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ABSTRACT 18 

Product inspection is essential to ensure good quality and to avoid fraud. New nectarine 19 

cultivars with similar external appearance but different physicochemical properties may be 20 

mixed in the market, causing confusion and rejection among consumers, and consequently 21 

affecting sales and prices. Hyperspectral reflectance imaging in the range of 450-1040 nm was 22 

studied as a non-destructive method to differentiate two cultivars of nectarines with a very 23 

similar appearance but different taste. Partial least squares discriminant analysis (PLS-DA) was 24 

used to develop a prediction model to distinguish intact fruits of the cultivars using pixel-wise 25 

and mean spectrum approaches, and then the model was projected onto the complete surface of 26 

fruits allowing visual inspection. The results indicated that mean spectrum of the fruit was the 27 

most accurate method, a correct discrimination rate of 94% being achieved. Wavelength 28 

selection reduced the dimensionality of the hyperspectral images using the regression 29 

coefficients of the PLS-DA model. An accuracy of 96% was obtained by using 14 optimal 30 

wavelengths, whereas colour imaging and a trained inspection panel achieved a rate of correct 31 

classification of only 57% of the fruits.  32 
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 35 

Abbreviations 36 

ANOVA = analysis of variance 37 

CCD = charge-coupled device 38 

CV = cross validation 39 

EU = European Union 40 

F = firmness 41 

LV = latent variables 42 

NIR = near infrared 43 

PC = principal component 44 

PCA = principal component analysis 45 

PLS-DA = partial least square discriminant analysis 46 

RGB = red, green, blue 47 

SC = skin colour 48 

SNV = standard normal variate  49 

TA = tritratable acidity 50 

TSS = total soluble solids 51 

VIS = visible 52 

 53 

1. INTRODUCTION 54 

The surface area of the land devoted to the planting of peaches and nectarines (Prunus 55 

persica L. Batsch) in the EU was around 232 000 ha in 2015/16, with a production of nearly 3.7 56 

million tons of fruit. Spain is the main producer with around 1.4 tons, which accounts for almost 57 

40% of the total EU peach and nectarine production (USDA, 2016). Due to the importance of 58 

nectarine (Prunus persica L. Batsch var. nucipersica) production, it is one of the fruits to which 59 

most effort has been devoted by plant breeders in recent years in order to improve agronomic 60 
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performance, and enhanced fruit appearance and quality (Reig, Alegre, Gatius & Iglesias, 61 

2013 ). This fact has resulted in a significant increase in the number of new cultivars available 62 

to fruit growers. These cultivars are similar in appearance but present different sensory 63 

properties and therefore different acceptance by the consumer (Iglesias & Echeverría, 2009). In 64 

this context, one of the most widely accepted and cultivated nectarine cultivars in Europe is 65 

‘Big Top’ due to its presentation, size, sweet taste and low acidity (Echeverría, Cantín, Ortiz, 66 

López & Graell, 2015). However, a stagnation of nectarine consumption is occurring owing to 67 

early harvesting, which leads to flavourless fruits being offered with excessive F or irregular 68 

quality (Iglesias & Echeverría, 2009). These authors also point out the lack of an adequate 69 

identification of the product in the market. The mixture of sweet and acid cultivars on the shelf 70 

could lead to consumer rejection, which in turn might affect sales and prices.  71 

The internal quality assessment of stone fruits has traditionally been performed by 72 

destructive methods, which are contaminating, time-consuming and only a few samples per 73 

batch can be monitored (Pérez-Marín, Sánchez, Paz, González-Dugo & Soriano, 2011). 74 

Moreover, there is an important lack of classification tools for differentiating cultivars that are 75 

very similar to one another. There is therefore a strong need to develop non-destructive and 76 

instantaneous methodologies that allow the correct identification of the cultivar in the 77 

postharvest stage. 78 

Hyperspectral imaging is a computer vision technique which combines conventional two-79 

dimensional digital imagery with spectroscopy to detect spectral features in regions of the 80 

electromagnetic spectrum such as the ultraviolet, NIR or infrared regions (Lorente, Aleixos,  81 

Gómez-Sanchis, Cubero, García-Navarrete, & Blasco, 2012). This technique is starting to be 82 

used as a scientific tool for quality assurance of a wide range of food including bakery products 83 

(Erkinbaev, Henderson, & Paliwal, 2017; Verdú, Vásquez, Grau, Ivorra, Sanchez & Barat, 84 

2016), meat (Feng, Makino, Oshita, & García Martín, 2017; Iqbal, Sun, & Allen, 2014), or 85 

vegetables (López-Maestresalas, Keresztes, Goodarzi, Arazuri, Jaren, & Saeys, 2016). Fruits are 86 

of major interest for the use of this technology in the food industry (Keresztes, Goodarzi & 87 

