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Abstract. This article aims to deal with the problem of reallocating supply, in both its 

real and planned contexts, to orders that result from the order promising process under 

shortage. To this end, we propose a system dynamics-based simulation model to 

facilitate modelling for order managers, and to provide a graphic support tool to 

understand the process and to make decisions. The basis of the simulation model’s 

structure is a mixed integer linear programming approach which intends to maximise 

profits by considering the possibility of making partial and delayed deliveries. To 

illustrate, we consider a real world problem from the ceramic sector that contemplates 

35 orders. We obtained a solution by a mathematical programming model and a 

simulation model. The results show the simulation model’s capacity to obtain near-

optimum results, and to provide a simulated history of the system. 

Keywords: Available-to-promise, lack of homogeneity, shortage, simulation, system 

dynamics, ceramic sector. 

 

 

1. Introduction 

According to Olhager (2003), the order penetration point defines the stage in the 

manufacturing value chain, where a particular product is linked to a specific customer 

order through different product delivery strategies such as make-to-stock, assemble-to-

order, make-to-order and engineer-to-order. In this paper, we consider a manufacturing 

environment of make-to-stock. During the order promising (OP) process, companies 

normally make commitments with customers about the quantities and due dates of their 

orders. These commitments focus usually in make-to-stock companies on the available-

to-promise (ATP) quantities of finished goods calculated as the current stock and planned 

production defined in the master production schedule (MPS), minus any past orders 

promised.  

However, from the time we commit an order until we must serve it, unexpected events 

can occur that may lead to shortage of products. There are several causes of these 

unexpected events: i) arrival of more priority customer orders that require already 

reserved products, ii) delays in raw materials or components; iii) machine breakdowns; 

iv) absenteeism of workers, among others. Some of these events might lead to 
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discrepancies between planned and real production quantities and, in turn, can lead to a 

shortage situation.  

Consequently, the previous allocation of products to orders may become suboptimum, or 

even unfeasible. In this case, the company might not be able to meet previously agreed 

conditions with customers. This situation becomes relevant because it could very 

negatively impact not only the company’s profits, but also customer satisfaction.  

Furthermore, if this situation occurs often, it could seriously harm customer loyalty and 

the company’s future sustainability. In this context, the shortage planning process intends 

to find a solution when stock (component or finished products) is unavailable. Solutions 

include decisions on supply alternatives (outsourcing, substitute products), late supply, 

partial shipments, etc. (Framinan and Leisten, 2010). Indeed, the solutions to these 

shortage situations seriously impact the reliability of the OP processing. Therefore, the 

recognised relevance of the OP processing in the literature to better deal with demand 

requirements with high standards of service level and customer satisfaction (Alemany et 

al., 2015a; Grillo et al., 2016) supports the importance of shortage planning (SP). 

The frequency of unexpected events increases when companies are characterised by lack 

of homogeneity in the product (LHP), which renders having to execute the SP process 

more frequently. LHP is an important issue because it appears in several industries like 

ceramics, textile, wood, marble, horticulture, tanned hides and leather goods, among 

others (Grillo et al. 2017). LHP implies the company producing to provide units of the 

same product with different relevant characteristics for customers. Indeed, customers 

require homogeneity among the units of a particular product that comprises their orders 

(e.g., in the horticulture sector, fruit should present the same quality and calibre; in the 

ceramic sector, tiles should be of the same quality, tone (colour) and calibre (thickness)).  

In the ceramic sector, the main causes of LHP are the origin and composition of raw 

materials, and changes in environmental conditions during production (e.g. temperature, 

humidity). Thus, a particular production lot leads to units of product that may differ in 

terms of: i) quality, ii) tone (colour), and iii) calibre (thickness). This aspect would not 

become a management problem if customers were not sensitive to such differences. 

However, customers require homogeneity among the ordered units of a particular product 

for aesthetic and functional reasons. Therefore, after manufacturing a production lot, it is 

necessary to classify it into different sublots comprised of product units that are 

homogeneous to one another for all the above-cited characteristics (Davoli et al. 2010). 

Companies with LHP are obliged to classify production lots into different homogeneous 

sublots to comply with customers’ homogeneity requirements. Moreover, the quantity of 

products that comprises each homogeneous sublot is not known for certain until the lots 

are manufactured and classified after manufacturing and classifying the production lot. 

For this reason, it is necessary to estimate the distribution of homogeneous sublots in the 

MPS during the OP processing. However, given the uncertainty in this distribution, 

discrepancies usually appear between the planned and real homogeneous sublots obtained 

after production. These discrepancies can mean that it is not possible to serve or fulfil 

some committed orders under previously agreed conditions because there are not enough 

homogeneous quantities to fulfil all the orders.  

Evidently, we can deduce that the shortage situation very often occurs in companies with 

LHP. So, developing a method to solve this problem is crucial for such companies. One 



     

possible SP solution could involve reallocating available (in stock and planned) quantities 

to previously committed orders to serve those orders which, in the new circumstances, 

optimise the objective set by the company (Alarcón et al. 2011).  

Finding not only an optimal solution for the reallocation problem in the ceramic sector, 

but also a feasible one, is an extremely complicated task. The main causes of this 

complexity are: i) numerous references to be managed (classification of lots into 

homogeneous sublots entails increasing the number of product references to be handled); 

ii) some orders include more than one product; iii) the need to comply with customer 

homogeneity requirements; iv) usually the very short time available to reallocate. Thus, 

it is necessary to develop new tools to help decision making during the process of 

reallocating homogeneous sublots to committed orders under shortage. 

One of the tools most widely used to tackle this problem is mathematical programming. 

