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On Space Mapping Techniques
for Microwave Filter Tuning

Juan C. Melgarejo, Javier Ossorio, Santiago Cogollos, Member, IEEE, Marco Guglielmi, Fellow, IEEE, Vicente E.
Boria, Fellow, IEEE, and John W. Bandler, Life Fellow, IEEE

Abstract—Space Mapping (SM) and Aggressive Space Map-
ping (ASM) techniques are widely used in the synthesis and
design of microwave filters. Their popularity stems from the
inherent simplicity of the procedures and from their effectiveness.
The objective of this paper is to extend the state-of-the-art
of these techniques by discussing how they can also be used
very effectively to tune microwave filters. In addition to theory,
the successful tuning of a six-pole inductive waveguide filter is
discussed in details thereby fully validating the proposed SM
techniques.

Index Terms—Circuit design, microwave filter, optimization,
Space Mapping (SM), tuning, waveguide filters.

I. INTRODUCTION

GENERALLY speaking, the more accurate the manufac-
ture of a microwave filter is, the closer to each other

the measured and the simulated responses will turn out to be.
However, in the practical world this comes at a cost. This is
because very accurate manufacturing processes are also very
expensive [1].

There are indeed specific applications where high precision
manufacturing is a must. Normally, however, in the prac-
tice of the industrial production of microwave filters, low
manufacturing time and cost are usually required. Tuning
elements are therefore added to the basic filter structure, so
that manufacturing errors can be compensated with manual
tuning after manufacturing the hardware [2], [3].

The manual tuning of a microwave filter, however, can be
a complex process requiring significant effort and experience
[4]. It is indeed possible to find in the technical literature
some guidelines on how to manually tune coupled cavity filters
[5], but the tuning process generally remains a very complex
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task. To improve the situation, computer-aided procedures
have been extensively discussed in the technical literature.
For example, one of the first computer aided approaches was
discussed in [6], where a pattern search optimization was
used to identify and optimize the singularity of the filter
transfer function. Other contributions are [7] and [8], where the
matching learning approach was explored. Fuzzy logic tuning
strategies have also been used in [9], [10] for the purpose of
tuning microwave filters. Many more contributions can indeed
be found in the technical literature [11], [12].

One of the most effective computer aided techniques for
the design of microwave filters is Space Mapping (SM). Since
Bandler et al. first introduced the SM technique [13] and
its further development, Aggressive Space Mapping (ASM)
[14], these techniques have been widely used for the design
of microwave filters [15], [16], [17], [18]. This is because
SM is indeed a very powerful optimization procedure. The
SM technique essentially uses two different simulation models
(or spaces). A fast, low accuracy model (the coarse space),
and a computationally intensive high accuracy model (the
fine space). The basic idea behind SM is that most of the
simulations are performed in the coarse space, while the fine
space is used only for validation.

Recently, SM techniques have also been used in the tuning
stage of microwave filters. In [19], ASM was used to tune
a varactor-based microstrip combline filter. In [20], ASM
was also used to tune a four-pole inductive waveguide filter.
ASM was also used in [21] to correct the manufacturing
errors in a circular-waveguide dual-mode (CWDM) filter. In
that case, instead of using tuning screws, rectangular-shaped
metal inserts were used, together with a few SM iterations,
to obtain a compliant filter response. ASM was also used
in [22] for the fast tuning of a 3D-printed lossy waveguide
filter. Finally, in [23], an SM-based systematic procedure was
proposed to tune waveguide filters. The idea was to establish
by simulation a linear mapping between two different spaces,
one related to the tuning elements penetration and the other
to the physical dimensions of a reference waveguide device.
The key issue demonstrated in this last contribution is that the
mapping, established by simulation, is indeed maintained in
the manufactured device, and that there is no need to update
it during the tuning process (as opposed to what is discussed
in [13]-[22]).

In this context, therefore, the aim of this paper is to extend
the state-of-the-art of SM by describing how the initial results
discussed in [23] can effectively be extended to become a very
valid support tool for tuning microwave filters.
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Fig. 1. Filter 1: Six-pole inductive filter with 13 tuning elements that is used
as a reference in this paper.

