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Abstract  
Even though different optical techniques have been applied on ‘Spray A’ in-flame soot quantification 
within Engine Combustion Network in recent years, little information can be found for soot 
temperature measurement. In this study, a combined extinction and radiation methodology has been 
developed with different wavelengths and applied on quasi-steady Diesel flame to obtain the soot 
amount and temperature distribution simultaneously by considering self-absorption issues. All the 
measurements were conducted in a constant pressure combustion chamber. The fuel as well as the 
operating conditions and the injector used were chosen following the guidelines of the Engine 
Combustion Network. Uncertainty caused by wavelength selection was evaluated. Additionally, 
temperature-equivalence ratio maps were constructed by combining the measurements with a 1D 
spray model.  
 
Temperature fields during the quasi-steady combustion phase show peak temperatures around the 
limit of the radiation field, in agreement with a typical diffusion flame structure. Effects of different 
operating parameters on soot formation and temperature were investigated. Soot temperature 
increases dramatically with oxygen concentration, but it shows much less sensitivity with ambient 
temperature and injection pressure, which on the other hand have significant effects on soot 
production.  
 

1 Introduction  

Soot produced during the diesel engine combustion process has been acknowledge to have negative 
impacts on human health and environment. Faced with the challenge of meeting stringent emissions 
regulations, detailed understanding and capability for accurate prediction of in-flame soot processes 
are necessary. However, because of the high complexity of the numerous physical phenomena and 
chemical kinetic mechanisms involved, knowledge of in-flame soot is still limited and it is still a big 
challenge for computational fluid dynamics (CFD) simulation to get a good quantification on soot 
amount [1].  
 
In recent years, optical diagnostics have been extensively applied in various environments to have a 
better understanding of the soot processes in diesel combustion. Based soot thermal radiation 
measurement, Two-color pyrometry (2C) has been developed to quantify the temporal and 2D spatial 

 
1 In memory of Jose Enrique Julia Bolivar, who started combustion visualization techniques at CMT, a very 
relevant researcher and a good friend, who passed away on January 19th 2018 . 



evolution of the soot distribution and corresponding temperature [2][3][4][5] . However, because of 
signal self-absorption problems, large uncertainties exist on the soot optical thickness (KL), especially 
for highly sooting conditions[6]. Besides, the obtained soot temperature is also an assumed averaged 
temperature along the optical path [5]. Laser-induced incandescence (LII) is the other major soot 
diagnostics technique, which is able to qualitatively visualize the soot spatial distribution by recording 
soot radiation induced because of the absorption of laser energy [7][8][9] . However, due to hardware 
limitations of conventional LII measurement systems, usually only one image can be recorded for each 
injection, unless highly sophisticated laser sources and imaging systems are used [10].  Laser-Extinction 
Method (LEM) is one of the typical soot measurement techniques[11][12][13][14], which are based 
upon the extinction of light caused by absorption from the soot particles. A continuous point laser is 
used as the light source in this technique, which enables to measure the soot with a good time 
evolution, but it is spatially limited by the beam size[14]. With the improvement of high speed cameras 
and light sources, a two-dimensional Diffused Background-illumination (DBI) extinction imaging 
technique has been developed and applied within Engine Combustion Network (ECN)[15][16][17][18]. 
In the DBI setup, the light source is supplied by a bundle of diffused rays which are able to cover the 
whole flame, and a high-speed camera is applied in the collection section. Consequently, both good 
spatial and time resolution can be achieved[6].  
 
The present work is within the framework of the Engine Combustion Network which is a worldwide 
group of research institutes that started a collaboration in order to provide high-quality data and 
consistent results for modeling purposes [19]. Although different optical diagnostics were carried out 
on diesel soot amount quantification within this group, limited information can be found for detailed 
soot temperature measurements. Skeen et al.[20] obtained soot temperature through an imaging 
spectrometer but only the axial values were presented. Bolla et al.[21] studied the effects of radiation 
heat transfer on ‘Spray A’ flame temperature and soot formation by means of CFD but further 
experimental validation still needs to be done.  
 
The present paper aims at developing a combined extinction and radiation methodology to quantify 
the three-dimensional soot amount and temperature simultaneously by considering the self-
absorption effects. The interaction mechanism between soot amount and soot temperature under 
different operating conditions has been studied, and a detailed soot temperature database has been 
compiled for modeling validation. The experiments of this study were performed in a constant 
pressure flow facility (CPF) equipped with Spray A injector under a nearly quiescent environment. In 
order to substantiate the analysis, a 1D spray model [22][23][24] has been applied. 
 

2 Methodology 

The present methodology measures simultaneously light extinction and thermal emission processes 

across the sooting flame. While the extinction depends only on soot distribution, thermal radiation 

also depends on temperature. Therefore, light extinction is used to derive the soot distribution within 

the flame. Once this is known, soot radiation is used to derive soot temperature. A similar methodology 

has been applied by Legro et al [25] to a steady laminar axis-symmetric non-premixed ethylene flame. 

Both extinction and radiation measurements are based on integrated information along the line-of-

sight optical path (projected data) and hence reconstruction methods are needed taking advantage of 

the spray axis-symmetry. The methodology divides the quasi-steady soot cloud into two parts along 

spray axis and assumes each half part is an axis-symmetric configuration, as shown in ¡Error! No se 

encuentra el origen de la referencia.. Then, each part is processed following the same procedures. 