Saeys, 2016; Munera, Besada, Aleixos, Talens, Salvador, Sun, Cubero, Blasco, & 2017a). 88 
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However, due to the high importance of other fruits such as citrus or apples, few scientific 89 

studies have been done for quality control of stone fruit quality assessment using hyperspectral 90 

imaging. Herrero-Langreo, Lunadei, Lleó, Diezma and Ruiz-Altisent (2011) assessed the 91 

ripeness of peaches by using multispectral indexes. Lu and Peng (2006) assessed the F of 92 

peaches and Zhu, Lin, Nie, Wu and Chen (2016) obtained F distribution maps inside the peach 93 

pulp, while Zhang et al. (2015), Li et al. (2016), Pan et al. (2016) and Sun et al. (2017) detected 94 

different types of defects and injuries, including decay. Regarding nectarine, Huang et al. (2015) 95 

used the same technique to detect defective features and Munera et al. (2017b) to monitor its 96 

ripeness.  97 

Hyperspectral imaging generates a huge amount of redundant and frequently highly 98 

correlated data that need to be processed (Vélez-Rivera et al., 2014; Sun, Zhang, Liu & Wang, 99 

2017). To handle such an amount of data and extract the useful information, it must be assisted 100 

by chemometric methods. These methods connect chemical measurements with the essential 101 

spectral information in order to classify and/or quantify important characteristics. PCA is one of 102 

the most popular methods commonly used both to reduce the dimensionality of data and to 103 

obtain an overview of all the relevant information in the dataset. It is an unsupervised projection 104 

method which summarises data by forming new independent linear combinations of the original 105 

variables (Jolliffe, 2002).  106 

PLS-DA is a variant of PLS regression in which the independent variable is categorical, 107 

expressing the class membership of the samples. It is performed in order to sharpen the 108 

separation between groups of observations by maximising the covariance between the spectra 109 

and the independent variable such that a maximum separation among classes is obtained. 110 

Furthermore, it is commonly used to understand which variables contain the discriminating 111 

information (Lorente et al., 2012). Some examples of the use of this method include the 112 

detection of decay lesions in citrus fruits (Folch-Fortuny, Prats-Montalbán, Cubero, Blasco, & 113 

Ferrer, 2016), classification of oat kernels (Serranti, Cesare, Marini, & Bonifazi, 2013), the 114 

classification of edible fennel heads based on the harvest time (Amodio, Capotorto, Chaudhry, 115 
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& Colelli, 2017), and the examination of aflatoxin on corn kernels (Kandpal, Lee, Kim, Bae, & 116 

Cho, 2015).  117 

In this paper, we put forward a novel approach based on VIS-NIR hyperspectral imaging 118 

and chemometric methods to develop statistical predictive models capable of distinguishing 119 

cultivars of nectarines with a very similar appearance but different taste. Previous studies have 120 

been conducted to differentiate among nectarine cultivars using colour images (Font et al., 121 

2014). However, they use fruits with clearly different appearance. In this work, ‘Diamond Ray’ 122 

and ‘Big Top’ cultivars have been used due to their similar skin and flesh appearance. 123 

Furthermore, these cultivars are grown and marketed at the same time and become a problem 124 

for producers when they are mixed, either accidentally or intentionally, in the market. 125 

 In addition, using the spectral and spatial information provided by the hyperspectral 126 

images, two approaches are further investigated: the first based on the analysis of the individual 127 

spectrum of each pixel and the second based on the mean spectrum of each fruit. Finally, 128 

visualisation of the result of the classification model over the images of nectarines is proposed 129 

to establish a practical tool for nectarine classification in the packing houses.  130 

 131 

2. MATERIAL AND METHODS 132 

2.1. Fruit samples  133 

Nectarines cv. ‘Diamond Ray’ and ‘Big Top’ were selected as reference cultivars of sweet 134 

and acid cultivars, respectively (Reig, Iglesias & Echeverría, 2009), due to their similar skin and 135 

flesh appearance. These two cultivars are difficult to distinguish by the naked eye, which is 136 

problematic for producers when they are mixed in the market. 137 

Fruits were harvested in a commercial orchard in Lerida (Spain) at the commercial maturity 138 

stage in the summer season of 2016. A total of 125 fruits of each cultivar without defects or 139 

bruises were selected and stored under controlled conditions (1 ºC; 90% relative humidity) in 140 

order to avoid the further ripening of either cultivar during the experiment.  141 

 142 

2.1. Hyperspectral image acquisition and processing 143 
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The hyperspectral imaging system consisted of an industrial camera (CoolSNAP ES, 144 

Photometrics, AZ, USA), coupled to two liquid-crystal tuneable filters (Varispec VIS-07 and 145 

NIR-07, Cambridge Research & Instrumentation, Inc., MA, USA). The camera was configured 146 

to acquire images with a size of 1392 x 1040 pixels and a spatial resolution of 0.14 mm/pixel at 147 