Table 1 shows a literature review of the models used for the allocation/reallocation of 

available quantities to orders in the ceramic sector, and a comparison made with the 

characteristics of the model herein proposed. For each existing model, we analysed: i) the 

tackled problem, namely OP processing, or SP; ii) the modelling context, namely 

deterministic, or uncertain; iii) available quantities, namely real stock, planned production 

for SP or ATP for OP processing; iv) delivery flexibility, namely delays allowed, or 

partial deliveries of order lines; v) the modelling approach, namely mathematical 

programming or system dynamics. 

Table 1. Literature review of the allocation/reallocation models 

References Problem 

tackled 

Modelling 

context 

Product origin Delivery 

flexibility 

Modelling 

approach 

OP SP D U RS PP ATP DA POL MP SD 

Alemany et al. (2013a)  X X  X     X  

Alemany et al. (2013b) X  X    X   X  

Boza et al. (2014)  X X  X     X  

Alemany et al. (2015b)  X  X X X  X  X  

This paper  X X  X X  X X X X 
D: deterministic; U: uncertain; RS: real stock; PP: planned production; DA: delays allowed; POL: partial deliveries of order lines; 

MP: mathematical programming; SD: system dynamics. 

Alemany et al. (2013a) formulated a mixed-integer linear programming (MILP) model 

for solving the SP problem in LHP contexts. The model reallocates only existing stocks 

of multiple products to multiple-line orders, while ensuring homogeneity between the 

units of product that comprise each order line. The objectives of this model were to: i) 

maximise profits and ii) maximise the number of orders delivered with an earliest due 

date. It does not allow either delayed deliveries or partial deliveries of order lines. 

Subsequently, Boza et al. (2014) extended this model and used it as a basis for a decision-

support system. 

Alemany et al. (2013b) also proposed a MILP model, but to support the OP processing in 

LHP contexts that relates closely with SP. This model estimated the distribution of 

planned production lots in the MPS into homogeneous sublots for ATP computation 

purposes. Then the model decided on the acceptance/rejection of customer order 

proposals, and allocated the homogeneous ATP quantities of multiple products to the 

accepted multiple-line orders. It did not anticipate subtypes in sublots because customer 



     

orders only needed serving with homogeneous units despite subtypes. Apart from the 

traditional objective of maximising profits, these authors implemented the maximisation 

of exhausted ATPs when allocating homogeneous ATP to customer orders. This model 

allowed delays in deliveries, but not partial deliveries of order lines. 

Finally, Alemany et al. (2015b) presented a fuzzy mixed integer programming model for 

solving the SP problem in LHP contexts. This model considered uncertainty in the 

distribution of planned production lots in homogeneous sublots. The model reallocated 

both real and planned homogeneous quantities of products to already committed order 

lines. It considered multiple products and customer orders comprised more than one order 

line. The objective of this model was to maximise the profit made. This model allowed 

delays in deliveries, but not partial deliveries of order lines. 

Although the above mathematical programming models are most valuable, they can 

require long computation times to optimally solve them when the numbers of orders, 

products, subtypes and periods of time of the planning horizon are high. This can be 

especially relevant for the SP problem for two reasons. During SP, all the previously 

committed orders by the company should be taken into account. This aspect implies that 

the size of the problem becomes very large. At the same time, as the very limited time 

between the time of the real homogeneous quantities is known and the delivery of orders, 

methods are necessary to provide a solution to the SP problem in a short time.  

The theoretical framework used for the modelling and analyses in this research work is 

system dynamics (Forrester, 1961; Sterman, 2000). In this paper, we propose a system 

dynamics approach, validated with an also novel MILP model, to overcome the above-

cited drawbacks. To the best of our knowledge, no research proposes a simulation-based 

model to address the OP processing or SP problem. Our proposal also allows partial 

deliveries of order lines not previously addressed, which is the main novelty of the 

proposed MILP model. Besides the shorter computation times, simulation-based models 

can explain how process performance indicators react to changes in controllable factors 

or in the environment. Accordingly, managers can benefit from simulation models in 

several ways. They can contribute to: i) study the system changes in the model; ii) verify 

analytical solutions; iii) provide a view about key variables and how they interact; iv) 

experiment with new situations that involve risk or uncertainty; v) test new policies and 

decision rules (Campuzano and Mula, 2011; Campuzano et al. 2013). We refer readers to 

Tako and Robinson (2011) and to Jeo and Kim (2016) for extensive reviews of simulation 

models applied to logistics, supply chains, and production planning and control contexts. 

For this reason, the present article aims to design a system dynamics-based simulation 

model to support the SP process in the ceramic sector. The proposed solution is to 

reallocate homogeneous quantities of product to committed orders in order to optimise 

the company objectives. To this end, this model considers not only the real homogeneous 

sublots of product in stock, but also the planned homogeneous sublots to be produced. It 

is important to highlight that each homogeneous sublot is unique, so that sublots from 

different production lots cannot be combined to serve an order. When reallocating supply 

to customer orders, partial deliveries and/or some delays become flexible. The working 

basis of this simulation model is a mathematical programming model. Thus, analytical 

models offer optimum solutions, whereas simulation models: i) reflect a suitable degree 

of realism and accuracy in describing the system; ii) are capable of robustly and 



     

efficiently providing scenarios or what-if and sensitivity analyses (Georgiadis and 

Michaloudis, 2012; Georgiadous and Politou, 2013; Mula et al. 2013). All this provides 

a better evaluation and understanding of the problem under study.  

The rest of the paper includes: Section 2 describes the problem. Section 3 presents the 

MP model, taken as a basis for reallocating real homogeneous stocks and planned 

homogeneous sublots to committed orders. Section 4 shows the simulation model devised 

for planning shortages in the ceramic sector. Section 5 describes the model’s application, 

its validation in the ceramic sector, and analyses the results. Finally, Section 6 offers the 

obtained conclusions and the future research lines identified while conducting this work. 

