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ABSTRACT: Supramolecular Coordination Compounds (SCCs) represent the power of Coordination Chemistry methodologies 
to self-assemble discrete architectures with targeted properties. SCCs are generally synthesised in solution, with isolated 
fully-coordinated metal atoms as structural nodes, thus severely limited as metal-based catalysts. Metal-Organic Frameworks 
(MOFs) show unique features to act as chemical nanoreactors for the in-situ synthesis and stabilization of otherwise not 
accessible functional species. Here, we present the self-assembly of PdII SCCs within the confined space of a preformed MOF 
(SCCs@MOF) and its post-assembly metalation to give a PdII-AuIII supramolecular assembly, crystallography underpinned. 
These SCCs@MOF catalyse the coupling of boronic acids and/or alkynes, representative multisite metallic-catalysed reactions 
in which traditional SCCs tend to decompose, and retain its structural integrity as consequence of the synergetic hybridization 
between SCCs and MOF. These results open new avenues in both the synthesis of novel SCCs and their use on heterogeneous 
metal-based Supramolecular Catalysis.  

Supramolecular chemistry methodologies have demon-
strated its ability to self-assemble supramolecular coordi-
nation compounds (SCCs) with targeted properties.1–8 An 
elegant exponent is catalysis within the unique confined en-
vironment of SCCs. Initially, it was inspired by nature with 
enzyme-mimicking approaches, and then, it expanded its in-
terest into abiotic catalytic process merging environment 
catalysis with traditional homogeneous organotransition 
metal catalyst.9–13 However, despite the remarkable results 
obtained, we consider that Supramolecular Catalysis has 
not yet developed with all its potential strength. This is, to 
some extent, directly related to the fact that the self-assem-
bly of SCCs is done in homogenous chemistry in solution. 
This synthetic approach inherently induces the formation of 
SCCs with isolated fully-coordinated metal atoms as struc-
tural nodes, which hampers any activation of external rea-
gents on the metal sites without destroying the assembly, 

thus severely limiting their use in metal-based Supramolec-
ular Catalysis. This is exemplified by the few reactions re-
ported with the archetypal roughly spherical polyhedra of 
general formula PdnL2n, in catalytic amounts,14–17 as well as 
by the need to build up ensembles with already known cat-
alytically-active metalloligands as linkers.18–20 Thus, a new 
avenue of research may be opened by finding ways to ex-
ploit the metal-catalysis of the pivotal metal atoms building 
the SCCs. The implementation of such a challenging task is 
two-fold relevant: (i) unprecedented functional SCCs could 
be developed, otherwise not accessible, which may repre-
sent a deep impact on other related research areas; and (ii) 
the catalytic potential of pivotal metal atoms could be fully 
unleashed, which would widen the scope of Supramolecular 
Catalysis.21–23 

Metal-organic frameworks (MOFs)24–29 have been proved 
as excellent platforms for a wide range of applications. This 
is mainly a direct consequence of two unique features of 
MOFs: (i) a rich host-guest chemistry, which can be tailored 



 

by a fine control over the size, shape and functionality of 
MOFs channels,30–35 and (ii) the possibility to use single-
crystal X-ray crystallography as a definitive characteriza-
tion tool, which offers the unique possibility –among porous 
materials– to contrast the success of synthetic methodolo-
gies, and even more important, to follow/understand what 
is actually happening within MOFs channels .36–40 So far, this 
has been reflected on the considerable advances performed 
in such diverse fields as the adsorption and separation of 
guest gases41–45 or small molecules,46–48 and catalysis.49–54 
However, even if some advances have been recently done 
related with molecular recognition55,56 and/or encapsula-
tion of complex molecular systems,57–59 there is still much 
work to be done in relation to the use of MOFs as chemical 
nanoreactors.60–63 At this respect, only very few examples 
have been reported aiming at the MOF-driven formation of 
supramolecular complexes within MOFs channels, which, in 
addition, lack of a proper structural characterization and 
just models could be delivered.64,65 

Here, we report the in-situ heterogeneous self-assembly, 
and structural characterization by single crystal X-ray dif-
fraction (SCXRD), of three original mechanically-bonded 
SCCs within the unique confined space of MOF channels 
(SCCs@MOF). In particular, we report a novel Pd8 square 
metal-organic polygon, a discrete Pd16 supramolecular cage 
and a heterobimetallic AuIII–PdII cage. All these robust SCCs 
catalyse, heterogeneously, the homocoupling of boronic ac-
ids, alkynes, and the cross-coupling between them, with 
higher catalytic activity and selectivity than homogeneous 
Pd catalysts while retaining its structural integrity, in con-
trast to traditional coordination cages assembled in solu-
tion. This behaviour emerges from the synergetic hybridi-
zation between SCCs and MOFs, which enables both the for-
mation of otherwise not accessible supramolecular assem-
blies and its stabilization under catalytic conditions by me-
chanical-bonds to exploit the metal-based catalysis of piv-
otal metal atoms. 

Herein, we propose a unique template-directed strategy, 
involving the use of Post-Synthetic Methodologies 
(PSMs),66–69 for the sequential synthesis of SCCs@MOF. 
Firstly, we selected as chemical nanoreactor a highly crys-
talline MOF, of formula [PdII(NH3)4][PdII2(–
O)(NH3)6)(NH4)2]0.5{NiII4[CuII2(Me3mpba)2]3} · 52H2O (1),61 
featuring large octagonal pores (virtual diameter of ca. 2.0 
nm) which are occupied by PdII2 dimers, stabilized and de-
fined, with atomic precision, to reside on preferential posi-
tions of the channels (Figure 1 left and Figure 3a center). 
Then, after a careful analysis –i.e. the available void space, 
the distance between Pd2 units and the amount of available 
PdII ions– crystals of 1 were soaked with a solution of linear 
(L1) and bended (L2,3) ligands (Figure 1) to yield unprece-
dented MOF-templated in-situ heterogeneous self-assem-
bled SCCs within channels. This was directly related to both, 
the unique confined environment provided by MOF chan-
nels, and also the presence of such uncommon dinuclear 
oxo-bridged palladium(II) entities in the MOFs pores.  

In particular, a novel PdII8 square metal-organic polygon 
of formula [PdII2(–OH2)2(NH3)4)]0.5[PdII8(–O 
H2)8(NH3)8(L1)4]0.125{NiII4[CuII2(Me3mpba)2]3} · 43H2O (2) 

was grown when using the linear ligand L1 (Figures 2, 3a left 
and 3b), and with the tripodal bended ligand L2 (Figures 3a 
right and 3c) a water-assisted PdII16 supramolecular assem-
bly of formula [PdII16(H2O)8(NH3)24(–
OH2)4(H2O)24(L2)]0.125{NiII4[CuII2(Me3mpba)2]3} · 30H2O (3) 
was obtained. Notice that L3 has a thioether-functional 
group, which can act as a secondary point of coordination, 
once a SCC@MOF has been assembled. With L3, the consec-
utive self-assembly of the supramolecular complex within 
MOF channels and the post-assembly metalation of the pre-
formed SCC@MOF (Figure 1b) lead to the formation of a 
heterobimetallic assembly of formula [AuIII2(–
OH)2(OH)4)]0.5[AuIII2Cl6PdII2(NH3)6(L3)2]0.5[PdII2(-
OH2)(NH3)6)]0.5{NiII4[CuII2(Me3mpba)2]3} · 37H2O (4) (Fig-
ures S8–S10).  

 

Figure 1. Template-directed strategy, involving the use of 
post-synthetic methodologies for the step-wise sequential 
synthesis of original homo- (a) and heterobimetallic (b) 
mechanically-bonded catalytically-active SCCs within the 
confined space of MOFs channels (SCCs@MOFs). (i) Incor-
poration of desired organic ligand with suitable encoded 
structural and coordination information and (ii) post-as-
sembly metalation of preformed SCCs@MOFs. 

The nature of 2–4 was established by the combination of 
a variety of different characterization techniques: induc-
tively coupled plasma-mass spectrometry, elemental, 
thermo-gravimetric and powder X-Ray diffraction (PXRD) 
analyses, scanning electron microscopy (SEM), N2 adsorp-
tion isotherm, Fourier transform infrared (FTIR), diffuse-
reflectance (DR) UV-Vis and X-Ray photoelectron (XPS) 
spectroscopies (Figures S11–S17 and Table S1). Finally, the 
real crystal structures of 2 has been obtained by SCXRD. 
Even for 3 it was possible to refine a structural model which 
gives the most probably organization of entities self-assem-
bled within pores. For 4, the quality of the SCXRD data was 
not good enough for the complete structural resolution, but 
the crystallographic positions of the metal ions, building up 
the SCCs, and some ligand’s fragments determined from 
Fourier maps, suggest precious insights about the most 
probable structure of the growth assemblies in the confined 



 

space of 1. This unprecedented result could be achieved 
thanks to both robustness and crystallinity of materials and 
application of cutting-edge X-ray crystallography tech-
niques, providing, for the first time, a direct visualization of 

the in-situ heterogeneous self-assembled SCCs within MOF 
channels (Figures 2–4, Figures S1–S10 and Table S2). 

 

Figure 2. (a-e) Crystal structure, determined by synchrotron X-ray diffraction, of the Pd8@MOF 2: (a) View along c crystallo-
graphic axis of crystal structure of 2 (a) featuring channels filled by [PdII2(–OH2)2(NH3)4)]4+ and [PdII8(–
OH2)8(NH3)8(L1)4]16+ SCCs [L1 = 1,2-di(pyridn-4-yl)ethyne]. (b-c) Views of one single channel: Perspective views of a portion 
of single pores along the [111] direction showing the [PdII8(–OH2)8(NH3)8(L1)4]16+ SCCs (b) and [PdII2(–OH2)(NH3)4]4+ di-
mers (c) and related structural parameters, stabilized by symmetric NH3 ···O interactions. The heterobimetallic CuNi 3D ani-
onic network is depicted as grey sticks. Pd(II) cations in the pores and ligands forming the squares and cages, are represented 
by purple spheres and blue sticks, respectively. Hydrogen-bonds are represented as purple dashed lines. (d-e) Details of 
[PdII8(–OH2)8(NH3)8(L1)4] and [PdII2(–OH2)2(NH3)4)] structures built within pores. Palladium, oxygen, carbon and nitrogen 
atoms are represented as violet, red, blue and pastel cyan colors. 

Crystal structure. The SCXRD data of 2–4 evidences that 
the 3D network remained crystalline during the MOF-
templated in-situ heterogeneous self-assembled process. 
The anionic NiII4CuII6 open-framework structure in 2–4 re-
tains the known pillared square/octagonal layer architec-
ture of 1 (Figure 2, 3 and Figures S1–S10). Both, the biggest 
hydrophobic octagonal channels and the square smallest 
pores, accommodate Pd(II) (2–3) and Pd(II)/Au(III) (4) 
complexes as result of L1–L3 binding to either mononuclear, 
[PdII(NH3)4]2+, or dinuclear complexes, [PdII2(–
O)(NH3)6]2+, of 1 (Figures 2, 3 and Figures S1–S10). The 
confined assemblies in 2–4, stabilized by mechanical-bonds 
with the MOF network, are strictly related to nature of the 
ligands (L) employed in terms of size, shape and imposed 
symmetry (see crystallographic section in Supplementary 
Information for structure refinement details and in-depth 
analysis of X-ray data). 

In 2, half of the Pd2+ ions from the mononuclear and dinu-
clear entities in 1 are self-assembled by L1 giving [PdII8(–
OH2)8(NH3)8(L1)4]16+ square polygons, with [PdII2(-
OH2)2(NH3)4] dimers residing at the corners of the quadran-
gular SCC (Figures 2, 3a left, 3b and Figures S1–S5) and sta-
bilized by H-bonds to the MOF. Each Pd(II) exhibits regular 
square planar geometry, with Pd–N [2.02(2) and 2.09(2) Å 
for Pd-NL1 and Pd-NH3, respectively] and Pd-OH2 [1.99(2) 

and 2.05(2) Å] bond distances similar to those found in the 
literature.14–16,70 The Pd(II) separations through H2O and L1 
bridges are 2.840(6) and 13.49(1) Å, respectively. Square 
polygons are regularly pillared along c crystallographic 
axes, with a Pd(II)···Pd(II) separation among adjacent poly-
gons of 15.15(1) Å, being stabilized by mechanical-bonds 
with the walls of the net involving terminal NH3 molecules 
and oxamate residues belonging to the net [H3N···Ooxamate of 
2.913(9) Å] (Figures S3 and S4). The synergic stabilizations 
ensured by hosting matrix strongly support the robustness 
of such assembled SCCs, with high activity in heterogeneous 
metal-based supramolecular catalysis (vide infra).  