60 different wavelengths every 10 nm, in the working spectral range of 450 nm − 1040 nm. In 148 

order to avoid problems of unfocused images due to the refraction of light across this wide 149 

spectral range, the focus was adjusted on the central band of the acquisition interval (740 nm) 150 

and the images were captured using lenses capable of covering the whole spectral range without 151 

going out of focus (Xenoplan 1.4/23, Schneider Optics, Hauppauge, NY, USA). To optimise the 152 

dynamic range of the camera, prevent saturated images and correct the spectral sensitivity of the 153 

different elements of the system, a calibration of the integration time of each band was 154 

performed by capturing the averaged grey level of a white reference target (Spectralon 99%, 155 

Labsphere, Inc, NH, USA) corresponding to 90% of the dynamic range of the camera.  156 

The scene was illuminated by indirect light from twelve halogen spotlights (37 W) (Eurostar 157 

IR Halogen MR16. Ushio America, Inc., CA, USA) powered by direct current (12 V) and 158 

arranged equidistant from each other inside a hemispherical aluminium diffuser. The inner 159 

surface of the aluminium diffuser was painted white with a rough texture to maximise its 160 

reflectivity, the rough texture being applied in order to minimise directional reflections, which 161 

could cause bright spots, thus resulting in highly homogeneous light.  162 

The fruits were introduced manually into a fruit holder, with the stem-calyx axis lying 163 

horizontal. Two images of each fruit were acquired using customised software developed at 164 

IVIA. A total of 250 images of each cultivar were imported into MATLAB R2015a (The 165 

MathWorks, Inc. MA, USA) to be pre-processed using the customised toolbox HYPER-Tools 166 

(Amigo, Babamoradia & Elcoroaristizabal, 2015).  167 

The image processing started with the correction of the relative reflectance by using 168 

equation (1) (Gat, 2000): 169 

 𝜌𝑥𝑦(𝑥, 𝑦, λ) =
Rabs

Rwhite
abs = ρRef(λ)

R(x,y,λ)−Rblack(x,y,λ)

Rwhite(x,y,λ)−Rblack(x,y,λ)
                   (1) 170 
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where ρRef(λ) is the standard reflectance of the white reference target (99% in this work), 171 

R(x,y,λ) is the reflectance of the fruit captured by the CCD sensor of the camera, Rwhite(x,y,λ) is 172 

the reflectance captured by the CCD of the white reference target, and Rblack(x,y,λ) is the 173 

reflectance captured by the CCD while avoiding any light source in order to quantify the 174 

electronic noise of the CCD. The images were then clipped and spatially compressed to reduce 175 

the computation time, and a proper removal of the background was performed using K-means 176 

clustering. Thus, the relative reflectance spectrum of all the pixels in each fruit image was 177 

extracted.  178 

 179 

2.2. Colour image acquisition and processing 180 

Before image acquisition, the SC was analysed to obtain the L*, a* and b* colour 181 

coordinates (CIELAB colour space) of each fruit, also using a colorimeter (MINOLTACM-182 

700d, Minolta Co. Tokyo, Japan) configured with the standard illuminant D65 and the observer 183 

10 ̊. The SC was obtained as the average of the values of two measurements, one in the blush 184 

zone (reddish colour) and another in the ground zone (yellowish colour). 185 

The colour imaging system consisted of a digital camera (EOS 550D, Canon Inc, Japan) 186 

arranged inside a square inspection chamber that included a calibrated and uniform illumination 187 

system composed of four lamps, each containing two fluorescent tubes BIOLUX 18W/965 188 

(Osram GmbH, Germany) with a colour temperature of 6500 K. The angle between the axis of 189 

the lens and the sources of illumination was approximately 45º, and polarising filters were 190 

placed in front of the lamps and in the camera lenses to eliminate specular bright spots that 191 

could alter the true colour. 192 

The fruits were introduced manually upon a fruit holder, with the stem-calyx axis lying 193 

horizontal. Two images were acquired for each fruit, corresponding to each of the two sides 194 

delimited by the suture of the fruit. Then, a total of 250 images of each cultivar were imported 195 

into customised software developed at IVIA (FoodImage-Inspector v4.0, freely available at 196 

http//www.cofilab.com, Spain) to analyse the SC and to obtain the percentage of the reddish and 197 

yellowish zones on the fruit. This segmentation was based on the Bayes theorem to assign all 198 
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the pixels in the image to the two classes used in a previous training. The RGB colour 199 

coordinates of the acquired images were converted to the L* a* b* coordinates and then 200 

corrected using a colour reference target (ColorChecker Digital SG, X-Rite, MI, USA).  201 

