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Introduction and definition of the problem 

 

What is Machine Learning? 
 

Machine Learning is the science of getting computer to learn without being 

explicitly programmed.  

It is about the application of algorithms that can classify and perform groups 

in order to establish patterns of behaviour, which can help us to predict the 

future automatically. 

One of the reasons of the creation of this new branch of the computer science 

is the big growth of the computational capacity which allows us to deal with big 

amounts of data in a cheaper way. 

We can distinct between two different types of ML: 

Supervised Learning: 

Requires the human intervention. There exists an output variable (also called 

dependent variable) which must be explained with the rest of input variables 

(or independent variables). 

 

 

 

 

 

 

 

This is the one that we are going to use in this case of study and will see how 

we can predict which costumers are going abandon a company. 

We can also make a distinction between classification and regression problems.  

In classification problems the, dependent variable is categorical and the 

propose of the model is to predict a class for it. 

algorithms 
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Data 
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Data 
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In Regression problems, the dependent variable is a numerical and continuous 

variable. The prediction should try to minimize the difference between the real 

and the predicted value. 

 

Unsupervised Learning: 

There is not an output variable, all the variables have the same nature. 

An example could be the segregation of clients with similar attributes to 

customize the marketing campaigns. In this case we have all data and the 

machine makes a distribution of the types of clients depending on their 

similarities. 

Definition of the case 

The aim of this project is to apply these techniques to the telecommunications 

sector. More specifically, we will focus on the study of runaway customers in 

order to prevent future cases of customer abandonment. 

Nowadays, the application of Machine Learning techniques to try to prevent 

customer leakage, in sectors where a considerable amount of customer data is 

available, is a widespread reality. 

Having said that, there are also many other ML applications in this sector such 

as:  

1. Personalisation of the product. Offering products to customers according 

to their profile. 

2. Cross selling. Detecting possible clients interested in other types of 

services offered by the company, such as Internet at home, cable TV, etc. 

3. Up selling. Detecting customers with needs to increase their payment 

rate.  

4. Dynamic pricing. Offer different prices depending on the type of 

customer, season of the year etc... 

5. Fraud management. Detecting fraudulent customer profiles which are 

not suitable for the company. 

The focus on customer retention is especially interesting for several reasons. 

It goes without saying that most of a company's revenue comes from its 

customers, so customer retention is a key task. That said, the cost of retaining 

a client is between 5 and 15 times cheaper than the cost of acquiring a new 

one. In addition, long-lasting and loyal customers often generate better results 

for companies than more volatile customers. 



Knowing the potential customers to leave will allow us to take commercial 

action against the risk customers in addition to knowing what factors make our 

customers decide to hire our services in the competition. 

 The database we're going to work on is as follows: 

https://drive.google.com/file/d/1Kwwowe768DbF00gEk--ikHfb97H-

WxoV/view?usp=sharing 

Each row represents a customer and each column represents a characteristic. 

Each row is an observation or data point while each column corresponds to a 

different independent variable. 

In this case we will have 7043 observations composed of 21 characteristics. 

These characteristics can be divided into four groups: 

1. Churn column: Which tells us if the client has left the company during 

the last month. 

2. Services that the client has contracted. 

3. Information on the client's preferences and relative to their seniority. 

4. Customer demographic information. 

But let’s first list and detail the information that each column offers us. 

Customer ID 

gender -Whether the customer is a male or a female 

SeniorCitizen -Whether the customer is a senior citizen or not (1, 0) 

Partner -Whether the customer has a partner or not (Yes, No) 

Dependents -Whether the customer has dependents or not (Yes, No) 

tenure -Number of months the customer has stayed with the company 

PhoneService -Whether the customer has a phone service or not (Yes, No) 

MultipleLines -Whether the customer has multiple lines or not (Yes, No, No phone service) 

InternetService -Customer’s internet service provider (DSL, Fiber optic, No) 

OnlineSecurity -Whether the customer has online security or not (Yes, No, No internet service) 

OnlineBackup -Whether the customer has online backup or not (Yes, No, No internet service) 

DeviceProtection -Whether the customer has device protection or not (Yes, No, No internet 

service) 

https://drive.google.com/file/d/1Kwwowe768DbF00gEk--ikHfb97H-WxoV/view?usp=sharing
https://drive.google.com/file/d/1Kwwowe768DbF00gEk--ikHfb97H-WxoV/view?usp=sharing


TechSupport -Whether the customer has tech support or not (Yes, No, No internet service) 

StreamingTV -Whether the customer has streaming TV or not (Yes, No, No internet service) 

StreamingMovies -Whether the customer has streaming movies or not (Yes, No, No internet 

service) 

Contract -The contract term of the customer (Month-to-month, One year, Two year) 

PaperlessBilling -Whether the customer has paperless billing or not (Yes, No) 

PaymentMethod -The customer’s payment method (Electronic check, mailed check, Bank 

transfer (automatic), Credit card (automatic)) 

MonthlyCharges -The amount charged to the customer monthly 

TotalCharges -The total amount charged to the customer 

Churn -Whether the customer churned or not (Yes or No) 

Work tool 

The programming tool and language will be R, with the help of the IDE 

(integrated development environment) RStudio. Both are focused on statistical 

analysis. 

https://cran.r-project.org/bin/windows/base/ 

https://rstudio.com/products/rstudio/ 

The reason of our choice is that it is an Open Source software, which has many 

packages and libraries that are easy to use. 

Here is a document detailing the use of its main functions: 

https://drive.google.com/file/d/15i7iHh5P0tZvD5PO2sMLSVVmA5rY_aGk/view?

usp=sharing 

Another great advantage of R is that it works with a wide variety of hardware 

and software (Windows, Linux, Unix ...) 

Preparing the dataset 

Preparing the data set is one of the most complicated and delicate stages is 

the development of a quality and useful database for our analysis. 

Before we start to process the data, we must make sure that the information 

that comes to us has been completed based on clear and useful criteria for 

https://cran.r-project.org/bin/windows/base/
https://rstudio.com/products/rstudio/
https://drive.google.com/file/d/15i7iHh5P0tZvD5PO2sMLSVVmA5rY_aGk/view?usp=sharing
https://drive.google.com/file/d/15i7iHh5P0tZvD5PO2sMLSVVmA5rY_aGk/view?usp=sharing


analysis. For example, in this case we would have to ensure that only voluntary 

abandonment has been counted as churn. Clients who have cancelled their 

services for reasons beyond our control, such as the death of a client or 

migration to another country, have been excluded from the lists. 

We must also ensure that the sample we have obtained has the following 

characteristics: 

-Information. The variables selected have a real relationship with the result. 

Sometimes there is too much information available and much of it is not useful, 

besides giving rise to heavier computing. A generally useless example may be a 

user ID, which has no relation to practically any useful variable. 

-Representativeness. The sample is large enough that the actual proportions 

are not affected. Apart from size, there is sometimes a tendency to consider 

samples that have been collected in ways that exclude certain sectors from the 

whole as representative. An example could be samples obtained through the 

Internet, which often exclude older people. 

-Precision. Sometimes the data is not precise enough and can end up adding 

noise to the system which will worsen the results obtained. 

Having said that, we can now start with the preparation of the database. 

The first step is to load the csv file: 

telco=read.csv("Telco-Customer-Churn.csv",header = T,na.strings = "?")  

Next, we assign a factor to binary or tertiary variables that are often defined as 

text or number but only take 2 or 3 different values in the whole database. This 

is very useful when applying the algorithms. 

telco$gender=as.factor(telco$gender) 

telco$SeniorCitizen=as.factor(telco$SeniorCitizen) 

telco$Partner=as.factor(telco$Partner) 

telco$Dependents=as.factor(telco$Dependents) 

telco$PhoneService=as.factor(telco$PhoneService) 

telco$MultipleLines=as.factor(telco$MultipleLines) 

telco$InternetService=as.factor(telco$InternetService) 

telco$OnlineSecurity=as.factor(telco$OnlineSecurity) 

telco$OnlineBackup=as.factor(telco$OnlineBackup) 

telco$DeviceProtection=as.factor(telco$DeviceProtection) 



telco$TechSupport=as.factor(telco$TechSupport) 

telco$StreamingTV=as.factor(telco$StreamingTV) 

telco$StreamingMovies=as.factor(telco$StreamingMovies) 

telco$Contract=as.factor(telco$Contract) 

telco$PaperlessBilling=as.factor(telco$PaperlessBilling) 

telco$PaymentMethod=as.factor(telco$PaymentMethod) 

telco$Churn=as.factor(telco$Churn) 

Another thing we need to do is to eliminate observations that are incomplete, 

those containing NAs. 