The different nature and symmetry of ligand L2 imposes a 
totally different assembly in 3, yielding a 
[PdII16(H2O)8(NH3)24(–OH2)4(H2O)24(L2)] supramolecular 
assembly, where [PdII2(NH3)6(L2)] dimers are linked by 
strong hydrogen bonds, through the carboxylate group of L2 
and H2O molecules, to [PdII2(–OH2)4(H2O)6] dimers for 
which not all waters have been found from density maps 
(see Supplementary Information) [O···O of 2.89(4) and 
2.89(3) Å for -COO···Owater and Owater···Owater, respectively] 
(Figures 3a right, 3c and Figures S6 and S7). Despite ther-
mal and positional disorder detected for L2 ligand –that 
clearly does not fit the space group of hosting matrix (see 
Figure S7 and refinement details)– the crystal structure of 



 

SCC was solved, where Pd(II) ions exist in distorted square 
planar geometries with Pd-N in the [PdII2(NH3)6(L2)] dimers 
and Pd-OH2 distances of the [PdII2(–OH2)4(H2O)6] moieties 
falling in the expected values [1.99(1) and 2.00(1) Å for Pd-
NL2 and Pd-NH3, respectively, and Pd-OH2 of 2.05(3) and 
2.47(3) Å].14–16,70 The Pd(II)···Pd(II) separation within 
[PdII2(NH3)6(L2)] dimers is of 6.1 Å whereas 8.3 Å is the 

shortest Pd(II)···Pd(II) distance detected in Pd16 assem-
blies. The strength of H-bonds observed in Pd16 assembly of 
3, together with its stabilization by mechanical-bonds with 
the network, underpins the role of supramolecular interac-
tions in nanosolvated space, which should be most likely 
able to preserve Pd16 aggregates during catalysis as well. 

 

Figure 3. (a-c) Views of the crystal structures, determined by synchrotron X-ray diffraction, of the Pd8@MOF 2 (left) and the 
Pd16@MOF 3 (right) prepared from the in-situ reaction of the dipalladium(II)-containing MOF 1 (center) with the aromatic 
dipyridine ligands L1 and L2, respectively [L1 = 1,2-di(pyridn-4-yl)ethyne and L2 = methyl 3,5-bis(pyridine-4-ylethynyl)ben-
zoate]. Views of one single channel of 2 (b) and 3 (c) in the ab (left) and bc (right) crystallographic planes. The heterobime-
tallic CuNi 3D anionic network is depicted as grey sticks. Pd(II) cations in the pores of 1–3 and ligands forming the squares 
and cages in 2 and 3, are represented by blue spheres and gold sticks, respectively. Hydrogen-bonds that form the water-
assisted PdII16 supramolecular assembly in 3 are represented as black dotted lines. Surfaces are used to highlight the SCCs 
within MOFs channels. 

The quality of the SCXRD data did not allow the same pre-
cision for the complete visualization of SCCs’ crystal struc-
ture of 4. However, many local maxima attributable to Pd2+ 
and Au3+ metal ions in the channels together with few peaks 
related to L3 ligand’s fragments were located in the ob-
served structure factor Fourier maps, providing evidence of 
the localization of the SCCs (Figures S8–S10 and refinement 
details in Supplementary Information). Looking at their dis-
position, it is rationale to hypothesize a self-assembly, in a 
similar manner as observed in 2, producing 
[PdII2(NH3)6(L3)2] dimers (for which no peaks related to the 
aromatic moiety has been found from electron den-
sitymaps) remaining in big hydrophobic pores with Pd(II) 
in square planar geometry [average Pd-N of 2.10(2) Å].  The 
Pd···Pd and NL3···NL3 separations  within dimers of 11.36 
and 13.97(1) Å fit very-well with those found for complexes 
constructed with similar ligands (ca. 14 Å).14–16 These di-
mers further grasp AuCl3 complexes exploiting the high af-
finity for soft metal ions of the thioether moiety71 featured 
by L3, generating, finally, self-assembled heterometallic 
SCCs of the type [AuIII2Cl6PdII2(NH3)6(L3)2] showing Pd···Au 

and Au···Au separations of 13.50(1) and 11.89(1) Å, respec-
tively (Figure S9). Interestingly the found position of Au(III) 
ions, consistent with L3 symmetry, is displaced towards the 
centre of the big pores, suggesting a high accessibility for 
reactants. Furthermore, the solved crystal structure clearly 
evidences thioether fragments, allowing to unveil the Au-S 
distance of 2.34(1) Å. 

PXRD, TGA experiments and N2 adsorption isotherms. The 
experimental PXRD patterns of 2–4 are identical to the cor-
responding calculated ones (Figures S11–S12). This fact 
confirms the homogeneity of the bulk samples, which are 
isostructural to the crystals selected for single crystal X-ray 
diffraction. The solvent contents of 2–4 were established by 
thermogravimetric analysis (TGA) under dry N2 atmos-
phere and compared to that of the ancestor compound 1 
(Figure S13). Overall, it shows a fast mass loss for 1–4 from 
room temperature followed by a pseudo plateau until de-
composition starts. Noteworthy, it is observed a greater 
thermal stability of 2–4 respect 1, which further reinforce 
the beneficial synergetic hybridization in SCCs@MOFs. The 
observed weight losses of 25.72 (1), 21.73 (2), 16.47 (3) 



 

and 15.73% (4), respectively, correspond to 52, 43, 30 and 
37 water molecules, respectively, in line with that deter-
mined by CHN(S) analyses (see Supplementary Infor-
mation). Figure S14 shows the N2 adsorption isotherms of 
1–4 at 77 K. They are consistent with the decrease in acces-
sible void space in 2 and, more significantly, in 3 and 4, sug-
gested by the TGA analyses and the crystal structures, 
which is a direct consequence of the formation of largest su-
pramolecular assemblies. 

Figure 4. Supramolecular coordination compounds crystal 
structure. Perspective views of three PdII8 squares (a) and 
two PdII16 (b) supramolecular cages, unveiled by single crys-
tal X-ray diffraction, formed within one single channel of the 
frameworks of 2 and 3, respectively. 

MAS solid 13C NMR, DR-UV-vis, FT-IR, Raman and XPS. Fig-
ure S15 shows the magic angle spinning solid 13C nuclear 
magnetic resonance (MAS solid 13C NMR) of MOF 1 and 
SCCs@MOFs 2–4. It can be clearly seen the appearance of 
new and sharper signals at 165, 150 and 90 ppm in 2, which 
nicely fit the expected values for the L1 ligand, together with 
the signals at -40, 40, 130 and 230 ppm corresponding to 
the framework amides, shifted and broaden by the para-
magnetic action of the CuII metal ions. Similar spectra were 
recorded for SCC@MOF 3 and 4. Additionally, 4 spectrum 
shows a signal at 70 ppm fitting with the typical chemical 
shift expected for ether functionalities. Diffuse-reflectance 

UV-visible measurements of 2–4 show the loss of the palla-
dium(II) adsorption band at max = 320 nm observed in 1 
and the appearance of three new bands at max = 270, 300 
and 350 nm (Figure S16), which agree with both the for-
mation of SCCs and the observed bands of a previously re-
ported PdII4(L1)4 square SCC in solution (see Figure S20).72 
Fourier-transformed infrared spectroscopy (FT-IR) further 
confirms the integrity of the structural organic parts of the 
SCCs@MOFs in 2–4 together with the appearance of new 
signals assignable to L1–3 (Figure S17). Raman spectroscopy 
confirms the formation of the new Au-S bond by the appear-
ance of typical bands for Au- S bonds between 200-300 and 
550 cm-1 (Figure S18) when exciting with a 514 nm laser 
light.73 X-ray photoelectron spectroscopy (XPS) shows that 
the Pd3d5/2 peak of the PdII atoms (338.6 eV) in 1 slightly 
shifts for 2–4 (338.3, 338.5 and 338.1 eV, respectively), as 
expected by the action of the L1–3 ligands (Figure S19).74 
These results perfectly agree with SCXRD and give us tools 
to follow catalysed reactions within the solids. 

Catalytic performance of SCCs@MOFs. Oligo- and poly-thi-
ophenes are well-known conducting molecules with appli-
cations in, for instance, solar cells.75 Their synthesis relies 
on the Pd-catalysed homocoupling of thienylboronic acids, 
a challenging C-C bond-forming reaction that requires 
strong bases and oxidants in the presence of a poisoning 
sulphur group.76 Figure 5 shows the results for the homo-
coupling of two different thienylboronic acids –5a and 5b– 
with a representative Pd(II) complex catalyst,77 the soluble 
SCC PdII4(L1)4,72 1–3 (Tables S3–S4 and Figures S20–21). 
SCCs@MOFs catalysts show much better activity and selec-
tivity to 6a than the homogeneous Pd catalysts and MOF 1, 
with good recyclability and, in addition, are able to catalyse 
the homocoupling of other boronic acids (Figure S22). 
PXRD, DR UV-vis and MAS solid 13C NMR measurements of 
2 and 3 after reaction show identical spectra to the fresh 
samples, plus the signals corresponding to the polymeric 
product 6b when starting from 5b (Figure 5d, Figures S12 
and S21). These results strongly support that the SCCs re-
tain their structural integrity within the MOF during reac-
tion and are true catalysts for homocoupling of boronic ac-
ids. 

In order to better understand the stability of SCCs@MOFs 
under such challenging reaction conditions, mechanistic 
studies comparing them with their soluble counterpart 
PdII4(L1)4 were performed. The kinetic equation rate is first 
order in all reagents for 2 and 3, but half order respect to Pd 
and second order for benzoquinone for soluble PdII4(L1)4 
(Figure 6a, Figures S23–S27).76,78 In-situ 1H NMR measure-
ments show the rapid degradation of soluble PdII4(L1)4 after 
addition of 5a, with release of free L1 to the medium and co-
ordination of benzoquinone to PdII ions while the reaction 
occurs78 (Figure 5e, Figure S28). Any attempt to re-assem-
ble PdII4(L1)4 produces a linear decrease of the initial rate 
(Figure S29) and O2 is required as an oxidant (Tables S5 and 
S6),77,79 which is not the case in the heterogeneous coupling. 
These results show that PdII4(L1)4 is just a precursor of the 
Pd catalytic species while, in clear contrast, 2 and 3 remain 
untouched and catalytically active during the heterogene-
ous reaction. 



 

 

Figure 5. (a) Homocoupling of thienylboronic acids 5a and 5b in the presence of 2 mol % of Pd, 5a-b (0.1 mmol), KF (0.1 mmol, 
5.8 mg), p-benzoquinone (0.2 mmol, 21.6 mg), EtOAc (1.5 mL) and dodecane (10 L) as internal standard, under N2, at 60ºC, 
during 14h. (b) Yields of 6a and 7 in the homocoupling of 5a catalyzed by Pd(OAc)2/Py (1/1), Pd4(L1)4, MOF 1, SCC@MOF 2 
and 3. (c) Reuses for SCC@MOF 3 in the homocoupling of 5a. (d) From bottom to top: MAS solid 13C NMR of polymer 6b, 
SCC@MOF 2, SCC@MOF 2 after reaction with 5b, SCC@MOF 3 and SCC@MOF 3 after reaction with 5b. (e) Aromatic area of 
Pd4(L1)4 1H NMR spectra (CD3CN/D2O) after the sequential addition of KF (2 eq), 5a (2 eq) and benzoquinone (2 eq) and the 
treatment of the mixture at 60 ºC during 2 h. 

XPS measurements after treating 2 and 3 inside the cham-
ber with an O2 atmosphere do not show any PdIV signals 
(Figure 6b). Cyclic voltammetry of 3 during the reaction of 
5a shows that the cathodic signal assignable to the PdII at-
oms of the SCC@MOF (CPd(II)) evolves to a new signal corre-
sponding to PdI (CPd(I)), significantly different to the signals 
of coupling product 6a, redox active benzoquinone and un-
catalysed product 7 (Figure 6c, for blank experiments see 
Figures S30 and S31). This bimetallic PdI/PdII redox mani-
fold, without the involvement of Pd0 or PdIV species, avoids 

extensive structural distortions in the mechanically-bonded 
assemblies and, hence, further contributes to retain their in-
tegrity during the coupling. Overall, the combined kinetic, 
spectroscopic and electrochemical results enable us to pro-
pose a mechanism for the homocoupling of boronic acids 
catalysed by 2 and 3 (Figure 6d), where the confined PdII2 
units catalyse the homocoupling reaction by a redox coop-
erative mechanism in which both PdII metal ions reduce to 
PdI, releasing 6, and finally re-oxidize to the original form.  
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Figure 6. (a) Kinetic equation rate and kinetic parameters for the homocoupling of thienylboronic acid 5a calculated through 
initial rate values for 2, 3 and PdII4(L1)4. Reaction conditions: 5a (0.4–0.8 mmol), KF (0–1.6 mmol), p-benzoquinone (0–1.6 
mmol), catalyst (0–2 mol%), dodecane (40 L), EtOAc (6 mL) for SCC@MOF 2 and 3 or CH3CN (6 mL) for PdII4(L1)4, N2, 60ºC. 
(b) X–ray photoelectron spectroscopy (XPS) of SCCs@MOFs 2 (top) and 3 (bottom), before (left) and after (right), treatment 
in the chamber with O2 for 30 minutes. (c) In-situ cyclic voltammograms of a solution of 5a (1 mM), KF (1 mM) and benzo-
quinone (1 mM) in 0.10 M Bu4NPF6/MeCN before (top) and after (bottom) modifying glassy carbon electrodes with 
SCC@MOF 3, A stands by anodic signals and C stands by cathodic signals, potential scan rate was 50 mV s-1. (d) Postulated 
mechanism for the homocoupling of thienylboronic acid 5a catalyzed by the Pd2 moieties in SCC@MOF 2. 