The content of this paper is organized as follows: Section
II describes the microwave filter that is used as a reference
throughout the paper. Section III describes the robotic tuning
setup that we developed in the framework of this work. Section
IV describes the models used in the paper. Section V describes
a tuning method that is used as a reference for the remainder
of the paper. Section VI discusses the practical tuning of an
inductive six-pole filter using the method proposed in [23].
Sections VII to IX describe the further enhancements of the
basic SM procedure that are the main objective of this paper.
The novel procedures are indeed shown to be very effective in
accelerating the tuning process of waveguide filters. The paper
is concluded with a comparative study of the results obtained,
including a discussion of their relevance in a real industrial
context.

II. REFERENCE FILTER

As a reference for all of the discussions presented in this
paper, we will use an inductive filter of order six. The center
frequency of the filter is 11 GHz, the bandwidth is 500 MHz.
The filter uses cylindrical tuning elements1 with a radius of
1.6 mm, and with a design depth of 2 mm. Fig. 1 shows
the assembled waveguide filter. Table I shows the dimensions
of the filter. Due to geometrical symmetry, only half of the
dimensions are given.

III. A ROBOTIC TUNING TOOL: “ROBBY”

To use the filter tuning algorithms discussed in this paper, it
is of key importance to know with the best possible accuracy
how to implement the relative changes of tuner penetrations
that the tuning procedure indicates in order to tune a specific
cavity or coupling. To this end, we have developed the
precision robotic arm (“Robby”) shown in Fig. 2. Robby is

1https://www.tronser.de

TABLE I
DIMENSIONS OF THE SIX-POLE INDUCTIVE FILTER.

Element1 Dimension2 Screw Penetration (mm)
Aperture 1 11.2951 2.00
Cavity 1 12.4882 2.00

Aperture 2 8.3848 2.00
Cavity 2 14.9165 2.00

Aperture 3 7.6944 2.00
Cavity 3 15.3112 2.00

Aperture 4 7.5829 2.00
1 The waveguide used is WR-75. All the corners have a
2 mm radius.
2 The design variables are the lengths of the cavities and
the widths of the apertures. All coupling apertures have a
fixed thickness of 3.5 mm.

Fig. 2. Robotic tuner (“Robby”) used in all tuning procedures discussed in
this paper.

composed of a computer controlled X-Y table to which the
filter to be tuned is secured. Above the X-Y table, we have
placed a computer driven rotating device with an actuator
that can be coupled to the tuning elements. Since the X-Y
position of the tuners is known, Robby can be programmed to
automatically position the actuator above the tuning elements.
Coupling the actuator to the tuning elements, however, is done
manually.

This mechanical system has an estimated backlash of 10o.
As a consequence, the maximum tuning accuracy that can be
achieved with this particular setup for the penetration depth
of the tuning elements is about 10 microns. We estimate that
this level of accuracy is indeed sufficient to successfully tune
the filter shown in Fig. 1.

IV. STRUCTURES, MODELS AND PROCEDURES

As mentioned in the introduction, the basic idea behind SM
is to use two different spaces (or models) to design a specific
filter. In the remainder of this paper, we will use a number of
different filter structures and filter models to show how SM
can also be used to develop tuning procedures for microwave
filters. For the sake of clarity, therefore, we will first describe
briefly in this section each one of the models used. Each filter
structure or model will be referred to as Filter N, where N is
a progressive integer from 1 to 4.
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• Filter 1: This is the actual six-pole waveguide filter that
we have manufactured (see Fig 1). This filter includes
rounded corners and cylindrical tuning elements. This
is the breadboard that we use to demonstrate all of
the tuning procedures described in the reminder of this
paper. The performance of this filter is obtained by direct
measurement with a Vector Network Analyzer (VNA).

• Filter 2: This filter has the same exact in-band per-
formance of Filter 1 in the tuned state. It also uses
cylindrical tuning elements but has sharp, ninety degree
corners (see Fig. 4).

• Filter 3: This is the simplest filter structure that we use in
this paper. The tuned in-band performance is, once again,
identical to the one of Filter 1. However, this structure
does not use tuning elements and has sharp ninety degree
corners (see Fig. 6).

