess the
significance of the results. The acceptance threshold was set
at o = 0.05.

Additionally, the classification capability of the results
was quantified using the separability, specificity and accuracy
classification performance indicators. They were obtained
using the closest point to (0,1) in the ROC as the classification
threshold. In this FRAMEWORK, positives (P) were assigned
to the BL- class, negatives (N) to the 10M+ class, being
sensitivity = TP / (TP+EN), specificity = TN / (TN+FP), and
accuracy = (TN + TP) / (TN + TP + FN + FP ).

3. Results

All four methods showed a decrease of complexity between
BL- and 10M+ (i.e. decrease of LZC, SampEn, PE, and mPE
values). However, for LZC differences between the 2 classes
were not significant (see Table 5). On the other hand, different
combination of input parameters in SampEn, PE, and mPE
resulted in significant differences between classes.

The results are expressed in terms of AUG, statistical sig-
nificance, classification sensitivity, specificity, and accuracy.
The threshold for classification was taken as the ROC point
closest to point (0,1). These calculations were carried out for
all the values in input parameters for which the AUC was at
least 0.70.

Specifically for SampEn, all the AUC results are depicted
as a heatmap in Figure 3. Most of the AUC values fall in the
0.50-0.60 region, with more promising results at low r values
(r < 0.10, optimal region), and in the 0.20 zone (suboptimal
region).

In more detail, the numerical results for the highest AUC
region are listed in Tables 2, 3, and 4. This corresponds to the
optimal parameter zone, where some AUC values are above
0.80.

Tables 5, 6, 7, and 8 summarize the numerical results
for the two classes, including mean and standard deviation.
These values were computed using the parameter configura-
tion scheme stated above. It is important to note that some
configuration parameters did not yield significant results,
such as n = 3 for PE (Table 6) and mPE (Table 7). As
in previous similar studies [37-39], it seems the greater the
embedded dimension #, the better classification performance
using PE-based measures.

In order to better illustrate the differences between
the classes studied, a Leave-One-Out (LOO) test [37]
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TaBLE 4: Classification analysis results for SampEn in terms of highest AUC, including sensitivity, specificity, and accuracy, and their

significance p.

m r AUC P Sensitivity(%) Specificity(%) Accuracy(%)
1 0.08 0.7933 0.0427 63.6 90.9 77.3
1 0.09 0.8016 0.0305 72.7 81.8 77.3
1 0.10 0.7933 0.0188 81.8 72.7 77.3
1 0.16 0.7355 0.0648 72.7 72.7 72.7
1 0.19 0.7768 0.0272 81.8 63.6 72.7
1 0.20 0.7272 0.0451 54.5 90.9 72.7
1 0.24 0.7603 0.0472 72.7 72.7 72.7
1 0.25 0.7190 0.0583 72.7 63.6 68.2
2 0.08 0.7603 0.0257 72.7 72.7 72.7
2 0.09 0.8016 0.0289 81.8 72.7 77.3
2 0.10 0.7933 0.0173 81.8 72.7 77.3
2 0.19 0.7520 0.0288 72.7 63.6 68.2
2 0.20 0.6942 0.0609 54.5 81.8 68.2
2 0.24 0.7438 0.0462 72.7 72.7 72.7
3 0.08 0.7933 0.0215 72.7 72.7 72.7
3 0.09 0.8429 0.0271 72.7 90.9 81.8
3 0.10 0.8264 0.0086 90.9 72.7 81.8
3 0.16 0.7355 0.0532 81.8 63.6 72.7
3 0.19 0.7272 0.0236 72.7 63.6 68.7
3 0.20 0.7107 0.0596 45.5 81.8 63.7
3 0.24 0.7355 0.0507 63.6 72.7 68.7

TABLE 5: Lempel-Ziv Complexity individual, mean, and standard
deviation (STD) values of the two classes studied, BL- and 10M+.
No significant differences between groups were found (p = 0.2920,
t—test).

Subject BL- 10M+
1 0.2113 0.1676
2 0.1530 0.1749
3 0.0947 0.1311
4 0.1676 0.1530
5 0.1822 0.1239
6 0.2842 0.1457
7 0.1384 0.1530
8 0.1239 0.1457
9 0.1093 0.1020
10 0.1822 0.1384
11 0.1457 0.1676
mean+STD 0.1629 + 0.0528 0.1457 + 0.0214

was applied using the data in Table 8. The classification
threshold was set at the optimal SampEn value at which
the classification accuracy was maximal. For both classes,
there were 3 misclassified instances. Therefore, the overall
classification accuracy using the LOO cross validation was
72.7%. As expected, the performance was lower than using
all the records, but still very significant. This method was
also applied to the Modified Permutation Entropy results in

Table 7, when n = 6. In this case, there were 2 misclassified
instances, achieving a classification accuracy of 82%.