Following this mechanistic rationale, 2, 3, and also the 
heterobimetallic AuIIIPdII 4 (Figure 7a, Tables S7 and S8), 
were tested as catalysts for the coupling of alkynes.80 The 
three SCCs@MOFs were more active for homocoupling of 
phenylacetylene 8a than the homogeneous Pd catalysts 
tested as well as than MOF 1, with 4 affording the better se-
lectivity to 9a. Moreover, 4 proved its utility through the ho-
mocoupling of a series of alkynes 8b-e and the cross cou-
pling of phenylacetylene 8a with 8f-h, affording diynes 9b-h 
with moderate to good yields (Figure 7d, Figures S32 and 
S33). Notice that a related MOF with supported thio-alkyl 
AuIII complexes, not containing Pd atoms, does not show any 
catalytic activity.71 Kinetic and 1H NMR experiments (Fig-
ures S34–S40) confirm that, as occurs for homocoupling of 
5a: (i) homocoupling of 8a is first order kinetics for 4 but ½ 
for PdII4(L1)4 (Figure 7b), (ii) PdII4(L1)4 readily decomposes 
after the addition of the reagents (Figure 7c, Figure S40), 
and (iii) O2 has more influence for the decomposed 
PdII4(L1)4 than for 4 (Figures S35 and S38).81 Kinetic isotope 

effect (KIE) for 8a is 3.4(7) and 0.9(1) for catalysts 4 and 
PdII4(L1)4, respectively (Figures S36 and S39), which nicely 
fits the observation that 8a only intervenes in the equation 
rate of catalyst 4 and not of PdII4(L1)4.82 Following this, 2–4 
were tested for the more challenging cross-coupling be-
tween boronic acid 5a and alkyne 8a (Figure 7e),83 showing 
moderate conversions and selectivity, in any case higher 
than the homogeneous catalysts and the simpler MOF 1 
(Figure 7e and Figure S41). In order to showcase the prac-
tical advantages of the SCCs@MOFs respect to other soluble 
and/or MOF catalysts, the homocoupling of 8a was carried 
out in a fixed-bed tubular reactor with MOF 4 as a solid cat-
alyst. The results (Figure S42) show that, indeed, alkyne 8a 
transforms to the homocoupling product 9a in flow, thus al-
lowing to the production of diynes in continuous flow, a pro-
cess difficult to achieve with other solid catalysts that make 
use of solid bases84 or that, simply, are soluble and not 
solid.85  
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Figure 7. (a) Phenylacetylene 8a conversion and diphenylbutadiyne 9a yield for the homocoupling of 8a catalyzed by 
Pd(OAc)2/Py (1/1), Pd4(L1)4, MOF 1 and SCC@MOF 2-4. Reaction conditions: 2 mol % of Pd, 8a (0.1 mmol, 10.1 mg), DABCO 
(0.3 mmol, 33.6 mg), EtOAc (1.5 mL) and dodecane (10 L) as an internal standard, under air atmosphere, at RT, during 14 
h. (b) Kinetic equation rate and kinetic parameters for the homocoupling of phenylacetylene 8a calculated through initial rate 
values for 4 and PdII4(L1)4. Reaction conditions: 8a (0.4–0.8 mmol), DABCO (0–2.4 mmol), catalyst (0–2 mol% Pd), dodecane 
(40 L), EtOAc (6 mL) for SCC@MOF 4 or CH3CN (6 mL) for PdII4(L1)4, air, 60 ºC; (c) Aromatic area of Pd4(L1)4 1H NMR spectra 
(CD3CN/D2O) after the sequential addition (from bottom to top) of 8a (2 eq) and DABCO (2 eq); (d) Substrate scope for the 
homocoupling of alkynes 8b-e and the cross coupling between phenylacetylene 8a and alkynes 8f-h catalyzed by SCC@MOF 
4 (reaction conditions shown in the Supporting Information); (e) Thienylboronic acid 5a conversion and 10a yield for the 
cross coupling between 5a and 8a catalyzed by Pd(OAc)2/Py (1/1), Pd4(L1)4, MOF 1 and SCC@MOF 2-4. Reaction conditions: 
2 mol% of Pd, 5a (0.1 mmol, 12.8mg), 8a (0.3 mmol, 30.3 mg), KF (0.1 mmol, 5.8 mg), p-benzoquinone (0.2 mmol, 21.6 mg), 
DABCO (0.9 mmol, 100.9 mg), EtOAc (1.5 mL) and dodecane (10 L) as internal standard, under air atmosphere, at 60 ºC, 
during 14 h. 

We report a unique synthetic strategy for the template-
directed sequential construction of novel stable supramo-
lecular complexes within a MOF channels, SCCs@MOF, tak-
ing advantage of the singular confined environment pro-
vided by MOF channels, and also the presence of such un-
common dinuclear Pd(II) entities in the MOFs pores. As 
proof-of-concept, we have synthesised and crystallograph-
ically characterized three original constructs mechanically-
bonded to a MOF network, never obtained before outside 
the MOFs. In particular, we report a novel Pd8 square metal-
organic polygon, fully characterized by SCXRD, a discrete 
Pd16 supramolecular cage and a heterobimetallic AuIII–PdII 

cage, underpinned by SCXRD. These solid SCCs catalyse the 
coupling of boronic acids and alkynes, while keeping the 
SCCs structure untouched, with better catalytic activity and 
selectivity than standard Pd catalysts and soluble PdII4(L1)4 
squares, the latter readily decomposing under reaction con-
ditions. Overall, this work, represents a general versatile ap-
proach, easily extendable to other metals and ligands, for 
the assembly of original supramolecular constructs with 
great potential in heterogeneous metal-based Supramolec-
ular Catalysis. 
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Materials. 1,2-di(pyridin-4-yl)ethyne (L1), methyl 3,5-
bis(pyridin-4-ylethynyl)benzoate (L2), 
{[PdII(en)(L1)]4(NO3)8} (PdII4(L1)4)72 and 
[PdII(NH3)4][PdII2(–
H2O)(NH3)6]0.5{NiII4[CuII2(Me3mpba)2]3} · 52H2O (1)61 were 
prepared according to literature procedure (see Suplemen-
tary Methods). 

Synthesis. A detailed description for the synthesis 4,4'-
((2-(2-(methylthio)ethoxy)-1,3-phenylene)bis(ethyne-
2,1-diyl))dipyridine (L3) is given in the Supplementary 
Methods. For [PdII2(–OH2)2(NH3)4)]0.5[PdII8(–O 
H2)8(NH3)8(L1)4]0.125{NiII4[CuII2(Me3mpba)2]3} · 43H2O (2). 
Well–formed deep green prisms of 2, which were suitable 
for X–ray diffraction, were obtained by immersing crystals 
of 1 (ca. 36 mg, 0.010 mmol) in hot (50 C) acetonitrile so-
lutions of L1 (5 mL, 10 mM) for one week. Then, the super-
natant solution was removed, and the crystals were washed 
with an acetonitrile solution (5 x 10 mL), isolated by filtra-
tion on paper and air–dried.  Alternatively, large scale syn-
theses of 2, were also carried out by using the same syn-
thetic procedure but with stirring and with greater amounts 
of both, a powder sample of compound 1 (2 g, 0.55 mmol) 
and L1 (50 mL, 55 mM), with the same successful results. 
Finally, the product was collected by filtration, washed with 
a acetonitrile solution and air–dried. Elemental analysis [% 
calcd., % found for Cu6Ni4Pd2C84H163N16O81 (3522.17)]: C, 
28.65; H, 4.67; N, 6.36%. Found: C, 28.75; H, 4.72; N, 6.31%. 
IR (KBr): ν = 1603 cm–1 (C=O).  

For [PdII16(H2O)8(NH3)24(–
OH2)4(H2O)24(L2)]0.125{NiII4[CuII2(Me3mpba)2]3} · 30H2O (3). 
The compound 3 was prepared by an analogous procedure 
to that for 2 by using L2 as precursor instead of L1. Elemental 
analysis [% calcd., % found for 
Cu6Ni4Pd2C80.75H139.75N15.25O70.75 (3285.2)]: C, 29.50; H, 4.25; 
N, 6.50%. Found: C, 29.39; H, 4.08; N, 6.23%. IR (KBr): ν = 
1601 cm–1 (C=O). 

For [AuIII2(–
OH)2(OH)4)]0.5[AuIII2Cl6PdII2(NH3)6(L3)2]0.5[PdII2(-
OH2)(NH3)6)]0.5{NiII4[CuII2(Me3mpba)2]3} · 37H2O (4). Well–
shaped deep green prisms of 4, were obtained by immersing 
crystals of 1 (ca. 36 mg, 0.010 mmol) in hot (50 ºC) acetoni-
trile solutions of L3 (5 mL, 10 mM) for one week. After wash-
ing the crystals with additional acetonitrile (5 x 10 mL), 
they were immersed in a fresh H2O/CH3OH (1:1) solution. 
The solution was exchanged every three hours five times. 
Then, the crystals were treated in a H2O/CH3OH (1:1) solu-
tion of AuCl3 (3.0 mg, 0.010 mmol) for 12 hours. The process 
was repeated five more times to ensure that the maximum 
loading of possible gold atoms was achieved. This was mon-
itored by ICP-MS and SEM/EDX. The gold-metallated crys-
tals had the same size and shape as those of the starting 
SCC@MOF, ruling out a possible dissolution-recrystalliza-
tion mechanism for this system and strongly suggesting a 
solid-state process in the formation of the heterobimetallic 
SCC@MOF. The crystals were washed with a H2O/CH3OH 
(1:1) solution (5 x 10 mL), isolated by filtration on paper 
and air–dried. Alternatively, large scale syntheses of 4, were 
also carried out by using the same consecutive step-by-step 
synthetic procedure but with stirring and with greater 
amounts of precursors, a powder sample of compound 1 (2 
g, 0.55 mmol), L3 (50 mL, 55 mM) and AuCl3 (0.17 g, 0.55 

mmol) with the same successful results. The metalation of 
the preformed SCC@MOF was repeated five times. This was 
monitored by ICP-MS and SEM/EDX. Finally, the product 
was collected by filtration, washed with a H2O/CH3OH (1:1) 
solution and air–dried. Elemental analysis [% calcd., % 
found for Cu6Ni4Pd2Au2C101H174N20O77.5 (4269.8)]: C, 28.39; 
H, 4.08; S, 0.75; N, 6.56%. Found: C, 28.85; H, 4.33; S, 0.90; 
N, 6.80%. IR (KBr): ν = 1603 cm–1 (C=O). 

Single crystal X-ray diffraction. Diffraction data for 2 and 
4 were collected using synchrotron radiation at I19 beam-
line of the Diamond Light Source at  = 0.6889 Å, whereas 
for 3 on a Bruker-Nonius X8APEXII CCD area detector dif-
fractometer using graphite-monochromated Mo-Kα radia-
tion ( = 0.71073 Å). Crystal data for 2–4: tetragonal, space 
group P4/mmm, T = 30(2) for 2 and 4 and 90(2) K for 3, Z 
= 4. 2: C84H163Cu6N16Ni4O81Pd2 , a = 35.7158(2) Å, c = 
15.14950(10) Å, V = 19325.0(3) Å3; 3: 
C80.75H139.75Cu6N15.25Ni4O70.75Pd2, a = 35.258(10) Å, c = 
15.119(4) Å, V = 18795(12) Å3; 4: 
C101H174Cu6N20Ni4O77.5SPd2Au2Cl3, a = 35.725(2) Å, c = 
15.2666(8) Å, V = 19485(2) Å3. Further details can be found 
in the Supplementary Information.  

CCDC 1892911, 1892912 and 1892914 for 2, 3 and 4, re-
spectively contain the supplementary crystallographic data 
for this paper. These data can be obtained free of charge via 
www.ccdc.cam.ac.uk/conts/retrieving.html (or from the 
Cambridge Crystallographic Data Centre, 12 Union Road, 
Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or de-
posit@ccdc.cam.ac.uk). 

1H and 13C NMR Spectroscopy, Magic Angle Spinning Solid 
13C NMR Spectroscopy, Diffuse-reflectance UV-Vis, Infrared 
Spectroscopy, Microscopy measurements, X–ray Powder 
Diffraction Measurements, X–ray photoelectron spectros-
copy (XPS) measurements and Electrochemical Measure-
ments. A detailed description of all the different characteri-
zation techniques used is given in the Supplementary Infor-
mation. 

Catalytic Experiments. A detailed description of all the 
catalytic experiments is given in the Supplementary Infor-
mation. 

Supporting Information Available. Physical techniques. Crystal-
lographic refinement and catalytic details. Figures S1–S42. Ta-
bles S1–S8. CCDC reference numbers: CCDC–1892911, 
1892912 and 1892914. This material is available free of charge 
via the Internet at http://pubs.acs.org.  
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Supplementary Methods 

Materials. Unless stated otherwise, all chemicals were of reagent grade quality. 

They were purchased from commercial sources and used as received. 1,2-di(pyridin-4-

yl)ethyne (L1),
1 methyl 3,5-bis(pyridin-4-ylethynyl)benzoate (L2),

2 

{[PdII(en)(L1)]4(NO3)8} (PdII
4(L1)4)

3 and [PdII(NH3)4][PdII
2(–

H2O)(NH3)6]0.5{NiII
4[CuII

2(Me3mpba)2]3} · 52H2O (1)4 were prepared according to 

literature procedure. Dry 1,4-dioxane was purchased from Acros Organics, and other 

anhydrous solvents were obtained from a resin-exchanger apparatus. Column 

chromatography was carried out using Silica 60 A (particle size 35-70 μm, Fisher, UK) 

as the stationary phase, and TLC was performed on pre-coated silica gel plates (0.25 

mm thick, 60 F254, Merck, Germany) and observed under UV light. 