• Filter 4: This filter is identical to Filter 1, it includes
round corners in all the cavities and all 13 tuning elements
(see Fig. 7).

These structures have either been simulated with FEST3D
from Aurorasat (now with CST and Dassault Systemes) or
with Microwave Studio (from CST -Computer Simulation
Technology- now with Dassault Systemes). The FEST3D
analysis method is based on a multimode equivalent network
(MEN) representation of waveguide junctions. Each circuit
element is solved using the most appropriate method available,
ensuring high-fidelity results in a relatively short time. The
commercial software CST has been used with the Frequency
Domain solver that is based on FEM (Finite Element Method).

Filter 2 and Filter 3 have been simulated with FEST3D
because high-fidelity results can be obtained with moderate
(for Filter 2) and extremely short (for Filter 3) simulation
times (see Tables V and VI for details). The computation
time of FEST3D for the high-fidelity results of Filter 4 is
comparable to the time needed by CST, which is widely used
in industry. Therefore, CST has been chosen in this case (see
Table V for details). For all computations we have used a PC
with an Intel Core i7-6700 @ 3.4 GHz with a 12 GB RAM.

Having clearly described all of the filter structures and
models that we will use in the remainder, we now show in
Table II how Filters 1 to 4 are used in the context of the
SM-based tuning procedures.

TABLE II
STRUCTURES AND MODELS USED FOR THE COARSE AND FINE SPACES IN

EACH OF THE TECHNIQUES PROPOSED.

Procedure Coarse Model Fine Model
Procedure I Filter 2 Filter 1
Procedure II Filter 3 Filter 4
Procedure III Filter 3 Filter 2
Procedure IV Filter 3 Filter 2
Procedure V Filter 3 Filter 1

Having now clarified the various structures and models, we
discuss in the next paragraph the SM-based tuning procedures.
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Fig. 3. Response of Filter 1 with all tuning elements set at the design depth
of 2 mm.

Fig. 4. Filter 2: low precision model with sharp corners and tuning screws.

V. PROCEDURE I: REFERENCE TUNING

The starting point of our tuning procedure is to set all tuning
elements to the design penetration of 2.0 mm using Robby.
The measured response obtained is shown in Fig. 3.

According to the results in [24] and [25], a first method
to tune a waveguide filter can be based on the low precision
model shown in Fig. 4 (Filter 2). It was, in fact, demon-
strated that the Broyden matrix that relates the dimensions
of the coarse model of Filter 2 with the dimensions of the
manufactured filter (Filter 1) satisfies the relation B ≈ I.

In order to tune the filter, we can use Filter 2 to recover
the measured response (see Fig. 3). Using now the depths of
the tuning elements in the coarse model that produce the same
response as the measurements (scrr), and the optimal tuner
depth of the coarse model (scropt), we can compute the screw
displacement that we need to apply to tune the filter as follows:

∆ = −(scrr − scropt). (1)

In [24] it was demonstrated that when the physical structures
of the filters are identical in both spaces, the approximation
B ≈ I works in fewer iterations than the well known ASM
procedure based on the update of the Broyden matrix. To
continue, we will therefore use the identity matrix in each
iteration of the procedure.
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Fig. 5. Tuning procedure I using B = I .

Fig. 5 shows the tuning process using the structure shown
in Fig. 4 as the coarse model. The software used to simulate
the coarse model was FEST3D. Four iterations are needed
to successfully tune the filter. Since the starting point was
relatively far away from the ideal tuned performance, the
tuning method described in [24] required more than one
iteration. However, even if the tuning process took only four
iterations, it is important to note that the coarse model used
(Fig. 4) also contains tuning elements. This means that, even
though the computations in the coarse space are carried out
with low accuracy, this is not a computationally efficient
model. Table III shows the depths of the penetration of the
screws after each iteration. Table IV shows the performance of
this tuning procedure. The parameters that are considered are:
the computation time of the coarse model (TC), the number of
iterations needed to tune the filter (NI), the average number of
simulations performed by a Simplex algorithm to recover each
of the measured responses (AI) and the overall time needed
to tune the filter (Total). In this method, Total is computed
as:

Total = TC ·AI ·NI (2)

The results obtained so far will be used in the subsequent
sections as a reference to compare the different tuning methods
for the same filter.