 202 

2.3 Visual analysis with trained panel 203 

The panel was composed of five panellists, ages 29 to 50 years (three male and two female), 204 

with expertise in fruit quality and marketing. The panellists were trained using 20 colour images 205 

of nectarines of the calibration set (10 from each cultivar chosen at random). A total of 40 206 

colour images of fruits of the validation set (20 from each cultivar chosen at random) were 207 

presented with randomised order to each panellist to be classified as belonging to the ‘Diamond 208 

Ray’ or ‘Big Top’ cultivar. 209 

 210 

2.4 Reference analysis 211 

The characterisation of the physicochemical properties of the samples using reference 212 

methods was performed immediately after the acquisition of the images. F was registered on 213 

opposite sides of the fruits using an XT2 Stable texturometer (MicroSystems Haslemere, UK) 214 

equipped with a 6 mm flat plunger. The crosshead speed during the puncture test was 1 mm/s. 215 

The maximum force was expressed in Newton (N). Immediately after SC and F measurements, 216 

a juice sample was taken from each fruit for TSS and TA measurements. TSS were determined 217 

using a digital refractometer RFM330+VWR (Internacional Eurolab S.L., Barcelona, Spain) at 218 

20 ºC and results were expressed as percentage of TSS. TA was determined using a Crison pH-219 

Burette 24 automatic titrator (Crison, Barcelona, Spain) and NaOH 0.5 N, according to standard 220 

UNE34211:1981 (AENOR, 1981). The results were expressed as the percentage of malic acid.   221 

The ANOVA was conducted using the software Statgraphics (Manugistics Corp., Rockville, 222 

USA) in order to determine significant differences in the physicochemical properties (F, TSS, 223 

TA and L*,a* and b* colour coordinates) between cultivars. 224 

  225 
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2.4 Chemometric methods   226 

To identify both nectarine cultivars with high precision, two approaches were studied for 227 

setting up the classification models: i) including in the model the individual spectrum of each 228 

pixel in the nectarine image, and ii) using only the mean spectrum of all the pixels 229 

corresponding to each fruit. Thus, 512 828 pixel spectra were used in the first approach, and the 230 

mean spectra of 500 fruits were used for the second. The data of all the fruits of both cultivars 231 

were collected and randomly partitioned into two sets: two thirds of the samples were used to 232 

calibrate the models (calibration set) and for cross-validation, while the remaining third was 233 

used for independent test prediction (validation set).  234 

Both the directly acquired spectrum of each pixel and that obtained as an average for each 235 

fruit were pre-processed using SNV in order to reduce the physical variability between samples 236 

due to light scatter (Rinnan et al., 2009). This correction was performed using the equation (2): 237 

𝑥𝑐𝑜𝑟𝑟 =  
𝑥𝑜𝑟𝑔−𝑎0

𝑎1
          (2) 238 

Where xcorr and xorg are the corrected and raw spectra, respectively, a0 is the average value of the 239 

sample spectrum to be corrected and a1 is the standard deviation of the sample spectrum.  240 

Later, mean centring was applied to normalise the full spectrum. Multivariate analyses were 241 

then performed using the PLS_Toolbox (Eigenvector Research Inc., USA) and the HYPER-242 

Tools toolbox (Amigo et al., 2015) both working under MATLAB R2015a. 243 

PCA was used to explore the differences between the two cultivars using the pixel and mean 244 

spectra of the calibration set previously pre-processed by means of SNV and mean centring. 245 

Later, PLS-DA models were built to sort the fruits into one of the two studied cultivars. The 246 

models were also calibrated using the pre-processed pixel and mean spectra of the calibration 247 

set and tested using only samples of the validation or prediction set.  248 

In order to compare the performance of the hyperspectral imaging  with the colour imaging 249 

system, a PLS model was also built using the mean value of the L*a*b* colour coordinates. 250 
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A single 10-fold venetian blind CV was used to choose the optimal number of LV as well as 251 

to obtain an estimation of the error rate of the models. All models were statistically validated by 252 

using the sensitivity, specificity, class error and accuracy (Eq. 3, 4, 5 and 6):  253 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                 (3) 254 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                 (4) 255 

𝐶𝑙𝑎𝑠𝑠 𝑒𝑟𝑟𝑜𝑟 =  1 −  (
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
)             (5) 256 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100     (6) 257 

where TP and TN stand for true positive and true negative, respectively, accounting for the 258 

samples that have been correctly assigned as belonging (TP), or not belonging (TN), to a 259 

specific class. FP and FN stand for false positive and false negative, respectively, accounting for 260 

the samples that have been wrongly assigned as belonging (FP), or not belonging (FN), to a 261 

specific class.   262 

The ANOVA, using the software Statgraphics, was also conducted in order to determine 263 

significant differences in the accuracy of the models. 264 

 265 

3. RESULTS AND DISCUSSION 266 

3.1 Cultivar characterisation 267 

3.1.1 Physicochemical properties 268 

Table 1 shows the results obtained from the reference analysis of the physicochemical 269 

properties. F is one of the physicochemical properties commonly used to assess ripeness. In this 270 

work, the measures of F obtained for both cultivars showed no statistical differences, which 271 

means that they were in a similar stage of ripeness. According to the mean value of F measured 272 

for each cultivar, these fruits were considered as being within the group that Valero, Crisosto 273 

and Slaughter (2007) described as 'ready to buy'. 274 

As noted above, the principal difference between these two cultivars is the flavour; i.e. the 275 

typical TSS values for ‘Big Top’ being higher than in ‘Diamond Ray’ and vice versa for TA. 276 
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The measured values (Table 1) agreed with Crisosto et al. (2006), who found that ‘Diamond 277 