2. Description of the problem  

As previously mentioned, this paper aims to provide solutions to the SP problem by 

reallocating (real and planned) available homogeneous quantities to already committed 

orders in the ceramic sector. LHP characterises the ceramic sector, which means that a 

particular production lot leads to units of the same product having different attributes. In 

this sector, such attributes are: i) quality, ii) colour and iii) calibre. Uncontrollable causes 

can be the reason for these products’ heterogeneity, which are mainly the composition of 

raw materials and/or changes in the environment during production. This means that the 

available homogeneous quantities obtained from the MPS are not known with certainty 

until after their manufacturing and classification. At the same time, customers require 

homogeneity in the above-mentioned attributes for the units of product that comprise each 

order line for aesthetic and assembly reasons. 

During the OP processing, customer orders are not only committed with the homogeneous 

quantities of product available in warehouses, but also with the planned homogeneous 

quantities that derive from the MPS. Therefore, it is necessary to initially estimate the 

distribution of lots into homogeneous sublots. Once production finishes, we can know the 

real distribution with certainty. Discrepancies between the estimated and real distribution 

of lots into homogeneous sublots can cause a shortage situation. As a result, it is not 

possible to serve some previously committed orders on the due date because there would 

be not enough homogeneous product. The SP intends to reallocate homogeneous 

quantities to orders to maximise the customer service level for the company as efficiently 

as possible. 

It is necessary to consider the homogeneity attributes of products when following the SP 

process in ceramic companies because of the need to serve customers not only with the 

agreed quantity and due date, but to also meet customers’ homogeneity requirements. 

We solve the SP process here by reallocating the real and planned products’ homogeneous 

quantities to the previously committed orders that resulted from the OP processing. This 

paper examines a company that works according to the following assumptions: 

− The orders committed during the OP processing can include one order line or more. 

− For each order line, the customer specifies the required product and quantity to be 

served with homogeneous units. 

− All the lines of the same customer order present the same due date, which coincides 

with the committed due date that results from the OP processing.  



     

− It is not possible to serve an order line through partial deliveries because it implies 

the need to deliver all the quantity that comprises an order line during the same period 

of time. Not serving an order line involves a penalisation by rejecting costs. 

− The model allows partial deliveries of complete order lines. It assumes that customers 

pick up their orders at the company and are in charge of the associated costs. For this 

reason, the number of partial deliveries does not affect the company’s profit.  

− If it is not possible to serve all the orders on the committed due date after the 

reallocation process, it contemplates a maximum delay allowed for the delivery of 

each order. Therefore, it is necessary to compromise the final delivery date of each 

customer order line between the interval defined by an earliest and latest due date 

where: 

• the earliest due date that a customer accepts a delivery is the committed due 

date provided by the OP processing.   

• the latest due date that a customer accepts a delivery is the earliest due date, 

plus the maximum delays allowed for his/her order. 

Figure 1 shows how the delivery terms are defined from the committed due date 

provided by the order promising process (dd) and the maximum delay allowed for 

each order (maxd). This figure also shows how homogeneous product allocated to a 

specific order is reserved until its committed due date. For example, if an order is 

going to be served with product that is available before the order’s due date, it is 

necessary to reserve (R) this product until the due date and hold it in inventory until 

delivery (e.g. Order 1 and 2 on Figure 1). In other cases, such as the represented in 

Order 3, the order will be served with product planned to be produced at the same or 

a posterior period to the committed due date. In these cases, the allocated product will 

not be reserved after production but directly sent to customer.  

 
Figure 1. Delivery term definition 

− To serve customer orders on time, prioritisation is possible by means of the maximum 

delays allowed: the shorter the maximum delays allowed for a customer order, the 

greater the priority of serving this order on the committed due date by the OP 

processing.  



     

− As the maximum delays allowed manages the priority of serving customers on time, 

it does not contemplate any penalty costs of late deliveries as regards the initial due 

date of the OP processing.  

− The homogeneous quantities of product available in stock are known. The model 

estimates the distribution of a production lot into different homogeneous sublots by 

the so-called coefficients of homogeneity. These coefficients represent the fraction of 

a lot considered homogeneous (i.e. of the same subtype).   

− The company’s objective is to maximise the profits calculated as the difference 

between incomes from serving customer orders and the costs generated by rejecting 

and/or reserving products in advance to the committed due dates (holding costs). 

− Economic data per product unit are known (profit, rejecting costs, and holding costs). 

3. MP model formulation 

By following these assumptions, we propose a MILP model for reallocating available 

homogeneous quantities to committed orders. Table 2 presents the notation employed in 

the model.  

Table 2. Nomenclature for the MP model 

Indices 

𝑜  Overall committed customer orders 

𝑘  Finished products required in the committed orders 

𝑠  Existing subtypes of all the finished products in the committed customer orders 

𝑡  Time periods 

Parameters 

𝐷𝑜𝑘   Quantity of product k demanded in customer order o 

𝑝𝑘  Per unit price of product k 

𝑟𝑐𝑘  Per unit reject cost of product k 

ℎ𝑐𝑘  Per unit inventory holding costs of product k 

𝑠𝑡𝑜𝑐𝑘𝑘𝑠  Total available stock of subtype s of product k 

𝑚𝑝𝑠𝑘𝑡   Planned quantity of product k which becomes available during time period t 

𝑛𝑙𝑜  Number of order lines in customer order o 

𝑑𝑑𝑜  Committed due date of customer order o 

𝑚𝑎𝑥𝑑𝑜  Maximum delay allowed for customer order o in relation to the committed due date 

𝛽𝑘𝑠  Fraction of each lot of product k of subtype s 

Decision variables 

𝐴0𝑘𝑠  Uncommitted available quantity of subtype s of product k after the reallocation process 

