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Abstract The development process of avionics system requiring a high level of
safety is subjected to rigorous development and verification standards. In order
to accelerate and facilitate this process, we present a testbed that uses a suite
of methods and tools to comply with aerospace standards for certification. To
illustrate the proposed methodology, we designed a Mission Management System
for Remotely Piloted Aircraft Systems (RPAS) that was deployed on a particular
run-time execution platform called XtratuM, an ARINC-653 compliant system
developed in our research group. The paper discusses the system requirements,
the software architecture, the key issues for porting designs to XtratuM, and how
to automatize this process. Results show that the proposed testbed is a good
platform for designing and qualifying avionics applications.

Keywords Software design methodologies · Software architectures · Integrated
Modular Avionics · Mission Managers · RPAS

1 Introduction

Avionics applications requiring a high level of safety and security must satisfy
rigorous development and verification standards. The process for developing ap-
plications meeting these requirements can be time-consuming and expensive. For
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this reason, it is essential to carefully analyze requirements, standards, design
methodologies, and tools from the early steps of a software project.

Software design methodologies for critical software used in avionics must follow
the guidelines and activities defined by the DO-178 standard [12]. This document
establishes the Design Assurance Level (DAL) of a given software project by ex-
amining the effects of a failure condition in the system. This level ranges from A
(catastrophic) to E (no effect). Each level has a number of objectives that must
be met in the software development, configuration, and verification processes.

Although the DO-178B/C model does not prescribe a particular design method-
ology, it clearly specifies some development and verification activities that must be
addressed to meet the certification objectives. One of the most important issues
is using a design model that allows to properly capture and specify the system re-
quirements, to design it, and to verify it. Some of the most advocated methods for
meeting the DO-178B/C objectives are the V-model and the Model-Based Design
(MBD).

One of the key issues of any software design methodology is the deployment
phase. It deals with the run-time environment and the deployment process for
porting the software prototype to this run-time environment. The run-time en-
vironment for the avionics of the last generation of aircrafts (A350, A380, B777,
B767) is based on the Integrated Modular Avionics (IMA) concept [1], which struc-
tures the system as a network of partitions. The partitioning concept provides
protection and separation among applications running on the same hardware.

In order to accelerate and facilitate the design of avionics applications running
in partitioned architectures, this paper presents a testbed where a suite of methods
and tools have been used to comply with aerospace standards for certification.
The process is illustrated through the design of a Mission Management System for
Remotely Piloted Aircraft Systems (RPAS) flying in integrated airspace, and its
deployment on a particular real-time execution environment called XtratuM [8],
based on the IMA concept and developed in our research group.

The proposed Mission Manager software architecture is inspired on the ideas
of the 3T architecture [2]. It structures Intelligent Reactive Agents into three main
layers: the deliberative layer synthesizes the goals into a list of tasks; the sequencer
layer decomposes the tasks into a set of actions; and the reactive layer executes
the actions at the pace of the events that the system monitors. The ideas of this
architecture have been redefined for the case of our Mission Manager System.

The deployment process deals with the specific details that must be taken into
account to map and to customize the software design to the specific features of
XtratuM. The main advantage of the proposed methodology is that this process
can be automatized through several steps, and the resulting source code complies
with the ARINC-653 specification for IMA architectures.

The rest of the paper is organized as follows: Section 2 motivates the use of
Integrated Modular Avionics architectures and the proposed design methodology;
Section 3 introduces the Mission Management System as an application partition-
ing example; Section 4 describes XtratuM and the development platform that will
be used in this approach; Section 5 presents the software design of the system in
study; Section 6 explains the process of porting designs to the proposed devel-
opment platform; Section 7 shows the results of the deployment process of the
Mission Management System on XtratuM; Section 8 discusses these results; and
Section 9 concludes the paper.
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2 Problem statement

The software integrated in airborne systems like an RPAS flying in integrated
airspace shall demonstrate a level of confidence in safety that complies with the
requirements of DO-178B/C. This document is the reference manual for the avion-
ics industry and is also accepted as the interface with the Certifying Authority.
It defines an explicit correlation between the severity of system hazards and the
scrutiny to which that system is subjected [11,14]. However, according to that doc-
ument, different architectural configurations could justify downgrading the DAL
of a system, thus reducing the effort of the software verification process.