Ray’ had 0.8% TA and 10.3% TSS. The difference in TSS content between these cultivars may 278 

be attributable to the stage of maturity, the season or the production area (Crisosto, 1994). 279 

Regarding the ‘Big Top’ cultivar, Giné-Bordonaba et al. (2014) reported results similar to those 280 

in the present study, i.e. 0.3% TA and TSS between 12.2% and 13.5%. 281 

 282 

Table 1. Results of analysis of physicochemical properties of both cultivars of nectarine 283 

Property 
‘Diamond Ray’ ‘Big Top’ 

Mean SD Mean SD 

Firmness (N) 33.8 a 9.5 34.8 a 7.1 

Total soluble solids (%) 11.9 b 1.6 12.7 a 2.3 

Tritratable acidity (%) 0.7 a 0.1 0.4 b 0.1 

Skin colour by 

colorimeter 

L* 36.9 a 6.6 36.5 a 6.0 

a* 27.0 a 4.2 26.2 a 3.9 

b* 13.3 a 5.1 13.4 a 4.9 

Skin colour by 

imaging 

L* 28.0 a 8.6 27.0 a 8.2 

a* 44.9 a 5.4 41.0 b 5.5 

b* 27.2 a 8.8 24.8 b 8.6 

Blush zone (%) 67.0 a 21.4 66.3 a 18.4 

Ground zone (%) 33.0 a 21.4 33.7 a 18.4 

External and internal appearance 
 

Different superscript letters in the same row indicate significant differences between cultivars (p-284 
value<0.05).  SD = standard deviation;  285 

 286 

The mean L*, a*, and b* colour coordinates of the SC using the colorimeter were not 287 

statistically different between cultivars (Table 1). However, colorimeters measure small regions 288 

only, which can be a major limitation in applications where distinguishing the colours all over 289 

the sample is of interest. This means that they are not well suited to measuring objects with a 290 

heterogeneous colour (Gardner, 2007), such as nectarines of these cultivars. However, a colour 291 

camera provides images in which the colours of the pixels are determined individually (Cubero, 292 

Aleixos, Moltó, Gómez-Sanchis & Blasco, 2011), along with their spatial distribution. The 293 

analysis of the colour of the nectarines using imaging enable the evaluation of the SC of the 294 

different colour zones separately and calculation of the relative distribution (percentage) of 295 

reddish or yellowish colour in the whole fruit. 296 
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Using this percentage, a mean value of the L*, a*, b* coordinates was calculated from the 297 

images. On average, a reddish colour was present on 67% of the fruit surface and a yellowish 298 

colour on 33% in both cultivars (Table 1). Even so, the mean colour using imaging indicated 299 

that the a* and b* scores were statistically different in the two cultivars, i.e. both were higher in 300 

‘Diamond Ray’. However, the differences were too small to be detected visually by the human 301 

eye, especially during a rapid fruit-sorting process. 302 

 303 

3.1.2 Spectral analysis 304 

Differences between cultivars were observed in their hyperspectral spectra (Fig. 1). The pre-305 

processed (SNV) mean spectra of the two cultivars followed a similar spectral pattern but had 306 

clear differences at specific wavelengths. 307 

In the VIS region, no apparent differences could be visualised in the range between 400-308 

600 nm where carotenoids are present. In contrast, the ‘Big Top’ cultivar had lower reflectance 309 

(higher absorbance) than ‘Diamond Ray’ near 680 nm, which is associated with chlorophylls 310 

(Lleó et al., 2011; Rajkumar, Wang, Elmasry, Raghavan & Gariepy, 2012), suggesting a higher 311 

content of this molecule. This agrees with the differences in the values of a* and b* found in the 312 

colour analysis (Table 1).  313 

In the NIR region, the absorption bands for acids and sugars are usually found around 800 314 

nm and 840 nm respectively, attributable to the hydroxyl groups of these compounds (Malegori 315 

et al., 2017; Yang, Sun, Pu, Wang & Zhu, 2015). However, only small differences are usually 316 

observable due to the water absorption bands which dominate the spectrum (Nicolaï et al., 317 

2007). In this region, the main differences observed in the spectra were at wavelengths above 318 