4,4'-((2-(2-(methylthio)ethoxy)-1,3-phenylene)bis(ethyne-2,1-diyl))dipyridine 

(L3). 1,3-dibromo-2-(2-methylsulfanylethoxy)benzene: To a solution of 2,6-

dibromophenol(1 g, 3.98 mmol) in 40 mL of acetonitrile, K2CO3 (1.64 g, 11.9 mmol) 

was added and the reaction mixture was refluxed for 1 h. After cooling down to room 

temperature, 1-bromo-2-methylsulfonylethane (0.61 g, 3.98 mmol) in 10 mL of 

acetonitrile was added and the reaction mixture was refluxed for 6 h.  The mixture was 

cooled down, filtered and the volatiles were removed by rotatory evaporation. The solid 

obtained was re-dissolved in chloroform, washed with water and the organic phase was 

separated, dried and concentrated using rotatory evaporation. The obtained solid was 

used without any further purification for the next synthetic step. Yield: 85 % (1.02 g). 

ESI-MS (sample dissolved in MeOH, run in MeOH): m/z = 310 [M+H]+. 1H-NMR (400 

MHz, 293K, CDCl3): δ = 7.56 (d, J= 8Hz, 2H), 6.82 (t, J= 8Hz, 1H), 4.23 (t, J= 6.8Hz, 

2H), 2.91 (t, J= 6.8Hz, 2H), 2.16 (s, 3H). 

A mixture of 1,3-dibromo-2-(2-methylsulfanylethoxy)benzene (1.02 g, 3.3 mmol), 

4-ethynylpiridine hydrochloride (0.15 g, 1.37 mmol), copper(I) iodide (40 mg, 0.2 

mmol) and bis(benzonitrile)palladium(II) dichloride (80 mg,  0.2 mmol) were added to 

a 100 mL round bottom flask. After several cycles of pumped under vacuum and 

refilled with argon, degassed anhydrous 1,4-dioxane (50 mL), diisopropylamine (3.4 

mL, 4.8 mmol) and tri(t-butyl)phosphine ( 0.5 g, 2.47 mmol) were added through a 

canula and the dark green suspension was stirred at 50 ºC for 20 hours. After cooling 

to room temperature, the dark mixture was filtered, and the solvent removed under 

reduced pressure. The resulting residue was purified by column chromatography using 

dichloromethane as first eluent and then a mixture of 1:1 dichloromethane:ethyl acetate 

was used obtaining L3 as pure product  (0.93 g, 80 %). ESI-MS (sample dissolved in 

MeOH, run in MeOH): m/z = 355 [M+H]+ . 1H NMR (400 MHz, 293K, CDCl3): δ = 

2.12 (s, 3H), 2.92 (t, J= 6.8Hz, 2H), 4.52 (t, J= 6.8Hz, 2H), 7.16 (t, J= 7.7Hz, 1H), 7.42 

(d, J= 6Hz, 4H), 7.52 (d, J= 7.7Hz, 2H), 8.62 (d, J= 6Hz, 4H). 13C NMR (75 MHz, 

293K, CDCl3): δ = 52.71; 87.64; 90.55; 123.6; 131.13; 132.6; 138.6; 149.12; 152.3; 

165.5. 

[PdII
2(–OH2)2(NH3)4)]0.5[PdII

8(–
OH2)8(NH3)8(L1)4]0.125{NiII

4[CuII
2(Me3mpba)2]3} · 43H2O (2).  

Well–formed deep green prisms of 2, which were suitable for X–ray diffraction, 

were obtained by immersing crystals of 1 (ca. 36 mg, 0.010 mmol) in hot (50 ºC) 

acetonitrile/water (2:1) solutions of L1 (5 mL, 10 mM) for one week. Then, the 

supernatant solution was removed, and the crystals were washed with an acetonitrile 

solution (5 x 10 mL), isolated by filtration on paper and air–dried.  
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Alternatively, large scale syntheses of 2, were also carried out by using the same 

synthetic procedure but with stirring and with greater amounts of both, a powder sample 

of compound 1 (2 g, 0.55 mmol) and L1 (50 mL, 55 mM), with the same successful 

results. Finally, the product was collected by filtration, washed with an acetonitrile 

solution and air–dried. Elemental analysis [% calcd., % found for 

Cu6Ni4Pd2C84H163N16O81 (3522.17)]: C, 28.65; H, 4.67; N, 6.36%. Found: C, 28.75; H, 

4.72; N, 6.31%. IR (KBr): ν = 1603 cm–1 (C=O).  

[PdII
16(H2O)8(NH3)24(–OH2)4(H2O)24(L2)]0.125{NiII

4[CuII
2(Me3mpba)2]3} · 

30H2O (3). The compound 3 was prepared by an analogous procedure to that for 2 by 

using L2 as precursor instead of L1. Elemental analysis [% calcd., % found for 

Cu6Ni4Pd2C80.75H139.75N15.25O70.75 (3285.2)]: C, 29.50; H, 4.25; N, 6.50%. Found: C, 

29.39; H, 4.08; N, 6.23%. IR (KBr): ν = 1601 cm–1 (C=O). 

[AuIII
2(–OH)2(OH)4)]0.5[AuIII

2Cl6PdII
2(NH3)6(L3)2]0.5[PdII

2(-

OH2)(NH3)6)]0.5{NiII
4[CuII

2(Me3mpba)2]3} · 37H2O (4). Well–shaped deep green 

prisms of 4, were obtained by immersing crystals of 1 (ca. 36 mg, 0.010 mmol) in hot 

(50 ºC) acetonitrile/water (2:1) solutions of L3 (5 mL, 10 mM) for one week. After 

washing the crystals with additional acetonitrile (5 x 10 mL), they were immersed in a 

fresh H2O/CH3OH (1:1) solution. The solution was exchanged every three hours five 

times. Then, the crystals were treated in a H2O/CH3OH (1:1) solution of AuCl3 (3.0 

mg, 0.010 mmol) for 12 hours. The process was repeated five more times to ensure that 

the maximum loading of possible gold atoms was achieved. This was monitored by 

ICP-MS and SEM/EDX. The gold-metallated crystals had the same size and shape as 

those of the starting SCC@MOF, ruling out a possible dissolution-recrystallization 

mechanism for this system and strongly suggesting a solid-state process in the 

formation of the heterobimetallic SCC@MOF. The crystals were washed with a 

H2O/CH3OH (1:1) solution (5 x 10 mL), isolated by filtration on paper and air–dried.  

Alternatively, large scale syntheses of 4, were also carried out by using the same 

consecutive step-by-step synthetic procedure but with stirring and with greater amounts 

of precursors, a powder sample of compound 1 (2 g, 0.55 mmol), L3 (50 mL, 55 mM) 

and AuCl3 (0.17 g, 0.55 mmol) with the same successful results. The metalation of the 

preformed SCC@MOF was repeated five times. This was monitored by ICP-MS and 

SEM/EDX. Finally, the product was collected by filtration, washed with a H2O/CH3OH 

(1:1) solution and air–dried. Elemental analysis [% calcd., % found for 

Cu6Ni4Pd2Au2C101H174N20O77.5Cl3S (4269.8)]: C, 28.39; H, 4.08; S, 0.75; N, 6.56%. 

Found: C, 28.85; H, 4.33; S, 0.90; N, 6.80%. IR (KBr): ν = 1603 cm–1 (C=O). 
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Table S1. Selected data from the ICP–MSa and SEM/EDXb analyses for 1–4. 

  Compound 1   

Metal % massa Metal stoichiometry a % massb Metal stoichiometryb 

Cu 10.571 6.00 10.43 5.92 

Ni 6.518 4.01 6.47 3.98 

Pd 5.892 1.99 5.77 1.95 

  Compound 2   

Metal % massa Metal stoichiometry a % massb Metal stoichiometryb 

Cu 10.661 5.98 10.68 5.99 

Ni 6.584 4.00 6.63 4.03 

Pd 5.922 1.98 5.87 1.97 

  Compound 3   

Metal % massa Metal stoichiometry a % massb Metal stoichiometryb 

Cu 11.603 6.00 11.68 6.03 

Ni 7.134 3.99 7.23 4.05 

Pd 6.493 2.00 6.54 2.02 

  Compound 4   

Metal % massa Metal stoichiometry a % massb Metal stoichiometryb 

Cu 8.932 6.00 8.98 6.03 

Ni 5.573 4.05 5.56 4.04 

Pd 4.935 1.98 4.99 2.00 

Au 9.159 1.99 9.25 2.00 

Solid samples were digested with 0.5 mL of HNO3 69% at 60°C for 4 hours followed by the addition of 0.5 mL of 

HCl 37% and digestion 80°C for 1 hour. Metal stoichiometric is given according to formula unit. 

X-Ray crystallographic data collection and structure refinement. Crystals of 

2–4 with 0.08 x 0.07 x 0.07, 0.14 x 0.12 x 0.12, and 0.06 x 0.05 x 0.05 as dimensions 

were selected and mounted on a MiTeGen MicroMount in Paratone oil and very quickly 

placed on a liquid helium (2) or nitrogen (3–4) stream cooled at 30 K for 2 and 4 and 

90 K for 3, to avoid the possible degradation upon dehydration. Diffraction data for 2 

and 4 were collected using synchrotron radiation at I19 beamline of the Diamond Light 

Source at  = 0.6889 Å, whereas for 3 on a Bruker-Nonius X8APEXII CCD area 

detector diffractometer using graphite-monochromated Mo-Kα radiation ( = 0.71073 

Å). The data were processed through xia25 (2 and 4), or SAINT6 reduction and 

SADABS7 multi-scan absorption (3) software. The structures were solved with the 

SHELXS structure solution program, using the Patterson method. The model was 
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refined with version 2013/4 or 2018/3 (for sample 3) of SHELXL against F2 on all data 

by full-matrix least squares.8  

The highly robustness and crystallinity of these materials, together with the 

application of cutting-edge X-ray crystallography technique allowed the complete 

resolution of the crystal structure of 2. Even for 3 hybrid material it was possible to 

refine a structural model which gives an in-depth insight about the most probably 

organization of entities self-assembled within pores. Crystals were suitable for X–ray 

diffraction, even though more than one crystal–to–crystal transformation have been 

performed to synthesise them (see synthetic experimental section). However, for these 

reasons, it is reasonable to observe a diffraction pattern sometimes affected by 

unavoidable internal imperfections of the crystals. For sample 4, the quality of the 

SCXRD data was not good enough for the complete structural resolution of 4. However, 

the crystallographic positions of the metal ions, building up the SCCs, and some 

ligand’s fragments could be determined from Fourier maps, giving precious insights 

about the most probable structure of assemblies growth in the confined space of a metal 

organic framework.  

It is worth to note that the presented structural characterization goes one step 

further than what have been observed in nanospace so far. It allows, for the first-time, 

direct visualization of the in-situ heterogeneous self-assembled SCCs within MOF 

channels. For that reasons, it is worth to underline that structural parameters such as 

thermal factors are sometimes high due to disorder related to the high degrees of 

freedom in self-assembly of bricks in nanospace (see explanation below). 

In all samples (2–4) all non-hydrogen atoms of the net were refined anisotropically. 

It is not the same for some highly dynamically disordered lattice water molecules atoms 

and atoms of in-situ assembled SCCs. All the hydrogen atoms of the net together with 

hydrogen atoms on the ligand L1 in 2, were set in calculated positions and refined 

isotropically using the riding model. Hydrogen atoms on the bridging water molecules, 

terminal ammonia groups of Pd(II) complexes and of the lattice water molecules –found 

from Fourier maps– were neither found nor calculated in all three samples. The SCCs 

build up inside the channels are expected to be severely disordered, as a direct 

consequence of their high thermal motion and also statistically disorder. This is related 

to both symmetry of the ligands L1–L3 –that does not fit the symmetries of the space 

group in which hosting matrix crystallizes– and size and shape of the final assemblies 

–that govern the degree of freedom of the hybrid systems. While in 2 the size and shape 

of PdII
8 square polygons, and PdII

2 dimers, permit them to reside at positions perfectly 

stabilized by supramolecular interactions with the net (see Figures S4 and S5) –ensuring 

an efficient anchoring of them in confined space, with a consequent less thermal 

disorder–, in 3 the different symmetry of the ligand L2 makes PdII
2L2 and PdII

2 dimers 

less blocked by the hosting matrix, and thus, more disordered. Furthermore, the 

symmetry of Pd-L2 assembly does not fit that of hosting framework space group, which 

imposes a mirror plane on oxygen atoms of carboxylate groups and results in statistical 

disorder of the final SCC. In fact, it is well known that a crystal structure is the spatial 

average of representing all molecules together with all their possible orientations 

averaged in the crystal via only one-unit cell. In all cases, as the present one, where 

obviously not all unit cells are identical and a variety of orientations are allowed, the 

description became even more challenging. Also, in 4, the symmetry and chemical 

affinities of ligand L3 allows an arrangement of heterogeneous SCCs with conformation 

of the aromatic fragment pointing towards the centre of the biggest pores, and as 

consequence, severely disordered. Refinement of data collected at 30 K with 
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synchrotron radiation revealed no significant peaks of electron density attributable to 

aromatic side of L3 in the channels, as it would be expected from their weak interaction 

due to thermal motion in a so large space. Where the interactions with the net increase, 

many local maxima were located in the observed structure factor Fourier maps, 

providing evidence of the localization of the SCC’s fragments represented in Figure S9. 