The propagation of the spectral radiation intensity 𝐼(𝑦) in a given direction along an optical pathway 

y can be expressed as [26]: 

 
𝑑𝐼(𝑦)

𝑑𝑦
= 𝑘(𝑦)[𝐼𝑏(𝑦) − 𝐼(𝑦)] (1) 

According to Planck’s Law, 𝐼𝑏 is the spectral blackbody radiation intensity, which is a function of local 

temperature T, as shown in Eq.(2).  

 𝐼𝑏(𝜆, 𝑇) =
1

𝜆5
∙

𝑐1

[exp (
𝑐2
𝜆𝑇

) − 1]
 (2) 

 

where 𝑐1 and 𝑐2 are constants, 𝑐1 = 1.1910439 × 10−16w m2sr-1 and 𝑐2 = 1.4388 × 10−2 mk. 

At a given wavelength λ, the overall radiation intensity (𝐼𝑟) obtained from projected line S (as shown 

in ¡Error! No se encuentra el origen de la referencia.) is a result of the integrated contribution of 

emitted radiation (𝑘𝐼𝑏) and self-absorption processes. By integrating Eq.(1) along an optical path, the 

transmitted blackbody radiation intensity at one position y after self-absorption along the remaining 

pathway can be expressed as follows: 

 𝐼𝑟(𝑦) = 𝑘(𝑦)𝐼𝑏(𝑦)𝑒
− ∫ 𝑘(𝑦′)

𝑦𝑚𝑎𝑥
𝑦

𝑑𝑦′

 (3) 

 

Thus, the overall projected radiation intensity (as shown in ¡Error! No se encuentra el origen de la 

referencia.(bottom)) at each pixel position is obtained as follows: 

 𝐼𝑟 =  ∫ 𝐼𝑟(𝑦)𝑑𝑦
𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛

 (4) 

 

The local extinction coefficient field ( 𝑘), as shown in ¡Error! No se encuentra el origen de la referencia. 
(top), can be calculated through tomographic reconstruction from the overall optical thickness (KL) 
obtained from extinction images. Two numerical methods (onion-peeling method and inverse Radon 
transformation) for this reconstruction will be discussed in later analysis. The detailed methodology to 
obtain this KL value can be found in [6]. In addition, the soot volume fraction (𝑓𝑣) can be obtained from 
small particle Mie theory[11]:  

 𝑓𝑣 =
𝑘∙𝜆

𝑘𝑒
 (5) 

   
where   𝑘𝑒  is dimensionless extinction coefficient which can be derived from Rayleigh-Debye-Gans 

(RDG) theory, as presented in [15][27]. 

Once the soot volume fraction has been derived from extinction images, the recorded radiation 

measured at each pixel can be deconvoluted to derive the local spectral emission rate (IbK) and 

temperature (T) can be reconstructed, as shown in ¡Error! No se encuentra el origen de la referencia. 

(bottom).  



3 Experimental facility and optical setup 

All the measurements were carried out in a new high-pressure high-temperature test vessel capable 
of reproducing in-cylinder thermal dynamics conditions at top dead center (TDC) position of Diesel 
engines.  This test rig is a constant pressure flow vessel where air pressure and temperature reach 15 
MPa and 1100 K, which is pretty similar to the one presented in [28][29]. Two optical accesses 181 mm 
in diameter are installed, which enable a large field of view on the spray. The detailed information 
about this kind of vessel can be found in [28]. 
 

A top view of the experimental arrangement is shown in ¡Error! No se encuentra el origen de la 
referencia..  For extinction measurement, a high-output blue LED with a Peak wavelength 460 nm and 
2 μs pulse duration was applied here as the light source. An engineered diffuser was placed next to the 
optical window to create a diffused Lambertian intensity profiles. On the other side of the chamber, a 
spherical lens (f= 800 mm) was used to reduce the effects of beam steering. After going through the 
beam splitter (50%/50%), the transmitted LED light, as well as the flame luminosity, were collected by 
a high-speed CMOS camera (Photron SA-5, recording at 25khz) equipped with a bandpass filter (460 
nm, 10 FWHM). The exposure time of the camera was set as 1.91 μs with 704×384 pixels image 
resolution and the pixel/mm ratio is 6.48. 
 
Meanwhile, the soot radiation was directed into another two high-speed CMOS cameras (Photron SA-
5, recording at 25 KHz) equipped with two bandpass filters (centered at 550 nm and 660 nm, both with 
10 nm FWHM) by means of two beam splitters (50%/50%). The exposure time of two cameras was set 
as 6.64 μs with 704×384 pixels image resolution and the pixel/mm ratio is 6.54. In order to transform 
grey levels into radiance values, calibration curves have been obtained by means of a tungsten-ribbon 
calibration lamp (Osram Wi17G), which was located at the same position of spray within the 
combustion chamber. 
 
In order to check the extinction sensitivity with the spectral wavelength of illumination light, another 
red LED with a Peak wavelength 660 nm coupled with a corresponding filter (660 nm, 10 FWHM (full 
width at half maximum)) was also applied to do the DBI tests as a reference.  
 
Additionally, OH* chemiluminescence was also measured simultaneously (even though it is not shown 
in ¡Error! No se encuentra el origen de la referencia.) to analyse the relative location between OH 
radical and soot cloud. An Andor Solis iStar intensified camera equipped with a 100 mm focal length 
f/2 UV objective and a 310 nm interference filter (FWHM = 10 nm) was used. Only one image per 
injection event was recorded from 3 ms to 5 ms after start of energizing (ASOE) with a pixel/mm ratio 
of 8.94. The flame lift-off length (LOL) was derived according to standard ECN processing method 
[30][31]. Besides, OH* contour on the symmetric plane was also obtained through tomographic 
reconstruction. One example of the raw image and reconstructed one is shown in Fig.3. 
 