One of the architectural choices that can limit the impact of failures is parti-
tioning. Partitioned architectures, called IMA architectures in aerospace, provide
protection and separation among applications from the spatial and temporal point
of views. This means that a fault in some partition does not affect the execution
of other partitions running on the same processor nor the processor time allocated
to each partition.

Another architectural choice that can help to reduce the DAL of a software
component is redundancy. Redundant configurations mitigate hazards by execut-
ing replicas of a given application in different processors. However, having a dedi-
cated hardware for each replicated application increases the system complexity. In
contrast, IMA architectures can ease redundancy using a reduced number of pro-
cessors: since software faults do not necessarily require to allocate an application
on different processors, it is possible to design a partitioned architecture where
each partition executes a replicated application. Afterwards, hardware faults can
be addressed repeating this partitioning scheme in different processors.

The support for IMA architectures is defined by ARINC-650 and ARINC-651
documents that specify general purpose hardware and software standards, and es-
pecially by ARINC-653 (Avionics Application Standard Software Interface) which
specifies the APEX (APplication/EXecutive).

Within this approach, this support is provided by XtratuM, an hypervisor for
safety-critical systems that will be further discussed in Sec. 4. XtratuM offers all
the advantages stated above, including support for different Real-Time Operat-
ing Systems (RTOS), see Fig. 1. One of them is LithOS, which is ARINC-653
compliant.

Hardware

LithOS

Partition1

XtratuM

API

HAL

LithOS

Partition2

RTOS

PartitionN

Fig. 1 Integrated Modular Avionics architectures and the XtratuM hypervisor
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Finally, this paper advocates for the use of the MBD methodology for meeting
the objectives of DO-178B/C. Basically, the development process of MBD consists
on the following steps: a) System modeling, b) Model design and implementation,
c) Model validation, and d) Deployment. The advantage is that these activities
can be easily mapped to the DO-178B/C workflow.

The rest of the paper is focused on the experience of designing, porting and
testing the prototype of an RPAS Mission Management System to an IMA ar-
chitecture. This is basically a problem of making a MBD design of the proposed
system, mapping MBD abstractions to IMA abstractions (i.e. partitions, ports,
etc.), generating the executable code from the design model, and porting it to the
IMA run-time system.

3 Application partitioning example

In this paper the previous scenario will be illustrated with the following exam-
ple: the on-board Mission Management System of an RPAS flying in integrated
airspace. We consider this system to be representative of the problem in study
as it is composed of several modules with different impact on the system safety
interacting between each other. It roughly consists on the following components:

– Navigation System: it receives inputs from the aircraft sensors to estimate the
aircraft state, including position, speed, attitude, etc.

– Mission Manager System: it is responsible for handling and flying the route
defined in a Mission Plan in an automatic manner. From a functional point of
view, it receives navigation data and Mission Plan information to compute the
reference state of the aircraft, i.e. the target value for the controlled variables.

– Flight Control System: it executes the control loops required to follow the
intended path, producing the deflections of the control surfaces (i.e. elevators,
ailerons, and rudder), and the throttle position.

– Flight Data Recorder: it stores flight data from the previous components of the
system.

A functional schema is presented in Fig. 2. It is equivalent to the Flight Man-
agement System in manned aviation but the proposed system provides a higher
level of automation. An increased level of automation is required to respond to the
lower situational awareness of the Remote Pilot and to the unreliable communica-
tion links between the Remote Pilot Station and the vehicle. The key component
is the Mission Manager System, that will be further discussed in Sec. 5.

The problem that rises from the software design point of view is how to al-
locate the previous functions into a partitioned architecture. Although this is a
design issue, some considerations are to be noted. To start with, each of these
components have a different impact on the safety of the operation (i.e. a different
Design Assurance Level according to [11]). In this way, a first proposal using a se-
rial implementation with a single partition implies that a failure at a non-critical
system such as the Flight Data Recorder would cause the complete loss of the
system functionality, what is not acceptable. The opposite is allocating each func-
tion at a different partition, but this increases the system complexity. Intermediate
solutions shall take into consideration the following requirements:
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Fig. 2 Functional diagram of the RPAS Mission Management System

a) Safety impact: the failure of a component should not cause the loss of another
one with a higher assurance level. As in the first example, the loss of the Flight
Data Recorder should not affect the remaining components.

b) Inter-dependability: different components should be allocated at the same par-
tition when they have common failure modes. For example, a failure occurring
at the Navigation System is automatically propagated to the Flight Control
System (thus they are not independent).

c) Execution environment: a function requiring specific services should be ex-
ecuted at a partition running the appropriate operating-system. For exam-
ple, critical control systems require a real-time operating-system, while multi-
tasking applications require thread/process services, etc.