To check if they exist and where they are, we use the following function. 

sapply(telco, function(x) sum(is.na(x))) 

We note that there are 11 observations that have an empty TotalCharges 

column, so we proceed to remove them. 

telco=na.omit(telco) 

Now we visualize how the database finally looks. For this, we use a function of 

the FunModeling library: 

library(funModeling) 

df_status(telco) 

           variable q_zeros p_zeros q_na p_na q_inf p_inf      type unique 
1        customerID       0    0.00    0    0     0     0 character   7032 
2            gender       0    0.00    0    0     0     0    factor      2 
3     SeniorCitizen    5890   83.76    0    0     0     0    factor      2 
4           Partner       0    0.00    0    0     0     0    factor      2 
5        Dependents       0    0.00    0    0     0     0    factor      2 
6            tenure       0    0.00    0    0     0     0   integer     72 
7      PhoneService       0    0.00    0    0     0     0    factor      2 
8     MultipleLines       0    0.00    0    0     0     0    factor      3 
9   InternetService       0    0.00    0    0     0     0    factor      3 
10   OnlineSecurity       0    0.00    0    0     0     0    factor      3 
11     OnlineBackup       0    0.00    0    0     0     0    factor      3 
12 DeviceProtection       0    0.00    0    0     0     0    factor      3 
13      TechSupport       0    0.00    0    0     0     0    factor      3 
14      StreamingTV       0    0.00    0    0     0     0    factor      3 
15  StreamingMovies       0    0.00    0    0     0     0    factor      3 
16         Contract       0    0.00    0    0     0     0    factor      3 
17 PaperlessBilling       0    0.00    0    0     0     0    factor      2 
18    PaymentMethod       0    0.00    0    0     0     0    factor      4 
19   MonthlyCharges       0    0.00    0    0     0     0   numeric   1584 
20     TotalCharges       0    0.00    0    0     0     0   numeric   6530 
21            Churn       0    0.00    0    0     0     0    factor      2  
 

 
 

 



The "unique" column tells us how many different values the variable takes. 

Now we will discard the variables that have no influence on the dependent 

variable. 

To do this, we will use the Boruta algorithm. 

Before being able to use a package in R we must proceed to download it 

(Tools>Install Packages) and then call the library. 

The algorithm works as follows: 

1. First, randomness is added to the data set by creating shuffled copies of the 

variables, which are called shadow variables. 

2. Then a random slot is trained with the extended data set and a mean of the 

importance of the variables is obtained (the default measure is Mean Decrease 

Accuracy). 

3. In each iteration, it is checked whether the real variable is more important 

than the shadow variable, and the variables that are considered unimportant 

are eliminated. 

4. The algorithm will stop when all the variables have been accepted or 

rejected. 

library(Boruta) 

library(ranger) 

We call the function indicating the target variable and the dataset to which we 

apply it. 

boruta=Boruta(Churn~., data = telco, doTrace = 2) 

print(boruta) 

The algorithm rejects 3 variables: "customer ID", "gender" and "PhoneService" 

If we want to obtain more information about the importance of the variables, 

we can call the attStats() function, which will show us different indicators of the 

importance of the variables such as the mean, median, minimum and 

maximum. 

borutadf=attStats(boruta) 

print(borutadf) 

 



                    meanImp  medianImp     minImp    maxImp normHits  decision 
customerID       -0.1834070 -0.4472946 -1.2626198  1.478945     0.00  Rejected 
gender            0.2339455 -0.1998430 -0.9812478  2.227972     0.02  Rejected 
SeniorCitizen     8.8575640  8.7700611  5.8190571 11.134153     1.00 Confirmed 
Partner           4.5904973  4.6180009  1.1629032  7.101238     0.98 Confirmed 
Dependents        3.8444751  3.7641712  1.1625277  6.928499     0.84 Confirmed 
tenure           42.7435970 42.8667526 39.3055826 47.061247     1.00 Confirmed 
PhoneService      1.7091960  1.5787751 -0.3308262  4.527392     0.26  Rejected 
MultipleLines     8.0129841  8.2504899  5.2734754  9.916690     1.00 Confirmed 
InternetService  22.1651666 22.2557429 20.1150958 25.378699     1.00 Confirmed 
OnlineSecurity   22.4928197 22.3920745 20.4848358 24.472813     1.00 Confirmed 
OnlineBackup     14.5550999 14.3926094 13.1870291 17.033353     1.00 Confirmed 
DeviceProtection 12.5220852 12.5667565 10.8668637 13.888899     1.00 Confirmed 
TechSupport      20.7890239 20.7804465 18.9116111 22.369982     1.00 Confirmed 
StreamingTV       9.7293636  9.6630799  8.0561413 11.456458     1.00 Confirmed 
StreamingMovies   9.4190726  9.4344542  7.9736391 11.340845     1.00 Confirmed 
Contract         40.6572829 40.6953079 37.4627352 44.091170     1.00 Confirmed 
PaperlessBilling  9.6810935  9.6083400  7.9892660 11.953681     1.00 Confirmed 
PaymentMethod    10.6606466 10.6676578  7.9836487 12.902449     1.00 Confirmed 
MonthlyCharges   30.2165333 30.2534556 26.6956145 33.666291     1.00 Confirmed 
TotalCharges     36.9830763 37.0923691 32.8730330 40.750529     1.00 Confirmed  
 
 
 

 

As the three variables that we have mentioned before have been rejected, the 

algorithm also allows us to have an idea of which variables are more important. 

We observe that there are two variables that are especially relevant, and they 

are "tenure" and "Contract". 

 

These results can also be displayed graphically by executing the following 

code: 

plot(boruta, xlab = "", xaxt = "n") 

lz=lapply(1:ncol(boruta$ImpHistory),function(i) 

boruta$ImpHistory[is.finite(boruta$ImpHistory[,i]),i]) 

names(lz)=colnames(boruta$ImpHistory) 

Labels=sort(sapply(lz,median)) 

axis(side = 1,las=2,labels = names(Labels),at = 1:ncol(boruta$ImpHistory), cex.axis = 0.7)  



 

 

In green the important variables appear, in red the rejected ones and in blue, 

the called shadows. 

We can also know the evolution of the importance of the variables as the 

algorithm has been advancing in the executions. We observe that the 

importance of each of the variables has behaved with relative stability, which 

reinforces the confidence in the veracity of the results obtained. 



plotImpHistory(boruta) 

Finally, we generate a new vector where we store the variables that we have 

catalogued as important and which we will use from now on. 

imp.var=getSelectedAttributes(boruta) 

 

Exploratory analysis of the data 

Before applying algorithms, it is recommended to have a general idea of the 

data that are going to be analysed. This will allow us to make a more relevant 

analysis once the ML techniques have been applied, since we will have a better 

knowledge of the clients. The data always have a sense and we should not 

reduce the problem to a simple computational analysis. 

Another great objective of this section is to introduce the graphic visualization 

tools that can be of great help to us. 

To do this, there are several functions from different packages. 