VI. PROCEDURE II: PERFORMING THE MAPPING WITH A
HIGH PRECISON EM SIMULATOR

The next method we discuss is the one originally presented
in [23]. We include this example in this paper to validate the
results presented with the complete tuning procedure of a real
waveguide filter. In this case, the coarse model is the one
shown in Fig. 6 (Filter 3) and it is simulated with FEST3D.
This is computationally much more efficient, since the coarse
model does not include tuning elements and all cavities have
sharp corners. The fine model (Filter 4) is simulated using
CST. Since the filter is manufactured by milling, a radius of
2 mm must be introduced in each corner, as shown in Fig. 7.

The main idea presented in [23] was to compute the matrix
B that describes the mapping between the widths of the irises

TABLE III
PENETRATIONS OF THE TUNING SCREWS IN EACH ITERATION OF

PROCEDURE I.

Element Iter. 1 Iter. 2 Iter. 3 Iter. 4
Iris 1 2.2549 2.2771 2.2750 2.2637
Cav. 1 2.0852 2.1527 2.1711 2.1582
Iris 2 1.9579 1.9710 1.9723 1.9458
Cav. 2 2.0705 2.1046 2.1144 2.1173
Iris3 2.0221 2.0698 2.0584 1.9887

Cav. 3 1.9936 2.0038 2.0086 2.0119
Iris 4 1.9688 1.9797 1.9636 1.9327
Cav. 4 1.9880 1.9807 1.9746 1.9715
Iris 5 2.0805 2.0959 2.0747 2.1022
Cav. 5 2.0097 2.0105 2.0155 2.0250
Iris 6 2.0275 2.0296 2.0123 2.2007
Cav. 6 2.1219 2.1611 2.1902 2.2007
Iris 7 1.9308 2.0119 2.0748 2.1339

TABLE IV
PERFORMANCE OF PROCEDURE I.

TC NI AI Total

7.3 s 4 762 6 h 10 min 50 s

Fig. 6. Filter 3: low precision model without tuning elements.

Fig. 7. Filter 4: high precision model with tuning screws and rounded corners.
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and lengths of the cavities of the low precision model in Fig.
6 (Filter 3), with the penetration of the screws in the high
precision model shown in Fig. 7 (Filter 4). The resulting
mapping equation is:

xf = B · xc + C (3)

where
1) xf is an N × 1 vector that contains the penetration of

the tuning elements of the fine model.
2) Rf (xf ) is the response of the fine model.
3) xc is an N × 1 vector that contains the dimensions of

the cavities and irises of the low precision model.
4) Rc(xc) is the response of the coarse model.
so that we can write:

Rc(xc) = Rf (xf ) (4)

The optimum dimensions in the fine and coarse space are,
respectively, xf opt and xcopt. It is important to note that both
vectors have already been computed during the design process.
They provide, in fact, the tuned response of the filter, namely:

Rf (xf opt) = Rc(xcopt) (5)

In order to obtain the matrix B that links the two spaces,
we will slightly modify the penetration of one of the tuning
screws in the fine model, xf 1, and through optimization with
the coarse model, we then find the vector xc1 so that:

Rc(xc1) = Rf (xf 1). (6)

Subtracting (8) and (7) we obtain (9)

xf opt = B · xcopt + C (7)
xf 1 = B · xc1 + C (8)

xf opt − xf 1 = B ·
(
xcopt − xc1

)
(9)

The expression (9) can be written as:

∆xf 1 = B · ∆xc1, (10)

which in explicit form becomes

∆xf 11
= B11∆xc11 + · · · + B1N∆xc1N

...
∆xf 1N

= BN1∆xc11 + · · · + BNN∆xc1N (11)

In this case, we have a system of N equations with N2

unknowns: the entries of B. In order to solve the system, it
is necessary to add N − 1 additional matrix equations. The
complete system becomes:

∆xf 1 = B · ∆xc1

...
∆xfN = B · ∆xcN (12)

The needed mapping points are obtained by changing the
penetration of each tuning element, one at the time, by 0.1
mm from the original design depth.
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Fig. 8. Tuning procedure II using matrix B calculated with the high precision
EM simulator (CST).