𝐴𝑘𝑠𝑡  Uncommitted available quantity of subtype s of product k derived from the 𝑚𝑝𝑠𝑘𝑡  after 

the reallocation process 

𝑈0𝑜𝑘𝑠  Identifies if the requested quantity of finished product k in customer order o is 

completely served by uncommitted stock with subtype s 

𝑈𝑜𝑘𝑠𝑡   Identifies if the requested quantity of finished product k in customer order o is 

completely served by uncommitted planned product in 𝑚𝑝𝑠𝑘𝑡  

𝑌𝐾𝑜𝑘   Identifies if the order line of customer order o that corresponds to finished product k is 

completely served 

𝐴𝐷𝑜𝑘  Number of periods of time where the required quantity of product k in customer order o 

is reserved until its delivery 

𝐿𝐷𝐾𝑜𝑘  Number of periods of time of delay in delivering product k in customer order o in 

relation to the committed due date 𝑑𝑑𝑜 

𝐷𝐾𝑜𝑘𝑡   Identifies if finished product k in customer order o is served at period of time t 

 



     

The objective of the model, Equation (1), is to maximise profits, calculated as the 

difference between the incomes obtained when serving orders and the costs of rejecting 

orders and reserving quantities of product for future deliveries.  

𝑀𝑎𝑥 𝑃𝑟𝑜𝑓𝑖𝑡 =∑∑𝐷𝑜𝑘 ∗ [𝑝𝑘 ∗ 𝑌𝐾𝑜𝑘 − 𝑟𝑐𝑘 ∗ (1 − 𝑌𝐾𝑜𝑘) − ℎ𝑐𝑘 ∗ 𝐴𝐷𝑜𝑘]

𝑘𝑜

                                              (1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝐴0𝑘𝑠 = 𝑠𝑡𝑜𝑐𝑘𝑘𝑠 −∑𝐷𝑜𝑘 ∗ 𝑈0𝑜𝑘𝑠
𝑜

        ∀𝑘, 𝑠                                                                                                       (2) 

𝐴𝑘𝑠𝑡 = 𝛽𝑘𝑠 ∗ 𝑚𝑝𝑠𝑘𝑡 −∑𝐷𝑜𝑘 ∗ 𝑈𝑜𝑘𝑠𝑡
𝑜

        ∀𝑘, 𝑠, 𝑡                                                                                              (3) 

∑𝑈0𝑜𝑘𝑠
𝑠

+∑∑𝑈𝑜𝑘𝑠𝑡
𝑡𝑠

= 𝑌𝐾𝑜𝑘         ∀𝑜, 𝑘                                                                                                          (4) 

∑(𝐷𝐾𝑜𝑘𝑡 ∗ 𝑡)

𝑡

≥ 𝑑𝑑𝑜 ∗ 𝑌𝐾𝑜𝑘         ∀𝑜, 𝑘                                                                                                                  (5) 

∑(𝐷𝐾𝑜𝑘𝑡 ∗ 𝑡)

𝑡

= 𝑑𝑑𝑜 ∗ 𝑌𝐾𝑜𝑘 + 𝐿𝐷𝐾𝑜𝑘         ∀𝑜, 𝑘                                                                                                (6) 

𝐿𝐷𝐾𝑜𝑘 ≤ 𝑚𝑎𝑥𝑑𝑜         ∀𝑜, 𝑘                                                                                                                                         (7) 

∑𝐷𝐾𝑜𝑘𝑡
𝑡

≤ 1        ∀𝑜, 𝑘                                                                                                                                              (8) 

𝐴𝐷𝑜𝑘 =∑(𝐷𝐾𝑜𝑘𝑡 ∗ 𝑡)

𝑡

−∑∑𝑈𝑜𝑘𝑠𝑡 ∗ 𝑡

𝑡𝑠

−∑𝑈0𝑜𝑘𝑠
𝑠

        ∀𝑜, 𝑘                                                                  (9) 

𝐴0𝑘𝑠, 𝐴𝑘𝑠𝑡  𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠                                                                                                                                                     

𝐴𝐷𝑜𝑘 , 𝐿𝐷𝐾𝑜𝑘   𝐼𝑛𝑡𝑒𝑔𝑒𝑟                                                                                                                                              (10) 

𝑌𝐾𝑜𝑘 , 𝐷𝐾𝑜𝑘𝑡 , 𝑈𝑜𝑘𝑠𝑡 , 𝑈0𝑜𝑘𝑠  𝐵𝑖𝑛𝑎𝑟𝑦                                                                                                                                   

Equation (2) calculates the uncommitted quantity of a product k and subtype s available 

in stock after reallocating orders. This quantity equals the real stock of this product k and 

subtype s, minus the customer order lines served with such stock. Similarly, Equation (3) 

computes the uncommitted planned quantity of a product k and subtype s available during 

period t after reallocating orders. This quantity equals the planned quantity of this product 

and the subtype to be produced during time period t, minus the customer order lines 

served with product k and subtype s through it. Equation (4) ensures serving each order 

line from a particular homogeneous quantity (subtype), while Equation (5) ensures 

serving an order if the delivery of all its order lines is complete. This means that it is not 

possible to serve only some order lines or part of the order line quantities. Moreover, 

Equations (5)-(7) guarantee that the delivery of an order line takes place within the date 

range specified by the committed due date and the maximum delay allowed. Equation (8) 

indicates serving an order line only during one period of time. Equation (9) determines 

which products we reserve during the periods of time until their delivery date. Finally, 

Equation (10) defines the nature of each variable by distinguishing binary, continuous or 

integer variables. 

4. SD model formulation 

In order to develop the system dynamics model to reallocate available homogeneous 

products to committed orders, we used the following methodology: i) propose the casual-

loop diagram; ii) create the flow chart that represents the process, iii) generate the 

equations that define the system dynamics model’s behaviour; iv) validate and perform 

the system dynamics model to evaluate what-if scenarios and sensitivity analyses. 