The occupancy factors of Pd and Au atoms have been refined in agreement with 

expected thermal factors, SEM and ICP–MS results [0.25 for both Pd1 ([PdII
8(L1)4]

 

square polygons population) and Pd2 (PdII
2 water bridged dimers population) in 2, 0.25 

for Pd1 (PdII
2L2 dimers population) and 0.25 for Pd2 (PdII

2 oxo-bridged dimers 

population) in 3, whereas in 4 0.25 for both Pd1 and Pd2 together with 0.25 for Au1 

and Au2], as well as in agreement with their respectively asymmetric units and 

molecular cells contents. The occupancies of the ligands in the pores, have been defined 

by a combination of elemental (C,H,N,S) analyses, and thermal factors, and then often 

imposed as occupancy factors in structure refinement according to metal ions amount. 

We strongly believe that it is the more reliable way to accurately define loading, instead 

of taking into account merely thermal factors, which can be affected by a lot of issues 

above all severe disorder.  

The use of some C-C, C-N, C-O and C-S bond lengths restraints of highly 

disordered atoms for both network and generated guest assemblies during the 

refinements in all crystal structures as well as Pd–N and Pd–O ones, has been 

reasonably imposed, as related to the expected and severe thermal motion, likely 

depending on the large size of the huge pores of the frameworks (DFIX, RIGU, SIMU, 

DELU and ISOR). All that is particularly marked in 3 and 4 (see discussion above). In 

summary, in all samples guest assemblies are severely disordered, especially for the 

fragments pointing towards the center of the pores where, undoubtedly, the degrees of 

freedom, related to diverse possible conformations, significativally increase. For that 

reasons in some cases we constrained even thermal factors. Moreover, in general for 

the two messy assemblies in 3 and 4, NH3 terminal molecules and some terminal 

fragments were not found from F map. 

 In 2, the oxygen atom O2H of bridging water exhibits positional disorder.  

In 3, as already reported, the whole [PdII
16(H2O)8(NH3)24(–OH2)4(H2O)24(L2)] 

supramolecular assembly exhibits statistic disorder. In [PdII
2(–OH2)4(H2O)6]

4+ 

dimers, not all waters have been found from F maps. 

In 4, the overall aromatic fragment of the ligand L3 were not found from Fourier 

maps (see Figure S4). In [AuIII
2(–OH)2(OH)4)] dimers, bridging water molecules 

O7W and O8W exhibit statistic disorder. 

As a consequence of disorder, Alert A in the checkcifs, also related to short 

intermolecular C···C of guests and net or equivalent positions generated by overlapping 

various geometry, are detected, but are unavoidable.  

The solvent molecules were also highly disordered –some refined double positions 

are detected as Alerts A in the checkcif. Again, the quite large channels featured by the 

MOF likely account for that. However, even if not all ones have been detected by TGA 

analysis, they have been somehow modelled in all the crystal structures (Alert level B 

for 1, related to mismatch in the ratio of given/expected molecular weight) 2–4.  

Overall the “Alert A” notifications found in the validation program CheckCIF are 

either related to intrinsic imperfections and disorder –as the presence of large outliers 
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in the data set, quite normal for crystals that suffered three post-synthetic steps–, or 

from short intermolecular contacts between water molecules and in-situ generated 

assemblies –which are unavoidable due to the expected severe disorder of both solvent 

and SCCs. The comments for the alerts are described in the CIFs using the validation 

reply form (vrf). 

A summary of the crystallographic data and structure refinement for the three 

compounds is given in Table S1. CCDC reference numbers are 1892911, 1892912 and 

1892914 for 2, 3 and 4, respectively. 

The final geometrical calculations on free voids and the graphical manipulations 

were carried out with PLATON9 implemented in WinGX,10 and CRYSTAL MAKER11 

programs, respectively. 

Structural details and in-depth analysis of X-ray data. As reported in the main 

text, the SCXRD data of 2–4 evidences that the 3D network remained crystalline during 

the MOF-templated in-situ heterogeneous self-assembled process. In 2 a well-solved 

structure of PdII
8 square metal-organic polygon mechanically-bonded to the MOF 

network was achieved (Figure 2, 3a left, 3b and Figures S1–S5). In contrast, the ligand 

counterpart from the SCCs guests in 3, and markedly in 4, were persistently disordered 

within the MOF host (Figures S1 and S6–S10). However, even in case of 4, electron 

density maps and structural analyses clearly gave insights about the presence of 

[AuIII
2(–OH)2(OH)4)] dimers, [AuIII

2Cl6PdII
2(NH3)6(L3)2]

4+
 heterobimetallic cationic 

assemblies and [PdII
2(-OH2)(NH3)6)]

4+
 dimers within the 3D net channels (Figure S8–

S10), whereby the L3 ligands would possess a putative tripoidal geometry with detected 

thioether moieties acting as clamps to enlace gold(III) complexes. The anionic 

NiII
4CuII

6 open-framework structure in 2–4 retains the known pillared square/octagonal 

layer architecture of 1, where nickel(II) and copper(II) ions are located on the vertices 

and midpoints of the edges, respectively, together with Pd(II) cationic complexes 

homogeneously distributed within the pores, acting as a perfect platform to template 

SCCs self-assembly. It features three types of pores –a small almost square sized pores 

and two kinds of hydrophobic and hydrophilic octagonal pores with virtual diameters 

of ca. 0.4, 1.5 and 2.2 nm, respectively– propagating along the c axis and enfolding up 

to 56% of the total lattice volume (Figure 2, 3 and Figures S1–S10). Both, the biggest 

hydrophobic octagonal channels and the square smallest pores, accommodate Pd(II) 

(2–3) and Pd(II)/Au(III) (4) complexes as result of L1–L3 binding to either 

mononuclear, [PdII(NH3)4]
2+, or dinuclear complexes of the type [PdII

2(–O)(NH3)6]
2+ 

of 1 which can be self-assembled to give 2–4 (Figures 1–3 and Figures S1–S10). The 

arrangement of Pd2+ SCCs in 2–3, as well as Pd2+ together with Au3+ and Pd2+Au3+ 

SCCs in 4, confined into the channels and stabilized by mechanical-bonds with the 

MOF network, are strictly related to nature of the ligands (L) employed in terms of size, 

shape and imposed symmetry.  

In 2, half of the Pd2+ ions from the mononuclear and dinuclear entities in 1 are self-

assembled by ligand L1 giving [PdII
8(–OH2)8(NH3)8(L1)4]

16+ square polygons, with 

[PdII
2(-OH2)2(NH3)2] dimers residing at the corners of the quadrangular SCC (Figures 

2, 3a left, 3b and Figures S1–S5). Each Pd(II) exhibits regular square planar geometry, 

with Pd–N [2.02(2) and 2.09(2) Å for Pd-NL1 and Pd-NH3, respectively] and Pd-OH2 

[1.99(2) and 2.05(2) Å] bond distances similar to those found in the literature.12–15 The 

Pd(II) separations through H2O and L1 bridges are 2.840(6) and 13.49(1) Å, 

respectively. Free [PdII
2(–OH2)2(NH3)4]

2+ dimers are still present in smaller square 

pores, exhibiting Pd–NH3 [2.00(1) and 2.02(1) Å] and Pd-OH2 [2.039(9) and 2.19(1) 
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Å] bond distances in the expected ranges. Square polygons are regularly pillared along 

c crystallographic axes, with a Pd(II)···Pd(II) separation among adjacent polygons of 

15.15(1) Å, being stabilized by mechanical-bonds with the walls of the net involving 

terminal NH3 molecules and oxamate residues belonging to the net [H3N···Ooxamate of 

2.913(9) Å] (Figures S3 and S4). As for the [PdII
8(–O H2)8(NH3)8(L1)4]

16+ squares, 

[PdII
2(–OH2)2(NH3)4]

2+ dimers are perfectly blocked within pores by H-bonds 

established between ammonia ligands and oxamate moieties of the hosting matrix 

[H3N···Ooxamate of 2.900(9) Å] (Figure S5). The synergic stabilizations ensured by 

hosting matrix strongly support the robustness of such assembled SCCs, with high 

activity in heterogeneous metal-based supramolecular catalysis (vide infra).  

The different nature and symmetry of ligand L2 imposes a totally different 

assembly of native [PdII(NH3)4]
2+, or dinuclear complexes of the type [PdII

2(–

O)(NH3)6]
2+ present in 1. The substitution of ammonia by water and L2 ligands, yields 

a [PdII
16(H2O)8(NH3)24(–OH2)4(H2O)24(L2)] supramolecular assembly, where 

[PdII
2(NH3)6(L2)] dimers are linked by strong hydrogen bonds, through the carboxylate 

group of L2 and H2O molecules, to [PdII
2(–OH2)4(H2O)6] dimers for which not all 

waters have been found from F maps [O···O of 2.89(4) and 2.89(3) Å for -

COO···Owater and Owater···Owater, respectively] (Figures 3a right, 3c and Figures S6 and 

S7). These results definitely highlight how the interplay between hydrophilic channels 

and the resultant vastly solvated confined nanospace –in which water molecules are 

never innocent actors– is at the origin of [PdII
16(H2O)8(NH3)24(–OH2)4(H2O)24(L2)]

32+ 

moieties stabilizations. Despite thermal and positional disorder detected for L2 ligand –

that clearly does not fit the space group of hosting matrix (see Supplementary 

Information and Figure S7)– has been possible to solve the crystal structure of SCC 

where Pd(II) ions exist in distorted square planar geometries with Pd-N in the 

[PdII
2(NH3)6(L2)] dimers and Pd-OH2 distances of the [PdII

2(–OH2)4(H2O)6] moieties 

falling in the expected values [1.99(1) and 2.00(1) Å for Pd-NL2 and Pd-NH3, 

respectively, and Pd-OH2 of 2.05(3) and 2.47(3) Å].12–15 The Pd(II)···Pd(II) separation 

within [PdII
2(NH3)6(L2)] dimers is of 6.1 Å whereas 8.3 Å is the shortest Pd(II)···Pd(II) 

distance detected in Pd16 assemblies. The strength of H-bonds observed in Pd16 

assembly of 3, together with its stabilization by mechanical-bonds with the network, 

underpins the role of supramolecular interactions in nanosolvated space, which should 

be most likely able to preserve Pd16 aggregates during catalysis as well. 

The large accessible free voids even after SCCs assembly is calculated to be 50.8 

and 47.9% of the total cell volume, for 2 (9823.1 Å3 per Unit Cell Volume of 19325.0 

Å3) and 3 (9007.2 Å3 per Unit Cell Vol of 18795.0 Å3), respectively allow the guest to 

become more than an innocent bystander. That large pores ensure free access to reactant 

species. 

Despite the impeccable resolution of the crystal structure achieved for SCCs in 2 

and quite complete in 3, the quality of the SCXRD data did not allow the same precision 

for the complete visualization of SCCs’ crystal structure of 4. However, many local 

maxima attributable to Pd2+ and Au3+ metal ions in the channels together with few peaks 

related to L3 ligand’s fragments were located in the observed structure factor Fourier 

maps, providing evidence of the localization of the SCCs (Figures S8–S10). Looking 

at their disposition, it is rationale to hypothesize a self-assembly of a half of native 

[PdII(NH3)4]
2+, or dinuclear complexes of the type [PdII

2(–O)(NH3)6]
2+ present in 1, 

which occurs first in a similar manner as observed in 2 producing [PdII
2(NH3)6(L3)2] 

dimers (for which no peaks related to the aromatic moiety has been found fromF 
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maps) remaining in big hydrophobic pores with Pd(II) in square planar geometry 

[average Pd-N of 2.10(2) Å].  The Pd···Pd and NL3···NL3 separations  within dimers of 

11.36 and 13.97(1) Å fit very-well with those found for complexes constructed with 

similar ligands (ca. 14 Å).12–14 These dimers further grasp AuCl3 complexes exploiting 

the high affinity for soft metal ions of the thioether moiety16 featured by L3, generating, 

finally, self-assembled heterometallic SCCs of the type [AuIII
2Cl6PdII

2(NH3)6(L3)2] 

showing Pd···Au and Au···Au separations of 13.50(1) and 11.89(1) Å, respectively 

(Figure S9). Interestingly the found position of Au(III) ions, consistent with L3 

symmetry, is displaced towards the centre of the big pores, suggesting a high 

accessibility for reactants. Furthermore, the solved crystal structure clearly evidences 

either the thioether fragments [allowing to unveil the Au-S distance of 2.34(1) Å] or 

the persistent presence of MOF’s stabilized [PdII
2(-OH2)(NH3)6)] dimers, again 

residing in the small square channels between hydrophobic and hydrophilic pores as 

observed for 3 [2.00(2) and 2.22(1) Å, for average Pd–NH3 and Pd-OH2, respectively]. 

In addition, the crystal structure of 4 reveals [AuIII
2(–OH)2(OH)4)] dimers filling the 

small square pores featured by the MOF, with Au-Owater bond lengths of 2.17(2), 

2.00(2) and 2.32(5) Å and very short intradimer Au···Au separations of 2.20 Å in 

square planar geometry. 
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Table S2. Summary of crystallographic data for 2–4.  