Once all the equations have been obtained, the system can
be solved, and the mapping matrix B can be computed. In this
case, due to geometrical symmetry in the filter, it is necessary
to map the variation of only half of the tuners. Naturally, when
the filter is manufactured, the real dimensions will vary from
the nominal ones. However, in [23] it was shown that the
relationship between the depth of penetration of the real tuning
elements in the correctly tuned state and the parameters of
the ideal filter in the coarse space is (essentially) the same.
To apply the tuning procedure, we then first measure the filter
response with a VNA to obtain the detuned response Rm(xm).
The next step is to find the values of xcm such that

Rc(xcm) = Rm(xm) (13)

After the detuned response has been recovered using the
coarse model (xcm), the optimal position of the tuning ele-
ments of the physical device, xmopt, is directly given by:

xmopt = xm + B · (xcopt − xcm) (14)

The last part of (14) gives the corrections to include in the
tuning elements using Robby:

∆ = B · (xcopt − xcm) (15)

Fig. 8 shows the tuning process using this mapping. It takes
the same amount of iterations as the reference method (section
V) to perfectly tune the filter. However, the coarse model used
in this case (Fig. 6) is considerably faster. This method is
therefore the best of the two options.

Table V shows the performance of this procedure. Three
extra parameters are considered in this case: the computation
time of the fine model (TF ), the average number of simula-
tions performed by a gradient-based algorithm to recover each
one of the disturbances (AD) and the overall time required to
estimate the Broyden matrix (TB). The overall time necessary
to tune the filter is given by Total:

Total = TB + TC ·AI ·NI, (16)

where TB is computed as

TB = (TF + AD · TC) ·N, (17)
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TABLE V
PERFORMANCE OF PROCEDURE II.

TC TF AD TB NI AI Total

0.147 s 420 s 245 53 min 12 s 4 703 1 h 5 s

and where N is the number of disturbances necessary to
compute B. In this case, due to geometrical symmetry, N = 7.

Although the tuning is carried out very quickly, the process
of obtaining B just described can be rather time consuming.
Note that the time needed to compute B (TB) is 88.54% of the
overall time needed to tune the filter. This is because we need
to perform as many simulations with the fine structure of Fig. 7
as there are tuning elements. Naturally, as the order of the filter
increases, the number of simulations that must be performed
in the high precision simulator increases. In sections VII to
IX this limitation will be removed by introducing several
enhancements in the mapping procedure.

VII. PROCEDURE III: PERFORMING THE MAPPING WITH A
LOW PRECISON SIMULATOR

In [24] and [25] it was shown that the Broyden matrix that
relates the dimensions xc of the coarse model of Fig. 4 with
the dimensions of the high precision model of the structure
shown in Fig. 7 (xf ) satisfies the condition that B ≈ I. As a
consequence, we can write

xf = B · xc + C (18)
xf ≈ xc + C. (19)

It is important to note that this is true regardless of what
the vectors xf and xc represent. Whether both vectors contain
the widths of the irises and the lengths of the cavities, or if
both vectors contain the depths of penetration of the tuning
elements, the matrix B that relates the coarse and fine space
can always be approximated by the identity I.

Redefining xc as xf LP, the expression (19) becomes:

xf ≈ xf LP + C1 (20)

where xf represents the depth of the tuning elements of
the high precision structure with rounded corners in Fig. 7,
and xf LP represents the depth of penetration of the tuning
elements of the low precision structure with sharp corners
shown in Fig. 4. Combining (20) and (3), we can then establish
that:

xf LP + C1 ≈ B · xc + C (21)

Rearranging the terms and renaming the constants, we
finally obtain:

xf LP ≈ B · xc + C2 (22)

This result is very interesting since it means that it is
not necessary to establish the mapping with a high precision
simulation like the one of Fig. 7 (Filter 4). It is, in fact,
possible to use a low precision structure with tuning elements
like the one shown in Fig. 4 (Filter 2).
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Fig. 9. Aligned responses of Filter 2 and Filter 4.
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Fig. 10. Filters 2 and 4: disturbance of the second cavity. Depth of the
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A. Validating the Hypothesis

In order to verify what was stated in (22), the best test
consists of aligning the responses of Filter 4 and Filter 2, as
shown in Fig. 9, and then modifying their tuning elements of
the same amount, and comparing the results.