 

Fig. 1 Reconstructed OH* radiation distribution on the spray symmetric plane (top) and raw image (bottom). (Pinj 

=1500 bar, ρg = 22.8 kg/m3, Tg = 1000 K, [O2] =15% ). 

4 Test Matrix 

The standard Spray A injector with a single-hole nozzle (d0 = 89.4 µm), as well as the standard fuel, n-
dodecane, within ECN group have been investigated in this study. A long injection energizing time was 
set as 3.5 ms at every operating point, which results in an injection duration of 5 ms, approximately, 
in order to achieve a quasi-steady state flame. The investigated operating conditions are summarized 



in Tab. 1. Starting from the reference condition (Operating point 2), parametric variations in injection 
pressure, ambient temperature and oxygen concentration were performed, while the ambient density 
was kept constant. For each operating condition, 40 injection cycles were recorded in order to reduce 
the cycle-to-cycle scattering. 
 
Tab. 1 Test conditions. 

Operating point Pinj [bar] Tg [K] ρg [kg/m3] O2 [%] 

1 1500 800 22.8 15 

2 1500 900 22.8 15 

3 1500 1000 22.8 15 

4 1000 900 22.8 15 

5 1500 900 22.8 21 

 

5 Diagnostic methodology 

 
The present technique is based upon an assumption of axis-symmetry of the investigated flame. As a 
consequence, time- and sample-averaged radiation and extinction maps will be used. Therefore, the 
first issue to be addressed is the definition of the time window for averaging. ¡Error! No se encuentra 
el origen de la referencia. shows a temporal and spatial flame luminosity map by integrating flame 
luminosity at each axial location for each frame of a natural luminosity with a 660 nm wavelength, 
namely IXT (Intensity-Axial-Time) plot [32] which was calculated as follows: 

 𝐼(𝑥, 𝑡) = ∫ 𝐼(𝑥, 𝑦, 𝑡)
𝑦2

−𝑦1

𝑑𝑦 (6) 

where 𝑥 is the spray axial direction, 𝑦 is the spray radial direction, y1 and y2 are the flame boundary 
positions, all of them based upon radiation images. Even though this plot was obtained from averaged 
images of 40 repetitions, relatively high fluctuations can still be observed during this so-called quasi-
steady period. To skip these effects of turbulence-induced fluctuations, which may obviously pose 
questions on the assumption of spray symmetry, only the time-averaged images during this quasi-
steady period was focused in this study. The time-averaged interval starts from the time when the 
flame tip disappears from optical window until the end of injection, which is indicated by vertical 
dashed lines in ¡Error! No se encuentra el origen de la referencia. for Pinj = 1500 bar and Pinj = 1000 
bar. The period during which OH* chemiluminescence is recorded is also indicated by red horizontal 
dashed lines. One example of this time- and sample-averaged raw soot radiation image and 
corresponding radial profiles are shown in ¡Error! No se encuentra el origen de la referencia.. It can 
be observed that this averaged soot cloud is pretty axisymmetric. Consequently, the tomographic 
reconstruction can be carried out based on this kind of images. Furthermore, ¡Error! No se encuentra 
el origen de la referencia. presents standard deviation (std) of soot radiation intensity divided by 
averaged intensity (avg). A strong scattering (more than 50%) can be observed at the periphery of the 
flame, which can be naturally expected due to the turbulent fluctuation of the reaction front around 
that area. This zone should correspond to highest temperature and low soot volume fraction around 
stoichiometric conditions. In order to weaken this scattering, a threshold of 5% maximum radiation 
intensity was applied to leave out the highest std/avg zones. 
 

Aside from radiation, input information for the method is local soot distribution. It is still a big challenge 
to get accurate quantitative soot extinction measurements as multiple parameters are not well known 
and are characterized by large uncertainties[15]. One source of the dominated uncertainties is the 



dimensionless extinction coefficient ke from RDG theory which depends on particle diameter, 
aggregate size and complex refractive index. According to the analysis in [15], the authors concluded 
that complex refractive index dominates the overall uncertainty.  
The parameters (particle diameter, aggregate size and complex refractive index…) used to calculate  
𝑘𝑒 through the RDG theory are referenced from standard ECN parameters[15].  It has to be pointed all 
these parameters are kept same for three wavelengths applied for both extinction and radiation 
measurements. As a consequence, the 𝑘𝑒 values are 7.59, 7.40 and 7.27 corresponding to blue (460 
nm), green (550 nm) and red (660 nm) wavelengths, respectively. 
 
Besides onion-peeling method, the soot volume fraction is also reconstructed using an ECN 
recommended inverse Radon transformation as a reference. ¡Error! No se encuentra el origen de la 
referencia. presents a comparison of SVF on the symmetric plane (top) and a radial distribution at x=50 
mm (bottom) away from the nozzle orifice obtained from these two methods. Both methods show a 
good agreement on the magnitude all over the flame except the data on the symmetric axis, where 
onion-peeling method shows a higher noise level. However, considering Inverse radon method is not 
able to be applied for local temperature reconstruction, onion-peeling method is used for later analysis. 
 