The first is the basic summary function, which comes by default in R and gives 

us general data on each of the variables. 

summary(telco) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Something also quite useful is to be able to have available a graphic 

representation of the distribution of the numerical variables, since it is quite 

more intuitive than what the previous function gave us. 

plot_num(telco) 

 

  customerID           gender     SeniorCitizen Partner    Dependents     tenure      
 Length:7032        Female:3483   0:5890        No :3639   No :4933   Min.   : 1.00   
 Class :character   Male  :3549   1:1142        Yes:3393   Yes:2099   1st Qu.: 9.00   
 Mode  :character                                                     Median :29.00   
                                                                      Mean   :32.42   
                                                                      3rd Qu.:55.00   
                                                                      Max.   :72.00   
  
PhoneService          MultipleLines     InternetService             OnlineSecurity 
 No : 680     No              :3385   DSL        :2416   No                 :3497   
 Yes:6352     No phone service: 680   Fiber optic:3096   No internet service:1520   
              Yes             :2967   No         :1520   Yes                :2015   
                                                                                    
                                                                                    
                                                                                    
              OnlineBackup             DeviceProtection              TechSupport   
 No                 :3087   No                 :3094    No                 :3472   
 No internet service:1520   No internet service:1520    No internet service:1520   
 Yes                :2425   Yes                :2418    Yes                :2040   
                                                                                   
                                                                                   
                                                                                   
              StreamingTV              StreamingMovies           Contract    PaperlessBilling 
 No                 :2809   No                 :2781   Month-to-month:3875   No :2864         
 No internet service:1520   No internet service:1520   One year      :1472   Yes:4168         
 Yes                :2703   Yes                :2731   Two year      :1685                    
                                                                                              
                                                                                              
                                                                                              
                   PaymentMethod  MonthlyCharges    TotalCharges    Churn      
 Bank transfer (automatic):1542   Min.   : 18.25   Min.   :  18.8   No :5163   
 Credit card (automatic)  :1521   1st Qu.: 35.59   1st Qu.: 401.4   Yes:1869   
 Electronic check         :2365   Median : 70.35   Median :1397.5              
 Mailed check             :1604   Mean   : 64.80   Mean   :2283.3              
                                  3rd Qu.: 89.86   3rd Qu.:3794.7              
                                  Max.   :118.75   Max.   :8684.8               



 

From the factor variables we can also obtain a graphic representation. In this 

case we represent only a few, but it should not be wrong to do it with all of 

them. 

freq(telco$Churn) 

 

We note that 26.58% of the customers we had in the last year have left the 

company. This is not a negligible percentage and it should be solved. 

 

freq(telco$Contract) 



 

 

freq(telco$InternetService) 

 

 

Another very useful indicator is correlation. The plot_correlation() function 

gives us a heat map that indicates the intensity of the correlation. Positive 

correlations are shown in red, while negative correlations are shown in blue. 

 



The graph shows us that some of the variables have an exact and positive 

correlation. This is because redundant information is available. An example 

could be the high correlation between the StreamingMovies variable and 

InternetService Fiber.optic as one implies the other. 

If we look at the churn column, we see that there are results like those 

obtained with the boruta algorithm. 

Another function that is quite useful is the cross_plot() function, which allows 

us to make a more thorough analysis of the relationship between two variables. 

With this function we can check the relationship of the dependent variable with 

variables such as tenure and Contract. 

cross_plot(data = telco, input = c("tenure","Contract"), target = "Churn")  

 

If we prefer, we can also use the box and moustache format 

plotar(data = telco, input = c("tenure"), target = "Churn", plot_type = "boxplot")  

 

 

 

 

 



 

In both cases we see an obvious relationship, which is otherwise quite logical. 

The longer a customer has been with the company the less likely he is going to 

leave. Depending on the type of contract something similar happens, customers 

with longer contracts are loyal to the company.  

With this small approach we conclude the exploratory analysis. 

Classification using ML algorithms  

 

 A necessary step before starting to apply the algorithms is to make the 

distinction between learning data and test data. The way to proceed will be to 

find a model with the training data and to be able to validate it with the test 

data. 

In this case we are going to make an 80/20 separation, this separation will be 

done in a random way. There is a way to control the randomness and it is by 

establishing a random seed. To do this we will use the function set.seed(). This 

will allow us to make an identical distribution if we plant the same seed. As we 

will see later, it will also allow us to do an iteration with different training/test 

data by simply changing this seed. 

set.seed(1) 

tr=sample(1:nrow(telco), round(nrow(telco)*0.8)) 

train.telco=telco[tr,] 



test.telco=telco[-tr,] 

We will now move on to remove the columns that were rejected by the boruta 

algorithm to make the computational process more agile and reliable. We have 

also added the churn column that was not contemplated and finally we 

removed the auxiliary variables train.telco and test.telco. 

train=train.telco[,imp.var] 

test=test.telco[,imp.var] 

train$churn=train.telco$Churn 

test$churn=test.telco$Churn 

rm(test.telco,train.telco)  

 

Naïve Bayes Classifier 
  

We will start with a model, which despite being quite simple (and assuming 

that the variables are independent of each other), usually provides quite good 

results. 

To do this we will use functions found in the e1071 library 

 

library(e1071) 

m01=naiveBayes(churn~., data = train) 

m01pred=predict(m01, type = "raw", test)[,2] 

m01pred_F=as.factor(round(m01pred)) 

levels(m01pred_F)=c("No","Yes") 

 

Confusion matrix 

 The confusion matrix is a fundamental tool in classification problems, and 

even more crucial when dealing with unbalanced data. Therefore, indicators 

other than accuracy are sought. 

 Let's take an example. There is a disease that only affects 1% of the 

population, and for this reason we created a model that tries to predict whether 

an individual will have it or not. The model is bad and whatever the patient is, it 

tells us that the patient is not going to have the disease and it is right 99% of 



the time because only 1% will have the disease. It would be wrong to say that 

this is a good model simply by looking at the success rate. 

 Most algorithms calculate the accuracy of models based on the percentage of 

correctly classified observations. The confusion matrix also reports the number 

of incorrectly classified instances and in what class they occurred. If the 

importance of the classes is different, as is the case in fraud detection, knowing 

where the classification errors are occurring will allow decisions to be made 

that are more appropriate to the solution of the problem. 
 

 One way to obtain a large number of these indicators is with the 

functionconfusionMatrix() integrated in the Caret library. 

 

library(caret) 
 
cm01=confusionMatrix(table(test$churn,m01pred_F),positive = "Yes")  
 

 
     m01_F 
       No Yes 
  No  697 328 
  Yes  70 311 
                                           
               Accuracy : 0.7169           
                 95% CI : (0.6926, 0.7404) 
    No Information Rate : 0.5455           
    P-Value [Acc > NIR] : < 2.2e-16        
                                           
                  Kappa : 0.4092           
                                           
 Mcnemar's Test P-Value : < 2.2e-16        
                                           
            Sensitivity : 0.4867           
            Specificity : 0.9087           
         Pos Pred Value : 0.8163           
         Neg Pred Value : 0.6800           
             Prevalence : 0.4545           
         Detection Rate : 0.2212           
   Detection Prevalence : 0.2710           
      Balanced Accuracy : 0.6977           
                                           

  

The meaning of these indicators is detailed below: 

 

 Prediction 

Real 

 Negative Positive 

Negative True negative (TN) False positive (FP) 

Positive False negative (FN) True positive (TP) 



Other measures can be extracted from the confusion matrix. 

- Accuracy (Accuracy): (TP + TN) / (TP + TN + FP + FN) 

- Error rate: 1- Accuracy = (FP + FN) / (TP + TN + FP + FN) 

- No Information Rate: (TP + FP) / (TP + TN + FP + FN) In two-by-two 

confounding matrices it is equal to the Prevalence. 

- Sensitivity: TP / (TP + FP) 

- Specificity: TN / (TN + FN) 

- True Positive Rate (Pos. Pred. Value): TP / (TP + FN) Percentage of positive 

instances correctly classified. 

- True negative rate (Neg. Pred. Value): TN / (TN + FP). Percentage of negative 

instances correctly classified. 

- False Positive Rate: FP/ (FP + TN) Percentage of incorrectly classified negative 

instances. 

- False Negative Rate: FN / (TP + FN) Percentage of incorrectly classified 

positive instances. 

 

The sum of the True Positive Rate and False Negative Rate will result in 1. 

Similarly, the True Negative Rate and False Positive Rate, the addition of them 

should be equal to one.  

- Detection Rate: TP / (TP + TN + FP + FN) 

 Cohen's Kappa statistic is an index that compares the overall accuracy of the 

model with the accuracy that would be obtained if the model were to randomly 

rank the instances. Kappa is defined as the difference between the overall 

precision and the expected precision divided by 1 minus the expected precision. 

