

MACHINE LEARNING LAB

DEVELOPING A CUSTOMER LEAK

DETECTION MODEL USING

MACHINE LEARNING TECHNIQUES

CALATAYUD COQUILLAT, Marcos

Year 2019/2020

Index
What is Machine Learning? ...2

Definition of the case ...3

Work tool ...5

Preparing the dataset ..5

Exploratory analysis of the data .. 11

Classification using ML algorithms ... 16

Naïve Bayes Classifier ... 17

Decision tree.. 21

Bagging.. 26

Random Forest .. 27

Xgboost .. 29

Support Vector Machine linear .. 31

Support Vector Machine radial .. 33

Cost sensitive classification ... 36

Random Forest .. 38

Decision tree.. 40

Xgboost .. 41

Classification in synthetic balanced data ... 43

Comparations and Conclusions ... 47

Bibliography .. 49

Introduction and definition of the problem

What is Machine Learning?

Machine Learning is the science of getting computer to learn without being

explicitly programmed.

It is about the application of algorithms that can classify and perform groups

in order to establish patterns of behaviour, which can help us to predict the

future automatically.

One of the reasons of the creation of this new branch of the computer science

is the big growth of the computational capacity which allows us to deal with big

amounts of data in a cheaper way.

We can distinct between two different types of ML:

Supervised Learning:

Requires the human intervention. There exists an output variable (also called

dependent variable) which must be explained with the rest of input variables

(or independent variables).

This is the one that we are going to use in this case of study and will see how

we can predict which costumers are going abandon a company.

We can also make a distinction between classification and regression problems.

In classification problems the, dependent variable is categorical and the

propose of the model is to predict a class for it.

algorithms
Learning

Data

New

Data
MODEL Predictions

In Regression problems, the dependent variable is a numerical and continuous

variable. The prediction should try to minimize the difference between the real

and the predicted value.

Unsupervised Learning:

There is not an output variable, all the variables have the same nature.

An example could be the segregation of clients with similar attributes to

customize the marketing campaigns. In this case we have all data and the

machine makes a distribution of the types of clients depending on their

similarities.

Definition of the case

The aim of this project is to apply these techniques to the telecommunications

sector. More specifically, we will focus on the study of runaway customers in

order to prevent future cases of customer abandonment.

Nowadays, the application of Machine Learning techniques to try to prevent

customer leakage, in sectors where a considerable amount of customer data is

available, is a widespread reality.

Having said that, there are also many other ML applications in this sector such

as:

1. Personalisation of the product. Offering products to customers according

to their profile.

2. Cross selling. Detecting possible clients interested in other types of

services offered by the company, such as Internet at home, cable TV, etc.

3. Up selling. Detecting customers with needs to increase their payment

rate.

4. Dynamic pricing. Offer different prices depending on the type of

customer, season of the year etc...

5. Fraud management. Detecting fraudulent customer profiles which are

not suitable for the company.

The focus on customer retention is especially interesting for several reasons.

It goes without saying that most of a company's revenue comes from its

customers, so customer retention is a key task. That said, the cost of retaining

a client is between 5 and 15 times cheaper than the cost of acquiring a new

one. In addition, long-lasting and loyal customers often generate better results

for companies than more volatile customers.

Knowing the potential customers to leave will allow us to take commercial

action against the risk customers in addition to knowing what factors make our

customers decide to hire our services in the competition.

 The database we're going to work on is as follows:

https://drive.google.com/file/d/1Kwwowe768DbF00gEk--ikHfb97H-

WxoV/view?usp=sharing

Each row represents a customer and each column represents a characteristic.

Each row is an observation or data point while each column corresponds to a

different independent variable.

In this case we will have 7043 observations composed of 21 characteristics.

These characteristics can be divided into four groups:

1. Churn column: Which tells us if the client has left the company during

the last month.

2. Services that the client has contracted.

3. Information on the client's preferences and relative to their seniority.

4. Customer demographic information.

But let’s first list and detail the information that each column offers us.

Customer ID

gender -Whether the customer is a male or a female

SeniorCitizen -Whether the customer is a senior citizen or not (1, 0)

Partner -Whether the customer has a partner or not (Yes, No)

Dependents -Whether the customer has dependents or not (Yes, No)

tenure -Number of months the customer has stayed with the company

PhoneService -Whether the customer has a phone service or not (Yes, No)

MultipleLines -Whether the customer has multiple lines or not (Yes, No, No phone service)

InternetService -Customer’s internet service provider (DSL, Fiber optic, No)

OnlineSecurity -Whether the customer has online security or not (Yes, No, No internet service)

OnlineBackup -Whether the customer has online backup or not (Yes, No, No internet service)

DeviceProtection -Whether the customer has device protection or not (Yes, No, No internet

service)

https://drive.google.com/file/d/1Kwwowe768DbF00gEk--ikHfb97H-WxoV/view?usp=sharing
https://drive.google.com/file/d/1Kwwowe768DbF00gEk--ikHfb97H-WxoV/view?usp=sharing

TechSupport -Whether the customer has tech support or not (Yes, No, No internet service)

StreamingTV -Whether the customer has streaming TV or not (Yes, No, No internet service)

StreamingMovies -Whether the customer has streaming movies or not (Yes, No, No internet

service)

Contract -The contract term of the customer (Month-to-month, One year, Two year)

PaperlessBilling -Whether the customer has paperless billing or not (Yes, No)

PaymentMethod -The customer’s payment method (Electronic check, mailed check, Bank

transfer (automatic), Credit card (automatic))

MonthlyCharges -The amount charged to the customer monthly

TotalCharges -The total amount charged to the customer

Churn -Whether the customer churned or not (Yes or No)

Work tool

The programming tool and language will be R, with the help of the IDE

(integrated development environment) RStudio. Both are focused on statistical

analysis.

https://cran.r-project.org/bin/windows/base/

https://rstudio.com/products/rstudio/

The reason of our choice is that it is an Open Source software, which has many

packages and libraries that are easy to use.

Here is a document detailing the use of its main functions:

https://drive.google.com/file/d/15i7iHh5P0tZvD5PO2sMLSVVmA5rY_aGk/view?

usp=sharing

Another great advantage of R is that it works with a wide variety of hardware

and software (Windows, Linux, Unix ...)

Preparing the dataset

Preparing the data set is one of the most complicated and delicate stages is

the development of a quality and useful database for our analysis.

Before we start to process the data, we must make sure that the information

that comes to us has been completed based on clear and useful criteria for

https://cran.r-project.org/bin/windows/base/
https://rstudio.com/products/rstudio/
https://drive.google.com/file/d/15i7iHh5P0tZvD5PO2sMLSVVmA5rY_aGk/view?usp=sharing
https://drive.google.com/file/d/15i7iHh5P0tZvD5PO2sMLSVVmA5rY_aGk/view?usp=sharing

analysis. For example, in this case we would have to ensure that only voluntary

abandonment has been counted as churn. Clients who have cancelled their

services for reasons beyond our control, such as the death of a client or

migration to another country, have been excluded from the lists.

We must also ensure that the sample we have obtained has the following

characteristics:

-Information. The variables selected have a real relationship with the result.

Sometimes there is too much information available and much of it is not useful,

besides giving rise to heavier computing. A generally useless example may be a

user ID, which has no relation to practically any useful variable.

-Representativeness. The sample is large enough that the actual proportions

are not affected. Apart from size, there is sometimes a tendency to consider

samples that have been collected in ways that exclude certain sectors from the

whole as representative. An example could be samples obtained through the

Internet, which often exclude older people.

-Precision. Sometimes the data is not precise enough and can end up adding

noise to the system which will worsen the results obtained.

Having said that, we can now start with the preparation of the database.