Fig. 10 shows the result of modifying the tuning element
of the second cavity by 0.05 mm from the design depth of 2
mm in both spaces.

The results obtained indicate that, for small perturbations
(0.05 mm), both simulators give practically identical respon-
ses. However, we must not forget that, as we increase the level
of the disturbances, the differences between the simulators
will increase. Fig. 11 shows the results of modifying the same
tuning element from 2 mm to 2.1 mm.

The previous results confirm that, as expected, it is not
necessary to use a high precision simulation (Filter 4) to
perform the mapping. Instead, it is possible to use the low
precision structure that includes tuning elements like the one
shown in Fig. 4 (Filter 2).
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Fig. 12. Tuning procedure III using the mapping B computed with the low
precision simulator (FEST3D).

B. Tuning of the Filter

The mapping between the penetration of the tuning elements
xf in the structure simulated with low accuracy with FEST3D
(Filter 2), and the widths of the irises and the lengths of the
cavities xc for the structure shown in Figure 6 (Filter 3), is
obtained by applying the procedure described in equations (3)
- (12).

It is now important to remember that, during the op-
timization process with the coarse model to recover each
disturbance, all the parameters of the structure have been
optimized simultaneously. Fig. 12 shows the tuning process
using the matrix B computed with the low precision structure
shown in Fig. 4.

Five iterations are necessary to correctly tune the filter.
In this case, however, the mapping matrix B is obtained
more efficiently by using FEST3D as the fine model with the
structure in Fig. 4. This approach is therefore more efficient
than the original method discussed in section VI. Table VI
shows the performance of this method using the same metrics
as in the previous procedure. In this case, the overall time
necessary to tune the filter (Total) is computed using (16).

TABLE VI
PERFORMANCE OF PROCEDURE III.

TC TF AD TB NI AI Total

0.147 s 7.3 s 271 5 min 29 s 5 659 13 min 34 s

TABLE VII
PROCEDURE III: HALF MATRIX B WHEN PERFORMING THE

OPTIMIZATION ON ALL PARAMETERS.



0.945 0.179 0.059 0.026 −0.001 0.014 0.010

0.028 0.524 0.173 −0.006 0.008 −0.002 0.011

−0.005 0.001 1.850 0.024 0.021 0.028 −0.017

−0.008 0.007 0.139 0.537 0.147 0 0

−0.032 0.082 0.029 −0.069 2.122 −0.054 0.009

0.003 0 0.001 0.0103 0.142 0.532 0.150

0.004 0.013 0.006 0.030 0.007 −0.080 2.177

0.002 −0.002 0.002 0.002 0.002 0.006 0.138

0.002 −0.017 −0.003 0.013 −0.014 0.002 0.004

0 −0.005 0 0.002 0.004 −0.001 −0.001

0.025 0 0.012 −0.007 −0.021 0.024 0.021

0.004 −0.012 0.001 0.004 0.012 −0.002 0.004

0.019 0.006 0.014 −0.002 −0.005 0.0135 0.001



The speedup is achieved because the computation time of
the fine model (TF ) is reduced, and so, the time needed to
estimate the B matrix (TB) is greatly reduced. Even though
this procedure took NI = 5 iterations to converge, the same
result was obtained 4.42 times faster than with Procedure II.

VIII. PROCEDURE IV: PERFORMING THE MAPPING WITH
A LOW PRECISON SIMULATOR IN A REDUCED

OPTIMIZATION SPACE

As mentioned in the previous sections, the main effort
in applying all the techniques discussed so far is related to
the cost of computing the mapping itself (TB). The coarse
simulator has to recover each of the N perturbations of the
fine model in order to compute B. Ideally, to accurately
recover the objective response, we should perform an
optimization using all the parameters of the coarse model
until a set xc is found such that Rc(xc) = Rf (xf ).