¡Error! No se encuentra el origen de la referencia. presents a comparison of axial KL extinction value 

from two tests at different wavelengths (460 and 660 nm) under two ambient temperatures. To enable 

a comparison of KL at wavelength 460 nm to that at wavelength 660 nm, the following relationship 

derived from Eq.(5) has been used: 

 𝐾𝐿460
∗ = 𝐾𝐿660

𝜆660 ∙ 𝑘𝑒460

𝜆460 ∙ 𝑘𝑒660
 (8) 

 
It can be seen both LED measurements follow the same trend, namely KL increases with higher ambient 
temperature and with both LEDs presenting a similar sensitivity with different operating conditions. It 
shows a pretty good agreement with [15] that the KL extinction signal from shorter wavelength light is 
stronger because of the higher sensitivity of shorter wavelength to nascent soot which has higher 
hydrogen-to-carbon (H/C) ratios, as explained in[15]. As a consequence, the parametric study in later 
section follows the suggestion from [15] that shorter wavelength (460 nm) is applied for the soot 
volume fraction analysis, as soot-generated extinction signal-to-noise ratio is higher. 
 
As mentioned by [15], beam steering defined lower extinction detection limit. When the ambient 
temperature is at 800 K (Pinj=1500 bar, ρg=22.8 kg/m3, O2=15%), no soot was observed from radiation 
images. Thus, this condition was used here to check this lower extinction limit. ¡Error! No se encuentra 
el origen de la referencia. presents soot volume fraction (mainly caused by beam steering) along spray 
axis under such condition derived from time-averaged KL map (liquid part was removed).  The lower 
detection limit is seen to be smaller than 0.3 ppm in general, and it is reduced to even less than 0.1 
mm after 45 mm. Thus, the extinction caused by beam steering is negligible compared with a 
magnitude 10 ppm caused by soot extinction as shown in later section. 
 
To close this section, an analysis of the sensitivity of temperature results to the selection of the 
wavelength for the extinction and radiation measurements is presented. Fig. 11 presents a comparison 
of axial (left) and radial (right) soot temperature obtained using a KL map derived from a red (660 nm) 
or blue (460 nm) wavelength, combined with a radiation measured at 660 nm. The axial temperature 
distribution presented here and in later analysis is averaged from both half flame part at 1 mm away 
from symmetry axis, in order to skip the noise along symmetry axis brought about by deconvolution. 
As we know from ¡Error! No se encuentra el origen de la referencia., the different wavelengths of 
extinction light result in an apparent difference on KL value. However, it can be seen from Fig. 11 this 
KL difference does not bring significant uncertainties on soot temperature, especially at the high 



sooting region at spray center where the difference from these two wavelengths is below 20 K (1%). 
The big differences appear at the soot initial location, where the soot amount uncertainty caused by 
wavelength selection is bigger because of the different properties of nascent soot, as mentioned above. 
The low signal-to-noise ratio (S/N) could be another factor for these differences, as shown in Fig. 12, 
where the noise information is KL value mainly caused by beam steering (derived from the case 
presented in ¡Error! No se encuentra el origen de la referencia.) and signal is KL value of soot 
extinction from target case. It can be seen that the low S/N area locates at soot initial location and 
flame periphery. 
 
 

Fig. 13 presents a comparison of axial (left) and radial (right) soot temperature obtained from 550 nm 

radiation wavelength and 660 nm radiation wavelength respectively, while the extinction wavelength 

used here is 460 nm. The trends are pretty similar with Fig. 11, in the sense that bigger uncertainties 

are located at the upstream and periphery of the flame where the temperature difference between 

two wavelengths is higher than 40 K (2%). Note that the highest experimental scattering has been 

observed at the largest radial location (¡Error! No se encuentra el origen de la referencia.), which may 

also play a role in the observed uncertainty related to wavelength around that area.  

It is known that soot radiation intensity increases with higher wavelength, as a consequence, 660 nm 

was finally selected for later analysis in order to reduce the uncertainty induced by noise. 

6 Theoretical analysis and uncertainty quantification 

To evaluate the algorithm performance by removing the effects of experimental uncertainties on soot 
temperature analysis, a theoretical approach was conducted. The same wavelength for extinction and 
radiation was used, and by means of which the main uncertainty factor caused by the selection of the 
soot refractive index was removed. At a given distance away from injector tip, two local extinction 
coefficient (k) radial profiles (with peak fv = 40 ppm and 80 ppm respectively, as shown in Fig. 14(a)) 
and one temperature radial profile (Fig. 14(b)) are assumed based on dividing the flame profile in finite 
elements. Projected radiation intensity profiles accumulated based on assumed k and T are presented 
in Fig. 14 (a) as black curves, which should represent the radiation recorded by the camera. Based on 
these theoretical radiation intensity and soot profiles, temperature is reconstructed and compared 
with the original one. The errors between the assumed temperature and reconstructed ones are 
presented in Fig. 14 (b) as red lines, being negligible for both calculations with different soot levels. 
This shows that the algorithm should be theoretically able to derive the temperature from soot and 
radiation information. Furthermore, this result is valid for the chosen temperature and both assumed 
soot profiles, which are derived from the most sooting conditions in this study (Tg= 1000 K case).  
 