From the above, application in Fig. 2 is configured using the partitioning schema
presented in Fig. 3. It contains 3 partitions: navigation and flight control functions
are allocated at the same partition as one depend on the other, while the Mission
Manager and the Flight Data Recorder are executed at individual partitions. The
reason for separating the Mission Manager and the Flight Control System is that,
although the Mission Manager relies on the Flight Control System, the latter can
work with independence of the Mission Manager, for example receiving Remote
Pilot commands (see Sec. 5.1 for the operational modes of the proposed system).

Another remark is that safety-critical systems such as the Flight Control Sys-
tem often require redundancy (e.g., see RNP AR APCH navigation specifica-
tion [5]). However, redundant configurations are out of the scope of this paper.

Hardware

XtratuM

LithOS

partition0:

Navigation &
Flight Control

LithOS

partition1:

Mission 
Manager

LithOS

partition2:

Flight Data 
Recorder

Fig. 3 Application partitioning example: RPAS Mission Management System allocating func-
tions in three partitions
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4 XtratuM and the development platform

The proposed execution environment for an application like the one presented
above is based on XtratuM, a hypervisor for real-time embedded systems devel-
oped in our research group [8]. It is based on the Integrated Modular Avionics
(IMA) concept standardized by ARINC-653, in which each partition integrates an
application and an associated guest operating system (OS) (see Fig. 1). Temporal
isolation is achieved implementing a fixed cyclic scheduler, what is consistent with
the ARINC-653 scheduling policy for partitions; while spatial isolation relies on
fixed memory allocation.

XtratuM supports several real-time operating systems; one of them is LithOS,
an ARINC-653 compliant execution environment also developed at our research
group [9]. It basically provides the services defined by the ARINC-653 specifica-
tion, i.e. partition management, process management, time management, inter-
partition and intra-partition communication, and health monitoring. Regarding
process management, LithOS implements the priority based scheduling policy for
concurrent applications.

In order to accelerate the design of aerospace applications to be executed on
top of XtratuM, we have developed a simulation environment that allows to val-
idate the functional behavior of a partitioned application from the early stages
of the design process. The proposed architecture consists on an emulator version
of XtratuM (Sec. 4.1) and the X-Plane flight simulator (Sec. 4.2). Configuration
issues for this platform are presented in Sec. 4.3.

4.1 The XtratuM hypervisor emulator

The emulation environment of XtratuM presented in [3] can be used to proto-
type partitioned applications when a board running XtratuM natively is not yet
available. It allows to debug and validate the functional behavior of a software
application running on top of a Linux system.

The XtratuM emulator, also called Separation Kernel Emulator (SKE), runs as
a Linux process that controls the execution of a set of processes that configure the
partitioned system. In the emulation environment LithOS partitions are executed
as Linux processes, where LithOS is included as an internal OS of each of these
processes.

The emulation is functionally equivalent in all aspects except time manage-
ment. The SKE process implements its own clock which provides emulated time,
not real-time, and thus cannot be validated. But on the other hand, a LithOS
partition executed as a Linux process can benefit from services provided by Linux,
such as sockets or other libraries that can be integrated into the testbench.

4.2 The flight simulator

The flight simulator is a key component since it runs the flight dynamic model of
the aircraft. We use as a demonstrator the Super Heron HF, a fixed-wing RPAS
for reconnaissance operations (see Fig. 4(a)). One of the main advantages of X-
Plane is that it provides full access to the simulator’s property tree using UDP
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(a) Super Heron HF model

(b) Remote Pilot Station interface

Fig. 4 Simulation environment in X-Plane

communication. This enables reading and writing flight simulation data, such as
the aircraft state, the control actions, etc. [13]. Furthermore, X-Plane provides the
following functions:

– World modeling: Environment information, such as terrain data, weather, other
traffics, or navaids are simulated in X-Plane and can be accessed through the
simulator’s property tree.