Compound 2 3 4 

Formula C84H163Cu6N16Ni4O81Pd2 C80.75H139.75Cu6N15.25Ni4O70.75Pd2 C101H174Cu6N20Ni4O77.5SPd2Au2Cl3 

M (g mol–1) 3522.17 3285.20 4269.80 

Å 0.6889 0.71073 0.6889 

Crystal 

system 
Tetragonal Tetragonal Tetragonal 

Space group P4/mmm P4/mmm P4/mmm 

a (Å) 35.7158(2) 35.258(10) 35.725(2) 

c (Å) 15.14950(10) 15.119(4) 15.2666(8) 

V (Å3) 19325.0(3) 18795(12) 19485(2) 

Z 4 4 4 

calc (g cm–3) 1.211 1.161 1.456 

µ (mm–1) 1.125 1.313 2.506 

T (K) 30(2) 90(2) 30(2) 

 range for 

data 

collection (°) 

0.781 - 36.159 0.817 - 23.595 0.552 - 25.000 

Completeness 

to   = 23.0 
100 98.6 100 

Completeness 

to   = 25.0 
100 82 100 

Measured 

reflections 
427337 66503 244768 

Unique 

reflections 

(Rint) 

26486 (0.0579) 7708 (0.1218) 10377 (0.1736) 

Observed 

reflections [I 

> 2(I)] 

6413 3668  3377 

Goof 1.036 1.175 1.911 

Ra [I > 2(I)] 

(all data) 
0.1256 (0.2909) 0.1316 (0.2081) 0.3098 (0.4234) 

wRb [I > 

2(I)] (all 

data) 

0.4038 (0.4428) 0.3549 (0.3857) 0.6579 (0.6865) 

CCDC code 1892911 1892912 1892914 
aR = ∑(|Fo| – |Fc|)/∑|Fo|. bwR = [∑w(|Fo| – |Fc|)2/∑w|Fo|2]1/2. 
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Figure S1. View along c crystallographic axis of crystal structures of 2 (a) and 3 (b) 

featuring channels filled by {[PdII
2(–OH2)2(NH3)4)]

4+ and [PdII
8(–

OH2)8(NH3)8(L1)4]
16+ (2) or [PdII

16(H2O)8(NH3)24(–OH2)4(H2O)24(L2)]
32+ SCCs (3). 

Lattice water molecules and hydrogen atoms have been omitted for clarity. Color 

scheme: palladium, violet sphere; oxygen, red spheres, ligand L2 in 3, yellow sticks, 

ligands atoms and metal ions of the whole net have been depicted as grey sticks. 
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Figure S2. Perspective views showing details with and without the whole net (a and b, 

respectively) of distribution of PdII
8 squares SCCs filling hydrophilic channels and PdII

2 

dimers residing in the boundaries within hydrophobic and hydrophilic pores in 2. Color 

scheme: palladium, violet sphere; ligand, violet sticks, ligands atoms and metal ions of 

the whole net have been depicted as yellow sticks. 
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Figure S3. A portion of crystal structures of 2 obtained by SCXRD. (a-b) Perspective 

views of a channel of 2 along the c or b axes showing, in detail, the PdII
8 and PdII

2 

complexes. (c) Perspective view of a PdII
8 SCC underlining the intra-assembly 

structural parameters related to PdII···PdII separations. (d) Perspective view of 

propagation within [101] direction of a single channel underlining the inter-assembly 

structural parameters related to PdII···PdII separations. Color scheme: Cu and Ni atoms 

from the network are represented by cyan and blue polyhedra, respectively, whereas 

organic ligands are depicted as yellow and purple sticks (in a-b) for ligand of the whole 

net and L1 ligand, respectively. Purple spheres represent Pd2+, whereas red, blue and 

grey sticks represent oxygen, nitrogen and carbon atoms, respectively (in c-d). 
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Figure S4. Perspective views of a portion of a pore of the crystal structure of 2 along 

the b axis and the [111] direction (a and b) showing the [PdII
8(–OH2)8(NH3)8(L1)4]

16+ 

SCCs and related structural parameters, stabilized by symmetric NH3 ···O interactions 

[H3N···Ooxamate of 2.913(9) Å]. Color scheme: palladium, violet sphere; carbon and 

nitrogen atoms of the ligands L1 are depicted as purple and blue sticks, respectively; 

nitrogen atoms, blue sticks, whereas ligands atoms and metal ions of the whole net have 

been depicted as yellow sticks. 

  



June 12th 2019 

 S14 

 

Figure S5. Further details of crystal structure of 2. Perspective views of a portion of a 

pore along the [111] direction and the b axis (a and b) showing the [PdII
2(–

OH2)(NH3)4]
4+ dimers and related structural parameters, stabilized again by symmetric 

NH3 ···O interactions [H3N···Ooxamate of 2.900(9) Å]. The inset shows the crystal 

structure of dimers within pores and its structural parameters; palladium, oxygen and 

nitrogen atoms are represented as violet, red and blue spheres. Color scheme: 

palladium, violet sphere; nitrogen and oxygen blue and red sticks, respectively, whereas 

ligands atoms and metal ions of the whole net have been depicted as yellow sticks. 
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Figure S6. A portion of crystal structures of 3 obtained by SCXRD. (a-b) Perspective 

views of a channel of 3 along the c or b axes showing, the PdII
16 and PdII

2 complexes. 

Color scheme: Cu and Ni atoms from the network are represented by cyan and blue 

polyhedra, respectively, whereas organic ligands are depicted as grey and yellow sticks 

for ligand of the whole net and L2 ligand, respectively. Purple spheres represent Pd2+, 

whereas red, blue and grey sticks represent oxygen, nitrogen and carbon atoms, 

respectively. 
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Figure S7. Crystal structure of PdII
16 SCCs in 3. View along c crystallographic axis (a) 

and perspective view (b) of [PdII
2(NH3)6(L2)] and [PdII

2(–OH2)4(H2O)6] dimers, linked 

by water molecules, through strong hydrogen bonds [O···O of 2.89(4) and 2.89(3) Å 

for -COO···Owater and Owater···Owater, respectively]. In [PdII
2(–OH2)4(H2O)6] moieties 

not all waters have been found from F maps. Color Scheme: Pd and O atoms are 

represented by purple and red spheres, respectively, whereas carbon and nitrogen atoms 

of the ligands L2 are depicted as yellow and blue sticks, respectively. The overall 

positional disorder of phenyl rings of the ligand has not been removed from the 

representation.  
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Figure S8. View along c crystallographic axis of crystal structure of 4 featuring 

hydrophilic channels filled by [PdII
2(-OH2)(NH3)6)] dimers and 

[AuIII
2Cl6PdII

2(NH3)6(L3)2] heterometallic SCCs (for which only a fragment has been 

detected, see Figure S9), together with [AuIII
2(–OH)2(OH)4)] dimers filling smallest 

square pores. Lattice water molecules and hydrogen atoms have been omitted for 

clarity. Color scheme: palladium, violet sphere; gold, gold spheres, oxygen and 

nitrogen, red and blue sticks, respectively. Ligands atoms and metal ions of the whole 

net have been depicted as grey sticks. 



June 12th 2019 

 S18 

 

Figure S9. Details of crystal structure of 4. (a) Perspective view along c 

crystallographic axis of the overall distribution of metal ions within pores. (b) Details 

of a single hydrophilic pore showing the detected fragments, by SCXRD, of [PdII
2(-

OH2)(NH3)6)] dimers and [AuIII
2Cl6PdII

2(NH3)6(L3)2] heterometallic SCCs. (c-d) Views 

of a single pore along c axis representing only [AuIII
2Cl6PdII

2(NH3)6(L3)2] fragments 

with parameters details related to Pd···Pd and Pd···Au separations and ligand scheme. 

Color scheme: Cu and Ni atoms from the network are represented by cyan and blue 

polyhedra, respectively, whereas organic ligands are depicted as grey sticks. Palladium, 

gold and sulfur, purple, gold and yellow spheres respectively, whereas red, blue and 

grey sticks represent oxygen, nitrogen and carbon atoms, respectively. 
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Figure S10. Perspective view of crystal structure of 4, showing [AuIII
2(–OH)2(OH)4)] 

dimers (gold spheres) distributed within the square channels, and PdIIAuIII complexes 

occupying the interlayer space of the wide octagonal channels most likely stabilized by 

the whole net, through interactions with the carboxylate- and/or carbonyl-oxygen atoms 

from the coordination network. Color scheme: Cu and Ni atoms from the network are 

represented by cyan and blue polyhedra, respectively, whereas organic ligands are 

depicted as grey sticks. Palladium, gold and sulfur, purple, gold and yellow spheres 

respectively, whereas red, blue and grey sticks represent oxygen, nitrogen and carbon 

atoms, respectively. 
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1H and 13C NMR Spectroscopy. Spectra were recorded on Bruker DMX 500 

instrument for L3 in CDCl3 and in a Bruker 300 MHz instrument using the appropriate 

solvent for the rest of the synthesized products. Chemical shifts are reported in parts 

per million (ppm) from low to high frequency and referenced to the residual solvent 

resonance. 

Magic Angle Spinning Solid 13C NMR Spectroscopy. 13C solid–state NMR 

spectra were recorded at room temperature with a Bruker AVIII HD 400 WB 

spectrometer. The glass insert were fitted into 7 mm rotors and were spun at 5 kHz in a 

Bruker BL7 probe.13C CP/MAS NMR spectra were recorded with proton decoupling, 

with 1H 90° pulse length of 5 μs, and a recycle delay of 3s. 

Diffuse-reflectance UV-Vis. Reflectance spectra in the region comprised between 

190 and 1100 nm were recorded at room temperature on a spectrophotometer equipped 

with an integrating sphere. The mixture was contained in a quartz cell with 1 mm path 

length; the layer can therefore be regarded as infinitely thick, as required by the 

Kubelka-Munk theory. Absorbance values (A) were calculated from reflectance ones 

(R) according to the Kubelka-Munk transformation: A = (1–R)2/2R. 

Infrared Spectroscopy. Fourier transform infrared (FT–IR) measurements were 

recorded on a Thermo Nicolet iS10 spectrophotometer after impregnating the window 

with a dichloromethane solution of the analyte, and then leaving to evaporate, or by 

previous mixture of the solid with KBr. Deconvolution of the IR spectra has been 

performed in the Origin software using Gaussian curves where the full width at half–

maximum (fwhm) of the individual bands has been taken as constant. The peak areas 

are normalized to the sample weight. 

Raman spectroscopy. Raman spectra were recorded at RT with a 514 nm laser 

excitation on a Renishaw Raman Spectrometer (“in via”) equipped with a CCD 

detector. The laser power on a sample of MOF 4 (with or without Au atoms) was 25 

mW and a total of 20 acquisitions were taken for each spectrum. 

Microscopy measurements. Scanning Electron Microscopy coupled with Energy 

Dispersive X–ray (SEM/EDX) was carried out with a XL 30 ESEM (PHILIPS) 

microscope equipped with a home–made EDX energy dispersive x–ray detector. 

X–ray Powder Diffraction Measurements. Polycrystalline samples of 2–4, 

before and after catalysis, were introduced into 0.5 mm borosilicate capillaries prior to 

being mounted and aligned on a Empyrean PANalytical powder diffractometer, using 

Cu Kα radiation (λ = 1.54056 Å). For each sample, five repeated measurements were 

collected at room temperature (2θ = 2–60°) and merged in a single diffractogram. 

X–ray photoelectron spectroscopy (XPS) measurements. Samples were 

prepared by dropping a solid water suspension onto a molybdenum plate followed by 

air drying, and then measurements were performed on a SPECS spectrometer equipped 

with a Phoibos 150 MCD–9 analyzer using non–monochromatic Mg KR (1253.6 eV) 

X–ray source working at 50 W. As an internal reference for the peak positions in the 

XPS spectra, the C1s peak has been set at 284.5 eV. 

Electrochemical Measurements. Voltammetric measurements were performed at 

glassy carbon working electrode in solutions of the different compounds and their 

mixtures in 0.10 M Bu4NPF6/MeCN. A CH I660 potentiostat was used in an 

electrochemical cell using Pt mesh auxiliary electrode and a Pt wire pseudo-reference 

electrode to avoid water contamination. The measured potentials can be passed to the 
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ferrocene/ferrocenium scale by subtracting 0.16 V. The solutions were optionally 

deaerated by bubbling Ar for 10 min. 

Conventional solution-phase voltammetry was performed as previously described 

for studying homocoupling reaction.17 The voltammetric and catalytic activity of the 

studied SCCs@MOFs was analyzed using microparticulate deposits of such 

compounds on glassy carbon electrode. Such deposits were prepared by evaporation on 

the electrode surface of a drop (50 L) of a suspension (1 mg/mL) of the solid in 

ethanol.18 

Other techniques. ESI mass spectrometry and elemental (C,H,N,S) analyses were 

performed by departmental services at The University of Manchester, the Universitat 

de València and the ITQ. Carbon, hydrogen, nitrogen and sulphur analysis was 

performed using a Flash 200 elemental analyser. Metal analysis was performed by 

Thermo iCap 6300 Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-

OES).  

The thermogravimetric analysis was performed on crystalline samples under a dry 

N2 atmosphere with a Mettler Toledo TGA/STDA 851e thermobalance operating at a 

heating rate of 10 ºC min–1.  