Based upon Fig. 14 information, the local blackbody intensity (Ib) will increase with radial distance 
because it is mainly governed by local temperature. Besides, soot volume fraction reduces with 
increasing radial distance, which leads a lower self-absorption and therefore will favour a higher 
transmitted intensity. At the same time, the smaller k will directly result in a smaller local spectral 
emission rate (IbK) as well as projected intensity. As a balance, the overall projected radiation intensity 
increases with radial distance until around 4 mm from the spray symmetry axis, and then decreases 
until the edge of the flame (5 mm). Furthermore, due to the above described balance between 
emission and absorption related to the soot population, the projected intensity does not present a 
strong sensitivity with soot k as shown in Fig. 14 (a), where the overall projected intensity increases 
only 16% in average within 4 mm as a result of increasing soot volume fraction by 100%,.  
 



Based upon the previous theoretical analysis, an evaluation of uncertainties on reconstructed soot 

volume fraction and temperature caused by scattering of digital value has been carried out. For that 

purpose, the recorded radiation signals as recorded by the camera in digital levels, have been 

artificially perturbed with random noise to evaluate the corresponding effect on the measured 

quantities. As for soot volume fraction, a constant digital value is assumed for background illumination 

intensity (3000 counts) and a matrix of Gaussian noise with a zero mean and a standard deviation of 

20 counts is added on transmitted intensity as derived from the radial profiles shown above. The 

wavelength induced uncertainties on soot volume fraction have been discussed in detail in [15][33], 

which are mainly contributed by the uncertainty in soot refractive index, thus it will not be discussed 

here. The extinction wavelength used here is 460 nm. As for soot temperature, the same Gaussian 

noise is added on flame radiation intensity while no noise is assumed on soot volume fraction profiles.  

Fig. 15 displays the correlation between the original numerical input and reconstructed data from CER 

methodology, where the input soot volume fraction follows the radial profile in Fig. 14(a) with fvmax = 

40 ppm and input temperature follows the temperature radial profile in Fig. 14 (b). Even though it is 

not shown here, the evolution of case with fvmax = 80 ppm has also been carried out and the results 

are pretty similar. Fig. 15 shows that the reconstructed soot volume fraction and temperature presents 

higher levels of scattering in for the highest fv and lowest temperature values. In other words, the 

digital induced uncertainty from CER methodology increases when it is approaching spray symmetry 

axis. This is due to the fact that the reconstruction starts from discrete out layers of the spray and 

towards to the spray symmetry axis. As a consequence, the reconstructed values from each layer will 

be affected by the accumulated uncertainty from all layers out of it. The averaged absolute errors over 

the whole fields are 1 ppm and 17 K corresponding soot volume fraction and soot temperature 

respectively. This uncertainty analysis on digital noise indicates that the CER methodology is robust. 

7 Results and discussion 

This section addresses the analysis of the experimental information for the different operating 

conditions. As a reference for the analysis below, results for four different operating conditions are 

included in Fig. 16. Starting from the nominal one (a), an increase in ambient gas temperature (b), 

decrease in injection pressure (c) and increase in oxygen concentration in the ambient gas (d) are 

reported. Soot volume fraction (fv) and Temperature (T) distribution on the flame symmetric plane 

reconstructed from blue (460 nm) LED KL map and red (660 nm) radiation images are provided. 

Meanwhile, OH* contours derived from deconvolution of OH* images, as well as LOL, are also 

presented here to check the relative location between soot cloud and OH radical. It must be mentioned 

that OH* chemiluminescence visualization window is 5 mm shorter than the one for soot tests. A cross-

sectional average equivalence ratio at LOL (𝜙̅𝐻) is also presented in Fig. 16.  Pickett and Siebers have 

proven 𝜙̅𝐻 is a good indicator for soot formation[11].  

 
It is well known that net soot production is the balance between soot formation and soot oxidation. 

Soot formation rate is higher than oxidation rate from the initial soot location to the fv peak location, 

while oxidation rate is more dominated from fv peak location to flame tip. As a result, Fig. 16 shows 

that the high soot concentration region locates at the centre of flame for all cases, where the local 

temperature is lower than around 2200 K and no OH radical is observed.  When shifting downstream 



from the maximum location, soot amount decreases dramatically because of the lower formation rate 

and faster oxidation rate caused by fuel-lean mixture and appearance of OH respectively.  This trend 

is consistent with previous research [15][16][17].  On the other hand, the high temperature soot 

location shows a consistency with OH* area.  The temperature gradient is quite big at upstream 

locations, where the temperature increases from spray axis to the flame periphery, while the 

temperature distribution becomes more uniform when moving downstream. It is consistent with 

Aizawa et al’s research [34], where they measured the in-flame temperature at different location by 

means of a thermocouple.                 

In the following subsections, the detailed spatial distribution of temperature and soot when changing 

one operating condition will be analysed. For that purpose, a so-called flame coordinate (1/𝜙𝑐𝑙(𝑥)) is 

applied in later parametric discussion to normalize the evolution in terms of iso-equivalence ratio.   

𝜙𝑐𝑙(𝑥) is the mixture-fraction based equivalence ratio on the spray axis at any axial location(x), which 

was estimated using following relationship: 

 𝜙𝑐𝑙(𝑥) =
𝑍𝑐𝑙(𝑥)

1 − 𝑍𝑐𝑙(𝑥)
∙

1 − 𝑍𝑠𝑡

𝑍𝑠𝑡
 (9) 

 

where 𝑍𝑐𝑙(𝑥) is the fuel mixture fraction along spray axis which is obtained from 1D spray model, 

which provides reasonable distribution of mixing processes within the reacting flame according to 

recent results [35]. 𝑍𝑠𝑡  is the stoichiometric mixture fraction.  Idicheria and Pickett [36] used a similar 

definition, but they base their flame coordinate on a cross-sectional average equivalence ration. The 

advantage of the present definition is that it reaches a value of unity on the flame tip, i.e. at the tip of 

the diffusion flame, which is more intuitive than the previous one.  