A value of +1 would indicate total match (the ideal value), values of 0 indicate 

that the match is the same as can be expected by chance and values of -1 

would express total disagreement. 

It can be obtained by using the following formula: 

 

𝐾𝑎𝑝𝑝𝑎 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 0,5

1 − 0,5
 

 

 



Area under the ROC curve. 

Another measure that gives us an idea of the quality of a sorter is the Area 

under the curve AUC. To obtain this measure, simply draw the ROC curve 

(Receiver Operating Characteristic) and compute its area under the curve. 

 

To understand this curve, it is necessary to understand the concept of 

threshold. 

Generally, the most used techniques offer us a model that returns a 

probabilistic output. That is, it offers us a probability and the classification is 

made in function of that given probability. In our case, the models return a 

probability of abandonment of the client. If that probability is higher than 0.5, 

we say that the client will leave the company and if not, that the client will not.  

This value of 0.5 is what we call threshold and can be varied according to our 

interests. As we vary it, the classification will be different, and the measures of 

TP rate and FP rate will also vary. The roc curve is not more than a 

representation of the TP rate versus the FP rate for all the values of the 

threshold between 0 and 1. 

The closer the value of AUC is to 1, the better the quality of the classifier. 

To display the curve and obtain its value we create the following function: 



auc.trees=function(modelpred,test){ 

  pred=prediction(modelpred, test) 

  perf=performance(pred, "tpr", "fpr") 

  plot(perf, lwd=2, colorize=TRUE, main="ROC Curve") 

  lines(x=c(0,1), y=c(0,1), col="red", lwd=1, lty=3) 

  a=round(performance(pred, measure = "auc")@y.values[[1]],4)  

  return (a) 

} 

Once the function is defined, we call it indicating the correct arguments 

auc01=auc.trees(m01pred,test$churn)  

The value we obtain corresponding to the AUC is 0.8234 and the representation 

of the ROC curve is as follows. 

> auc01 
[1] 0.8234 

 

Decision tree 

 Next, we will use the decision tree, this method is the basis of all 

methodologies that use decision trees. It obtains quite good results. 



 The method consists of creating a binary decision tree in which each node 

corresponds to an input variable and each branch to the values that this 

variable can take. This allows us to decide about the nature of the dependent 

variable, knowing the rest of the dependent variables. You can assign a 

probability to each of the branches and also obtain the prediction in the form 

of a probability. 

"A tree is built by splitting the source set, constituting the root node of the tree, 

into subsets which constitute the successor children. The splitting is based on a 

set of splitting rules based on classification features. This process is repeated 

on each derived subset in a recursive manner called recursive partitioning. The 

recursion is completed when the subset at a node has all the same values of 

the target variable, or when splitting no longer adds value to the predictions" 

 

 

 

 

 

 

 

 

 

 

 

 The problem with these trees is that they often incur a phenomenon called 

overfitting. This consists in that the tree that is created, is too faithful to the 

data with which it has been taught. That is to say, branches are created so that 

they describe particularities of the training data but then this error leads us to 

obtain worse results with the test data. 

 

 

 

 

 



 

 

 

 

 

  

 

 

 

 

One way to avoid this is by doing a tree pruning process. That is, removing the 

last branches that give us a major test error. 

To do this we use what we call cross-validation. 

It consists of making several iterations using different training and test data 

within the same sample. 

 

 

By making several iterations varying the training data (and also the depth of 

the tree), we get to know which is the optimal depth and thus it enables us to 

build the tree that gives us better results. 

The called libraries include the option to use this method: 

           

           

           

           

         
             

        

 
 
 

 
 
 

 
 
 

 
 
 



library(caret) 

library(rpart) 

library(rpart.plot) 

trainctrl=trainControl(method = "repeatedcv", number = 5, repeats = 3) 

m02=train(churn~., data=train, method="rpart", trControl=trainctrl)  

We visualize the tree we have built: 

m002<-m02$finalModel 

rpart.plot(m002, type = 2, fallen.leaves = T) 

 

We use the tree that we have trained to make the desired predictions, and then 

calculate the confusion matrix and the AUC that we defined in the previous 

section. 

m02pred=predict(m02, type = "prob", test)[,2] 

m02pred_F=as.factor(round(m02pred)) 

levels(m02pred_F)=c("No","Yes") 

cm02=confusionMatrix(table(test$churn, m02pred_F),positive = "Yes") 



 
     m02pred_F 
       No Yes 
  No  952  73 
  Yes 207 174 
                                          
               Accuracy : 0.8009          
                 95% CI : (0.779, 0.8214) 
    No Information Rate : 0.8243          
    P-Value [Acc > NIR] : 0.9897          
                                          
                  Kappa : 0.4334          
                                          
 Mcnemar's Test P-Value : 1.891e-15       
                                          
            Sensitivity : 0.7045          
            Specificity : 0.8214          
         Pos Pred Value : 0.4567          
         Neg Pred Value : 0.9288          
             Prevalence : 0.1757          
         Detection Rate : 0.1238          
   Detection Prevalence : 0.2710          
      Balanced Accuracy : 0.7629          
 
> auc02 
[1] 0.7218 
 

auc02=auc.trees(m02pred,test$churn)  

 

 

We see that the precession increases significantly to 80.01%, however, the AUC 

decreases. 

 



Bagging  

 This technique, also known as Bootstrap aggregation, consists of applying the 

Bootstrap procedure to a machine learning algorithm, generally decision trees. 

The bootstrap procedure basically consists of creating sub-samples, 

approximately 60% of the size of the learning data. These sub-samples (bags) 

are made up of randomly selected observations with replacement. 

A tree is trained for each of these bags. This procedure is repeated hundreds of 

times so we may obtain an output of hundreds of trees that will constitute our 

model. 

When using them, each tree will predict an output. We will keep as the 

classification prediction, the class predicted by most of the tress. 

We implement this procedure through the following code: 

library(randomForest) 

m03=train(churn~., data=train, method="rf",tuneGrid=expand.grid(.mtry=16), 

trControl=trainctrl) 

m03pred=predict(m03, type = "prob", test)[,2] 

m03pred_F=as.factor(round(m03pred)) 

levels(m03pred_F)=c("No","Yes") 

cm03=confusionMatrix(table(test$churn,m03pred_F),positive = "Yes") 

auc03=auc.trees(m03pred,test$churn) 

As a consequence, we get the following results: 

 
     m03pred_F 
       No Yes 
  No  925 100 
  Yes 184 197 
                                           
               Accuracy : 0.798            
                 95% CI : (0.7761, 0.8187) 
    No Information Rate : 0.7888           
    P-Value [Acc > NIR] : 0.2077           
                                           
                  Kappa : 0.4507           
                                           
 Mcnemar's Test P-Value : 8.43e-07         
                                           
            Sensitivity : 0.6633           
            Specificity : 0.8341           
         Pos Pred Value : 0.5171           
         Neg Pred Value : 0.9024           
             Prevalence : 0.2112           
         Detection Rate : 0.1401           
   Detection Prevalence : 0.2710           



      Balanced Accuracy : 0.7487           
                                           
  
> auc03 
[1] 0.8322 
 

 

Random Forest 

The Random Forest's methodology is very similar to bagging. We also have 

hundreds of randomly constituted sub-samples and for each one we build a 

tree. This time the trees will not be constructed considering all the independent 

variables. A certain number of variables will be considered for each tree, which 

will be chosen at random as well. 