850 nm and, in particular, around 970 nm, where Lu & Peng (2006) described a peak associated 319 

with water absorption, which in this case was more pronounced in 'Big Top' nectarines (Fig. 1). 320 

  321 
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3.2. Overview of the spectral data 322 

A PCA was performed in order to obtain an overview of the distribution of the spectral data 323 

information from the samples of both cultivars. The PCA results from the individual pixel 324 

spectra and the mean spectra of each fruit are shown in Figures 2 and 3, respectively.  325 

Forty samples of each cultivar were randomly selected to provide individual pixel spectra 326 

and this data was used to generate a score image plot. The first two PCs explained 87.8% of the 327 

total variance (76.5% and 11.3%, respectively). The variations in the colour within each fruit 328 

showed the distribution or content of the biochemical constituents. A possible trend was 329 

discerned in PC2, where pixels with low values (dark blue) were found mostly in ‘Big Top’ 330 

samples; however, there was little difference in individual fruit spectra of the ‘Diamond Ray’ 331 

and ‘Big Top’ cultivars. 332 

In the PCA of the mean spectra of the calibration set, the first two PCs (Fig. 3A) explained 333 

93.3% of the variance (81.4% and 11.9%, respectively). The ellipses for the two cultivars 334 

appeared distinct, but discrimination between them was not possible because of overlap (Fig. 335 

3A). 336 

Although the loadings obtained for PC1 and PC2 (Fig. 3B) might have offered information 337 

on the most important wavelengths to distinguish the cultivars, this was not useful because 338 

separation was not evident in the preceding plot (Fig. 3A). PCA maximises the variance in the 339 

first components, which may or may not be related to the segregation of the classes; this does 340 

not guarantee the class separability of data due to its unsupervised nature (Jolliffe, 2002).  341 

 342 

 343 

3.3 Cultivar classification using individual pixel spectrum  344 

A PLS-DA model was performed using the spectral range of 450–1040 nm and the 345 

spectrum of the individual pixels of each fruit of the calibration set. The values obtained for 346 

sensitivity and specificity (Table 2) indicated that the number of samples correctly identified as 347 

belonging to a specific cultivar, or not, was above 0.80 in the CV set, using five LV. Sensitivity 348 
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of 0.83 and 0.86 was determined for ‘Diamond Ray’ and ‘Big Top’ respectively being the 349 

accuracy of classification 84.8% and error 0.15. 350 

Using the spatial data collected by the imaging system the combined results were applied to 351 

the calibration set. The predicted class of each pixel was obtained by introducing the spectrum 352 

measured for those pixels into the previously built model, and visualising the result. Each pixel 353 

was coloured blue if it was assigned to ‘Diamond Ray’ or red if it was assigned to ‘Big Top’, as 354 

shown in Figure 4A. The accuracy of this classification was 83.8% and error 0.16. 355 

To classify each fruit using this approach, the whole fruit was assigned to the class found in 356 

the majority of its pixels (Fig. 4B). In this case, the accuracy and the classification error were 357 

84.4% and 0.16. In both cases, ‘Big Top’ was also the best discriminated, with a sensitivity of 358 

about 0.90. 359 

 360 

Table 2. Cultivar discrimination using the pixel spectrum approach 361 

V=Variables; LV=Latent variables;’DR’=Diamond Ray’; ‘BT’=’Big Top’ 362 

 363 

 364 

 365 

3.4 Cultivar classification using mean fruit spectrum  366 

The sensitivity and specificity in the results of calibration using the mean fruit spectrum 367 

approach giving values above 0.90 using six LV (Table 3). In this case, both cultivars were 368 

discriminated similarly and the accuracy of classification of the CV was 93.2% and error 0.07. 369 

In order to get a graphical view of the veracity of the classification obtained using the 370 

validation set, the class for each fruit was predicted by introducing the mean spectrum measured 371 

into the previously built model. The result was visualised showing the fruit coloured blue if the 372 

#V #LV Set Class Sensitivity Specificity Error Accuracy (%) 

60 5 

Calibration 
‘DR’ 0.83 0.86 

0.15 84.8 
‘BT’ 0.86 0.83 

Cross 

Validation 

‘DR’ 0.83 0.86 
0.15 84.8 

‘BT’ 0.86 0.83 

Validation 

pixel 

‘DR’ 0.79 0.89 
0.16 83.8 

‘BT’ 0.89 0.79 

Validation 

object 

‘DR’ 0.78 0.91 
0.16 84.4 

‘BT’ 0.91 0.78 
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mean value was assigned by the model to ‘Diamond Ray’ or red if it was assigned to ‘Big Top’ 373 