The first step is to load the csv file:

telco=read.csv("Telco-Customer-Churn.csv",header = T,na.strings = "?")

Next, we assign a factor to binary or tertiary variables that are often defined as

text or number but only take 2 or 3 different values in the whole database. This

is very useful when applying the algorithms.

telco$gender=as.factor(telco$gender)

telco$SeniorCitizen=as.factor(telco$SeniorCitizen)

telco$Partner=as.factor(telco$Partner)

telco$Dependents=as.factor(telco$Dependents)

telco$PhoneService=as.factor(telco$PhoneService)

telco$MultipleLines=as.factor(telco$MultipleLines)

telco$InternetService=as.factor(telco$InternetService)

telco$OnlineSecurity=as.factor(telco$OnlineSecurity)

telco$OnlineBackup=as.factor(telco$OnlineBackup)

telco$DeviceProtection=as.factor(telco$DeviceProtection)

telco$TechSupport=as.factor(telco$TechSupport)

telco$StreamingTV=as.factor(telco$StreamingTV)

telco$StreamingMovies=as.factor(telco$StreamingMovies)

telco$Contract=as.factor(telco$Contract)

telco$PaperlessBilling=as.factor(telco$PaperlessBilling)

telco$PaymentMethod=as.factor(telco$PaymentMethod)

telco$Churn=as.factor(telco$Churn)

Another thing we need to do is to eliminate observations that are incomplete,

those containing NAs.

To check if they exist and where they are, we use the following function.

sapply(telco, function(x) sum(is.na(x)))

We note that there are 11 observations that have an empty TotalCharges

column, so we proceed to remove them.

telco=na.omit(telco)

Now we visualize how the database finally looks. For this, we use a function of

the FunModeling library:

library(funModeling)

df_status(telco)

 variable q_zeros p_zeros q_na p_na q_inf p_inf type unique
1 customerID 0 0.00 0 0 0 0 character 7032
2 gender 0 0.00 0 0 0 0 factor 2
3 SeniorCitizen 5890 83.76 0 0 0 0 factor 2
4 Partner 0 0.00 0 0 0 0 factor 2
5 Dependents 0 0.00 0 0 0 0 factor 2
6 tenure 0 0.00 0 0 0 0 integer 72
7 PhoneService 0 0.00 0 0 0 0 factor 2
8 MultipleLines 0 0.00 0 0 0 0 factor 3
9 InternetService 0 0.00 0 0 0 0 factor 3
10 OnlineSecurity 0 0.00 0 0 0 0 factor 3
11 OnlineBackup 0 0.00 0 0 0 0 factor 3
12 DeviceProtection 0 0.00 0 0 0 0 factor 3
13 TechSupport 0 0.00 0 0 0 0 factor 3
14 StreamingTV 0 0.00 0 0 0 0 factor 3
15 StreamingMovies 0 0.00 0 0 0 0 factor 3
16 Contract 0 0.00 0 0 0 0 factor 3
17 PaperlessBilling 0 0.00 0 0 0 0 factor 2
18 PaymentMethod 0 0.00 0 0 0 0 factor 4
19 MonthlyCharges 0 0.00 0 0 0 0 numeric 1584
20 TotalCharges 0 0.00 0 0 0 0 numeric 6530
21 Churn 0 0.00 0 0 0 0 factor 2

The "unique" column tells us how many different values the variable takes.

Now we will discard the variables that have no influence on the dependent

variable.

To do this, we will use the Boruta algorithm.

Before being able to use a package in R we must proceed to download it

(Tools>Install Packages) and then call the library.

The algorithm works as follows:

1. First, randomness is added to the data set by creating shuffled copies of the

variables, which are called shadow variables.

2. Then a random slot is trained with the extended data set and a mean of the

importance of the variables is obtained (the default measure is Mean Decrease

Accuracy).

3. In each iteration, it is checked whether the real variable is more important

than the shadow variable, and the variables that are considered unimportant

are eliminated.

4. The algorithm will stop when all the variables have been accepted or

rejected.

library(Boruta)

library(ranger)

We call the function indicating the target variable and the dataset to which we

apply it.

boruta=Boruta(Churn~., data = telco, doTrace = 2)

print(boruta)

The algorithm rejects 3 variables: "customer ID", "gender" and "PhoneService"

If we want to obtain more information about the importance of the variables,

we can call the attStats() function, which will show us different indicators of the

importance of the variables such as the mean, median, minimum and

maximum.

borutadf=attStats(boruta)

print(borutadf)

 meanImp medianImp minImp maxImp normHits decision
customerID -0.1834070 -0.4472946 -1.2626198 1.478945 0.00 Rejected
gender 0.2339455 -0.1998430 -0.9812478 2.227972 0.02 Rejected
SeniorCitizen 8.8575640 8.7700611 5.8190571 11.134153 1.00 Confirmed
Partner 4.5904973 4.6180009 1.1629032 7.101238 0.98 Confirmed
Dependents 3.8444751 3.7641712 1.1625277 6.928499 0.84 Confirmed
tenure 42.7435970 42.8667526 39.3055826 47.061247 1.00 Confirmed
PhoneService 1.7091960 1.5787751 -0.3308262 4.527392 0.26 Rejected
MultipleLines 8.0129841 8.2504899 5.2734754 9.916690 1.00 Confirmed
InternetService 22.1651666 22.2557429 20.1150958 25.378699 1.00 Confirmed
OnlineSecurity 22.4928197 22.3920745 20.4848358 24.472813 1.00 Confirmed
OnlineBackup 14.5550999 14.3926094 13.1870291 17.033353 1.00 Confirmed
DeviceProtection 12.5220852 12.5667565 10.8668637 13.888899 1.00 Confirmed
TechSupport 20.7890239 20.7804465 18.9116111 22.369982 1.00 Confirmed
StreamingTV 9.7293636 9.6630799 8.0561413 11.456458 1.00 Confirmed
StreamingMovies 9.4190726 9.4344542 7.9736391 11.340845 1.00 Confirmed
Contract 40.6572829 40.6953079 37.4627352 44.091170 1.00 Confirmed
PaperlessBilling 9.6810935 9.6083400 7.9892660 11.953681 1.00 Confirmed
PaymentMethod 10.6606466 10.6676578 7.9836487 12.902449 1.00 Confirmed
MonthlyCharges 30.2165333 30.2534556 26.6956145 33.666291 1.00 Confirmed
TotalCharges 36.9830763 37.0923691 32.8730330 40.750529 1.00 Confirmed

As the three variables that we have mentioned before have been rejected, the

algorithm also allows us to have an idea of which variables are more important.

We observe that there are two variables that are especially relevant, and they

are "tenure" and "Contract".

These results can also be displayed graphically by executing the following

code:

plot(boruta, xlab = "", xaxt = "n")

lz=lapply(1:ncol(boruta$ImpHistory),function(i)

boruta$ImpHistory[is.finite(boruta$ImpHistory[,i]),i])

names(lz)=colnames(boruta$ImpHistory)

Labels=sort(sapply(lz,median))

axis(side = 1,las=2,labels = names(Labels),at = 1:ncol(boruta$ImpHistory), cex.axis = 0.7)

In green the important variables appear, in red the rejected ones and in blue,

the called shadows.

We can also know the evolution of the importance of the variables as the

algorithm has been advancing in the executions. We observe that the

importance of each of the variables has behaved with relative stability, which

reinforces the confidence in the veracity of the results obtained.

plotImpHistory(boruta)

Finally, we generate a new vector where we store the variables that we have

catalogued as important and which we will use from now on.

imp.var=getSelectedAttributes(boruta)

Exploratory analysis of the data

Before applying algorithms, it is recommended to have a general idea of the

data that are going to be analysed. This will allow us to make a more relevant

analysis once the ML techniques have been applied, since we will have a better

knowledge of the clients. The data always have a sense and we should not

reduce the problem to a simple computational analysis.