The number of recommended variables to consider in classification is the 

square root of the number of total independent variables. We have 16 

independent variables so we will consider Sqrt(16)=4 variables. 

m04=train(churn~., data=train, method="rf", tuneGrid=expand.grid(.mtry=4), 

trControl=trainctrl) 

m04pred=predict(m04, type = "prob", test)[,2] 

m04pred_F=as.factor(round(m04pred)) 

levels(m04pred_F)=c("No","Yes") 

cm04=confusionMatrix(table(test$churn,m04pred_F),positive = "Yes") 

auc04=auc.trees(m04pred,test$churn) 

 



 
     m04pred_F 
       No Yes 
  No  943  82 
  Yes 188 193 
                                           
               Accuracy : 0.808            
                 95% CI : (0.7864, 0.8283) 
    No Information Rate : 0.8044           
    P-Value [Acc > NIR] : 0.3835           
                                           
                  Kappa : 0.4674           
                                           
 Mcnemar's Test P-Value : 1.658e-10        
                                           
            Sensitivity : 0.7018           
            Specificity : 0.8338           
         Pos Pred Value : 0.5066           
         Neg Pred Value : 0.9200           
             Prevalence : 0.1956           
         Detection Rate : 0.1373           
   Detection Prevalence : 0.2710           
      Balanced Accuracy : 0.7678           
                                           
 
> auc04 
[1] 0.84 
 

 

The fact of having created a random forest allows us to visualize the 

importance of each one of the variables quickly. 

plot(varImp(m04), main="Random Forest: Variable Importance" )  



  

We verify that these results are quite similar to those offered by the Boruta 

algorithm 

Xgboost 
 

This algorithm is based on a general methodology called boosting. Like 

bagging and Random Forest, it uses a multitude of decision trees. The method 

consists of creating a decision tree and once created you obtain the residual 

data of the created tree. When we speak of residual data, we refer to the data 

resulting from the difference between the original data and the output of the 

tree. This process will be carried out iteratively and will allow us to go deeper 

into the observations where more errors occur, that can explain its great 

performance. 

library(xgboost) 

library(plyr) 

trainctrl_2=trainControl(method = "repeatedcv", number = 5, repeats = 3,classProbs = 

TRUE,allowParallel = TRUE) 

m05=train(churn~., data=train, method="xgbTree",trControl=trainctrl_2,verbose=T)  

m05pred=predict(m05, type = "prob", test)[,2] 

m05pred_F=as.factor(round(m05pred)) 

levels(m05pred_F)<-c("No","Yes") 

cm05=confusionMatrix(table(test$churn,m05pred_F),positive = "Yes")  



 

 
     m05pred_F 
       No Yes 
  No  933  92 
  Yes 176 205 
                                           
               Accuracy : 0.8094           
                 95% CI : (0.7879, 0.8296) 
    No Information Rate : 0.7888           
    P-Value [Acc > NIR] : 0.03016          
                                           
                  Kappa : 0.4817           
                                           
 Mcnemar's Test P-Value : 3.977e-07        
                                           
            Sensitivity : 0.6902           
            Specificity : 0.8413           
         Pos Pred Value : 0.5381           
         Neg Pred Value : 0.9102           
             Prevalence : 0.2112           
         Detection Rate : 0.1458           
   Detection Prevalence : 0.2710           
      Balanced Accuracy : 0.7658           
                                           
   
> auc05 
[1] 0.8578 

 

 

 



Support Vector Machine linear 

 An SVM is a model that represents the sample points in a space, separating 

the classes into 2 spaces as wide as possible by means of a defined separation 

hyperplane. 

When the new samples are placed in correspondence with this model, 

depending on the spaces to which they belong, they can be classified in one or 

the other class. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Ideally, the SVM-based model should produce a hyperplane that completely 

separates the data of the studied universe into two categories. However, a 

perfect separation is not always possible, and if it is, the model output cannot 

be generalized to other data. 

In order to allow some flexibility, the MSAs handle a C (cost) parameter that 

controls the compensation between training errors and rigid margins, thus 

creating a margin that allows for some errors in the classification while 

penalizing them. 

 To find out which cost gives the best results, we use the tune() function 



tune.out06=tune(svm,churn~.,data=train,kernel="linear",ranges=list(cost=c(0.001, 0.01, 0.1, 

1,5,10))) 

These operations are computationally time consuming, even more when the 

data frame has a high number of variables and observations, as in our case. 

The execution of this calculation has come to take times that are close to the 

hour. 

bestmod06=tune.out06$best.model 

bestcost06=tune.out06$best.model$cost 

We note that the best cost corresponds to 0.01 

Once the optimal cost is known, we create a model using the following code: 

m06=svm(churn~., data=train, kernel="linear", cost=bestcost06,scale=FALSE) 

m06pred=predict(m06,newdata=test,decision.values = T) 

cm06=confusionMatrix(table(test$churn,m06pred),positive = "Yes")  

auc06=auc.svm(m06pred,test$churn) 

 

 
     m06pred 
       No Yes 
  No  720 305 
  Yes 108 273 
                                         
               Accuracy : 0.7063         
                 95% CI : (0.6817, 0.73) 
    No Information Rate : 0.5889         
    P-Value [Acc > NIR] : < 2.2e-16      
                                         
                  Kappa : 0.3604         
                                         
 Mcnemar's Test P-Value : < 2.2e-16      
                                         
            Sensitivity : 0.4723         
            Specificity : 0.8696         
         Pos Pred Value : 0.7165         
         Neg Pred Value : 0.7024         
             Prevalence : 0.4111         
         Detection Rate : 0.1942         
   Detection Prevalence : 0.2710         
      Balanced Accuracy : 0.6709         
                                         
        
> auc06 
[1] 0.7666 
 



 

Support Vector Machine radial 

 The simplest way to perform the separation is by means of a straight line, a 

straight map or an N-dimensional hyperplane. 

Unfortunately, the universes to be studied are not usually presented in idyllic 

two-dimensional cases as in the previous example, but an SVM algorithm must 

deal with non-linear separation curves since the sets cannot be linearly 

separated. Due to the computational limitations of linear learning machines, 

they cannot be used in most real-world applications. 

Kernel functions offer a solution to this problem by projecting the information 

into a larger feature space which increases the computational capacity of the 

linear learning machine.  

In this case a radial kernel, in which the model will have to be learned having 

previously stipulated two parameters, one of cost as in the previous example 

and another one that we call gamma. 

To know its optimal value, we use again the tune() function. 

tune.out07=tune(svm, churn~., data=train, kernel="radial", 

ranges=list(cost=c(0.1,1,10),gamma=c(0.5,1,2,3,4))) 

bestmod07=tune.out07$best.model 

bestcost07=tune.out07$best.model$cost 

bestgamma07=tune.out07$best.model$gamma 

 



m07=svm(churn~., data=train, kernel="radial",  gamma=bestgamma07, cost=bestcost07) 

m07pred=predict(m07,newdata=test,decision.values = T) 

cm07=confusionMatrix(table(test$churn,m07pred),positive = "Yes")  

auc07=auc.svm(m07pred,test$churn) 

 

 
     m07pred 
       No Yes 
  No  920 105 
  Yes 174 207 
                                           
               Accuracy : 0.8016           
                 95% CI : (0.7797, 0.8221) 
    No Information Rate : 0.7781           
    P-Value [Acc > NIR] : 0.01756          
                                           
                  Kappa : 0.4675           
                                           
 Mcnemar's Test P-Value : 4.68e-05         
                                           
            Sensitivity : 0.6635           
            Specificity : 0.8410           
         Pos Pred Value : 0.5433           
         Neg Pred Value : 0.8976           
             Prevalence : 0.2219           
         Detection Rate : 0.1472           
   Detection Prevalence : 0.2710           
      Balanced Accuracy : 0.7522           
                                           
> auc07 
[1] 0.7914 

 

 

 

 

 



We clearly see that almost all indicators are favoured by this change to the 

radial kernel. 

 Once the indicators of the models presented have been calculated, it is time to 

compare them. To do so, we have put them all together in a comparative table. 

We select the indicators that are most relevant to our research. 