The N2 adsorption–desorption isotherms at 77 K were carried out on crystalline 

samples of 1–4 with a Micromeritics ASAP2020 instrument. Samples were evacuated 

at 80 ºC during 16 hours under 10–6 Torr prior to their analysis.  
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Figure S11. Calculated (bold lines) and experimental (solid lines) PXRD pattern 

profiles of 1 (red), 2 (blue), 3 (green) and 4 (orange) in the 2θ range 2.0–60.0° (a) and 

enlarged image in the range 4.5–40.0° (b). 
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Figure S12. Calculated (bold lines) and experimental (solid lines) PXRD pattern 

profiles of 2 (blue), 3 (green) and 4 (orange) in the 2θ range 2.0–60.0°after catalytic 

experiments (a) and enlarged image in the range 4.5–40.0° (b). 
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Figure S13. Thermo–Gravimetric Analyses (TGA) of 1 (red), 2 (blue), 3 (green) and 4 

(gold) under dry N2 atmosphere. 
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Figure S14. N2 (77 K) adsorption isotherm for the activated compounds 1 (red), 2 

(blue), 3 (green) and 4 (gold). Filled and empty symbols indicate the adsorption and 

desorption isotherms, respectively. The sample was activated at 80 °C under reduced 

pressure for 16 h prior to carry out the sorption measurements. 
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Figure S15. Full spectra (top) and 10–105 ppm region (bottom) of the magic-angle 

spinning solid 13C NMR of MOF 1 (a) and SCCs@MOFs 2 (b), 3 (c) and 4 (d). 
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Figure S16. Diffuse-reflectance UV-vis spectrum of MOF 1 (blue solid lines), 

SCCs@MOFs 2 (red solid lines), 3 (green solid lines) and 4 (grey solid lines), and 

Pd4(L1)4 (yellow solid lines) UV-vis spectrum in solution. 
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Figure S17. Fourier transform infrared spectrum of MOF 1 (blue solid lines), 

SCCs@MOFs 2 (red solid lines), 3 (green solid lines) and 4 (yellow solid lines). 
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Figure S18. Raman spectra obtained after exciting MOF 4 before and after 

incorporating gold, with a laser light at 521 nm. Excitation with a laser light at 785 nm 

did not give significant results. 
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Figure S19. X-ray photoelectron spectroscopy (XPS) of MOF 1 (a), SCCs@MOFs 2 

(b), 3 (c) and 4 (d). 
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Catalytic experiments 

General reaction procedure for the homocoupling of boronic acids catalysed 

by 1–3. In a 10 ml glass vial equipped with a stirring bar, the corresponding boronic 

acid (0.1 mmol), KF (0.1 mmol, 5.8 mg), p-benzoquinone (0.2 mmol, 21.6 mg) and 

dodecane as internal standard (10 L) were charged together with a 2 mol% of the 

corresponding palladium catalyst (3.5 mg for 2 and 3.3 mg for 3) in 1.5 ml of ethyl 

acetate or o-xylene under a N2 atmosphere. The vial was closed with a septum and the 

mixture was placed in a pre-heated oil bath at the required temperature and stirred for 

the indicated time. After the reaction time, the possible excess of boronic acid was 

quenched with neopentyl glycol and the mixture was analysed by GC and by GC-MS 

when necessary. The homocoupling products were isolated by preparative TLC using 

hexane as eluent. 

General reaction procedure for the homocoupling of boronic acids catalysed 

by Pd(OAc)2/Py or Pd4(L1)4. In a 25 ml glass vial equipped with a stirring bar, the 

corresponding boronic acid (0.2 mmol), KF (0.2 mmol, 11.6 mg), p-benzoquinone (0.4 

mmol, 43.2 mg) and dodecane as internal standard (20 L) were charged together with 

a 2 mol% of Pd(OAc)2/pyridine (0.9 mg/0.3L) or Pd4(L1)4 (1.37 mg) in 2 ml of ethyl 

acetate under a N2 atmosphere. The vial was closed with a septum and the mixture was 

placed in a pre-heated oil bath at the required temperature and stirred for the indicated 

time. After the reaction time, the possible excess of boronic acid was quenched with 

neopentyl glycol and the mixture was analysed by GC and by GC-MS when necessary.  

General reaction procedure for the homocoupling of alkynes catalysed by 1–

4. In a 10 ml glass vial equipped with a stirring bar, the corresponding alkyne (0.1 

mmol), DABCO (0.3 mmol, 33.6 mg) and dodecane as internal standard (10 L) were 

charged together with a 2 mol% of the corresponding palladium catalyst (3.5 mg for 1, 

3.5 mg for 2, 3.3 mg for 3 and 4.2 mg for 4) in 1.5 ml of ethyl acetate under air 

atmosphere. The vial was closed with a septum and the mixture was placed in a pre-

heated oil bath at the required temperature and stirred for the indicated time. After the 

reaction time, mixture was analysed by GC and by GC-MS when necessary. The 

homocoupling products were isolated by preparative TLC using mixtures ethyl acetate/ 

hexane as eluent. For the in-flow reaction, a similar reaction mixture for alkyne 8a was 

passed at 0.01 ml·min-1 through MOF 4 placed in a tubular (4 mm diameter) fixed-bed 

reactor externally at 60 ºC, collecting samples each hour to be analysed by GC and GC-

MS. 

General reaction procedure for the homocoupling of alkynes catalysed by the 

Pd(OAc)2/Py or Pd4(L1)4. In a 25 ml glass vial equipped with a stirring bar, the 

corresponding alkyne (0.2 mmol), DABCO (0.6 mmol, 67.3 mg) and dodecane as 

internal standard (20 L) were charged together with a 2 mol% of Pd(OAc)2/pyridine 

(0.9 mg/0.3L) or the the Pd4(L1)4 (1.37 mg) in 2 ml of ethyl acetate under air 

atmosphere. The vial was closed with a septum and the mixture was placed in a pre-

heated oil bath at the required temperature and stirred for the indicated time. After the 

reaction time, the mixture was analysed by GC and by GC-MS, when necessary. 

General reaction procedure for the cross-coupling of phenylacetylene 8a with 

alkynes 8f-h catalysed by 4. In a 10 ml glass vial equipped with a stirring bar, the 

corresponding alkyne 8f-h (0.3 mmol), phenyacetylene 8a (0.1 mmol, 10.2 mg), 

DABCO (0.3 mmol, 33.7 mg), and dodecane as internal standard (10 L) were charged 

together with a 2 mol% of 4 (4.2 mg) in 1.5 ml of ethyl acetate under air atmosphere. 
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The vial was closed with a septum and the mixture was placed in a pre-heated oil bath 

at the required temperature and stirred for the indicated time. After the reaction time, 

mixture was analysed by GC and by GC-MS when necessary.  

General reaction procedure for the cross-coupling of 2-thienylboronic acid 5a 

with 8a catalysed by 1-4. In a 10 ml glass vial equipped with a stirring bar, the 

corresponding alkyne (0.3 mmol), 2-thienylboronic acid 5a (0.1 mmol, 12.8 mg), 

DABCO (0.9 mmol, 100.9 mg), KF (0.1 mmol, 5.8 mg), p-benzoquinone (0.1 mmol, 

10.8 mg) and dodecane as internal standard (10 L) were charged together with a 2 

mol% of the corresponding palladium catalyst (3.5 mg for 2, 3.3 mg for 3 and 4.2 mg 

for 4) in 1.5 ml of ethyl acetate under air atmosphere. The vial was closed with a septum 

and the mixture was placed in a pre-heated oil bath at the required temperature and 

stirred for the indicated time. After the reaction time, mixture was analysed by GC and 

by GC-MS when necessary. Attempts to isolate the cross-coupling products were done 

by preparative TLC using mixtures ethyl acetate/hexane as eluent, although only 

mixtures of compounds 10 and 9 were obtained. 

General reaction procedure for the cross-coupling of 2-thienylboronic acid 5a 

with 8a catalysed by Pd(OAc)2/Py or Pd4(L1)4. In a 25 ml glass vial equipped with a 

stirring bar, the corresponding alkyne (0.6 mmol), 2-thienylboronic acid 5a (0.2 mmol, 

25.6 mg), DABCO (1.8 mmol, 201.9 mg) and dodecane as internal standard (20 L) 

were charged together with a 2 mol% of Pd(OAc)2/pyridine (0.9 mg/0.3L) or the 

Pd4(L1)4 (1.37 mg) in 2 ml of ethyl acetate under air atmosphere. The vial was closed 

with a septum and the mixture was placed in a pre-heated oil bath at the required 

temperature and stirred for the indicated time. After the reaction time, the mixture was 

analysed by GC and by GC-MS, when necessary. 

Reuses. The corresponding general reaction procedure above was followed for the 

corresponding SCCs@MOF catalyst in a ten-fold scale. After the reaction time, the 

solid catalyst was recovered by filtration and washed with ethyl acetate and water. After 

drying, the catalyst was weighted and the reagents and solvent added in proportional 

amounts to keep the initial relative molar ratios. 

Hot-filtration experiments. Following the general reaction procedure above, the 

hot reaction mixture was filtered through a 0.25m Teflon filter into a new vial 

equipped with a magnetic stirrer and placed at the reaction temperature, and the filtrates 

were periodically analysed by GC to compare with the results obtained with the solid 

catalyst still in. 

Synthesis of Phenylacetylene-d 8a-d.19 An oven-dried schlenk flask equipped 

with a stir bar was charged with phenylacetylene (1.1 mL, 10 mmol, 1.0 equiv) and 

anhydrous THF (15 mL, 0.67 M). The solution was cooled to -78 ºC and nBuLi (2.5 M 

in hexanes, 6 mL, 15 mmol, 1.5 equiv) was added in a dropwise fashion over 5 min. 

The solution was stirred at -78 ºC for 20 min after which point it was warmed to RT 

and stirred for an additional 20 min. The mixture was then cooled to -78 ºC and D2O (3 

mL, excess) was added. Then, it was allowed to warm to RT and stirred for 20 min. 

The reaction was quenched with 3M HCl and extracted with diethyl ether (3x20 mL). 

The combined organic extracts were dried with MgSO4, filtered, and the solvent was 

carefully removed with use of a rotary evaporator (no heating, product is volatile) to 

give phenylacetylene-d as a clear oil (0.51 g, 50% yield). 1H NMR spectra matched 

with those previously reported. 
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Characterization of the isolated compounds: 

 
2,2'-Bithiophene (6a).20 Yield: 54%. 1H NMR (300 MHz, CDCl3) δ: 7.22 (dd, J = 

5.1, 1.0 Hz, 2H), 7.19 (dd, J = 3.6, 1.0 Hz, 2H), 7.03 (dd, J = 5.1, 3.6 Hz, 2H). 13C NMR 

(75 MHz, CDCl3) δ: 137.56, 127.90, 124.49, 123.91. IR (υ, cm–1): 698, 743, 912, 1050, 

1250, 1770, 2990. GC-MS (m/z, M+· 287), major peaks found: 166 (100%), 121 (32%), 

93 (5%), 69 (9%), 45 (7%).  

 

3,3'-Bithiophene (6c).21 Yield: 57%. 1H NMR (300 MHz, CDCl3) δ: 7.39 – 7.36 

(m, 2H), 7.36 – 7.32 (m, 4H). IR (υ, cm–1): 1089, 1468, 1410, 3411. GC-MS (m/z, M+· 

287), major peaks found: 166 (100%), 121 (33%), 95 (4%), 69 (7%), 45 (10%). 

 
1,1'-Biphenyl (6d).22 Yield: 38%. 1H NMR (300 MHz, CDCl3) δ: 7.65 (d, J = 7.3 

Hz, 4H), 7.49 (dd, J = 7.5, 7.5 Hz, 1H), 7.44 – 7.36  (m, 2H). 13C NMR (75 MHz, 

CDCl3) δ: 141.40, 128.89, 127.39, 127.31. IR (υ, cm–1): 697, 728, 1250, 1770, 2990. 

GC-MS (m/z, M+· 287), major peaks found: 154 (100%), 128 (5%), 102 (4%), 76 

(11%), 51 (6%), 28 (4%). 

 
4,4'-Dimethyl-1,1'-biphenyl (6e).23 Yield: 18%. 1H NMR (300 MHz, CDCl3) δ: 

7.55 (d, J = 8.1 Hz, 4H), 7.29 (t, J = 7.8 Hz, 4H), 2.46 (s, 6H). 13C NMR (75 MHz, 

CDCl3) δ: 138.44, 136.80, 129.57, 126.94, 21.19. IR (υ, cm–1): 803, 1250, 1770, 2990. 

GC-MS (m/z, M+· 287), major peaks found: 182 (100%), 168 (44%), 152 (10%), 115 

(8%), 90 (12%), 28 (8%). 
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1,1':2',1'':2'',1'''-Quaterphenyl (6f).24 Yield: 50%. 1H NMR (300 MHz, CDCl3) 

δ: 7.44 – 7.38 (m, 2H), 7.37 – 7.29 (m, 4H), 7.21 – 7.13 (m, 2H), 7.08 (dd, J = 7.2, 7.2 

Hz, 2H), 6.99 (dd, J = 7.3, 7.3 Hz, 4H), 6.61 (d, J = 7.0 Hz, 4H). IR (υ, cm–1): 698, 742, 

1430, 1470, 2920, 3050. GC-MS (m/z, M+· 287), major peaks found: 306 (100%), 276 

(7%), 228 (33%), 202 (7%), 145 (22%), 77 (5%). 