– Flight control functions: Most of the aircraft models in X-Plane include their
own autopilot system. This allows to delegate control tuning tasks to the de-
velopers of the aircraft model, what helps focusing on other design issues.

– Remote Pilot Station interface: Pilot commands such as the required opera-
tional mode can be introduced through the flight simulator interface, as shown
in Fig. 4(b).
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Linux

XtratuM Emulator (SKE)

LithOS

partition0:

Navigation &
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LithOS
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Flight Data 
Recorder

Flight
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LithOS*

partition3:
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Fig. 5 Partitioning schema of the RPAS Mission Management System running in the devel-
opment platfrom. Note that partition3 runs LithOS but uses Linux services for UDP commu-
nication

4.3 Configuring the development platform

As it was introduced in Sec. 4.2, having access to the simulator’s property tree
from an external application requires UDP communication. In order to do so from
an application running on top of the XtratuM’s SKE, it is necessary to design a
dedicated partition that reads and writes simulation data. This partition does not
respond to a need of providing fault isolation but to provide the required execution
environment: it exploits SKE features for using Linux services (in this case, UDP
sockets, see Sec. 4.1) that are not available on LithOS.

As a result, executing an application like the one in Fig. 3 on the development
platform here presented requires adding a supporting system partition that is in
charge of running the X-Plane interface, see Fig. 5.

Another side-effect concerns timing requirements. Tests indicate that the fre-
quency rate of UPD packets sent by X-Plane becomes unstable with frequencies
above 20 Hz. Consequently, the major frame (MAF) of control applications where
the control period is a very sensitive parameter shall be limited to that value.

Finally, and putting the focus back on the application described in Sec. 3, as
our research group is putting all the development effort on the Mission Manager
component, we have decided to rely on the Flight Control System provided by X-
Plane to validate the design. Although in previous works we presented an autopilot
testbed [17], this component strongly depends on the aircraft model; as we want
the Mission Manager to be independent on the type of vehicle, using the autopilot
provided by X-Plane simplifies the task.

The same occurs with the Navigation System. In [16] we designed a Naviga-
tion System for Performance-Based Navigation (PBN) applications. However, for
simplicity we can read the actual state of the aircraft from the simulation en-
vironment. In conclusion, besides both Navigation and Flight Control functions
can be implemented in the application code, we delegate these tasks to the flight
simulator engine. This is why partition0 in Fig. 5 is shown faded to white.

5 Mission Management System design

This section describes in more detail the design and implementation of the Mission
Management System introduced in Sec. 3. The proposed system executes auto-
matic guidance and control functions for a generic RPAS like the one in Fig. 4(a).
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Its most distinctive requirement is flying in integrated airspace. Although the pro-
cess of insertion of RPAS in integrated airspace is still under discussion [7], it is
agreed that RPAS must fit into the Air Traffic Management (ATM) system trans-
parently. This implies that RPAS need to: 1) demonstrate an Equivalent Level of
Safety (ELOS) to that of a human piloted aircraft, 2) operate in compliance with
existing aviation regulations, and 3) appear transparent to other airspace users.

All the above is hard to fulfill specially under some contingencies, like the loss
of the Command & Control (C2) link, when the RPAS is flying in a completely
autonomous way without the possibility of pilot intervention. To address this issue,
the proposed system implements the following features:

– Extended operational modes that provide a higher degree of automation (see
Sec. 5.1).

– Automatic Contingency Management to keep safety levels without human in-
tervention (see Sec. 5.1).

– Ability to fly standard (RNAV/RNP) flight procedures, allowing the operation
in controlled areas (see Sec. 5.2).

– Ability to fly extended (RPAS-specific) flight procedures, providing more flex-
ibility for defining the route in non-controlled airspace (see Sec. 5.2).

With respect to the software design –that will be further discussed in Sec. 5.3,
the application is to be executed into the development platform of Sec. 4 using a
partitioning scheme like the one in Fig. 5. This imposes fulfilling a scheduling plan
with a major frame up to 20 Hz, as it was stated in previous sections.