In this case they are the following: 

# ACCURACY 

Accuracy=c(cm01$overall[1],cm02$overall[1],cm03$overall[1],cm04$overall[1],cm05$overall[

1],cm06$overall[1],cm07$overall[1]) 

# KAPPA 

Kappa=c(cm01$overall[2],cm02$overall[2],cm03$overall[2],cm04$overall[2],cm05$overall[2],c

m06$overall[2],cm07$overall[2]) 

# TRUEPOSIVES 

TP=c(cm01$byClass[3],cm02$byClass[3],cm03$byClass[3],cm04$byClass[3],cm05$byClass[3],c

m06$byClass[3],cm07$byClass[3]) 

# TRUE NEGATIVES 

TN=c(cm01$byClass[4],cm02$byClass[4],cm03$byClass[4],cm04$byClass[4],cm05$byClass[4],c

m06$byClass[4],cm07$byClass[4]) 

#AREA UNDER THE CURVE 

AUC=c(auc01,auc02,auc03,auc04,auc05,auc06,auc07) 

# EVALUATION MODELS MATRIX 

Evaluation1=data.frame(cbind(Accuracy, Kappa, TP, TN, AUC))  

row.names(Evaluation1)=c("Naive Bayes classifier","Single tree", "Bagging", "Random 

Forest","XGboost", "SVM linear","SVM radial") 

Evaluation1 

 

 

 

                    Accuracy     Kappa        TP        TN    AUC  
NBC                0.7169275 0.4092200 0.8162730 0.6800000 0.8234   
Single tree        0.8008535 0.4333534 0.4566929 0.9287805 0.7218  
Bagging            0.7980085 0.4507163 0.5170604 0.9024390 0.8322  
RF                 0.8079659 0.4674138 0.5065617 0.9200000 0.8400  
XGboost            0.8093883 0.4816618 0.5380577 0.9102439 0.8578   
SVM linear         0.7062589 0.3604290 0.7165354 0.7024390 0.7666   
SVM radial         0.8015647 0.4674633 0.5433071 0.8975610 0.7914    



We note that there has been one model that has stood out from the rest and 

that is the XGboost. It is easy to reach these conclusions since it presents the 

best results in almost each of the measures. The Random Forest algorithm has 

also obtained very good results, since all its measurements show values very 

similar to those of the Xgboost, but always a few hundredths below. 

As a third option we have the model corresponding to the radial SVM that also 

obtains decent results in most of the indicators. 

We also can note that NBC is the one which detects more positives but does not  

do a good detection of the negatives.  

Cost sensitive classification 

 The indicators presented in the previous cases can give us an idea of the 

quality of the model in general. But one of the key elements to optimize our 

model as much as possible is to establish (or know) the cost of false 

predictions. 

Let's take an example. We are trying to build a model that will detect early in 

time if a patient is going to have cancer. It would make no sense to build a 

model that considers a false positive and a false negative to be equally 

important. Common sense tells us that we will have to favour the number of 

detections of patients with cancer, even if this means reducing the values of the 

indicators described above. 

 Therefore, we will have to work on quantifying the average cost of each of the 

options. Obviously, if the cost of retaining a client is higher than the cost of 

attracting a new one, there will be no economic incentive to detect customer 

leakage. 

 In our case, there will be no cost associated with identifying a client that has 

been correctly classified, since the model is simply describing reality, whether it 

is good or bad. 

However, it will generate a high cost for not being able to detect if a client is 

going to leave the company. The client would not receive any offer to retain him 

and the income he has brought will be gone. 

There is also a cost in predicting that a client is going to leave the company 

when in fact he would not, because conditions would have been improved when 

we could have kept the client with the same conditions. 

 In the case of the telecommunications sector, the cost associated with 

acquiring a new customer is much higher than the cost of retaining that 

customer. It is estimated that it is between 5 and 15 times more expensive to 



acquire a customer than to retain one. This means that the cost of an FN is 

between 5 and 15 times more expensive than that of a FP. To simplify we will 

take the value of 5 and with it we will build the cost matrix. 

The cost matrix is similar to the confusion matrix. The objective is to penalize 

errors (false positives and false negatives) versus successes (true negatives 

and true positives). 

 

 Prediction 

Real 

 Negative Positive 

Negative 0 C(FP) 

Positive C(FN) 0 

 

In this case our cost matrix will be as follows: 

 

𝑐𝑜𝑠𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 = (
0 1
5 0

) 

 

The formula that will allow us to calculate the cost will be the following: 

𝑐𝑜𝑠𝑡 = 5𝐶(𝐹𝑁) + 𝐶(𝐹𝑃) 

 This cost is a relative cost, the value that represents only an indicator to 

compare the models. If we wanted the total cost to have a real meaning, we 

could weigh the customers with a value. To calculate this cost, we would have 

to analyse each false negative and false positive individually and weigh the cost 

with the value of each client. 

We are content to consider that all customers have the same value. 

To calculate the cost in R from the confusion matrix we create the following 

function: 

cost=function(cm){ 

  mat=cm$table 

  c=(5*mat[2,1]+mat[1,2]) 

  return(c) 

} 



Applying the function to the previous models we obtain: 

 

We realize that the model that would have maximized the company's profits 

would no longer have been the XGBoost, but the Naive Bayes Classifier. 

 As we discussed above, tree-based models also offer us a probabilistic output. 

In the following sections we will try to get better results at cost levels by 

modifying the threshold. 

Random Forest 

 The objective therefore is to find the threshold that optimizes the results in 

terms of costs. To do this, we draw the evolution of the cost according to the 

threshold. It should be noted that the information from the test data is being 

graphed. 

 First, we create the model as before. We can actually recycle the one obtained 

in the previous section. 

m09=train(churn~., data=train, method="rf",tuneGrid=expand.grid(.mtry=4), 

trControl=trainctrl) 

m09pred=predict(m09, type = "prob", test)[,2] 

Now, we contrast cost and threshold, also called cuttoff: 

m09_pred<-prediction(m09pred, test$churn) 

m09_perf=performance(m09_pred,"cost","cutoff",cost.fp=1,cost.fn=5)  

plot(m09_perf, lwd=2, main="Rf Cost") 

                    Accuracy     Kappa        TP        TN    AUC Cost 
NBC                0.7169275 0.4092200 0.8162730 0.6800000 0.8234  678 
Single tree        0.8008535 0.4333534 0.4566929 0.9287805 0.7218 1108 
Bagging            0.7980085 0.4507163 0.5170604 0.9024390 0.8322 1020 
RF                 0.8079659 0.4674138 0.5065617 0.9200000 0.8400 1022 
XGboost            0.8093883 0.4816618 0.5380577 0.9102439 0.8578  972 
SVM linear         0.7062589 0.3604290 0.7165354 0.7024390 0.7666  845 
SVM radial         0.8015647 0.4674633 0.5433071 0.8975610 0.7914  975  



 

df=data.frame(cut = m09_perf@x.values[[1]], cost = m09_perf@y.values[[1]])  

df[which.min(df$cost), "cut"] 

[1] 0.132 
 

We see that the threshold value for which the cost would have been lower is 

0.132. 

We cannot know this value in advance, since we are looking at it in the test data 

that we don't have available when we build the model. 

To calculate the optimal threshold based on the learning data, we create a 

function that, through a cross validation process, evaluates the optimal 

threshold in the different data packages and returns the average value. 

 optimalt.rf=function (training){ 

  yourdata=training[sample(nrow(training)),] 

  folds <- cut(seq(1,nrow(yourdata)),breaks=5,labels=FALSE) 

  i=0 

  t=0 

  for(i in 1:5){ 

    testIndexes=which(folds==i,arr.ind=TRUE) 

    testData=yourdata[testIndexes, ] 



    trainData=yourdata[-testIndexes, ] 

    model=train(churn~., data=trainData, method="rf",tuneGrid=expand.grid(.mtry=4)) 

    model_pred=predict(model, type = "prob", testData)[,2] 

    m_pred=prediction(model_pred, testData$churn) 

    m_perf=performance(m_pred,"cost","cutoff",cost.fp=1,cost.fn=5) 

    df=data.frame(cut = m_perf@x.values[[1]], cost = m_perf@y.values[[1]]) 

    t=t+df[which.min(df$cost), "cut"] 

  } 

  return (t/5)   

} 

Once this function is defined, we continue with the code that allows us to 

visualize the results of the new model. 

t.rf=optimalt.rf(train) 

m09pred_F=ifelse(m09pred < t.rf ,"No","Yes") 

cm09=confusionMatrix(table(test$churn,m09pred_F),positive = "Yes")  

auc09=auc.trees(m09pred,test$churn) 

cost09=cost(cm09) 

In this section we will represent the results directly in the comparison table. 