     

The causal-loop diagram (Figure 2) shows the cause-effect relations between the different 

system elements, which help to understand them and to subsequently draw the flow chart 

of the inventory reallocation model. Arrows depict these relations. Arrows take a positive 

sign if the two variables are directly proportional, namely a change in the origin variable 

leads to a change in the destination variable in the same sense. An arrow relates elements, 

otherwise the relation between the two variables is inversely proportional and the arrow 

takes a negative sign. 

 
Figure 2. The casual-loop diagram of the reallocation process 

As the causal-loop diagram shows, the quantity planned to be produced in the MPS 

determines production. The produced quantities form part of the available quantity of 

product, which demonstrates their positive relation. When any simulation of this system 

starts, a quantity of available product remains in the warehouse that comprises the initial 

stock. So the larger the initial stock, the more the available quantity. 

In the process followed to reallocate available quantities to committed orders, we see that 

the relation between the available quantities of product and accepted orders is positive 

(the bigger the quantity of available product, the more committed orders served), while 

the relation between the available quantities of product and orders rejected is negative 

(the bigger the quantity of available product, the fewer committed orders rejected). We 

can also read these relations in the reverse; the more committed orders served, the smaller 

quantity of available product that remains. Similarly, the more orders rejected, the bigger 

the quantity of available product that remains. A relation exists between accepted and 



     

rejected orders since the accepted quantity of orders increases when the rejected quantity 

of orders reduces, which establishes a negative relation. Moreover, when the quantity of 

accepted committed orders increases, it is necessary to reserve a bigger quantity of 

product beforehand until the committed due date of the order. 

Regarding margin, we observe that the number of served orders and the quantity of 

products demanded in such orders have a positive impact on the margin to be obtained. 

The margin is also directly proportional to the unitary price of each product. Similarly, 

the costs of rejecting orders increase when the unitary costs of rejecting a product rise, 

and also with the number of rejected orders and the quantity of demanded products in 

such orders. 

The holding costs derive from reserving MPS quantities of product until their due date. 

Holding costs may be null if the intended quantity of product to serve a particular order 

proceeds from the MPS that corresponds to the period of time which coincides with 

customers’ due dates. Similarly, holding costs may be null when serving the customer 

order with a delay. Therefore, holding costs increase with the quantity of reserved 

products, and also with the unitary holding cost per product. 

Finally, the company’s total profit increases when the obtained margin goes up. In turn, 

the total profit goes down when the costs from rejecting orders or from storing a reserved 

product increase. 

The closed chains of relations between variables results in loops, which can be positive 

or negative. Negative loops act like system stabilisers as they lead the system to a specific 

objective. However, positive loops have the opposite effect on the system. The dominance 

of negative or positive loops determines the system’s final performance. In this case, the 

causal-loop diagram shows that the system is hyperstable as the vast majority of its loops 

(all except one) are negative. With the causal-loop diagram, one can develop a flow chart 

or a Forrester diagram. This diagram represents the system under study and allows the 

simulation of the shortage planning problem. For this purpose, we first identify the level, 

flow and auxiliary variables needed to define the Forrester diagram. Table 3 offers the 

notation and respective units of measure, where index o refers to the customer order, 

index k denotes the product and index s represents the product subtype. 

 

Table 3. Nomenclature 

Level variables  

𝐴𝑄𝑊𝑘𝑠  Available quantity of finished product k and subtype s (m2) 

𝑅𝑄𝑊𝑜𝑘  
Reserved quantity of finished product k to serve the customer order o on its committed due 

date 𝑑𝑑𝑜 (m2) 

𝐷𝑜𝑘   Quantity of product k demanded in customer order o 

𝐷𝑆𝑘   Total quantity of demand of product k served to customers (m2) 

𝐷𝑅𝑘  Total quantity of demand of product k rejected to customers (m2) 

𝐶𝑂𝐿𝑜𝑘  Committed order lines during the OP process (Dmnl) 

𝐴𝑂𝐿  Total number of accepted order lines during the inventory reallocation process (Dmnl) 

𝑅𝑂𝐿  Total number of rejected order lines during the inventory reallocation process (Dmnl) 

𝑃  Total profit (€) 

𝐻𝐶  Total holding cost of the quantities reserved (€) 

𝑅𝐶  Total rejecting cost (€) 

Flow variables  



     

𝐴𝑄𝑘𝑠  Available quantity of product k and subtype s during each period of time (m2/week) 

𝑅𝑄𝑜𝑘𝑠  
Reserved quantity of finished product k and subtype s during each period of time to serve 

the customer order o on its committed due date 𝑑𝑑𝑜 (m2/week) 

𝑆𝑄𝑜𝑘   
Served quantity of finished product k to customer order o during each period of time 

(m2/week) 

𝑆𝑄′𝑜𝑘𝑠  
Served quantity of finished product k with subtype s to customer order o during each period 

of time (m2/week) 

𝐷𝑄𝑜𝑘  Demanded quantity of product k in a customer order o during each period of time (m2/week) 

𝑅𝐷𝑜𝑘   Rejected demand of product k in a customer order o during each period of time (m2/week) 

𝑆𝐷𝑜𝑘   Served demand of product k in a customer order o during each period of time (m2/week) 

𝐴𝐿𝑜𝑘  
Identifies if the delivery of product k of order o is accepted during a period of time 

(Dmnl/week) 

𝑅𝐿𝑜𝑘  
Identifies if the delivery of product k of order o is rejected during this period of time 

(Dmnl/week) 

𝑊𝑀  Total margin obtained during each period of time (€/week) 