4. Discussion

Our results show that it is possible to identify the effects
of DJBL in the dynamics of glycaemia records with non-
linear analysis methods. A significant decrease in entropy
(estimated with SampEn, PE, and mPE) of glycaemia records
from BL- to 10M+ was observed. Complexity, quantified
with LZC, also decreased in 10M+, but differences were not
significant.

There is no gold standard for the unsupervised selection
of parameters m and r for SampEn calculations, despite the
numerous efforts in this regard [32, 40, 41]. In order to
leave no stone unturned, we adopted a maximalist strategy
where a wide range of values were tested. As a result,
this parameter analysis for SampEn provided an optimal
combination with m = 3 and r = 0.09. In this case, the
AUC was maximal, AUC= 0.8429, with significant (reject
hypothesis) classification capabilities between BL- and M10+
(sensitivity=72.7%, specificity=90.9%, and accuracy=81.8%).
However, there were other values for m, with 7 in the vicinity
0f 0.09, that also yielded good significant accuracy. In fact, the
results seem to be almost independent of m.

The optimal value of r (r = 0.09), falls practically within
the usually recommended interval, r € [0.1,0.25] [26]. There
is another region of acceptable results for r = 0.19. These
specific values seem to be related to the resolution of the
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TABLE 6: Permutation Entropy individual, mean, and standard deviation (STD) values of the two classes studied, BL- and 10M+ for n =
3,4, 5, 6. No significant differences between groups were found in some cases (Wilcoxon signed rank test).
n=3 n=4 n=>5 n==~6

Subject BL- 10M+ BL- 10M+ BL- 10M+ BL- 10M+
1 1.5131 1.1105 2.4970 1.5694 3.5541 2.0522 4.5778 2.5522
2 1.1824 1.1688 1.6784 1.6891 2.1995 2.2423 2.7291 2.7994
3 1.1279 1.1341 1.6425 1.5961 2.1819 2.0835 2.7465 2.5888
4 1.2189 1.1447 1.8155 1.6146 3.4558 2.1075 3.1213 2.6170
5 1.1358 1.1672 1.6402 1.6812 2.1761 2.2046 2.7335 2.7255
6 1.5166 1.1369 2.5011 1.5947 3.5701 2.0686 4.5942 2.5614
7 1.1220 1.1154 1.6156 1.5780 21372 2.0690 2.6745 2.5696
8 1.1527 1.1451 1.6876 1.6734 2.2577 2.2221 2.8539 2.7863
9 1.0638 1.1926 1.5742 1.7023 2.0880 2.2140 2.6170 2.7293
10 1.1453 1.1244 1.6538 1.5727 2.1947 2.0412 2.7450 2.5038
1 1.1117 1.0477 1.5838 1.4787 2.0904 1.9190 2.6209 2.3806
mean 1.2082 1.1352 1.8083 1.6136 2.4460 2.1113 3.0921 2.6194
STD 0.1566 0.0380 0.3475 0.0674 0.5607 0.0992 0.7512 0.1286
p 0.1475 0.0830 0.0420 0.0244

TABLE 7: Modified Permutation Entropy individual, mean, and standard deviation (STD) values of the two classes studied, BL- and 10M+ for
n = 3,4,5, 6. No significant differences between groups were found in some cases (Wilcoxon signed rank test).

n=3 n=4 n=>5 n==6
Subject BL- 10M+ BL- 10M+ BL- 10M+ BL- 10M+
1 1.2301 0.9643 1.0896 0.7487 0.9834 0.6330 0.8655 0.5554
2 1.0249 0.9643 0.7971 0.7544 0.6723 0.6400 0.5899 0.5624
3 1.0423 1.0017 0.8249 0.7732 0.7040 0.6524 0.6221 0.5727
4 1.0570 1.0163 0.8500 0.7793 0.7328 0.6570 0.6524 0.5764
5 1.0029 1.0459 0.7879 0.8193 0.6727 0.6934 0.5950 0.6086
6 1.2328 1.0098 1.0879 0.7781 0.9837 0.6512 0.8738 0.5672
7 1.0468 1.0345 0.8252 0.8043 0.7048 0.6793 0.6239 0.5958
8 1.0517 1.0625 0.8359 0.8426 0.7106 0.7179 0.6281 0.6333
9 1.0296 1.0224 0.8266 0.7944 0.7080 0.6682 0.6271 0.5849
10 1.0172 1.0273 0.8024 0.7876 0.6856 0.6590 0.6036 0.5731
11 1.0093 1.0180 0.7913 0.7954 0.6703 0.6709 0.5910 0.5895
mean 1.0677 1.0152 0.8650 0.7888 0.7480 0.6657 0.6611 0.5836
STD 0.0828 0.0302 0.1123 0.0272 0.1180 0.0244 0.1048 0.0225
p 0.1748 0.0244 0.0137 0.0098