Another great objective of this section is to introduce the graphic visualization

tools that can be of great help to us.

To do this, there are several functions from different packages.

The first is the basic summary function, which comes by default in R and gives

us general data on each of the variables.

summary(telco)

Something also quite useful is to be able to have available a graphic

representation of the distribution of the numerical variables, since it is quite

more intuitive than what the previous function gave us.

plot_num(telco)

 customerID gender SeniorCitizen Partner Dependents tenure
 Length:7032 Female:3483 0:5890 No :3639 No :4933 Min. : 1.00
 Class :character Male :3549 1:1142 Yes:3393 Yes:2099 1st Qu.: 9.00
 Mode :character Median :29.00
 Mean :32.42
 3rd Qu.:55.00
 Max. :72.00

PhoneService MultipleLines InternetService OnlineSecurity
 No : 680 No :3385 DSL :2416 No :3497
 Yes:6352 No phone service: 680 Fiber optic:3096 No internet service:1520
 Yes :2967 No :1520 Yes :2015

 OnlineBackup DeviceProtection TechSupport
 No :3087 No :3094 No :3472
 No internet service:1520 No internet service:1520 No internet service:1520
 Yes :2425 Yes :2418 Yes :2040

 StreamingTV StreamingMovies Contract PaperlessBilling
 No :2809 No :2781 Month-to-month:3875 No :2864
 No internet service:1520 No internet service:1520 One year :1472 Yes:4168
 Yes :2703 Yes :2731 Two year :1685

 PaymentMethod MonthlyCharges TotalCharges Churn
 Bank transfer (automatic):1542 Min. : 18.25 Min. : 18.8 No :5163
 Credit card (automatic) :1521 1st Qu.: 35.59 1st Qu.: 401.4 Yes:1869
 Electronic check :2365 Median : 70.35 Median :1397.5
 Mailed check :1604 Mean : 64.80 Mean :2283.3
 3rd Qu.: 89.86 3rd Qu.:3794.7
 Max. :118.75 Max. :8684.8

From the factor variables we can also obtain a graphic representation. In this

case we represent only a few, but it should not be wrong to do it with all of

them.

freq(telco$Churn)

We note that 26.58% of the customers we had in the last year have left the

company. This is not a negligible percentage and it should be solved.

freq(telco$Contract)

freq(telco$InternetService)

Another very useful indicator is correlation. The plot_correlation() function

gives us a heat map that indicates the intensity of the correlation. Positive

correlations are shown in red, while negative correlations are shown in blue.

The graph shows us that some of the variables have an exact and positive

correlation. This is because redundant information is available. An example

could be the high correlation between the StreamingMovies variable and

InternetService Fiber.optic as one implies the other.

If we look at the churn column, we see that there are results like those

obtained with the boruta algorithm.

Another function that is quite useful is the cross_plot() function, which allows

us to make a more thorough analysis of the relationship between two variables.

With this function we can check the relationship of the dependent variable with

variables such as tenure and Contract.

cross_plot(data = telco, input = c("tenure","Contract"), target = "Churn")

If we prefer, we can also use the box and moustache format

plotar(data = telco, input = c("tenure"), target = "Churn", plot_type = "boxplot")

In both cases we see an obvious relationship, which is otherwise quite logical.

The longer a customer has been with the company the less likely he is going to

leave. Depending on the type of contract something similar happens, customers

with longer contracts are loyal to the company.

With this small approach we conclude the exploratory analysis.

Classification using ML algorithms

 A necessary step before starting to apply the algorithms is to make the

distinction between learning data and test data. The way to proceed will be to

find a model with the training data and to be able to validate it with the test

data.

In this case we are going to make an 80/20 separation, this separation will be

done in a random way. There is a way to control the randomness and it is by

establishing a random seed. To do this we will use the function set.seed(). This

will allow us to make an identical distribution if we plant the same seed. As we

will see later, it will also allow us to do an iteration with different training/test

data by simply changing this seed.

set.seed(1)

tr=sample(1:nrow(telco), round(nrow(telco)*0.8))

train.telco=telco[tr,]

test.telco=telco[-tr,]

We will now move on to remove the columns that were rejected by the boruta

algorithm to make the computational process more agile and reliable. We have

also added the churn column that was not contemplated and finally we

removed the auxiliary variables train.telco and test.telco.

train=train.telco[,imp.var]

test=test.telco[,imp.var]

train$churn=train.telco$Churn

test$churn=test.telco$Churn

rm(test.telco,train.telco)

Naïve Bayes Classifier

We will start with a model, which despite being quite simple (and assuming

that the variables are independent of each other), usually provides quite good

results.

To do this we will use functions found in the e1071 library

library(e1071)

m01=naiveBayes(churn~., data = train)

m01pred=predict(m01, type = "raw", test)[,2]

m01pred_F=as.factor(round(m01pred))

levels(m01pred_F)=c("No","Yes")

Confusion matrix

 The confusion matrix is a fundamental tool in classification problems, and

even more crucial when dealing with unbalanced data. Therefore, indicators

other than accuracy are sought.

 Let's take an example. There is a disease that only affects 1% of the

population, and for this reason we created a model that tries to predict whether

an individual will have it or not. The model is bad and whatever the patient is, it

tells us that the patient is not going to have the disease and it is right 99% of

the time because only 1% will have the disease. It would be wrong to say that

this is a good model simply by looking at the success rate.

 Most algorithms calculate the accuracy of models based on the percentage of

correctly classified observations. The confusion matrix also reports the number

of incorrectly classified instances and in what class they occurred. If the

importance of the classes is different, as is the case in fraud detection, knowing

where the classification errors are occurring will allow decisions to be made

that are more appropriate to the solution of the problem.

 One way to obtain a large number of these indicators is with the

functionconfusionMatrix() integrated in the Caret library.

library(caret)

cm01=confusionMatrix(table(test$churn,m01pred_F),positive = "Yes")

 m01_F
 No Yes
 No 697 328
 Yes 70 311

 Accuracy : 0.7169
 95% CI : (0.6926, 0.7404)
 No Information Rate : 0.5455
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.4092

 Mcnemar's Test P-Value : < 2.2e-16

 Sensitivity : 0.4867
 Specificity : 0.9087
 Pos Pred Value : 0.8163
 Neg Pred Value : 0.6800
 Prevalence : 0.4545
 Detection Rate : 0.2212
 Detection Prevalence : 0.2710
 Balanced Accuracy : 0.6977

The meaning of these indicators is detailed below:

 Prediction

Real

 Negative Positive

Negative True negative (TN) False positive (FP)

Positive False negative (FN) True positive (TP)

Other measures can be extracted from the confusion matrix.

- Accuracy (Accuracy): (TP + TN) / (TP + TN + FP + FN)

- Error rate: 1- Accuracy = (FP + FN) / (TP + TN + FP + FN)

- No Information Rate: (TP + FP) / (TP + TN + FP + FN) In two-by-two

confounding matrices it is equal to the Prevalence.

- Sensitivity: TP / (TP + FP)

- Specificity: TN / (TN + FN)

- True Positive Rate (Pos. Pred. Value): TP / (TP + FN) Percentage of positive

instances correctly classified.

- True negative rate (Neg. Pred. Value): TN / (TN + FP). Percentage of negative

instances correctly classified.

- False Positive Rate: FP/ (FP + TN) Percentage of incorrectly classified negative

instances.

- False Negative Rate: FN / (TP + FN) Percentage of incorrectly classified

positive instances.

The sum of the True Positive Rate and False Negative Rate will result in 1.