5.1 Operational modes

Operational modes range from completely manual to completely automatic. The
level of automation of an RPAS Mission Manager and the human factors that
come into play when decision acts must be taken by a human operator interacting
with a highly-automated system are one of the most interesting fields that are still
open and require further research [10]. The proposed Mission Management System
implements the operational modes recommended by ICAO in [6]:

– Direct control : the aircraft is controlled by the remote pilot allowing inputs
from a control stick.

– Autopilot control : it provides tactical commands of a typical autopilot system,
setting the following parameters: heading, altitude, speed and vertical speed.

– Mission control : it is the strategic operation and extends ICAO’s Waypoint
control, flying the route defined in a Mission Plan (see Sec. 5.2) in an automatic
way.

However, RPAS have introduced different and greater human factor challenges.
They arise primarily from the fact that operator and aircraft are not co-located,
and can be summarized as the loss of situational awareness, and C2 link commu-
nication problems. This is why a fourth operational mode has been introduced:

– Contingency control: it allows to execute automatic contingency procedures
triggered by an event caused by a safety-critical failure.

Contingency procedures have to be approved and certified by aviation authorities.
In addition, the required contingency procedure may be different depending on
some factors, specially the segment of flight in which the failure occurs.
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5.2 Mission Plans

A Mission Plan is the specification of the RPAS route and operations, including
the payload. In our proposal this specification also includes alternative plans to
deal with different contingencies. The Mission Plan has to be coherent with the
ICAO Flight Plan required by Air Traffic Control (ATC) when flying in controlled
areas. However, not all the phases of an RPAS mission take place entirely in con-
trolled airspace: some flight phases like take-off, en-route or landing usually go
through controlled areas, but the flight procedures of the phase where the RPAS
is in the working area performing payload specific operations, as a surveillance,
inspection, search, are not under ATC. The proposed solution to deal with this
scenario is based on specifying standard (RNAV/RNP) flight procedures using
the path terminator (PT) concept defined by the ARINC-424 standard (such as
Initial fix, Track to fix, or Course to an altitude) and using extended path termina-
tors (EPTs) to define as many new flight procedures as needed in non-controlled
areas in a flexible way. These include Dubins paths or scan circuits. They also
include RPAS specific procedures as autoland to perform an automatic final ap-
proach based on GPS. The whole set of flight procedures (including PT and EPT)
currently supported in the proposed Mission Manager can be found in [18].

5.3 Software architecture

This section describes the software architecture for the proposed Mission Manage-
ment System. As it was discussed in Sec. 4.3, the only components to be imple-
mented in the application code from those of the functional diagram in Fig. 2 are
the Mission Manager System and the Flight Data Recorder; the remaining mod-
ules (Navigation System and Flight Control System) will be executed within the
flight simulator. Furthermore, from a software design point of view the Flight Data
Recorder is not significant as it only stores flight data for flight analysis purposes,
so it will be no longer discussed.

The Mission Manager is thus the most relevant component. It performs mission
planning and guidance functions, and supports the Mission control and Contin-
gency control modes presented in Sec. 5.1. Regarding its interface, it receives the
Mission Plan from the Remote Pilot Station, and navigation data and contingency
events from the Navigation System; on the other hand, it outputs the required con-
trol modes and the target value for the control loops that are sent to the Flight
Control System interface (see Fig. 6).

The previous figure also shows the Mission Manager software architecture.
It is based on a layered architecture, called 3T, in which each layer provides a
different level of abstraction on the guidance process. Basically, its goal is to split
the Mission Plan into elementary flight legs that can be flown using traditional
control modes of an autopilot system, i.e. heading/track hold (HDG/TK), altitude
hold (ALT), vertical speed hold (VS), speed hold (SPD), etc. The three layers,
named Mission, Sequencing, and Guidance, are briefly described in the following
sections; further details can be found in [18].