measurements, which was 0.1 mmol/L and the dissimilarity
measure (d < 0.1, and d < 0.2). As for the m parameter,
significant performance was achieved in all the cases tested.
As is also the case with SampEn, there is no consensus on
the choice of input parameter values for the calculation of PE
and mPE. However, some guidelines exist and were followed
in this pilot study. Firstly, the delay was equal to 1 to guarantee
that no downsampling of the original time series would occur.
Secondly, the embedding dimension determining the size of
the permutation vectors was selected taking into account its
upper limit [22] and the reported results showing that small
embedding dimensions could fail to identify changes in the
dynamics of a signal [25]. Therefore, a range of values from
n = 4 to 6 was tested, with results showing that greater
values of nlead to better discrimination between both classes.

The highest accuracy was observed with n = 6 for both PE
(77.27%) and mPE (86.36%), with the latter outperforming
SampEn. It is worth noting that the entropy of glucose time
series estimated with PE and mPE decreases from class BL-
to 10M+ for all subjects but two, but the subjects where
this decrease is not observed are different for both methods.
Furthermore, our results suggest that mPE is a more accurate
method to characterize subtle differences in glucose time
series than PE.

Despite the analysis limitations due to small database
size, records length, and artifacts, the results confirmed there
are differences between BL- and 10M+ records that can be
associated with changes in the underlying glucose dynamics
after DJBL implantation. With a high degree of accuracy
(86.4%), it was possible to correctly distinguish between the



TABLE 8: SampEn individual, mean, and standard deviation (STD)
values of the two classes studied, BL- and 10M+.

m=3,r=0.09 m=2,r=0.25

Subject BL- 10M+ BL- 10M+
1 0.5020 0.3604 0.2972 0.2304
2 0.4304 0.3668 0.1667 0.2384
3 0.3730 0.4253 0.1639 0.1643
4 0.4354 0.3909 0.2069 0.1562
5 0.4862 0.3874 0.2337 0.1984
6 0.6553 0.2854 0.3584 0.1250
7 0.4030 0.3541 0.1414 0.1797
8 0.3798 0.3709 0.1602 0.1530
9 0.3021 0.2585 0.1112 0.1666
10 0.4130 0.3449 0.2151 0.1710
11 0.3906 0.3079 0.2126 0.1957
mean 0.4337 0.3502 0.2061 0.1799
STD 0.0914 0.0489 0.0714 0.0337
p 0.0073 0.0234

two classes. As far as we know, this is the first evidence in this
classification context beyond variability and it opens a new
perspective for the research of the DJBL implantation effects.

The results are consistent. For most of the cases where
AUC was relatively high (AUC> 0.75), the hypothesis was
rejected and the classification accuracy was higher than 70%.
The opposite also holds true when no significant difference
was apparent. Namely, there is a good correlation among all
the features used to assess the classification capabilities; there
were no antagonistic results (AUC> 0.75 with p > «).

5. Conclusions

This paper explored the possible influence on the glucose
dynamics of DJBL implantation. The study used several
nonlinear methods. The best results were obtained with
mPE calculated with an embedding dimension of 6 and
with SampEn with input parameter values m = 3 and
r = 0.09, although many other parameter configurations
yielded suboptimal but relevant results. A similar approach
was followed in other previous works related to blood glucose
[42] or body temperature time series [43].

The performance of the method proposed could arguably
be enhanced using other methods of theoretically better
consistency [44]. For instance, other modifications of PE can
be considered, like fine-grained PE, based on incorporating
the size of the differences between data—points into permu-
tations and not just ranking them from smallest to largest
[45], or the weighted PE, based on weighting permutation
patterns depending on the amplitudes of their constituent
data-points [46] Other effects should be studied, such as
the influence of the artifacts, the characterization of the
time—-of-day variations (chronobiology), and the possible
differences between other stages of the DJBL implantation.
The availability of a validated set of methods for glucose
dynamics assessment will arguably become a powerful tool
for the study of disease onset and progression.

Complexity

In summary, the DJBL implantation does alter the glucose
metabolism of the subjects, and these changes can be detected
by an analysis as the one proposed in this paper. This
analysis may increase the clinical uses of the new information
gathered. Additionally, there is room for improvement in
terms of more accuracy and/or more classes.
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