Similarly, the True Negative Rate and False Positive Rate, the addition of them

should be equal to one.

- Detection Rate: TP / (TP + TN + FP + FN)

 Cohen's Kappa statistic is an index that compares the overall accuracy of the

model with the accuracy that would be obtained if the model were to randomly

rank the instances. Kappa is defined as the difference between the overall

precision and the expected precision divided by 1 minus the expected precision.

A value of +1 would indicate total match (the ideal value), values of 0 indicate

that the match is the same as can be expected by chance and values of -1

would express total disagreement.

It can be obtained by using the following formula:

𝐾𝑎𝑝𝑝𝑎 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 0,5

1 − 0,5

Area under the ROC curve.

Another measure that gives us an idea of the quality of a sorter is the Area

under the curve AUC. To obtain this measure, simply draw the ROC curve

(Receiver Operating Characteristic) and compute its area under the curve.

To understand this curve, it is necessary to understand the concept of

threshold.

Generally, the most used techniques offer us a model that returns a

probabilistic output. That is, it offers us a probability and the classification is

made in function of that given probability. In our case, the models return a

probability of abandonment of the client. If that probability is higher than 0.5,

we say that the client will leave the company and if not, that the client will not.

This value of 0.5 is what we call threshold and can be varied according to our

interests. As we vary it, the classification will be different, and the measures of

TP rate and FP rate will also vary. The roc curve is not more than a

representation of the TP rate versus the FP rate for all the values of the

threshold between 0 and 1.

The closer the value of AUC is to 1, the better the quality of the classifier.

To display the curve and obtain its value we create the following function:

auc.trees=function(modelpred,test){

 pred=prediction(modelpred, test)

 perf=performance(pred, "tpr", "fpr")

 plot(perf, lwd=2, colorize=TRUE, main="ROC Curve")

 lines(x=c(0,1), y=c(0,1), col="red", lwd=1, lty=3)

 a=round(performance(pred, measure = "auc")@y.values[[1]],4)

 return (a)

}

Once the function is defined, we call it indicating the correct arguments

auc01=auc.trees(m01pred,test$churn)

The value we obtain corresponding to the AUC is 0.8234 and the representation

of the ROC curve is as follows.

> auc01
[1] 0.8234

Decision tree

 Next, we will use the decision tree, this method is the basis of all

methodologies that use decision trees. It obtains quite good results.

 The method consists of creating a binary decision tree in which each node

corresponds to an input variable and each branch to the values that this

variable can take. This allows us to decide about the nature of the dependent

variable, knowing the rest of the dependent variables. You can assign a

probability to each of the branches and also obtain the prediction in the form

of a probability.

"A tree is built by splitting the source set, constituting the root node of the tree,

into subsets which constitute the successor children. The splitting is based on a

set of splitting rules based on classification features. This process is repeated

on each derived subset in a recursive manner called recursive partitioning. The

recursion is completed when the subset at a node has all the same values of

the target variable, or when splitting no longer adds value to the predictions"

 The problem with these trees is that they often incur a phenomenon called

overfitting. This consists in that the tree that is created, is too faithful to the

data with which it has been taught. That is to say, branches are created so that

they describe particularities of the training data but then this error leads us to

obtain worse results with the test data.

One way to avoid this is by doing a tree pruning process. That is, removing the

last branches that give us a major test error.

To do this we use what we call cross-validation.

It consists of making several iterations using different training and test data

within the same sample.

By making several iterations varying the training data (and also the depth of

the tree), we get to know which is the optimal depth and thus it enables us to

build the tree that gives us better results.

The called libraries include the option to use this method:

library(caret)

library(rpart)

library(rpart.plot)

trainctrl=trainControl(method = "repeatedcv", number = 5, repeats = 3)

m02=train(churn~., data=train, method="rpart", trControl=trainctrl)

We visualize the tree we have built:

m002<-m02$finalModel

rpart.plot(m002, type = 2, fallen.leaves = T)

We use the tree that we have trained to make the desired predictions, and then

calculate the confusion matrix and the AUC that we defined in the previous

section.

m02pred=predict(m02, type = "prob", test)[,2]

m02pred_F=as.factor(round(m02pred))

levels(m02pred_F)=c("No","Yes")

cm02=confusionMatrix(table(test$churn, m02pred_F),positive = "Yes")

 m02pred_F
 No Yes
 No 952 73
 Yes 207 174

 Accuracy : 0.8009
 95% CI : (0.779, 0.8214)
 No Information Rate : 0.8243
 P-Value [Acc > NIR] : 0.9897

 Kappa : 0.4334

 Mcnemar's Test P-Value : 1.891e-15

 Sensitivity : 0.7045
 Specificity : 0.8214
 Pos Pred Value : 0.4567
 Neg Pred Value : 0.9288
 Prevalence : 0.1757
 Detection Rate : 0.1238
 Detection Prevalence : 0.2710
 Balanced Accuracy : 0.7629

> auc02
[1] 0.7218

auc02=auc.trees(m02pred,test$churn)

We see that the precession increases significantly to 80.01%, however, the AUC

decreases.

Bagging

 This technique, also known as Bootstrap aggregation, consists of applying the

Bootstrap procedure to a machine learning algorithm, generally decision trees.

The bootstrap procedure basically consists of creating sub-samples,

approximately 60% of the size of the learning data. These sub-samples (bags)

are made up of randomly selected observations with replacement.

A tree is trained for each of these bags. This procedure is repeated hundreds of

times so we may obtain an output of hundreds of trees that will constitute our

model.

When using them, each tree will predict an output. We will keep as the

classification prediction, the class predicted by most of the tress.

We implement this procedure through the following code:

library(randomForest)

m03=train(churn~., data=train, method="rf",tuneGrid=expand.grid(.mtry=16),

trControl=trainctrl)

m03pred=predict(m03, type = "prob", test)[,2]

m03pred_F=as.factor(round(m03pred))

levels(m03pred_F)=c("No","Yes")

cm03=confusionMatrix(table(test$churn,m03pred_F),positive = "Yes")

auc03=auc.trees(m03pred,test$churn)

As a consequence, we get the following results:

 m03pred_F
 No Yes
 No 925 100
 Yes 184 197

 Accuracy : 0.798
 95% CI : (0.7761, 0.8187)
 No Information Rate : 0.7888
 P-Value [Acc > NIR] : 0.2077

 Kappa : 0.4507

 Mcnemar's Test P-Value : 8.43e-07

 Sensitivity : 0.6633
 Specificity : 0.8341
 Pos Pred Value : 0.5171
 Neg Pred Value : 0.9024
 Prevalence : 0.2112
 Detection Rate : 0.1401
 Detection Prevalence : 0.2710

 Balanced Accuracy : 0.7487

> auc03
[1] 0.8322

Random Forest

The Random Forest's methodology is very similar to bagging. We also have

hundreds of randomly constituted sub-samples and for each one we build a

tree. This time the trees will not be constructed considering all the independent

variables. A certain number of variables will be considered for each tree, which

will be chosen at random as well.