The main advantage of this architecture is modularity and flexibility: having
three interacting layers with a different level of abstraction allows the designer
to introduce modifications at a reduced time and effort. For example, supporting
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Fig. 6 Mission Manager interface and its software architecture. For simplicity, Navigation
System and Flight Data Recorder are omitted in this figure

Mission Plans that are defined with another specification simply requires adapting
the Mission layer interface. In the same way, the proposed Mission Manager can be
mounted with a different Flight Control System with minor modifications on the
bottom layer. Finally, it is possible to enhance the system functionality by adding
new flight procedures at the Sequencing layer, having the other levels unchanged.

5.3.1 Mission layer

The Mission layer is at the top of the architecture and thus processes the Mission
Manager inputs. It is responsible for interpreting and sequencing the Mission Plan,
selecting the next Extended Path Terminator (EPT) to be executed and sending
it to the Sequencing layer. It also monitors the occurrence of contingency events
(safety conditions) that could jeopardize the integrity of the operation, and selects
the required operational mode from those presented in Sec. 5.1.

This layer is implemented as a state automaton where transitions are triggered
by events. Event handling is a preemptive action: a contingency event preempts the
execution of the current EPT. Up to now, we restrict our attention to the following
alerts: a) C2 link loss, b) GPS loss, c) Traffic advisory (loss of separation minima),
and d) autopilot disengagement. A specially critical situation is the prevention of
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the autopilot disengagement once C2 link loss has occurred, what would imply the
flight termination, but this aspect goes beyond the scope of this paper.

5.3.2 Sequencing layer

This level decomposes the EPT sent by the Mission layer into a sequence of lateral
(LNAV) and vertical (VNAV) maneuvers. These maneuvers describe the intended
path of the vehicle. For example, LNAV maneuvers include straight legs with
constant heading, straight legs with constant track (that is, balancing the wind
effect), or arcs with constant radius. VNAV maneuvers include level-off segments,
flight level changes at constant airspeed, flight level changes at constant vertical
speed, etc. The Sequencing layer is in charge of initiating and terminating the
execution of each of the scheduled maneuvers, and sending them to the Guidance
layer.

5.3.3 Guidance layer

The Guidance layer is responsible for activating the required control mode accord-
ing to the maneuvers that have been selected at the Sequencing layer. Furthermore,
it computes the target value of the controlled variables. This is done by using differ-
ent guidance algorithms that also depend on the type of LNAV/VNAV maneuver.
Control modes and control targets are the outputs of the Mission Manager, and
thus are sent to Flight Control System interface. The Guidance layer also provides
flight envelope protection by limiting the range of the target values according to
the aircraft performance, and thus preventing the loss of control.

6 Automatic deployment to XtratuM

The deployment process deals with the process of porting designs from a design
platform to a target execution platform. In our case the design platform uses
MBD on Matlab/Simulink and the execution platform is the XtratuM platform
described in Sec. 4. Deployment is the last step in the development phase.

MBD technologies usually provide automatic code generation from a symbolic
or high level model. This is the case of the Simulink Coder. It is able to gener-
ate C/C++ code from Simulink models, Stateflow charts, and Matlab functions.
Run-time execution targets include POSIX or ARINC-653 compliant systems, like
XtratuM. It is worth noting that the automatic coding process is not certified, but
in any case it helps the coding task very much, as long as the produced code is
understandable, well structured, and does not make use of non approved language
constructions for certification.

However, some additional issues need to be addressed before automatic code
generation can be performed. These problems are mainly related to how to map
Simulink abstractions to XtratuM abstractions and services, and to target config-
uration issues. This requires developing some tools to fully automatize the process.
In summary, the deployment process consists of the following steps:



Title Suppressed Due to Excessive Length 13

6.1 Configuring partitions

The first stage of the porting process is related to the partitioning of the applica-
tion. The goal is allocating the Simulink blocks that comprise the application to
different XtratuM partitions and configuring them. This consists of:

– Mapping Simulink abstractions to XtratuM abstractions. Allocating Simulink
blocks to different partitions is done by using Simulink Referenced models,
which allow to include one model into another by referencing it. Simulink blocks
belonging to the same partition are grouped into a same Simulink Referenced
model of the top-level diagram (see Fig. 7(a)). Moreover, Referenced models
have an interface that consists on a series of inputs, outputs and parameter
arguments, which are mapped to XtratuM sampling ports. All these tasks are
accomplished through a tool that identifies partitions, ports, and channels from
the Simulink top-level model.