𝑊𝐻𝐶  Total holding cost of the quantities reserved during each period of time (€/week) 

𝑊𝑅𝐶  Total rejecting cost during each period of time (€/week) 

Auxiliary variables  

𝛽𝑘𝑠  Coefficient of homogeneity or percentage of a lot of product k which will be subtype s after 

production (Dmnl) 

𝑚𝑝𝑠𝑘  Planned quantity of finished product k (m2) 

𝑝𝑟𝑜𝑑𝑘𝑠  Produced quantity of finished product k with subtype s (m2) 

𝑠𝑡𝑜𝑐𝑘𝑘𝑠  Total available stock of subtype s of finished product k (m2) 

𝑑𝑒𝑚𝑜𝑘  Quantity demanded of product k by customer order o (m2) 

𝑑𝑑𝑜  Committed due date of customer order o (week) 

𝑚𝑎𝑥𝑑𝑜  Maximum delay allowed for customer order o in relation to committed due date 𝑑𝑑𝑜 (week) 

ℎ𝑐𝑘  Inventory holding costs per unit of product k and period of time (€/m2/week) 

𝑟𝑐𝑘  Rejecting cost per unit of product k (€/m2) 

𝑝𝑘  Price per unit of product k (€/m2) 

𝐴𝑄𝐴𝑜𝑘𝑠  Identifies if an order o is committed with a certain product k and subtype s (Dmnl) 

 

Figure 3 depicts the flow chart of the inventory reallocation model that adapts to the real 

system. This model is good for running experiments to study the system’s performance 

in different scenarios. The Vensim simulation software implements the model. To this 

end, we design the equations that define the performance of each level and flow variable, 

and we assign the values that correspond to the auxiliary variables.  

We now go on to briefly describe the notation employed to represent the model: 

− The flow variables notation is accompanied by (t), which denotes that the value of 

such variables depends on each period of time. 

− Level variables represent the addition or subtraction of different flow variables over 

time, represented in this notation by the integral, from the beginning of the simulation 

to the corresponding period of time, of the addition or subtraction of flow variables. 

The level variables notation comes with (t), which denotes that the value of such 

variables depends on each period of time. 

− We use nested braces to represent “if…then…else” decisions. It is possible to 

concatenate several “if…then…else” decisions by representing a nested brace inside 

another nested brace. 



     

 
Figure 3. Flow chart of the reallocation process



     

This model’s performance commences as follows: when simulation starts, the only 

available quantities of product are those that comprise the initial stock. During the 

following periods of time, homogeneous quantities of product become available when 

produced. The planned quantities of product in the MPS define production, as does the 

coefficient of homogeneity that defines the homogeneity between units of manufactured 

products.  

At the beginning of simulation, a set of committed orders is known. The model has 

information about the products demanded in each order, the demanded quantities, the 

agreed due date, and the maximum delivery delays allowed. During the first period of 

time no order line is served nor rejected. 

For each order line, and during each period of time, the model verifies if it is necessary 

to serve each one with a particular available amount of product (defining the 

homogeneous subtype). During this allocation, if the current time period comes before 

the agreed due date, it is necessary to reserve these quantities until the due date. If the 

current period of time is equal to or is later than the due date, it is necessary to check if 

the maximum delays allowed has been exceeded. If this were the case, it is necessary to 

reject the customer order line, otherwise we must directly serve the customer order line. 

At the same time, we need to update the counters for the number of accepted or rejected 

committed order lines as their demand is accepted or rejected. Similarly, we update the 

economic data during simulation to obtain the total profit made by the company. 

More details about the model’s performance are available with the explanation of the 

equations that comprise it. Equations (12)-(24) determine the system’s performance. 

However, the other equations are useful for analysing the system’s performance. Equation 

(12) defines the quantity of product to be produced during each period of time, calculated 

by multiplying the quantity of product planned to be produced in the MPS for each period 

of time and the homogeneity coefficient. This coefficient characterises the distribution of 

a production lot into homogeneous sublots.   

𝑝𝑟𝑜𝑑𝑘𝑠 = 𝑚𝑝𝑠𝑘 ∗ 𝛽𝑘𝑠                                                                                                                                                (12) 

Equation (12) calculates the value for flow variable 𝐴𝑄𝑘𝑠 for each period of time.  

𝐴𝑄𝑘𝑠(𝑡) = {
𝑠𝑡𝑜𝑐𝑘𝑘𝑠  ,   𝑖𝑓 𝑡 = 0   
𝑝𝑟𝑜𝑑𝑘𝑠  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     ∀𝑘, 𝑠                                                                                                            (13) 

We used level variable 𝐴𝑄𝑊𝑘𝑠 to know the exact units of each product and each subtype 

available per period of time. This acts as a virtual warehouse of available quantities 

because it does not really exist, but displays the same performance as a real warehouse. 

Equation (14) defines 𝐴𝑄𝑊𝑘𝑠 as the available quantities that arrive at the virtual 

warehouse, less the quantities used to serve or reserve orders.  

𝐴𝑄𝑊𝑘𝑠(𝑡) = ∫ [𝐴𝑄𝑘𝑠(𝑡) −∑(𝑅𝑄𝑜𝑘𝑠(𝑡) + 𝑆𝑄
′
𝑜𝑘𝑠
(𝑡))

𝑜

]
𝑡

𝑡0

𝑑𝑡;   𝐴𝑄𝑊𝑘𝑠(𝑡0) = 0     ∀𝑘, 𝑠                       (14) 

We include variable 𝐴𝑄𝐴𝑜𝑘𝑠 for its use during the model’s validation by detailing which 

order is to be served and with which product and subtype. 

Variable 𝑆𝑄′𝑜𝑘𝑠 represents the quantity of product with a specific subtype, served directly 

from the available quantities in the virtual warehouse. We can serve a quantity directly if 



     

the current period of time equals or is after the agreed due date. We calculate flow variable 

𝑆𝑄′𝑜𝑘𝑠 as indicated in Equation (15). 