 

1,4-Diphenylbuta-1,3-diyne (9a).25 Yield: 92%. 1H NMR (300 MHz, CDCl3) δ: 

7.60 – 7.49 (m, 4H), 7.43 – 7.30 (m, 6H). 13C NMR (75 MHz, CDCl3) δ: 132.65, 129.35, 

128.58, 121.97, 81.71, 74.08. IR (υ, cm–1): 687, 755, 915, 1440, 1480, 1590, 2150, 

3050.  

 

1,4-Di-o-tolylbuta-1,3-diyne (9b).26 Yield: 98%. 1H NMR (300 MHz, CDCl3) δ: 

7.50 (d, J = 7.6 Hz, 2H), 7.32 – 7.10 (m, 6H), 2.50 (s, 6H). 13C NMR (75 MHz, CDCl3) 

δ: 141.78, 133.07, 129.72, 129.24, 125.80, 121.90, 81.30, 77.69, 20.86. IR (υ, cm–1): 

712, 754, 1040, 1110, 1460, 1480, 2140, 2920, 3060. GC-MS (m/z, M+· 230), major 

peaks found: 230 (100%), 202 (20%), 115 (61%).  

 

1,4-Bis(3-methoxyphenyl)buta-1,3-diyne (9c).25 Yield: 72%. 1H NMR (300 

MHz, CDCl3) δ: 7.25 (dd, J = 7.9, 7.9 Hz, 1H), 7.13 (d, J = 7.5 Hz, 1H), 7.05 (s, 1H), 

6.94 (d, J = 8.4 Hz, 1H), 3.81 (s, 6H). 13C NMR (75 MHz, CDCl3) δ: 159.48, 129.68, 

125.23, 122.87, 117.27, 116.19, 81.67, 73.82, 55.45. IR (υ, cm–1): 683, 779, 1050, 1150, 

1220, 1290, 1460, 1490, 1590, 2150, 2830, 2940, 2960. GC-MS (m/z, M+· 262), major 

peaks found: 262 (100%), 219 (20%), 176 (20%), 150 (9%).  

 

1,4-Di(pyridin-3-yl)buta-1,3-diyne (9d).25 Yield: 67%. 1H NMR (300 MHz, 

CDCl3) δ: 8.77 (d, J = 2.2 Hz, 1H), 8.60 (dd, J = 4.9, 1.7 Hz, 1H), 7.82 (ddd, J = 7.9, 

2.0, 2.0 Hz, 1H), 7.30 (dd, J = 4.9, 7.9 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ: 153.31, 

149.65, 139.54, 123.24, 119.03, 79.32, 77.36. IR (υ, cm–1): 696, 802, 1410, 2920. GC-

MS (m/z, M+· 204), major peaks found: 204 (100%), 176 (9%), 151 (20%), 122 (8%), 

98 (20%), 74 (9%). 

 

Hexadeca-7,9-diyne (9e).27 Yield: 33%. 1H NMR (300 MHz, CDCl3) δ: 2.24 (t, J 

= 6.9 Hz, 4H), 1.57 – 1.45 (m, 4H), 1.43 – 1.34 (m, 4H), 1.34 – 1.21 (m, 8H), 0.88 (t, 

J = 6.7 Hz, 3H).13C NMR (75 MHz, CDCl3) δ: 77.67, 65.42, 31.45, 28.67, 28.48, 22.65, 

19.36, 14.16. IR (υ, cm–1): 748, 913, 2930. GC-MS (m/z, M+· 218), major peaks found: 

218 (0.1%), 189 (10%), 147 (10%), 119 (41%), 91 (100%), 67 (40%), 41 (36%). 
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2-(Phenylethynyl)thiophene (10a).28 Yield: 27%. 1H NMR (300 MHz, CD3CN) 

δ: 7.58 – 7.50 (m, 1H), 7.44 – 7.37 (m, 5H), 7.32 (dd, J = 3.6, 1.1 Hz, 1H), 7.06 (dd, J 

= 5.2, 3.7 Hz, 1H).13C NMR (75 MHz, CD3CN) δ: 133.42, 132.22, 130.71, 129.68, 

129.09, 128.55, 123.70, 123.57, 82.55. GC-MS (m/z, M+· 184), major peaks found: 184 

(100%), 152 (13%), 139 (23%). 

NMR copies of the isolated compounds: 
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Table S3. Solvent study for the homocoupling of 5a. See main text or general 

procedures for general reaction conditions. MeOH and CH3CN gave some activity but 

complete leaching of the Pd species under reaction conditions. 

Entry Solvent Catalyst 6a (%) 7 (%) 

1 
Toluene 

2 8 5 

2 3 11 7 

3 
DCE 

2 11 7 

4 3 16 10 

5 
o-Xylene 

2 4 2 

6 3 5 3 

7 
BuOH 

2 4 3 

8 3 3 2 

9 
EtOAc 

2 24 54 

10 3 44 38 
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Table S4. Catalyst amount, temperature and atmosphere study for the homocoupling 

of 5a catalysed by 3. See main text or general procedures for general reaction 

conditions. 

Entry Mol % (3) T (ºC) Atmosphere 6a (%) 7 (%) 

1 2 80 N2 27 54 

2 1 80 N2 23 43 

3 0.5 80 N2 16 45 

4 2 60 N2 44 38 

5 2 60 Air 20 54 

6 2 60 O2 15 26 

7 2 25 N2 4 20 
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Table S5. Initial rates for different amounts of benzoquinone and under different 

atmospheres during the homocoupling of 5a catalyzed by SCC@MOF 3 (see main text 

or general procedures for general reaction conditions). 

Entry Benzoquinone (eq.) Atmosphere r0 (%/h) 

1 0 N
2
 7.7 

2 0 Air 9.3 

3 0 O
2
 11.7 

4 0.25 N
2
 20.4 

5 0.25 O
2
 7.4 
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Table S6. Initial rates for different amounts of benzoquinone and under different 

atmospheres during the homocoupling of 5a catalyzed by Pd4(L1)4 in CH3CN (see main 

text or general procedures for general reaction conditions). 

Entry Benzoquinone (eq.) Atmosphere r0 (%/h) 

1 0 N2 7.4 

2 0 O2 5.7 

3 2 N2 14.3 

4 2 O2 18.9 

  



June 12th 2019 

 S49 

 

 

Figure S20. Top: Schematic representation of the synthesis of known soluble Pd4(L1)4 

square used as control for the catalytic experiments. Bottom: The corresponding 1H 

NMR (DMSO-d6) spectrum. The 1H NMR spectra is the same in THF-d8, D2O and 

AcN-d3. 
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Figure S21. Diffuse-reflectance UV-Vis spectrum of SCCs@MOFs 2 (a) and 3 (b) 

before (red) and after reaction with thienylboronic acid 5a (blue). See main text for 

reaction conditions. 

  

a) b) 
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Figure S22. Catalytic results for the homocoupling of boronic acids 5c-f catalyzed by 

SCCs@MOFs 2 and 3, see main text and general procedures for reaction conditions, 

(5d-g were coupled in o-xylene instead of EtOAc solvent). S1: benzene, S2: toluene 

and S3: biphenyl. 
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Figure S23. Initial rates vs. amount of the different reagents for the homocoupling of 

5a catalyzed by SCC@MOF 2 (see main text for general reaction conditions). Error 

bars account for 5% uncertainty. 
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Figure S24. Initial rates vs. amount of the different reagents for the homocoupling of 

5a catalyzed by SCC@MOF 3 (see main text for general reaction conditions). Error 

bars account for 5% uncertainty. 
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Figure S25. Initial rates vs. amount of the different reagents for the homocoupling of 

5a catalyzed by Pd4(L1)4 in CH3CN (see main text for general reaction conditions). See 

ahead for fitting Pd order. Error bars account for 5% uncertainty. 
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Figure S26. Initial rates vs. concentration of [Pd2] dimers in SCC@MOF 2 to the power 

of different squares, represented to evaluate the possible dissociation of Pd atoms 

during reaction (see main text for general reaction conditions). Data are fitted to a linear 

regression. Error bars account for 5% uncertainty. 
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Figure S27. Initial rates vs. concentration of Pd4(L1)4 in CH3CN to the power of 

different squares, represented to evaluate the possible dissociation of Pd atoms during 

reaction (see main text for general reaction conditions). Data are fitted to a linear 

regression. Error bars account for 5% uncertainty. 
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Figure S28. Aromatic area (top) and alkyl area (bottom) of the 1H NMR spectra of 

Pd4(L1)4 in CD3CN after sequential addition of all the reagents for the homocoupling of 

5a. Unidentified intermediate species are marked with a circle. 
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Figure S29. Initial rates vs. concentration of added ligands L1 (left) and ethylendiamine 

(right) for the homocoupling of 5a with Pd4(L1)4 as a catalyst in CH3CN (see main text 

for general reaction conditions). Data are adjusted to a linear regression. Error bars 

account for 5% uncertainty. 
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Figure S30. Cyclic voltammograms at glassy carbon electrode of air-saturated 0.10 M 

Bu4NPF6/MeCN solutions of: a) 5 mM benzoquinone; b) 5 mM 5a; c) 5 mM 

benzoquinone + 5 mM 5a + 5 mM NaF; d) the above solution plus 1 mM Pd(II) acetate. 

Potential scan rate 500 mV s-1. 
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Figure S31. Cyclic voltammograms at glassy carbon electrode of: a) air-saturated 0.10 

M Bu4NPF6/MeCN; b) the same solution plus 0.5 mM Pd(II) acetate (voltammograms 

at two switching potentials are superimposed); c) 0.5 mM Pd(II) acetate solution in 0.10 

M Bu4NPF6/MeCN; d) 0.2 mM solution of Pd4(L1)4 complex in 0.10 M 

Bu4NPF6/MeCN. Potential scan rate 50 mV s-1. The arrow in Figure c marks the 

crossover associated to Pd(I) disproportionation (see text). CPd1 is attributed to a PdI 

species and CPd2 to a Pd0 species. 
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Table S7. Solvent study for the homocoupling of 8a catalyzed by SCC@MOF 4. See 

main text and general procedures for general reaction conditions.  

Entry Solvent Conversion 8 (%) Selectivity 9a (%) 

1 EtOAc 99 77 

2 Toluene 99 57 

3 THF 67 45 

4 Decane 40 54 
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Table S8. Base study for the homocoupling of 8a catalyzed by SCC@MOF 4. See main 

text and general procedures for general reaction conditions.  

Entry Base Conversion 8 (%) Selectivity 9a (%) 

1 DABCO 99 77 

2 NBu3 72 6 

3 KF 94 4 
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Figure S32. Catalytic results for the homocoupling of alkynes 8b-e catalyzed by 

SCC@MOF 4 under typical reaction conditions. 
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Figure S33. Catalytic results for the coupling of phenylacetylene 8a with alkynes 8f-h 

catalyzed by SCC@MOF 4 under typical reaction conditions using an excess of 8f-h 

of 3 equivalents. 
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Figure S34. Initial rates vs. amount of the different reagents for the homocoupling of 

8a catalyzed by SCC@MOF 4 (see main text for general reaction conditions). [Pd2] 

dimers inside in SCC@MOF 4 fit to a first order kinetics. Data are fitted to a linear 

regression. Error bars account for 5% uncertaintity.  
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Figure S35. Yield-time plots for the homocoupling of 8a catalyzed by SCC@MOF 4 

under different atmospheres (see main text for general reaction conditions) and 

calculated initial rates.  
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Figure S36. Yield-time plots for the homocoupling of 8a and 8a-d catalyzed by 

SCC@MOF 4 showing a kinetic isotopic effect (see main text for general reaction 

conditions). 
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Figure S37. Initial rates vs. amount of the different reagents for the homocoupling of 

8a catalyzed by Pd4(L1)4 (in CH3CN). Data corresponding to Pd4(L1)4 are fitted to a 

linear regression and Pd4(L1)4 concentration is analyzed to the power of different 

squares to evaluate the possible dissociation of Pd atoms during reaction (see main text 

for general reaction conditions). Pd4(L1)4 fits to a 1/2 order kinetics. Error bars account 

for 5% uncertainty.  
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Figure S38. Yield-time plots for the homocoupling of 8a catalyzed by Pd4(L1)4 (in 

CH3CN) under different atmospheres (see main text for general reaction conditions) 

and calculated initial rates.  
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Figure S39. Yield-time plots for the homocoupling of 8a and 8a-d catalyzed by 

Pd4(L1)4 (in CH3CN) to evaluate the possible kinetic isotopic effect (see main text for 

general reaction conditions). 
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Figure S40. Aromatic area (top) and alkyl area (bottom) of the 1H NMR spectra of 

Pd4(L1)4 in CD3CN after sequential addition of all the reagents for the homocoupling 

of 8a. Unidentified intermediate species are marked with a circle. 
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Figure S41. Results for the cross-coupling of boronic acid 5a and phenylacetylene 8a 

catalyzed by SCC@MOF 4 (see main text or general procedures for general reaction 

conditions). 
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Figure S42. Homocoupling of 8a in a fixed-bed tubular reactor containing the 

SCC@MOF 4. Reaction conditions: 0.01 ml·min-1 of a mixture of 8a and DABCO (3 

equiv.) in AcOEt (0.05 M) over 50 mg of 4 at 60 ºC. 
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