The number of recommended variables to consider in classification is the

square root of the number of total independent variables. We have 16

independent variables so we will consider Sqrt(16)=4 variables.

m04=train(churn~., data=train, method="rf", tuneGrid=expand.grid(.mtry=4),

trControl=trainctrl)

m04pred=predict(m04, type = "prob", test)[,2]

m04pred_F=as.factor(round(m04pred))

levels(m04pred_F)=c("No","Yes")

cm04=confusionMatrix(table(test$churn,m04pred_F),positive = "Yes")

auc04=auc.trees(m04pred,test$churn)

 m04pred_F
 No Yes
 No 943 82
 Yes 188 193

 Accuracy : 0.808
 95% CI : (0.7864, 0.8283)
 No Information Rate : 0.8044
 P-Value [Acc > NIR] : 0.3835

 Kappa : 0.4674

 Mcnemar's Test P-Value : 1.658e-10

 Sensitivity : 0.7018
 Specificity : 0.8338
 Pos Pred Value : 0.5066
 Neg Pred Value : 0.9200
 Prevalence : 0.1956
 Detection Rate : 0.1373
 Detection Prevalence : 0.2710
 Balanced Accuracy : 0.7678

> auc04
[1] 0.84

The fact of having created a random forest allows us to visualize the

importance of each one of the variables quickly.

plot(varImp(m04), main="Random Forest: Variable Importance")

We verify that these results are quite similar to those offered by the Boruta

algorithm

Xgboost

This algorithm is based on a general methodology called boosting. Like

bagging and Random Forest, it uses a multitude of decision trees. The method

consists of creating a decision tree and once created you obtain the residual

data of the created tree. When we speak of residual data, we refer to the data

resulting from the difference between the original data and the output of the

tree. This process will be carried out iteratively and will allow us to go deeper

into the observations where more errors occur, that can explain its great

performance.

library(xgboost)

library(plyr)

trainctrl_2=trainControl(method = "repeatedcv", number = 5, repeats = 3,classProbs =

TRUE,allowParallel = TRUE)

m05=train(churn~., data=train, method="xgbTree",trControl=trainctrl_2,verbose=T)

m05pred=predict(m05, type = "prob", test)[,2]

m05pred_F=as.factor(round(m05pred))

levels(m05pred_F)<-c("No","Yes")

cm05=confusionMatrix(table(test$churn,m05pred_F),positive = "Yes")

 m05pred_F
 No Yes
 No 933 92
 Yes 176 205

 Accuracy : 0.8094
 95% CI : (0.7879, 0.8296)
 No Information Rate : 0.7888
 P-Value [Acc > NIR] : 0.03016

 Kappa : 0.4817

 Mcnemar's Test P-Value : 3.977e-07

 Sensitivity : 0.6902
 Specificity : 0.8413
 Pos Pred Value : 0.5381
 Neg Pred Value : 0.9102
 Prevalence : 0.2112
 Detection Rate : 0.1458
 Detection Prevalence : 0.2710
 Balanced Accuracy : 0.7658

> auc05
[1] 0.8578

Support Vector Machine linear

 An SVM is a model that represents the sample points in a space, separating

the classes into 2 spaces as wide as possible by means of a defined separation

hyperplane.

When the new samples are placed in correspondence with this model,

depending on the spaces to which they belong, they can be classified in one or

the other class.

Ideally, the SVM-based model should produce a hyperplane that completely

separates the data of the studied universe into two categories. However, a

perfect separation is not always possible, and if it is, the model output cannot

be generalized to other data.

In order to allow some flexibility, the MSAs handle a C (cost) parameter that

controls the compensation between training errors and rigid margins, thus

creating a margin that allows for some errors in the classification while

penalizing them.

 To find out which cost gives the best results, we use the tune() function

tune.out06=tune(svm,churn~.,data=train,kernel="linear",ranges=list(cost=c(0.001, 0.01, 0.1,

1,5,10)))

These operations are computationally time consuming, even more when the

data frame has a high number of variables and observations, as in our case.

The execution of this calculation has come to take times that are close to the

hour.

bestmod06=tune.out06$best.model

bestcost06=tune.out06$best.model$cost

We note that the best cost corresponds to 0.01

Once the optimal cost is known, we create a model using the following code:

m06=svm(churn~., data=train, kernel="linear", cost=bestcost06,scale=FALSE)

m06pred=predict(m06,newdata=test,decision.values = T)

cm06=confusionMatrix(table(test$churn,m06pred),positive = "Yes")

auc06=auc.svm(m06pred,test$churn)

 m06pred
 No Yes
 No 720 305
 Yes 108 273

 Accuracy : 0.7063
 95% CI : (0.6817, 0.73)
 No Information Rate : 0.5889
 P-Value [Acc > NIR] : < 2.2e-16

 Kappa : 0.3604

 Mcnemar's Test P-Value : < 2.2e-16

 Sensitivity : 0.4723
 Specificity : 0.8696
 Pos Pred Value : 0.7165
 Neg Pred Value : 0.7024
 Prevalence : 0.4111
 Detection Rate : 0.1942
 Detection Prevalence : 0.2710
 Balanced Accuracy : 0.6709

> auc06
[1] 0.7666

Support Vector Machine radial

 The simplest way to perform the separation is by means of a straight line, a

straight map or an N-dimensional hyperplane.

Unfortunately, the universes to be studied are not usually presented in idyllic

two-dimensional cases as in the previous example, but an SVM algorithm must

deal with non-linear separation curves since the sets cannot be linearly

separated. Due to the computational limitations of linear learning machines,

they cannot be used in most real-world applications.

Kernel functions offer a solution to this problem by projecting the information

into a larger feature space which increases the computational capacity of the

linear learning machine.

In this case a radial kernel, in which the model will have to be learned having

previously stipulated two parameters, one of cost as in the previous example

and another one that we call gamma.

To know its optimal value, we use again the tune() function.

tune.out07=tune(svm, churn~., data=train, kernel="radial",

ranges=list(cost=c(0.1,1,10),gamma=c(0.5,1,2,3,4)))

bestmod07=tune.out07$best.model

bestcost07=tune.out07$best.model$cost

bestgamma07=tune.out07$best.model$gamma

m07=svm(churn~., data=train, kernel="radial", gamma=bestgamma07, cost=bestcost07)

m07pred=predict(m07,newdata=test,decision.values = T)

cm07=confusionMatrix(table(test$churn,m07pred),positive = "Yes")

auc07=auc.svm(m07pred,test$churn)

 m07pred
 No Yes
 No 920 105
 Yes 174 207

 Accuracy : 0.8016
 95% CI : (0.7797, 0.8221)
 No Information Rate : 0.7781
 P-Value [Acc > NIR] : 0.01756

 Kappa : 0.4675

 Mcnemar's Test P-Value : 4.68e-05

 Sensitivity : 0.6635
 Specificity : 0.8410
 Pos Pred Value : 0.5433
 Neg Pred Value : 0.8976
 Prevalence : 0.2219
 Detection Rate : 0.1472
 Detection Prevalence : 0.2710
 Balanced Accuracy : 0.7522

> auc07
[1] 0.7914

We clearly see that almost all indicators are favoured by this change to the

radial kernel.

 Once the indicators of the models presented have been calculated, it is time to

compare them. To do so, we have put them all together in a comparative table.

We select the indicators that are most relevant to our research.