𝑆𝑄′𝑜𝑘𝑠(𝑡) = {
𝑖𝑓 𝑡 ≥ 𝑑𝑑𝑜 {

𝑖𝑓 𝐴𝑄𝐴𝑜𝑘𝑠 = 1 {
𝐷𝑜𝑘(𝑡),   𝑖𝑓 𝐴𝑄𝑊𝑘𝑠(𝑡) ≥ 𝐷𝑜𝑘(𝑡)
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                              
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                     

     ∀𝑜, 𝑘, 𝑠                         (15) 

Equation (16) represents the reserve of a quantity of product with a specific subtype to 

serve a particular order on its due date, 𝑅𝑄𝑜𝑘𝑠. It is only possible to reserve a quantity to 

serve an order if the current period of time is before the agreed due date.  

𝑅𝑄𝑜𝑘𝑠(𝑡) = {
𝑖𝑓 𝑡 < 𝑑𝑑𝑜 {

𝑖𝑓 𝐴𝑄𝐴𝑜𝑘𝑠 = 1 {
𝐷𝑜𝑘(𝑡),   𝑖𝑓 𝐴𝑄𝑊𝑘𝑠(𝑡) ≥ 𝐷𝑜𝑘(𝑡)
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                              
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                     

     ∀𝑜, 𝑘, 𝑠                          (16) 

Equation (17) defines 𝑅𝑄𝑊𝑜𝑘 as the reserved quantities that arrive from the virtual 

warehouse of available quantities, less the quantities used to serve orders.  

𝑅𝑄𝑊𝑜𝑘(𝑡) = ∫ [∑𝑅𝑄𝑜𝑘𝑠
𝑠

(𝑡) − 𝑆𝑄𝑜𝑘(𝑡)]
𝑡

𝑡0

𝑑𝑡;   𝑅𝑄𝑊𝑜𝑘(𝑡0) = 0     ∀𝑜, 𝑘                                                 (17) 

Variable 𝑆𝑄𝑜𝑘 represents the quantity of product served to customers after being reserved 

for one period of time or more. We can only serve a quantity if the current period of time 

equals or is after the agreed due date. We define 𝑆𝑄𝑜𝑘 as stated in Equation (18).  

𝑆𝑄𝑜𝑘(𝑡) = {
𝑖𝑓 𝑅𝑄𝑊𝑜𝑘(𝑡) = 𝐷𝑜𝑘(𝑡) {

𝑖𝑓 𝑡 ≥ 𝑑𝑑𝑜 {
𝐷𝑜𝑘(𝑡),   𝑖𝑓 𝑡 ≤ 𝑑𝑑𝑜 +𝑚𝑎𝑥𝑑𝑜
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                  
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                

     ∀𝑜, 𝑘                    (18) 

Note that both variables 𝑆𝑄′𝑜𝑘𝑠 and 𝑆𝑄𝑜𝑘 indicate the quantity of products that we must 

serve to customers during each period of time. However, these variables are not the same. 

When talking about variable 𝑆𝑄′𝑜𝑘𝑠, we directly serve orders from the available product 

quantities. However when we refer to variable 𝑆𝑄𝑜𝑘, we first reserve the product 

quantities to serve each order until their due date, and then we serve these products.   

Equation (19) assigns the quantities demanded for each order and particular product to 

variable 𝐷𝑄𝑜𝑘.  

𝐷𝑄𝑜𝑘(𝑡) = 𝑑𝑒𝑚𝑜𝑘      ∀𝑜, 𝑘                                                                                                                                       (19) 

Flow variable 𝑅𝐷𝑜𝑘 represents the quantity of rejected product during each period of time 

per order. Equation (20) determines that, if the demand of a product in a particular order 

exceeds zero, then we must check if the current period of time equals the last period of 

time of the simulation horizon. If this condition is met, demand is rejected if not served 

during this period of time. However, if the current period of time does not equal the last 

period of time of the simulation horizon, and is less than or equals the agreed due date, 

plus the maximum delays allowed, the demand is also rejected. 

𝑅𝐷𝑜𝑘(𝑡) =

{
  
 

  
 

𝑖𝑓 𝐷𝑜𝑘(𝑡) > 0

{
 
 

 
 
𝑖𝑓 𝑡 = 𝑇 {

𝐷𝑜𝑘(𝑡), 𝑖𝑓 [𝑆𝑄𝑜𝑘(𝑡) +∑𝑆𝑄′𝑜𝑘𝑠(𝑡)

𝑠

] = 0

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 {
0,   𝑖𝑓 𝑡 ≤ 𝑑𝑑𝑜 +𝑚𝑎𝑥𝑑𝑜
𝐷𝑜𝑘(𝑡),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

                                

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                        

   ∀𝑜, 𝑘           (20) 



     

Flow variable 𝑆𝐷𝑜𝑘 determines the quantity of product served to customers during each 

period of time per order. We calculate the served demand presented in Equation (21) as 

the sum of the both variables and show the served quantities of product per order (𝑆𝑄′𝑜𝑘𝑠 

and 𝑆𝑄𝑜𝑘). 

𝑆𝐷𝑜𝑘(𝑡) = 𝑆𝑄𝑜𝑘(𝑡) +∑𝑆𝑄′𝑜𝑘𝑠(𝑡)

𝑠

     ∀𝑜, 𝑘                                                                                                      (21) 

We employ level variable 𝐷𝑜𝑘 to know the existing demand of products during each 

period of time. Equation (22) defines 𝐷𝑜𝑘 as the new demand that arrives during each 

period of time, minus the rejected and served demands for each period of time.  