(Fig. 5A). The results for the validation set were similar to those obtained in the calibration, 374 

showing an accuracy of 94.4% with a classification error of 0.06. The ANOVA results indicated 375 

that the mean spectra model was significantly better than the pixel model (p < 0.05) to classify 376 

the fruits 377 

As Williams and Kucheryavskiy (2016) pointed out, using properly computed object 378 

features as the mean spectrum decreases the amount of data, leading to more stable 379 

classification models. Furthermore, this approach avoids classifying by pixels when objects 380 

from different classes contain many similar pixels and are easily miss-assigned to the opposite 381 

class, such as for the cultivars studied in this work. On the other hand, it is important to include 382 

the negative influence of the sphericity of the fruits on the reflectance of the light. As seen in 383 

Figure 4A, most errors occur at the borders of the fruit, since the centres are usually well 384 

illuminated. The pixels near the borders are therefore more likely to be wrongly classified, thus 385 

affecting the overall result. In contrast when using the mean fruit spectrum, the averaging 386 

minimises these errors. 387 

 388 

Table 3. Cultivar discrimination using the mean spectrum approach 389 

V=Variables; LV=Latent variables; ’DR’=Diamond Ray’; ‘BT’=’Big Top’ 390 

 391 

3.5 Selection of the optimal wavelengths 392 

In order to optimise the algorithms for an automatic in-line sorting system working at high 393 

speed, it is important to reduce the computational complexity generated by the huge amount of 394 

data obtained by hyperspectral imaging systems. This problem is commonly alleviated by 395 

techniques that retain the information in the few bands that reveal the most variability and 396 

therefore most significant information in the hyperspectral image (Du & Sun, 2006). The 397 

#V #LV Set Class Sensitivity Specificity Error Accuracy (%) 

60 6 

Calibration 
‘DR’ 0.94 0.94 

0.06 93.8 
‘BT’ 0.94 0.94 

Cross 

Validation 

‘DR’ 0.93 0.94 
0.07 93.2 

‘BT’ 0.94 0.93 

Validation 
‘DR’ 0.94 0.94 

0.06 94.4 
‘BT’ 0.94 0.94 
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method used in this study was the vector of the regression coefficients. This measures the 398 

association between each variable and the response and selects variables in two steps: (i) the 399 

PLS-DA model is fitted to the data, and (ii) the variable selection is based on a threshold 400 

(Mehmood, Liland, Snipen & Sæbø, 2012). Variables with a high absolute value can be selected 401 

because they make the highest contribution to cultivar classification and those with a small 402 

absolute value can be ignored. In this study, the regression coefficients were obtained from the 403 

PLS-DA model using the mean fruit spectrum approach, due to its higher accuracy in the 404 

classification of both cultivars.  405 

Figure 6 shows the vector of regression coefficients. Those peaks where the absolute value 406 

was highest were selected as important wavelengths. In the VIS region the selected wavelengths 407 

were at 630, 650, 680 and 720 nm while in the NIR region they were 750-770, 790, 810-840, 408 

860 and 900 nm.  409 

The optimised PLS-DA model was performed using the 14 selected wavelengths as input. 410 

The sensitivities and specificities in the CV were similar to the full model using six LV (Table 411 

4). In the prediction set, using only the 14 wavelengths, the sensitivity for the two cultivars 412 

increased from 0.94 for both to 0.95 and 0.98, in ‘Diamond Ray’ and ‘Big Top’ respectively. 413 

Figure 5 shows the results of both classifications, using the full spectrum (Fig. 5A) and the 414 

optimal wavelengths (Fig. 5B) in which more fruits were coloured as they should be when the 415 

wavelengths selected as the most important. However, the accuracy obtained, 96.3%, was not 416 

statistically different (p > 0.05) from the accuracy of the full model (96.3 and 94.4%, 417 

respectively) 418 

 419 

Table 4. Cultivar discrimination using the mean spectrum and the optimal wavelengths methods 420 

V=Variables; LV=Latent variables; ’DR’=Diamond Ray’; ‘BT’=’Big Top’ 421 

 422 

#V #LV Set Class Sensitivity Specificity Error Accuracy (%) 

14 6 

Calibration 
‘DR’ 0.94 0.94 

0.06 93.8 
‘BT’ 0.94 0.94 

Cross 

Validation 

‘DR’ 0.93 0.94 
0.07 93.2 

‘BT’ 0.94 0.93 

Validation 
‘DR’ 0.95 0.98 

0.04 96.3 
‘BT’ 0.98 0.95 
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3.6 Hyperspectral imaging vs. colour and visual analysis  423 

When the validation set was classified visually by the trained panel, the same fraction of 424 

each cultivar was identified correctly (Table 5). However, the accuracy was very low, i.e. 54.5% 425 

with a classification error of 0.46. This demonstrates difficulty of the human eye to distinguish 426 

between the similar external appearances of these cultivars. 427 

Classification by the colour data had similar accuracy (p-value > 0.05) to that achieved by 428 

the trained panel (Table 5), i.e. 56.9% accuracy and error of 0.43. This is especially poor in 429 

comparison with the results of the hyperspectral imaging using 14 wavelengths, i.e. 96.3%, 430 

error 0.04 (Table 4). 431 

These results are in agreement with the work carried out by Nogales-Bueno, Rodríguez-432 