7.1 Ambient temperature 

Soot volume fraction (fv) and soot temperature (T) distribution with ambient temperature variation 

can be seen from Fig. 16(a) and Fig. 16(b). Soot volume fraction and soot temperature along spray axis 

at both temperatures are shown in Fig. 17, both on physical and flame coordinates. As expected, an 

increase in ambient temperature results in a shorter LOL, a higher ϕ̅H , higher soot temperature and 

higher soot production. As shown in Fig. 17, the peak soot volume fraction location is shifted upstream 

around 5 mm when increasing ambient temperature. When using the flame coordinate, the peak value 

in both cases is reached at around 1/𝜙𝑐𝑙~ 0.5. It can be seen from Fig. 17(b) that the soot volume 

fraction at 1000 K ambient temperature is around three times larger than that of 900K from the start 

of soot to the peak. Downstream from the peak, the difference becomes smaller and eventually 

converges close to the window limit. In agreement with the 1D spray model, the stoichiometric surface 

at spray axis locates at around 100 mm.  

On the other hand, the axial soot temperature difference between two cases is pretty uniform along 

the whole flame coordinate. The increase of axial soot temperature when moving downstream 

indicates the progress of fuel-air mixing. The average temperature difference is just 48 K (from 0.4 to 

0.6 flame coordinate), which is related to the difference in adiabatic flame temperature. The large 

variation in soot volume fraction compared to temperature hints at the possibility that the higher 

flame temperature at 1000K ambient temperature is not the governing factor for the observed much 

higher soot production. A more plausible effect can be the richer flame conditions found at the shorter 



lift-off length (larger ϕ̅H), which would produce to more soot precursors and result in a faster soot rise 

from the very same flame base.  

ϕ-T plots and relative soot distribution at two ambient temperature cases are shown in Fig. 18, where 
temperature and soot volume fraction are derived from Fig. 16, while ϕ is obtained from 1D spray 
model. Such plots presented here show soot production resulting from the competition between 
formation and oxidation processes, which are different from traditionally derived ϕ-T plots presented 
in [37][38], where only the soot formation factor is studied.  As shown in Fig. 18, soot distribution starts 
at around rich low temperature locations, which occur downstream of lift-off length, grows towards 
decreasing equivalence ratio and increasing temperatures, reaching a maximum value at a local 
equivalence ratio of around 2-2.5, in agreement with the previous on-axis results in terms of flame 
coordinate. Further downstream, soot volume fraction decreases when moving towards lower 
equivalence ratio and higher temperatures up to stoichometric locations, from which temperatures 
tend to drop strongly.  Soot volume fraction values at both temperature values decrease dramatically 
when ϕ value is smaller than 1, where the spray is out of stoichiometric surface, because of soot 
oxidation.  
 
From the superposition of both maps in Fig. 18(c), the ϕ-T plot of 1000 K case is seen to be shifted 
towards higher temperatures, compared with that of 900K case, consistent with the higher local 
temperature expected at every equivalence ratio value. Furthermore, it can also be found from Fig. 
18(c) that initial soot cloud is found at richer equivalence ratio for the higher ambient temperature 
case, consistently with the shorter lift-off length. This confirms that the higher soot production in the 
spray central locations observed in Fig. 16 is linked to the soot formation history, i.e. more soot 
precursors are formed because of shorter LOL, which seem to govern the increase in soot within the 
flame more than the modest increase in temperature. In addition, the corresponding adiabatic 
temperatures at stoichiometric conditions are presented in Fig. 18(c) as vertical dashed lines. Nearly 
all points are below the corresponding adiabatic temperatures, with the closest points occurring 
around stoichiometric locations, which indicates that the experimental results are consistent. Values 
above this limiting point, which may be linked to the uncertainties in the measurement methodology, 
are most often found at lean equivalence ratio locations, where soot volume fraction is pretty low.  
 

7.2 Injection pressure 

Soot volume fraction and soot temperature with injection pressure variation are shown in Fig. 16(a) 
and Fig. 16(c), with corresponding on-axis values plotted in Fig. 19. Air entrainment rate at any axial 
location is the same for both cases because spray spreading angle and Tad do not change with injection 
pressure. Thus, flame coordinate transformation is essentially the same between both injection 
pressure values.  
As expected, lower injection pressure leads to a higher soot production, with a similar location of fv 
peak, as shown in Fig. 19. The axial soot temperature is slightly higher with higher injection pressure. 
However, the average temperature difference is just 35 K (from 0.4 to 0.6 flame coordinate), which is 
almost negligible compared with uncertainty values because of similar mixture fraction distribution. 
Thus, local temperature values are not probably the governing factor on soot production. As presented 

in Fig. 16 (a) and Fig. 16 (c), ϕ̅H increases slightly with lower injection pressure because of the shorter 
LOL, which may also contribute on soot formation. A third factor on this higher soot production for 
lower injection pressure is the longer residence time for soot production caused by the lower velocity.  
 