In this case they are the following:

ACCURACY

Accuracy=c(cm01$overall[1],cm02$overall[1],cm03$overall[1],cm04$overall[1],cm05$overall[

1],cm06$overall[1],cm07$overall[1])

KAPPA

Kappa=c(cm01$overall[2],cm02$overall[2],cm03$overall[2],cm04$overall[2],cm05$overall[2],c

m06$overall[2],cm07$overall[2])

TRUEPOSIVES

TP=c(cm01$byClass[3],cm02$byClass[3],cm03$byClass[3],cm04$byClass[3],cm05$byClass[3],c

m06$byClass[3],cm07$byClass[3])

TRUE NEGATIVES

TN=c(cm01$byClass[4],cm02$byClass[4],cm03$byClass[4],cm04$byClass[4],cm05$byClass[4],c

m06$byClass[4],cm07$byClass[4])

#AREA UNDER THE CURVE

AUC=c(auc01,auc02,auc03,auc04,auc05,auc06,auc07)

EVALUATION MODELS MATRIX

Evaluation1=data.frame(cbind(Accuracy, Kappa, TP, TN, AUC))

row.names(Evaluation1)=c("Naive Bayes classifier","Single tree", "Bagging", "Random

Forest","XGboost", "SVM linear","SVM radial")

Evaluation1

 Accuracy Kappa TP TN AUC
NBC 0.7169275 0.4092200 0.8162730 0.6800000 0.8234
Single tree 0.8008535 0.4333534 0.4566929 0.9287805 0.7218
Bagging 0.7980085 0.4507163 0.5170604 0.9024390 0.8322
RF 0.8079659 0.4674138 0.5065617 0.9200000 0.8400
XGboost 0.8093883 0.4816618 0.5380577 0.9102439 0.8578
SVM linear 0.7062589 0.3604290 0.7165354 0.7024390 0.7666
SVM radial 0.8015647 0.4674633 0.5433071 0.8975610 0.7914

We note that there has been one model that has stood out from the rest and

that is the XGboost. It is easy to reach these conclusions since it presents the

best results in almost each of the measures. The Random Forest algorithm has

also obtained very good results, since all its measurements show values very

similar to those of the Xgboost, but always a few hundredths below.

As a third option we have the model corresponding to the radial SVM that also

obtains decent results in most of the indicators.

We also can note that NBC is the one which detects more positives but does not

do a good detection of the negatives.

Cost sensitive classification

 The indicators presented in the previous cases can give us an idea of the

quality of the model in general. But one of the key elements to optimize our

model as much as possible is to establish (or know) the cost of false

predictions.

Let's take an example. We are trying to build a model that will detect early in

time if a patient is going to have cancer. It would make no sense to build a

model that considers a false positive and a false negative to be equally

important. Common sense tells us that we will have to favour the number of

detections of patients with cancer, even if this means reducing the values of the

indicators described above.

 Therefore, we will have to work on quantifying the average cost of each of the

options. Obviously, if the cost of retaining a client is higher than the cost of

attracting a new one, there will be no economic incentive to detect customer

leakage.

 In our case, there will be no cost associated with identifying a client that has

been correctly classified, since the model is simply describing reality, whether it

is good or bad.

However, it will generate a high cost for not being able to detect if a client is

going to leave the company. The client would not receive any offer to retain him

and the income he has brought will be gone.

There is also a cost in predicting that a client is going to leave the company

when in fact he would not, because conditions would have been improved when

we could have kept the client with the same conditions.

 In the case of the telecommunications sector, the cost associated with

acquiring a new customer is much higher than the cost of retaining that

customer. It is estimated that it is between 5 and 15 times more expensive to

acquire a customer than to retain one. This means that the cost of an FN is

between 5 and 15 times more expensive than that of a FP. To simplify we will

take the value of 5 and with it we will build the cost matrix.

The cost matrix is similar to the confusion matrix. The objective is to penalize

errors (false positives and false negatives) versus successes (true negatives

and true positives).

 Prediction

Real

 Negative Positive

Negative 0 C(FP)

Positive C(FN) 0

In this case our cost matrix will be as follows:

𝑐𝑜𝑠𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 = (
0 1
5 0

)

The formula that will allow us to calculate the cost will be the following:

𝑐𝑜𝑠𝑡 = 5𝐶(𝐹𝑁) + 𝐶(𝐹𝑃)

 This cost is a relative cost, the value that represents only an indicator to

compare the models. If we wanted the total cost to have a real meaning, we

could weigh the customers with a value. To calculate this cost, we would have

to analyse each false negative and false positive individually and weigh the cost

with the value of each client.

We are content to consider that all customers have the same value.

To calculate the cost in R from the confusion matrix we create the following

function:

cost=function(cm){

 mat=cm$table

 c=(5*mat[2,1]+mat[1,2])

 return(c)

}

Applying the function to the previous models we obtain:

We realize that the model that would have maximized the company's profits

would no longer have been the XGBoost, but the Naive Bayes Classifier.

 As we discussed above, tree-based models also offer us a probabilistic output.

In the following sections we will try to get better results at cost levels by

modifying the threshold.

Random Forest

 The objective therefore is to find the threshold that optimizes the results in

terms of costs. To do this, we draw the evolution of the cost according to the

threshold. It should be noted that the information from the test data is being

graphed.

 First, we create the model as before. We can actually recycle the one obtained

in the previous section.

m09=train(churn~., data=train, method="rf",tuneGrid=expand.grid(.mtry=4),

trControl=trainctrl)

m09pred=predict(m09, type = "prob", test)[,2]

Now, we contrast cost and threshold, also called cuttoff:

m09_pred<-prediction(m09pred, test$churn)

m09_perf=performance(m09_pred,"cost","cutoff",cost.fp=1,cost.fn=5)

plot(m09_perf, lwd=2, main="Rf Cost")

 Accuracy Kappa TP TN AUC Cost
NBC 0.7169275 0.4092200 0.8162730 0.6800000 0.8234 678
Single tree 0.8008535 0.4333534 0.4566929 0.9287805 0.7218 1108
Bagging 0.7980085 0.4507163 0.5170604 0.9024390 0.8322 1020
RF 0.8079659 0.4674138 0.5065617 0.9200000 0.8400 1022
XGboost 0.8093883 0.4816618 0.5380577 0.9102439 0.8578 972
SVM linear 0.7062589 0.3604290 0.7165354 0.7024390 0.7666 845
SVM radial 0.8015647 0.4674633 0.5433071 0.8975610 0.7914 975

df=data.frame(cut = m09_perf@x.values[[1]], cost = m09_perf@y.values[[1]])

df[which.min(df$cost), "cut"]

[1] 0.132

We see that the threshold value for which the cost would have been lower is

0.132.

We cannot know this value in advance, since we are looking at it in the test data

that we don't have available when we build the model.

To calculate the optimal threshold based on the learning data, we create a

function that, through a cross validation process, evaluates the optimal

threshold in the different data packages and returns the average value.

 optimalt.rf=function (training){

 yourdata=training[sample(nrow(training)),]

 folds <- cut(seq(1,nrow(yourdata)),breaks=5,labels=FALSE)

 i=0

 t=0

 for(i in 1:5){

 testIndexes=which(folds==i,arr.ind=TRUE)

 testData=yourdata[testIndexes,]

 trainData=yourdata[-testIndexes,]

 model=train(churn~., data=trainData, method="rf",tuneGrid=expand.grid(.mtry=4))

 model_pred=predict(model, type = "prob", testData)[,2]

 m_pred=prediction(model_pred, testData$churn)

 m_perf=performance(m_pred,"cost","cutoff",cost.fp=1,cost.fn=5)

 df=data.frame(cut = m_perf@x.values[[1]], cost = m_perf@y.values[[1]])

 t=t+df[which.min(df$cost), "cut"]

 }

 return (t/5)

}

Once this function is defined, we continue with the code that allows us to

visualize the results of the new model.

t.rf=optimalt.rf(train)

m09pred_F=ifelse(m09pred < t.rf ,"No","Yes")

cm09=confusionMatrix(table(test$churn,m09pred_F),positive = "Yes")

auc09=auc.trees(m09pred,test$churn)

cost09=cost(cm09)

In this section we will represent the results directly in the comparison table.