 

Decision tree 

The procedure for the single tree is very similar to the previous one. What we 

do is to simply change the learning method of the model. 

optimalt.tree=function (training){ 

  yourdata=training[sample(nrow(training)),] 

  folds <- cut(seq(1,nrow(yourdata)),breaks=5,labels=FALSE) 

  i=0 

  t=0 

  for(i in 1:5){ 

    testIndexes=which(folds==i,arr.ind=TRUE) 



    testData=yourdata[testIndexes, ] 

    trainData=yourdata[-testIndexes, ] 

    model=train(churn~., data=trainData, method="rpart", trControl=trainctrl)  

    model_pred=predict(model, type = "prob", testData)[,2] 

    m_pred<-prediction(model_pred, testData$churn) 

    m_perf=performance(m_pred,"cost","cutoff",cost.fp=1,cost.fn=5) 

    df <- data.frame(cut = m_perf@x.values[[1]], cost = m_perf@y.values[[1]]) 

    t=t+df[which.min(df$cost), "cut"] 

      }   

  return (t/5)   

} 

To obtain the results, we enter the corresponding code with a slight 

modification. This time we establish a minimum threshold value that will 

correspond to the minimum probability offered by the tree. This is done 

because it is likely that the threshold stays below the last value of probabilities 

offered by the tree. In this case the model will only predict one class and it will 

be a failure. 

m08=train(churn~., data=train, method="rpart", trControl=trainctrl) 

m08pred=predict(m08,type = "prob", test)[,2] 

t.tree=optimalt.tree(train) 

if(min(m08pred)>t.tree){t.tree=min(m18pred)} 

m08pred_F=ifelse(m08pred <= t.tree ,"No","Yes") 

cm08=confusionMatrix(table(test$churn, m08pred_F),positive = "Yes")  

auc08=auc.trees(m08pred,test$churn) 

cost08=cost(cm08) 

 

Xgboost 
 

We performed the same process with this algorithm, which had previously given 

us the best results. 

optimalt.Xgb=function (training){ 

  yourdata=training[sample(nrow(training)),] 



  folds <- cut(seq(1,nrow(yourdata)),breaks=5,labels=FALSE) 

  i=0 

  t=0 

  for(i in 1:5){ 

    testIndexes=which(folds==i,arr.ind=TRUE) 

    testData=yourdata[testIndexes, ] 

    trainData=yourdata[-testIndexes, ] 

    model=train(churn~., data=trainData, method="xgbTree",trControl=trainctrl_2,verbose=T) 

    model_pred=predict(model, type = "prob", testData)[,2] 

    m_pred<-prediction(model_pred, testData$churn) 

    m_perf=performance(m_pred,"cost","cutoff",cost.fp=1,cost.fn=5)  

    df <- data.frame(cut = m_perf@x.values[[1]], cost = m_perf@y.values[[1]]) 

    t=t+df[which.min(df$cost), "cut"] 

  }   

  return (t/5) 

} 

m10=train(churn~., data=train, method="xgbTree",trControl=trainctrl_2,verbose=T)  

m10pred=predict(m10, type = "prob", test)[,2] 

t.xgb=optimalt.Xgb(train) 

m10pred_F=ifelse(m10pred < t.xgb ,"No","Yes") 

cm10=confusionMatrix(table(test$churn,m10pred_F),positive = "Yes") 

auc10=auc.trees(m10pred,test$churn) 

cost10=cost(cm10) 

Once this has been completed, we can begin to evaluate the results of the new 

models. 

Accuracy=c(cm01$overall[1],cm02$overall[1],cm03$overall[1],cm04$overall[1],cm05$overall[

1],cm06$overall[1],cm07$overall[1],cm08$overall[1],cm09$overall[1],cm10$overall[1])  

Kappa=c(cm01$overall[2],cm02$overall[2],cm03$overall[2],cm04$overall[2],cm05$overall[2],c

m06$overall[2],cm07$overall[2],cm08$overall[2],cm09$overall[2],cm10$overall[2])  

TP=c(cm01$byClass[3],cm02$byClass[3],cm03$byClass[3],cm04$byClass[3],cm05$byClass[3],c

m06$byClass[3],cm07$byClass[3],cm08$byClass[3],cm09$byClass[3],cm10$byClass[3])  



TN=c(cm01$byClass[4],cm02$byClass[4],cm03$byClass[4],cm04$byClass[4],cm05$byClass[4],c

m06$byClass[4],cm07$byClass[4],cm08$byClass[4],cm09$byClass[4],cm10$byClass[4])  

AUC=c(auc01,auc02,auc03,auc04,auc05,auc06,auc07,auc08,auc09,auc10) 

Cost=c(cost01,cost02,cost03,cost04,cost05,cost06,cost07,cost08,cost09,cost10) 

Evaluation2=data.frame(cbind(Accuracy, Kappa, TP, TN, AUC,Cost))  

row.names(Evaluation2)=c("NBC","Single tree", "Bagging", "RF","XGboost", "SVM lin","SVM 

rad","Tree(cost)","RF(cost)","XGboost(cost)") 

Evaluation2 

 

We see that the algorithms have managed to reduce the cost of the NBC model 

significantly. This has been done reducing the TN rate in order to favour the TP 

rate. Is easy to understand that the cost will be reduce because FP are more 

expensive than FN.  

We see that the AUC increases slightly but this is due to the randomness of the 

new model. If we had not generated other models the AUC would have not 

change since we have simply modified the threshold. 

  

Classification in synthetic balanced data 

When you have a dependent variable with two categories where one is much 

larger than the other, the data is said to be unbalanced. As we have 

commented before this makes the algorithms work worse tending to favour the 

majority class. This is due to different reasons: 

1.   The use of measures of overall performance to drive the learning process, 

such as accuracy rate. 

                    Accuracy     Kappa        TP        TN    AUC Cost 
NBC                0.7169275 0.4092200 0.8162730 0.6800000 0.8234  678 
Single tree        0.8008535 0.4333534 0.4566929 0.9287805 0.7218 1108 
Bagging            0.7980085 0.4507163 0.5170604 0.9024390 0.8322 1020 
RF                 0.8079659 0.4674138 0.5065617 0.9200000 0.8400 1022 
XGboost            0.8093883 0.4816618 0.5380577 0.9102439 0.8578  972 
SVM linear         0.7062589 0.3604290 0.7165354 0.7024390 0.7666  845 
SVM radial         0.8015647 0.4674633 0.5433071 0.8975610 0.7914  975 
Tree(cost)         0.7041252 0.3226309 0.6220472 0.7346341 0.7218  992 
RF(cost)           0.6906117 0.3872122 0.8713911 0.6234146 0.8426  631 
XGboost(cost)      0.6920341 0.4023693 0.9160105 0.6087805 0.8589  561  
 
 
 



2.   Classification rules that predict that the minority class is often highly 

specialized, and their coverage is very low, therefore they are discarded in 

favour of more general rules. If modelling is intended to avoid overfitting, it will 

tend to generalise. 

3.   Very small groupings of the minority class can be identified as noise, and 

therefore are often wrongly discarded by the classifier. 

 To avoid the problem of unbalance, different methods are available to balance 

the data. The initial idea would be to modify the size of the original database to 

obtain a new training set where the dependent variable is better balanced. 

 There are three main categories to solve the problem of unbalanced data: 

 1.   Cost-sensitive learning (already used): Initially, all errors have the same 

weighting, but with this approach, different costs are assigned to the different 

errors, modifying the objective of the modelling. The classification error is no 

longer the variable to be minimized, but the cost associated with the 

classification. In the previous section we have used it with real costs, but it is 

also possible to establish a cost that compensates the imbalance of the classes. 

 2.   Sampling of the data: This solution aims to balance the classes of a 

variable by adding or removing instances through a predetermined procedure. 

In turn, two subcategories can be differentiated: 

a. Subsampling and Oversampling: remove or add instances to balance 

the classes. 

b. Generation of synthetic data: create, based on the available data, 

instances of the minority class that are very similar to the data, but different. 

3.   Modification of the algorithm: This procedure would be oriented to adapt 

the learning method so that it is better tuned to the unbalanced class. This 

solution would imply the internal modification of the algorithms to set a target 

other than the general accuracy of the model. This methodology is not 

developed and applied in this paper.  