Pulido, Heredia and Hernández-Hierro (2015) that used NIR hyperspectral and colour imaging 433 

to discriminate between four red grape cultivars. Only 52% of the samples were correctly 434 

classified using colour imaging but this figure increased to 86% using hyperspectral imaging. 435 

Furthermore, Font et al. (2014) described an in-line system for verification of nectarine cultivars 436 

with close harvest times using different colour space layers of the SC histogram. The success of 437 

their technique was 100% in comparing fruits of three cultivars with a single cultivar for 438 

reference. In the same experiments, human classification achieved 86% accuracy, likely 439 

attributable to the large differences in the SC of the cultivars tested. 440 

The high rate of accuracy in classification of these cultivars using hyperspectral imaging 441 

was important because of the external similarity of the cultivars studied. This makes it difficult 442 

to accurately identify the cultivars by colour features, although they appear very different to 443 

consumers at the table. This is a genuine problem for the industry. Although colour imaging is a 444 

rapid and inexpensive tool, it has lower discrimination power for cultivars with very similar 445 

appearance, which necessitates the use of more VIS wavelengths and optimal wavelengths in 446 

the NIR region.   447 

  448 
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Table 5. Cultivar discrimination using colour imaging and by a trained panel 449 

V=Variables; LV=Latent variables; ’DR’=Diamond Ray’; ‘BT’=’Big Top’ 450 

 451 

 452 

4. CONCLUSIONS 453 

The capability of VIS-NIR hyperspectral imaging to discriminate very similar cultivars of 454 

nectarine has been demonstrated in this work.  455 

The classification of these two cultivars by colour imaging or by a trained panel was very 456 

poor, achieving an accuracy of only 56.9% and 54.5% respectively. However, hyperspectral 457 

imaging supported by chemometric methods and optimised by reduction of the spectral and 458 

spatial information enabled classification more accurately than by traditional manual or colour-459 

based systems, and it is also faster than destructive methods.  460 

The use of the mean spectrum of the fruit as input of the predictive models provided 461 

classification accuracy of 94.4%. To cope with the huge amount of data captured by the 462 

hyperspectral systems, the vector of the regression coefficients of a PLS-DA model identified 463 

14 wavelengths which were selected as optimal, producing the best classification model with a 464 

classification accuracy of 96.3%.  465 

This technique may have potential as a tool for rapid and non-destructive cultivar 466 

discrimination, allowing the selection of fruit that is better suited to the consumer’s preferences. 467 

Nevertheless, the results of this study should be confirmed on a larger sample set of fruits grown 468 

in different areas and harvested at different stages of ripeness before they can be implemented in 469 

an in-line system. 470 

  471 

 #V #LV Set Class Sensitivity Specificity Error 
Accuracy 

(%) 

Colour 

imaging 

(PLS-

DA) 

3 2 

Calibration 
‘DR’ 0.75 0.61 

0.32 68.0 
‘BT’ 0.61 0.75 

Cross 

Validation 

‘DR’ 0.75 0.62 
0.32 68.3 

‘BT’ 0.62 0.75 

Validation 
‘DR’ 0.65 0.49 

0.43 56.9 
‘BT’ 0.49 0.65 

Trained 

panel 
- - Validation 

‘DR’ 0.54 0.55 
0.46 54.5 

‘BT’ 0.55 0.54 
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FIGURES 609 

 610 

Figure 1. Mean hyperspectral image spectra of ‘Diamond Ray’ and ‘Big Top’ cultivars 611 

 612 

Figure 2. Score image of the two first PC of the PCA model using pixel spectra of 40 fruits of 613 

each cultivar from the calibration set 614 

Key for Figure 2: The percentages indicate the explained variance (87.8% of the total variance). 615 

The variations in the colour in both score plots show features linked to the distribution or 616 

content of the biochemical constituents in each fruit and cultivar. ‘DR’=‘Diamond Ray’; 617 

‘BT’=‘Big Top’  618 

 619 

Figure 3. Score (A) and loadings plot (B) of the PCA of the mean spectra of the calibration set 620 

 621 

Figure 4. Visualisation of cultivar classification using individual pixel spectrum: A) Pixel 622 

classification method; B) Object classification method 623 

Key for Figure 4: Blue = ‘Diamond Ray’; Red = ‘Big Top’ 624 

 625 

Figure 5. Visualisation of cultivar classification using mean spectrum: A) Classification using 626 

the full range; B) Classification using 14 optimal wavelengths 627 

Key for Figure 5: Blue = ‘Diamond Ray’; Red = ‘Big Top’ 628 

 629 

Figure 6. Vector of regression coefficients of the PLS-DA model using mean spectra and with 630 

the optimal wavelengths selected 631 

 632 