Decision tree

The procedure for the single tree is very similar to the previous one. What we

do is to simply change the learning method of the model.

optimalt.tree=function (training){

 yourdata=training[sample(nrow(training)),]

 folds <- cut(seq(1,nrow(yourdata)),breaks=5,labels=FALSE)

 i=0

 t=0

 for(i in 1:5){

 testIndexes=which(folds==i,arr.ind=TRUE)

 testData=yourdata[testIndexes,]

 trainData=yourdata[-testIndexes,]

 model=train(churn~., data=trainData, method="rpart", trControl=trainctrl)

 model_pred=predict(model, type = "prob", testData)[,2]

 m_pred<-prediction(model_pred, testData$churn)

 m_perf=performance(m_pred,"cost","cutoff",cost.fp=1,cost.fn=5)

 df <- data.frame(cut = m_perf@x.values[[1]], cost = m_perf@y.values[[1]])

 t=t+df[which.min(df$cost), "cut"]

 }

 return (t/5)

}

To obtain the results, we enter the corresponding code with a slight

modification. This time we establish a minimum threshold value that will

correspond to the minimum probability offered by the tree. This is done

because it is likely that the threshold stays below the last value of probabilities

offered by the tree. In this case the model will only predict one class and it will

be a failure.

m08=train(churn~., data=train, method="rpart", trControl=trainctrl)

m08pred=predict(m08,type = "prob", test)[,2]

t.tree=optimalt.tree(train)

if(min(m08pred)>t.tree){t.tree=min(m18pred)}

m08pred_F=ifelse(m08pred <= t.tree ,"No","Yes")

cm08=confusionMatrix(table(test$churn, m08pred_F),positive = "Yes")

auc08=auc.trees(m08pred,test$churn)

cost08=cost(cm08)

Xgboost

We performed the same process with this algorithm, which had previously given

us the best results.

optimalt.Xgb=function (training){

 yourdata=training[sample(nrow(training)),]

 folds <- cut(seq(1,nrow(yourdata)),breaks=5,labels=FALSE)

 i=0

 t=0

 for(i in 1:5){

 testIndexes=which(folds==i,arr.ind=TRUE)

 testData=yourdata[testIndexes,]

 trainData=yourdata[-testIndexes,]

 model=train(churn~., data=trainData, method="xgbTree",trControl=trainctrl_2,verbose=T)

 model_pred=predict(model, type = "prob", testData)[,2]

 m_pred<-prediction(model_pred, testData$churn)

 m_perf=performance(m_pred,"cost","cutoff",cost.fp=1,cost.fn=5)

 df <- data.frame(cut = m_perf@x.values[[1]], cost = m_perf@y.values[[1]])

 t=t+df[which.min(df$cost), "cut"]

 }

 return (t/5)

}

m10=train(churn~., data=train, method="xgbTree",trControl=trainctrl_2,verbose=T)

m10pred=predict(m10, type = "prob", test)[,2]

t.xgb=optimalt.Xgb(train)

m10pred_F=ifelse(m10pred < t.xgb ,"No","Yes")

cm10=confusionMatrix(table(test$churn,m10pred_F),positive = "Yes")

auc10=auc.trees(m10pred,test$churn)

cost10=cost(cm10)

Once this has been completed, we can begin to evaluate the results of the new

models.

Accuracy=c(cm01$overall[1],cm02$overall[1],cm03$overall[1],cm04$overall[1],cm05$overall[

1],cm06$overall[1],cm07$overall[1],cm08$overall[1],cm09$overall[1],cm10$overall[1])

Kappa=c(cm01$overall[2],cm02$overall[2],cm03$overall[2],cm04$overall[2],cm05$overall[2],c

m06$overall[2],cm07$overall[2],cm08$overall[2],cm09$overall[2],cm10$overall[2])

TP=c(cm01$byClass[3],cm02$byClass[3],cm03$byClass[3],cm04$byClass[3],cm05$byClass[3],c

m06$byClass[3],cm07$byClass[3],cm08$byClass[3],cm09$byClass[3],cm10$byClass[3])

TN=c(cm01$byClass[4],cm02$byClass[4],cm03$byClass[4],cm04$byClass[4],cm05$byClass[4],c

m06$byClass[4],cm07$byClass[4],cm08$byClass[4],cm09$byClass[4],cm10$byClass[4])

AUC=c(auc01,auc02,auc03,auc04,auc05,auc06,auc07,auc08,auc09,auc10)

Cost=c(cost01,cost02,cost03,cost04,cost05,cost06,cost07,cost08,cost09,cost10)

Evaluation2=data.frame(cbind(Accuracy, Kappa, TP, TN, AUC,Cost))

row.names(Evaluation2)=c("NBC","Single tree", "Bagging", "RF","XGboost", "SVM lin","SVM

rad","Tree(cost)","RF(cost)","XGboost(cost)")

Evaluation2

We see that the algorithms have managed to reduce the cost of the NBC model

significantly. This has been done reducing the TN rate in order to favour the TP

rate. Is easy to understand that the cost will be reduce because FP are more

expensive than FN.

We see that the AUC increases slightly but this is due to the randomness of the

new model. If we had not generated other models the AUC would have not

change since we have simply modified the threshold.

Classification in synthetic balanced data

When you have a dependent variable with two categories where one is much

larger than the other, the data is said to be unbalanced. As we have

commented before this makes the algorithms work worse tending to favour the

majority class. This is due to different reasons:

1. The use of measures of overall performance to drive the learning process,

such as accuracy rate.

 Accuracy Kappa TP TN AUC Cost
NBC 0.7169275 0.4092200 0.8162730 0.6800000 0.8234 678
Single tree 0.8008535 0.4333534 0.4566929 0.9287805 0.7218 1108
Bagging 0.7980085 0.4507163 0.5170604 0.9024390 0.8322 1020
RF 0.8079659 0.4674138 0.5065617 0.9200000 0.8400 1022
XGboost 0.8093883 0.4816618 0.5380577 0.9102439 0.8578 972
SVM linear 0.7062589 0.3604290 0.7165354 0.7024390 0.7666 845
SVM radial 0.8015647 0.4674633 0.5433071 0.8975610 0.7914 975
Tree(cost) 0.7041252 0.3226309 0.6220472 0.7346341 0.7218 992
RF(cost) 0.6906117 0.3872122 0.8713911 0.6234146 0.8426 631
XGboost(cost) 0.6920341 0.4023693 0.9160105 0.6087805 0.8589 561

2. Classification rules that predict that the minority class is often highly

specialized, and their coverage is very low, therefore they are discarded in

favour of more general rules. If modelling is intended to avoid overfitting, it will

tend to generalise.

3. Very small groupings of the minority class can be identified as noise, and

therefore are often wrongly discarded by the classifier.

 To avoid the problem of unbalance, different methods are available to balance

the data. The initial idea would be to modify the size of the original database to

obtain a new training set where the dependent variable is better balanced.

 There are three main categories to solve the problem of unbalanced data:

 1. Cost-sensitive learning (already used): Initially, all errors have the same

weighting, but with this approach, different costs are assigned to the different

errors, modifying the objective of the modelling. The classification error is no

longer the variable to be minimized, but the cost associated with the

classification. In the previous section we have used it with real costs, but it is

also possible to establish a cost that compensates the imbalance of the classes.

 2. Sampling of the data: This solution aims to balance the classes of a

variable by adding or removing instances through a predetermined procedure.

In turn, two subcategories can be differentiated:

a. Subsampling and Oversampling: remove or add instances to balance

the classes.

b. Generation of synthetic data: create, based on the available data,

instances of the minority class that are very similar to the data, but different.

3. Modification of the algorithm: This procedure would be oriented to adapt

the learning method so that it is better tuned to the unbalanced class. This

solution would imply the internal modification of the algorithms to set a target

other than the general accuracy of the model. This methodology is not

developed and applied in this paper.

We will use a technique called SMOTE (Synthetic Minority Oversampling

Technique)

With this technique, the data set is balanced by generating artificial data, so it

would be a form of oversampling but with better conditions. This technique

generates a random set of minority class observations.

Bootstrapping and KNN (Nearest K-Neighbours algorithm) are used to generate

the random set.