– Setting the operating system for each system partition. Setting the OS is done
through a Simulink menu as shown in Fig. 7(b). Several guest real-time OSs
are available, such as LithOS, Partikle (POSIX type), or Linux. The partition
can be also configured to run without OS (bare partitions). If the selected OS
supports multitasking and it has been enabled in the Simulink Model, the user
is asked to enable it in the XtratuM application too.

6.2 Code generation

This is mainly done through the automatic code generator (Simulink Coder) that
generates C/C++ code from Matlab, Simulink, and Stateflow blocks. Even though,
there are some important aspects that need to be addressed:

– Customized generated code. Some Simulink generated code needs to be tuned
to the target partition. In the case of the SKE, this includes the calls to the
ARINC-653 services, but in general, it is related to the sampling ports cre-
ation, reading and writing mechanisms, the generation of some support files
with constants definitions, or the way POSIX threads and semaphores are used,
among others. The way to accomplish this is using the Target Language Com-
piler (TLC) to customize the generated code (see [15]). To this end, we have
created some TLC files and modified some of the ones provided by Simulink
in order to make the generated code runnable on XtratuM.

– Concurrency model. The multitasking model must match the multitasking
model of the target partition, so it has to be properly configured. Multitasking
in LithOS partitions is implemented through the ARINC-653 process concept,
whilst Linux and Partikle systems use POSIX threads. In bare applications
(those running on XtratuM directly), there is no support for concurrent exe-
cution so no multitasking calls to the OS must be generated.

– External libraries. Simulink Coder assumes that the standard C libraries are
available, and generates calls to their functions or defined constants, waiting
for the links to be resolved when compiled. Some of them are not included in
XtratuM; in theses cases, the user may have to provide the missing resources.
However, SKE can have access to all underlying Linux services (see Sec. 4.1),
so this problem can be avoided.
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(a) Referenced models and signals in the top-level diagram of a Simulink
design represent partitions and communication channels in XtratuM

(b) XtratuM configuration window (detail)

Fig. 7 Automatic deployment process using Matlab/Simulink

6.3 Configuring the XtratuM project directory

XtratuM requires a number of makefiles and configuration files which are difficult
to generate. An automatic deployment tool has been developed that automatizes
this task from the information contained in the Simulink models. In the case of
the SKE version, this tool generates the following files:

– Makefiles describing the rules to compile the source code of each system parti-
tion. Although Simulink generates its own makefile, it is barely useful because
compiling applications for XtratuM requires some particular rules [8].

– Hypervisor configuration files defining system resources, and how they are al-
located to each partition. This includes aspects like the number of partitions
and their communication ports, or cyclic plan information. In the bare metal
hypervisor version, it also includes information regarding memory allocation
that must be supplied by the user at a later stage.

– LithOS configuration files specifying the maximum number of the different
resources used by the partition (processes, events, semaphores, etc.). Each
LithOS partition has its own configuration file.

The last step of the XtratuM configuration process consists on generating the
structure of the project directory and merging there the different files that are
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required to compile the application, including source files, libraries, makefiles, and
configuration files.

7 Results

This section presents the results of the automatic deployment process of the Mis-
sion Management System presented in Sections 3 and 5 to the development plat-
form in Sec. 4. Note that flight performance of the proposed system flying in the
simulation environment is out of the scope of this paper as it was evaluated in
previous works of the authors [4, 17,18].

The starting point is the Simulink design in Fig. 7(a). It shows a periodic appli-
cation with 3 referenced models: the yellow box is the Mission Manager component,
the orange box is the Flight Data Recorder, and the blue one is the X-Plane in-
terface. Different signals communicate each model.

From that design and following the workflow explained above, the automatic
porting process detected 3 partitions and 12 communication channels. All parti-
tions are executed on top of LithOS and run at the same sampling rate. Regarding
the concurrency model, partitions allocating the Mission Manager and the Flight
Data Recorder are single-tasking, while the one executing the X-Plane interface
implements 2 processes: one reading and the other writing simulation data, re-
spectively. These results are summarized in Table 1.

After mapping Simulink abstractions to XtratuM abstractions, next step is
invoking the code generation function. In this case, it produced 78 source files
with more than 15.000 lines of code (see Table 2).