TABLE VIII
PROCEDURE IV: HALF OF MATRIX B WHEN PERFORMING A THREE

PARAMETERS OPTIMIZATION



0.93 0 0 0 0 0 0

0.05 0.55 0.18 0 0 0 0

0 0 1.86 0 0 0 0

0 0 0.14 0.53 0.14 0 0

0 0 0 0 2.11 −0.05 −0.01

0 0 0 0 0.14 0.53 0.15

0 0 0 0 −0.01 −0.04 2.19

0 0 0 0 0 0 0.13

0 0 0 0 0 0 0.01

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


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Fig. 13. Tuning procedure IV using the mapping B computed with low
precision simulator (FEST3D) and with a reduced optimization space.

The problem is that as the order of the filter increases,
so does the optimization space that we must work with. As
we increase the size of the optimization space, obtaining
B becomes progressively more time consuming because the
average number of simulations to recover each disturbance
(AD) increases. However, when recovering the disturbance of
a tuning element, the elements of the coarse model that are
most affected are the iris or the cavity corresponding to the
element that has been disturbed, and the two adjacent ones.
We can, therefore, reduce the optimization space to only three
variables, thus significantly reducing the computational time
to obtain B.

Tables VII and VIII show the matrix resulting from working
with the entire optimization space or the one obtained with
the space reduced to only three variables, respectively. Due
to geometrical symmetry in the original filter, only a half of
each matrix is shown. The values lower than 0.001 have been
rounded to 0. As we can see, the values of the main and of the
two adjacent diagonals are indeed very similar. Fig. 13 shows
the tuning process when using the reduced B shown in Table
VIII.

Four iterations are enough to tune the device almost per-
fectly. This approach is therefore the best choice to efficiently
tune the filter (see Table IX for its performance ). In summary:

1) In this case, the fine model used to calculate the mapping
is a low precision model (Filter 2). The N disturbances
necessary to compute B can be simulated in seconds.

2) Furthermore, since the optimization space for the map-
ping has been reduced to only three variables, each of
the N disturbances can be recovered with the coarse
model (Filter 3) very efficiently.

3) The results shown in Fig. 13 clearly indicate that the
reduced mapping works just as well as the complete
mapping that we have used in previous cases.

IX. PROCEDURE V: DIRECT MAPPING

When tuning a filter in an industrial environment, it may
happen that the person actually tuning the filter does not have

TABLE IX
PERFORMANCE OF PROCEDURE IV.

TC TF AD TB NI AI Total

0.147 s 7.3 s 76 2 min 9 s 4 483 8 min 52 s

TABLE X
PERFORMANCE OF PROCEDURE V.

TC TF AD TB NI AI Total

0.147 s 0 67 1 min 9 s 3 604 5 min 35 s

at their disposal any of the sophisticated EM simulation tools
used so far in this paper.

In this case, the simplest way to proceed is to recover the
response measured with the VNA, (xf ), using any coarse
simulator, (xc). Using, for instance, Filter 3 as a coarse
model, and the real filter as the fine model.

At this point, it is important to recall that the B matrix
establishes a linear mapping between the parameters of the
fine and coarse models. In the procedures described in sections
VI-VIII (Procedures II-IV), an EM full-wave simulator was
used to estimate the matrix B around the optimal (tuned)
performance. We are now assuming that no EM tools are
available, and so, there are two ways we could proceed:

1) We could perform the estimation of the B matrix around
the initial measured response. However, that estimation
would not be valid around the tuned response and the
method would have a very poor convergence. In that
case, the mapping matrix should be estimated again or
updated via an ASM approach.

2) Another alternative would be to manually find a slightly
better initial state using the method described in [5], and
estimate B around that improved initial state.

Since option one has already been implemented in [19], [21]
and [22] and since, in some cases, an initial manual adjustment
is indeed feasible, we decided to continue with option two.