 For more information on the technique used and other similar techniques,

please refer to the following page:

https://www.datasciencecentral.com/profiles/blogs/handling-imbalanced-data-

sets-in-supervised-learning-using-family

We are therefore preparing to enlarge the set of training data available to us.

library(DMwR)

library(grid)

train_smote=SMOTE(churn~., train, perc.over=400, perc.under=120)

table(train_smote$churn)

 No Yes
7142 7440

 We checked on one side the number of instances generated and on the other

side that the classes were correctly balanced.

We can also make a comparison of the generated observations by keeping an

eye on the numerical variables, which is where we can best see the difference.

library(ggplot2)

ggplot(train, aes(tenure, TotalCharges)) + geom_point(aes(shape = churn, color = churn))

https://www.datasciencecentral.com/profiles/blogs/handling-imbalanced-data-sets-in-supervised-learning-using-family
https://www.datasciencecentral.com/profiles/blogs/handling-imbalanced-data-sets-in-supervised-learning-using-family

ggplot(train_smote, aes(tenure, TotalCharges)) + geom_point(aes(shape = churn, color =

churn))

Once we have the new data set created, we are going to use exactly the same

code just varying the input data. We will train the new models with different

data, but we will asses them with same test data.

After some computing time, we visualize the results to compare them with the

previous models:

 Accuracy Kappa TP TN AUC Cost
NBC 0.717 0.409 0.816 0.680 0.823 678
Single tree 0.801 0.433 0.457 0.928 0.722 1108
Bagging 0.798 0.451 0.517 0.902 0.832 1020
RF 0.808 0.467 0.507 0.920 0.840 1022
XGboost 0.809 0.482 0.538 0.910 0.859 972
SVM linear 0.706 0.360 0.717 0.702 0.767 845
SVM radial 0.802 0.467 0.543 0.898 0.791 975
Tree(cost) 0.704 0.323 0.622 0.735 0.722 992
RF(cost) 0.691 0.387 0.871 0.623 0.843 631
XGboost(cost) 0.692 0.402 0.916 0.609 0.859 561
NBC(Smote) 0.621 0.274 0.811 0.550 0.746 821
Single tree(Smote) 0.642 0.306 0.824 0.575 0.698 771
Bagging(Smote) 0.747 0.375 0.572 0.812 0.790 1008
RF(Smote) 0.784 0.424 0.522 0.881 0.800 1032
XGboost(Smote) 0.775 0.385 0.470 0.888 0.805 1125
SVM linear(Smote) 0.651 0.319 0.829 0.584 0.803 751
SVM radial(Smote) 0.651 0.240 0.614 0.664 0.702 1079
Tree(cost+Smote) 0.557 0.225 0.895 0.431 0.698 783
RF(cost+Smote) 0.646 0.321 0.856 0.568 0.800 718
XGb(cost+Smote) 0.672 0.344 0.816 0.619 0.803 741

It is easy to see that the big majority of the classifiers have performed worse

results than the ones coming from the original data. The best model in terms

of cost still being the XGboost.

We can also observe that this time the model which has performed better

results if we only look the SMOTE models is the Random Forest but still far

from the previous RF model. Another curious thing that we can observe is that

the single tree has obtained a better result in terms of cost in comparation with

the previous tree model.

Apart from this we can conclude that having created some synthetic data has

been useless in this case.

Comparations and Conclusions

Actually, we have to know that concluding with just one iteration can be

dangerous.

In some cases, when we create our model, we can have three different sources

of randomness.

For example, in the case of random forest these are sources of randomness:

1) When we separate between learning data and test data

2) When we fill the bags through the bootstrap

3) When we hide randomly the variables to learn the trees

In order to not take false conclusions due to random reasons a good way to

proceed is to calculate the mean and the variance of some iterations modifying

the learning and test data.

It can be done with a cross validation procedure but in our case, we are just

going to vary the random seed when we do the segregation between learning

and test data.

set.seed(X)

tr=sample(1:nrow(telco), round(nrow(telco)*0.8))

train.telco=telco[tr,]

test.telco=telco[-tr,]

train=train.telco[,imp.var]

test=test.telco[,imp.var]

We will do 5 iterations where X will take all the entire values between 1 and 5.

Of course, after each segregation we will compute all the code previously

presented all along the document.

Then we will compute the mean and the variance of the most important

indicators through a dynamic table in excel.

 Accuracy AUC Cost

 mean variance mean variance mean variance

NBC 0,7282 0,0130 0,8288 0,0105 665,4 47,99

Single tree 0,7935 0,0074 0,5943 0,2923 1153,6 101,34

Bagging 0,7925 0,0063 0,8293 0,0101 1030,2 46,60

RF 0,8065 0,0056 0,6916 0,3396 992,8 36,68

XGboost 0,8117 0,0018 0,8571 0,0074 952,8 15,39

SVM lin 0,7778 0,0402 0,7913 0,0295 1019,6 112,12

SVM rad 0,7997 0,0066 0,7924 0,0160 1009,6 41,23

Tree(cost) 0,7195 0,0291 0,5931 0,2917 955,2 42,74

RF(cost) 0,6752 0,0101 0,8439 0,0093 635,8 42,19

XGboost(cost) 0,6973 0,0086 0,8559 0,0078 577,6 29,86

NBC(Smote) 0,6200 0,0023 0,7411 0,0049 846,3 21,96

Single tree(Smote) 0,6195 0,0364 0,6908 0,0244 769,7 57,01

Bagging(Smote) 0,7475 0,0019 0,7888 0,0120 1003,0 17,06

RF(Smote) 0,7719 0,0104 0,7931 0,0145 1088,7 64,59

XGboost(Smote) 0,7779 0,0046 0,8052 0,0087 1113,7 28,73

SVM lin(Smote) 0,6316 0,0285 0,7783 0,0223 784,7 87,50

SVM rad(Smote) 0,6536 0,0082 0,7062 0,0108 1079,0 17,00

Tree(cost+Smote) 0,5055 0,1075 0,6908 0,0244 844,7 72,82

RF(cost+Smote) 0,6441 0,0076 0,7931 0,0145 729,7 49,54

XGb(cost+Smote) 0,6776 0,0101 0,8012 0,0045 712,0 43,49

Now we can conclude that in our case the best classifier is finally Xgboost. In

the parameters of accuracy, AUC and cost the mean of the results is the

highest. The variance value is also smaller than its first competitor which is

Random Forest. That means that the results are not only better in terms of

average but also in terms of stability.

We can also note that if we have a limited computational capacity the Naïve

Bayes Classifier can also be a good model with quite good results and with just

a few seconds of calculation time. Xgboost is taking a few minutes to finally

create the model, most of this time is taken by finding the best threshold.

In conclusion, during this work we have been able to create a model which is

able to predict successfully (in 81,17% of the cases) if a customer will leave the

company. We have also been able to modify it in order to reduce as much as

possible the cost of the churn problem. After doing that, we are able to detect

9 over 10 clients who are going to leave the company.

From these predictions, we will identify in an individual way the risk clients and

we will be able to offer some improvements in their contracts to finally get our

objective, keep them with us.

A good and practice way to manage the relation with the determined risk

clients would be in an automatic way. We could segregate those clients in

different groups depending on their needs and take different commercial offers

for each group. Unsupervised learning would be the way to get it, but we leave

for another work.

Bibliography

▪ Presentations of ML course, Eric Medvet

▪ An introduction to statistical learning, Gareth

James

▪ https://machinelearningmastery.com/

▪ https://www.rdocumentation.org/

▪ https://www.datasciencecentral.com/

▪ https://www.wikipedia.org/

https://machinelearningmastery.com/
https://www.rdocumentation.org/
https://www.wikipedia.org/