We will use a technique called SMOTE (Synthetic Minority Oversampling 

Technique)  

With this technique, the data set is balanced by generating artificial data, so it 

would be a form of oversampling but with better conditions. This technique 

generates a random set of minority class observations. 

Bootstrapping and KNN (Nearest K-Neighbours algorithm) are used to generate 

the random set. 



 For more information on the technique used and other similar techniques, 

please refer to the following page: 

https://www.datasciencecentral.com/profiles/blogs/handling-imbalanced-data-

sets-in-supervised-learning-using-family 

 

We are therefore preparing to enlarge the set of training data available to us. 

library(DMwR) 

library(grid) 

train_smote=SMOTE(churn~., train, perc.over=400, perc.under=120)  

table(train_smote$churn) 

  No  Yes  
7142 7440  

 

 We checked on one side the number of instances generated and on the other 

side that the classes were correctly balanced. 

We can also make a comparison of the generated observations by keeping an 

eye on the numerical variables, which is where we can best see the difference. 

library(ggplot2) 

ggplot(train, aes(tenure, TotalCharges)) + geom_point(aes(shape = churn, color =  churn)) 

 

 

 

https://www.datasciencecentral.com/profiles/blogs/handling-imbalanced-data-sets-in-supervised-learning-using-family
https://www.datasciencecentral.com/profiles/blogs/handling-imbalanced-data-sets-in-supervised-learning-using-family


ggplot(train_smote, aes(tenure, TotalCharges)) + geom_point(aes(shape = churn, color = 

churn))  

 

Once we have the new data set created, we are going to use exactly the same 

code just varying the input data. We will train the new models with different 

data, but we will asses them with same test data. 

After some computing time, we visualize the results to compare them with the 

previous models:  

                 Accuracy    Kappa    TP      TN    AUC   Cost 
NBC                0.717    0.409   0.816   0.680  0.823  678 
Single tree        0.801    0.433   0.457   0.928  0.722 1108 
Bagging            0.798    0.451   0.517   0.902  0.832 1020 
RF                 0.808    0.467   0.507   0.920  0.840 1022 
XGboost            0.809    0.482   0.538   0.910  0.859  972 
SVM linear         0.706    0.360   0.717   0.702  0.767  845 
SVM radial         0.802    0.467   0.543   0.898  0.791  975 
Tree(cost)         0.704    0.323   0.622   0.735  0.722  992 
RF(cost)           0.691    0.387   0.871   0.623  0.843  631 
XGboost(cost)      0.692    0.402   0.916   0.609  0.859  561 
NBC(Smote)         0.621    0.274   0.811   0.550  0.746  821 
Single tree(Smote) 0.642    0.306   0.824   0.575  0.698  771 
Bagging(Smote)     0.747    0.375   0.572   0.812  0.790 1008 
RF(Smote)          0.784    0.424   0.522   0.881  0.800 1032 
XGboost(Smote)     0.775    0.385   0.470   0.888  0.805 1125 
SVM linear(Smote)  0.651    0.319   0.829   0.584  0.803  751 
SVM radial(Smote)  0.651    0.240   0.614   0.664  0.702 1079 
Tree(cost+Smote)   0.557    0.225   0.895   0.431  0.698  783 
RF(cost+Smote)     0.646    0.321   0.856   0.568  0.800  718 
XGb(cost+Smote)    0.672    0.344   0.816   0.619  0.803  741  



It is easy to see that the big majority of the classifiers have performed worse 

results than the ones coming from the original data. The best model in terms 

of cost still being the XGboost.  

We can also observe that this time the model which has performed better 

results if we only look the SMOTE models is the Random Forest but still  far 

from the previous RF model. Another curious thing that we can observe is that 

the single tree has obtained a better result in terms of cost in comparation with 

the previous tree model. 

Apart from this we can conclude that having created some synthetic data has 

been useless in this case. 

 

Comparations and Conclusions 

 

Actually, we have to know that concluding with just one iteration can be 

dangerous.  

In some cases, when we create our model, we can have three different sources 

of randomness. 

For example, in the case of random forest these are sources of randomness: 

1) When we separate between learning data and test data 

2) When we fill the bags through the bootstrap  

3) When we hide randomly the variables to learn the trees  

In order to not take false conclusions due to random reasons a good way to 

proceed is to calculate the mean and the variance of some iterations modifying 

the learning and test data. 

It can be done with a cross validation procedure but in our case, we are just 

going to vary the random seed when we do the segregation between learning 

and test data. 

set.seed(X) 

tr=sample(1:nrow(telco), round(nrow(telco)*0.8)) 

train.telco=telco[tr,] 



test.telco=telco[-tr,] 

train=train.telco[,imp.var] 

test=test.telco[,imp.var] 

  

We will do 5 iterations where X will take all the entire values between 1 and 5. 

Of course, after each segregation we will compute all the code previously 

presented all along the document. 

Then we will compute the mean and the variance of the most important 

indicators through a dynamic table in excel. 

 

 Accuracy AUC Cost 

  mean variance mean variance mean variance 

NBC 0,7282 0,0130 0,8288 0,0105 665,4 47,99 

Single tree 0,7935 0,0074 0,5943 0,2923 1153,6 101,34 

Bagging 0,7925 0,0063 0,8293 0,0101 1030,2 46,60 

RF 0,8065 0,0056 0,6916 0,3396 992,8 36,68 

XGboost 0,8117 0,0018 0,8571 0,0074 952,8 15,39 

SVM lin 0,7778 0,0402 0,7913 0,0295 1019,6 112,12 

SVM rad 0,7997 0,0066 0,7924 0,0160 1009,6 41,23 

Tree(cost) 0,7195 0,0291 0,5931 0,2917 955,2 42,74 

RF(cost) 0,6752 0,0101 0,8439 0,0093 635,8 42,19 

XGboost(cost) 0,6973 0,0086 0,8559 0,0078 577,6 29,86 

NBC(Smote) 0,6200 0,0023 0,7411 0,0049 846,3 21,96 

Single tree(Smote) 0,6195 0,0364 0,6908 0,0244 769,7 57,01 

Bagging(Smote) 0,7475 0,0019 0,7888 0,0120 1003,0 17,06 

RF(Smote) 0,7719 0,0104 0,7931 0,0145 1088,7 64,59 

XGboost(Smote) 0,7779 0,0046 0,8052 0,0087 1113,7 28,73 

SVM lin(Smote) 0,6316 0,0285 0,7783 0,0223 784,7 87,50 

SVM rad(Smote) 0,6536 0,0082 0,7062 0,0108 1079,0 17,00 

Tree(cost+Smote) 0,5055 0,1075 0,6908 0,0244 844,7 72,82 

RF(cost+Smote) 0,6441 0,0076 0,7931 0,0145 729,7 49,54 

XGb(cost+Smote) 0,6776 0,0101 0,8012 0,0045 712,0 43,49 

 

Now we can conclude that in our case the best classifier is finally Xgboost. In 

the parameters of accuracy, AUC and cost the mean of the results is the 

highest. The variance value is also smaller than its first competitor which is 

Random Forest. That means that the results are not only better in terms of 

average but also in terms of stability. 



We can also note that if we have a limited computational capacity the Naïve 

Bayes Classifier can also be a good model with quite good results and with just 

a few seconds of calculation time. Xgboost is taking a few minutes to finally 

create the model, most of this time is taken by finding the best threshold. 

 

In conclusion, during this work we have been able to create a model which is 

able to predict successfully (in 81,17% of the cases) if a customer will leave the 

company. We have also been able to modify it in order to reduce as much as 

possible the cost of the churn problem.  After doing that, we are able to detect 

9 over 10 clients who are going to leave the company. 

From these predictions, we will identify in an individual way the risk clients and 

we will be able to offer some improvements in their contracts to finally get our 

objective, keep them with us. 

A good and practice way to manage the relation with the determined risk 

clients would be in an automatic way. We could segregate those clients in 

different groups depending on their needs and take different commercial offers 

for each group. Unsupervised learning would be the way to get it, but we leave 

for another work.  
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