These findings can also be observed by the ϕ-T plot, as shown in Fig. 20. The soot distribution of both 
cases in such coordinates is pretty similar. High soot locations are also pretty similar ( T ≈ 2050 K, 
ϕ ≈ 2), with the only difference being related to the soot volume fraction peak values. Once again, 
temperature distribution is below stoichiometric adiabatic flame temperature. Such results seem to 



indicate that injection pressure does not produce significative differences neither on equivalence ratio 
nor flame temperature, and confirms that the higher net soot production at 1000 bar injection 
pressure case should be mainly due to the longer residence time.  

7.3 Oxygen concentration 

Soot volume fraction and soot temperature along spray axis and flame coordinate with oxygen 

concentration variation are presented in Fig. 21(a) and Fig. 21(b) respectively. It can be found that the 

peak fv location moves farther away from injector nozzle with lower oxygen concentration, in 

agreement with the oxygen dilution effect. However, soot distribution becomes quite similar when 

plotted in terms for flame coordinate, which normalize the oxygen entrainment effect. Some 

differences are visible on the rising part of soot volume fraction, and peak values occur at richer 

equivalence ratio for the higher oxygen concentration, while there is a full overlap in values below the 

peak soot production.  Compared to ambient temperature and injection pressure variations, the 

effects of oxygen on soot temperature is much greater, with an axial average temperature difference 

of 168 K (from 0.4 to 0.6 flame coordinate).  Considering the modest effect on soot distribution, this is 

another indication that flame temperature is not the governing factor on soot formation for the 

operating conditions studied in this paper. When plotted in flame coordinates, soot production within 

the flame seems to be more linked to differences in equivalence ratio at the lift-off length, with the 

consequent effects on soot precursors at the flame base. The similar distribution observed in flame 

coordinate indicates that the large observed difference in spatial locations with oxygen content seem 

to be linked to entrainment effect. 

Fig. 22 (a) presents soot volume fraction and soot temperature along spray radial direction at same 

flame coordinate (0.42, which corresponds to 49.5 mm and 40 mm from the axis for 15% and 21% 

oxygen content, respectively). It can be seen that soot cloud radius is narrower and fv gradient is 

greater at 21% oxygen concentration than that at 15% oxygen concentration. In addition, the soot 

temperature difference increases with flame radius. They are caused by the sharper equivalence ratio 

gradient under higher oxygen concentration.  The axial optical thickness (KL) along flame coordinate is 

shown in Fig. 22(b). KL is an integrated parameter and it is proportional to the integrated total soot 

mass along the line-of-sight optical path. It is interesting to note that the trend of KL with oxygen is 

opposite to the fv one, which increases with lower oxygen concentration. That can be explained from 

Fig. 22(a), where the optical path at 15% oxygen concentration is longer and the fv value is higher than 

at 21% after around 2 mm. As a result, the overall soot production of the 15% case is higher than that 

of the 21% case.  

The ϕ-T plots derived from Fig. 16(a) and Fig. 16(d) are shown in Fig. 23. The main observation is that 
the ϕ-T plot is shifted towards higher temperature values, because of fact that flame temperature of 
21% oxygen case is higher all over the spray. In both cases, the maximum soot temperature is located 
mainly below the stoichiometric adiabatic flame temperature.  

8 Conclusions 
In this study, a combined extinction and radiation (CER) methodology has been developed to 
investigate the soot temperature and soot production of quasi-steady Diesel sprays at various 
operating conditions from Engine Combustion Network. All experiments were performed in a constant 
pressure flow vessel equipped with a single-hole injector. A 1D spray model was also applied to 
substantiate the analysis. The main conclusions of this study are summarized below: 



 
⚫ The CER methodology has been successfully applied on Diesel in-flame soot temperature 

quantification by considering self-absorption issues. The diagnostics sensitivity for both extinction 
and radiation measurements was checked at two different wavelengths. The soot temperature 
uncertainty caused by extinction is much less than that of soot amount. The uncertainty is much 
higher at upstream locations close to the lift-off length and at the periphery of flame, which is 
mainly caused by the smaller signal-to-noise ratio at these regions.   

⚫ Higher ambient temperature results in a much higher soot production, with less effect on 

measured soot temperature. On the other hand, the ϕ̅H increases noticeably because of much 
shorter lift-off length. 

⚫ A lower injection pressure leads to a higher soot production. But the measured soot temperature 
with different injection pressure is pretty similar because of similar fuel-air mixture distribution.  

⚫ A higher ambient oxygen concentration brings a very important increase on soot temperature, 
with a modest effect on soot production.   

⚫ Considering the sensitivity observed for all three parametric variation, peak soot production 
within the flame seems to be governed mainly by equivalence ratio at the lift-off length rather 
than by local temperature. Additionally, residence time plays a role for injection pressure 
variations.  
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Fig. 2 Schematic of extinction and radiation optical path of a half soot cloud cross section at a given distance away from 

injector tip. I0 represents the background illumination intensity, k represents local spectral absorption coefficient, It is the 

transmitted background intensity, Ib is the blackbody radiation intensity, Ir is the projected radiation intensity, S 

represents projected line provided by same pixel with soot cloud radius(N) from spray axis to soot boundary, (N is 

exampled as 6 here). Modified from Fig.2 in [25]. 

 
Fig. 3 Experimental layout for soot tests (top view) 



 

Fig. 4 Reconstructed OH* radiation distribution on the spray symmetric plane (top) and raw image (bottom). (Pinj 

=1500 bar, ρg = 22.8 kg/m3, Tg = 1000 K, [O2] =15% ). 