The mapping can then be simply computed by perturbing
directly the hardware being measured (that is Filter 1).

Fig. 14 shows the recovery of the improved response
measured with the VNA. From this point, we simply slightly
modify one of the tuning elements using Robby. Next, we
recover the disturbed response in the coarse space. From this
point, we use Robby again to set the modified tuning element
back to its original position. This process is repeated for the
N tuning elements. In this case, the reduced matrix approach
of section VIII has also been used.

After mapping the spaces, the procedure described in section
VI is used to calculate the displacement of the tuning elements
of the real structure. These displacements are again applied
with Robby. Fig. 15 shows that an almost perfectly tuned
result has been obtained with just 3 iterations. Table X shows
the metrics of this method. We assume that the measure is
instantaneous, and so, the computation time of the fine model
is TF = 0. In this case, the value of Total is computed as in
(16).
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Fig. 14. Procedure V: the starting point where the mapping is computed.
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Fig. 15. Tuning procedure V using B computed directly with Filter 1.

X. GENERAL GUIDELINES TO CHOOSE A TUNING
METHOD

Throughout this paper, five tuning methods have been
discussed. This section aims to clarify their pros and cons.
Table XI summarizes the key features of each method:

• Time: Simulation time necessary to tune each filter.
• Extra: Time needed to modify the positions of the tuners

with Robby. In our experience, the average time needed
to modify all tuners is 3 minutes. The extra time is
computed as NI · 3 minutes. In the case of Procedure
V, the extra time is computed as (NI + 1) · 3 minutes
since the estimation of B is also performed with Robby.

• Time*: Time + Extra. This is the overall time needed
to tune the filter.

• Initial State Refinement (ISR): This is a Yes/No (Y/N)
metric that indicates whether an initial manual adjustment
is required to guarantee the convergence of the procedure.

Procedure I is clearly the worst method. As it was stated at
the beginning of the paper, it is only used as a reference for
the evaluation of the efficiency of all other tuning procedures.
Procedure II is considerably faster than Procedure I and we
would always prefer this method. Procedures III and IV are

improved versions of Procedure II that rely on the use of an
efficient full-wave simulator as FEST3D. In case such tool
is available, we would always choose Procedure IV. Even
though Procedure V seems to be the fastest method, that may
not always be the case. In this procedure, an Initial State
Refinement is necessary, and the time needed depends on the
complexity of the filter and the experience of the engineer
tuning the filter.

Advantages of Procedure IV over Procedure V:
• Procedure IV does not require any previous filter tuning

experience since no Initial State Refinement is needed.
• It is likely to be the fastest tuning method, since the Initial

State Refinement of a complex filter is likely to take more
than 3 minutes.

Disadvantages of Procedure IV over Procedure V:
• Procedure IV requires the use of a full-wave simulation

tool that can efficiently model the tuning elements.

We can now provide some guidelines to choose the best
tuning method. As a general rule of thumb:

• IF the EM tools necessary to perform Procedure IV are
available: use Procedure IV.

• ELSE:
– IF the complexity of the filter allows for a quick

manual adjustment that improves the filter response:
apply Procedure V.

– ELSE: Use Procedure II with a reduced optimiza-
tion space.

XI. CONCLUSION

The objective of this investigation was to provide a simple
and effective solution to the complex problem of microwave
filter tuning. In order to do so, a SM-based technique was de-
veloped and validated by tuning a 6-pole inductive waveguide
filter. An enhancement of this method was then developed to
speed up the process. In the second version of the method,
the high precision structure was replaced by a low precision
simulator. By combining this new approach with a reduced
optimization space, the same filter was tuned considerably
faster. Finally, we showed how the mapping can be evaluated
directly using the real hardware being tuned, the VNA and
any coarse model that is available.
This contribution is, in our opinion, of great practical value for
all professionals involved in the industrial tuning of microwave
filters. The procedures described can be successfully used
even without the availability of sophisticated full-wave EM
simulation tools. Finally, it is important to note that even
though our investigation uses a six-pole inductive filter in
rectangular waveguide, the tuning procedures described in this
paper are also fully applicable to any microwave filter that
includes tuning elements.
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