Last step concerns time management. Even though time requirements cannot
be validated using the SKE (see Sec. 4.1), it is necessary to define a cyclic plan for
the application running in the development platform. This is a design issue that
requires estimating the Worst-Case Execution Time (WCET) of each partition. In
such a complex system, guaranteeing that all possible execution paths are exercised

Table 1 Results of the interpreter function in the Mission Management System example

Partition
ID

Name Guest OS
Sampling

rate
Processes

Input/output
ports

1 mission manager LithOS 20 Hz 1 4/2
2 flight data recorder LithOS 20 Hz 1 6/0
3 xplane interface LithOS 20 Hz 2 2/4

Table 2 Results of the code generation function in the Mission Management System example
in terms of number of source files and code lines

Category Source files Code lines

Partition ID1 54 13088
Partition ID2 8 855
Partition ID3 1 618
System files 15 590

Overall 78 15151
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MAF 50 ms

CPU time (ms)

Partition ID3

Partition ID2

Partition ID1

47 490 50

Fig. 8 Proposed cyclic plan for the Mission Management System

is a difficult task that can be only proved using a profiling tool. Simulink includes
one, but execution time in Simulink is not real-time, so results cannot be exported
to XtratuM. The same occurs with the SKE.

This is why an statistical approach is followed: WCET is estimated measuring
the execution time of each partition during a hugh amount of time in different test
conditions. Although this does not guarantee that all possible paths are visited,
results are statistically valid (i.e. probability of finding a worst case is low).

The resulting cyclic plan is presented in Fig. 8. It is defined with a major frame
of 50 ms, and 3 time slots, one per partition: slots for the Mission Manager and
the Flight Data Recorder are 2 ms long and 1 ms long, respectively (equal to their
WCET), and the remaining 47 ms have been allocated to the X-Plane interface
partition.

8 Discussion

Previous results show that an application prototyped in Simulink can be ported to
an execution environment based on XtratuM using the proposed design method-
ology. The porting process can be automatized through several steps, and the
resulting application code is readable and well structured. Automatic code gen-
eration is the key feature as it avoids coding errors, thus saving time and effort.
This is specially relevant in such a complex application, with several interdepen-
dent modules and up to 15.000 lines of code.

The use of partitioned architectures in avionics systems poses two major ad-
vantages on the design. The first one is related to the certification process. Spatial
and temporal isolation allows the designer to separate critical and non-critical
functions. In the proposed example, the Mission Manager System is often listed
as a DAL C or D, while the Flight Data Recorder is a non critical function (thus
Level E). Allocating these functions in separate partitions (as in Fig. 3) allows to
reduce the number of code lines that require certification (in this case, a reduction
of 5.65% according to Table 2).

The second advantage is also related to fault isolation but from a functional
point of view. The choice of an appropriate architectural design permits that the
loss of a given partition does not affect the remaining components. Considering
the system in study, the Mission Manager is clearly the most complex system.
An exhaustive testing strategy is required, but still software errors may appear at
later stages of the design process. If this occurs during a flight, losing the Mission
Manager partition will limit the system functionality as Mission and Contingency
control modes will not be available; however, this partitioned design still allows to
fly the aircraft through the Direct and Autopilot control modes, which do not rely
on mission planning functions.
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9 Conclusion

Aerospace applications requiring a high level of integrity must satisfy rigorous de-
sign methods and verification standards. This paper has presented an approach
for developing avionics applications using Model-Based Design and porting those
designs to an ARINC-653 compliant execution platform called XtratuM. Develop-
ing and deploying a real and complex application on XtratuM is key for gaining
experience in this process. The design of an RPAS Mission Management System
has been a good benchmark for analyzing all requirements and validate XtratuM.
The paper outlines the design methodology, the software architecture, the relevant
standards for developing an avionics application, and the key issues for porting
it and testing it on an emulator version of XtratuM. The experience has shown
that the proposed design methodology and the execution environment are a good
platform for designing and qualifying avionics applications, as they allow rapid
prototyping and the design of test cases to check requirements from the early
stages of the design process. Future work is to deploy the proposed application
to an embedded platform running the native version of XtratuM, what requires
minor modifications of the porting process here presented.
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