 
(a) Pinj=1500 bar, ρg=22.8 kg/m3, Tg=1000 K, [O2]=15%.               (b) Pinj = 1000 bar, ρg= 22.8 kg/m3, Tg=900 K, [O2]=15 %. 

Fig. 5 Examples of IXT  plot . Vertical dashed lines represent the time-averaged zone for steady soot analysis. 

 
Fig. 6 Example of  time- and sample-averaged raw soot radiation image(left) and corresponding radial 

profile at 45 mm, 60mm and 75 mm away from injector tip (right). (Pinj =1500 bar, ρg = 22.8 kg/m3, Tg = 1000 K, 

[O2] =15% ). 



 
Fig. 7 Standard deviation(std) of soot radiation intensity divided by averaged intensity during flame quasi-

steady period. (Pinj =1500 bar, ρg = 22.8 kg/m3, Tg = 1000 K, [O2] =15% ). 

 

 

Fig. 8 Soot volume fraction on symmetric plane (top) and a radial distribution at x=50 mm (bottom) of the flame after 

reconstruction from Blue(460 nm) LED KL maps with inverse radon method and onion-peeling method respectively (Pinj 

=1500 bar, Tg =1000 K, ρg =22.8 kg/m3, [O2] =15%). 



 

Fig. 9 Comparison of axial KL value derived from time-averaged KL map under two ambient temperatures. The blue one 

was converted based on Eq.(8). (Pinj =1500 bar, ρg= 22.8 kg/m3, [O2] = 15%).  

 

Fig. 10  Soot volume fraction along spray axis from time-averaged results (Pinj =1500 bar, ρg = 22.8 kg/m3, Tg= 800 K, 

[O2]=15% ).  

       
Fig. 11 Axial temperature distribution at 1 mm away from spray axis (left) and Radial temperature distribution at 

65mm(right) from different extinction wavelengths . (Pinj = 1500 bar, ρg=22.8 kg/m3, Tg = 1000 K, [O2]=15%).  



 

Fig. 12 Signal-to-noise ratio map with extinction wavelength 660 nm and radiation wavelength 660 nm  (Pinj = 1500 bar, 

ρg=22.8 kg/m3, Tg = 1000 K, [O2]=15%). 

  

Fig. 13 Axial temperature distribution at 1 mm away from spray axis (left) and Radial temperature distribution at 65 

mm (right) from different radiation wavelengths . (Pinj =1500 bar, ρg = 22.8 kg/m3, Tg=1000 K, [O2]=15 %).  

 

(a)                                                                              (b) 

Fig. 14 Assumed radial profiles of k on spray symmetric plane and projected radiation intensity Ir (a) assumed and 

reconstructed soot temperature radial profiles on spray symmetric plane (b) . 

       

Fig. 15 Reconstructed soot volume fraction (left) and soot temperature (right) as function of original numerical input 

data. 



 

   a. (Pinj = 1500 bar, ρg =22.8 kg/m3, Tg= 900 K, [O2] =15%).                        

 

b. (Pinj = 1500 bar, ρg = 22.8 kg/m3, Tg = 1000 K, [O2] =15% ).  

 
   c. (Pinj = 1000 bar, ρg = 22.8kg/m3, Tg= 900 K, [O2]=15% ).                        



 
d. (Pinj = 1500 bar, ρg = 22.8 kg/m3, Tg = 900 K, [O2]=21% ).  
 

Fig. 16 Soot volume fraction(fv) and Temperature(T) distribution on flame- axis plane reconstructed from LED KL map 

and radiation images. Vertical dashed lines represent flame lift-off length. Red curves represent OH* contour  

 

  (a)                                                                                                          (b) 

Fig. 17 Soot volume fraction and soot temperature along spray axis(a)and flame coordinate(b) with ambient 

temperature variation (Pinj =1500 bar, ρg =22.8 kg/m3, [O2] = 15% ).   

 

(a) T=900K 



 

(b) T = 1000K 

 

(c) soot relative distribution 

Fig. 18 ϕ-T plots of two ambient temperature cases and their relative distribution. (Pinj = 1500 bar, ρg = 22.8 kg/m3, 

[O2] = 15%).   

 

Fig. 19 Soot volume fraction and soot temperature along axial location of two injection pressure cases (Tg = 900 K, ρg = 

22.8 kg/m3, [O2] = 15%).   



 

(a) Pinj =1500 bar 

 

(b) Pinj = 1000 bar 

 

(c) soot relative distribution 

Fig. 20 ϕ-T plots of two injection pressure cases and their relative distribution. . (Tg = 900 K, ρg=22.8 kg/m3, [O2] = 

15 % ).   



 

(a)                                                                                                              (b) 

Fig. 21 Soot volume fraction and soot temperature distribution on the axis in physical (a) and flame coordinates(b). (Pinj 

= 1500 bar, Tg = 900 K, ρg = 22.8 kg/m3).   

 

 

(a)                                                                                                                 (b) 

Fig. 22 spray radius at 0.42 flame coordinate (a) and KL along flame coordinate (b) with oxygen concentration variation 

(Pinj = 1500 bar, Tg = 900 K, ρg = 22.8 kg/m3).   

 

Fig. 23 ϕ-T plots location of two oxygen concentration cases (Pinj = 1500 bar, Tg= 900 K, ρg = 22.8 kg/m3).   