𝐷𝑜𝑘(𝑡) = ∫ [𝐷𝑄𝑜𝑘(𝑡) − 𝑅𝐷𝑜𝑘(𝑡) − 𝑆𝐷𝑜𝑘(𝑡)]
𝑡

𝑡0

𝑑𝑡;   𝐷𝑜𝑘(𝑡0) = 0     ∀𝑜, 𝑘                                                    (22) 

We use the level variable called 𝐷𝑆𝑘 to control the total quantity of demanded product 

served to customers (23).  

𝐷𝑆𝑘(𝑡) = ∫ [∑𝑆𝐷𝑜𝑘(𝑡)

𝑜

]
𝑡

𝑡0

𝑑𝑡;   𝐷𝑆𝑘(𝑡0) = 0     ∀𝑘                                                                                         (23) 

Similarly, we employ the level variable called 𝐷𝑅𝑘 to control the total quantity of rejected 

demanded product (24).  

𝐷𝑅𝑘(𝑡) = ∫ [∑𝑅𝐷𝑜𝑘(𝑡)

𝑜

]
𝑡

𝑡0

𝑑𝑡;   𝐷𝑅𝑘(𝑡0) = 0     ∀𝑘                                                                                       (24) 

Equations (25) - (29) establish the control of the number of served/rejected order lines. 

Flow variable 𝐴𝐿𝑜𝑘 determines the period of time when an order line has been 

accepted/served as shown in Equation (25).  

𝐴𝐿𝑜𝑘(𝑡) =

{
 

 
1,   𝑖𝑓 𝑆𝑄𝑜𝑘(𝑡) > 0                                  

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 {
1,   𝑖𝑓 ∑𝑆𝑄′𝑜𝑘𝑠(𝑡)

𝑠

> 0

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

     ∀𝑜, 𝑘                                                                           (25) 

Flow variable 𝑅𝐿𝑜𝑘 determines the period of time when an order line is rejected as shown 

in Equation (26).  

𝑅𝐿𝑜𝑘(𝑡) = {
1,   𝑖𝑓 𝑅𝐷𝑜𝑘(𝑡) > 0
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

     ∀𝑜, 𝑘                                                                                                              (26) 

At the start of simulation, we commit all the known order lines, and the value of binary 

variable 𝐶𝑂𝐿𝑜𝑘 equals one for all the existing orders and order lines. As shown in (27), 

the variable takes a value that equals zero when an order line is rejected or served. 

𝐶𝑂𝐿𝑜𝑘(𝑡) = ∫ −[𝐴𝐿𝑜𝑘 + 𝑅𝐿𝑜𝑘]
𝑡

𝑡0

𝑑𝑡;   𝐶𝑂𝐿𝑜𝑘(𝑡0) = 1     ∀𝑜, 𝑘                                                                       (27) 

Level variables 𝐴𝑂𝐿 and 𝑅𝑂𝐿 are useful for measuring the total number of accepted or 

rejected order lines, respectively. Equation (28) shows that the total number of accepted 

order lines equals those per period of time. Similarly, Equation (29) indicates that the 

total number of rejected order lines equals these per period of time.  

𝐴𝑂𝐿(𝑡) = ∫ [∑∑𝐴𝐿𝑜𝑘
𝑘

(𝑡)

𝑜

]
𝑡

𝑡0

𝑑𝑡;    𝐴𝑂𝐿(𝑡0) = 0                                                                                          (28) 



     

𝑅𝑂𝐿(𝑡) = ∫ [∑∑𝑅𝐿𝑜𝑘
𝑘

(𝑡)

𝑜

]
𝑡

𝑡0

𝑑𝑡;    𝑅𝑂𝐿(𝑡0) = 0                                                                                          (29) 

Equations (30) – (35) provide the economic results obtained during simulation. Equation 

(30) defines the margin obtained by serving customer orders during each period of time. 

This we calculate as the total demand served per unitary price of each product type. 

𝑊𝑀(𝑡) =∑∑𝑆𝐷𝑜𝑘(𝑡) ∗ 𝑝𝑘
𝑘𝑜

                                                                                                                              (30) 

Equation (31) defines the holding costs of reserving products allocated to order lines until 

their due date per period of time.  

𝑊𝐻𝐶(𝑡) = ∑∑𝑅𝑄𝑊𝑜𝑘(𝑡) ∗ ℎ𝑐𝑘
𝑘𝑜

                                                                                                                     (31) 

Equation (32) defines the rejection costs obtained by rejecting customer orders during 

each period of time.  

𝑊𝑅𝐶(𝑡) =∑∑𝑅𝐷𝑜𝑘(𝑡) ∗ 𝑟𝑐𝑘
𝑘𝑜

                                                                                                                          (32) 

Profit (𝑃) is the level variable to maximise, which we calculate as shown in Equation 

(33).  

𝑃(𝑡) = ∫ [𝑊𝑀(𝑡) −𝑊𝐻𝐶(𝑡) −𝑊𝑅𝐶(𝑡)]
𝑡

𝑡0

𝑑𝑡;    𝑃(𝑡0) = 0                                                                           (33) 

Finally, Equation (34) and Equation (35) present the total holding costs and the total 

rejecting costs.  

 𝐻𝐶(𝑡) = ∫ [𝑊𝐻𝐶(𝑡)]
𝑡

𝑡0
𝑑𝑡;    𝐻𝐶(𝑡0) = 0                                                                                                         (34) 

𝑅𝐶(𝑡) = ∫ [𝑊𝑅𝐶(𝑡)]
𝑡

𝑡0

𝑑𝑡;    𝑅𝐶(𝑡0) = 0                                                                                                        (35) 

Moreover, we identify the key element of this system’s performance and, therefore, the 

element on which improvement proposals focus, as variable 𝐴𝑄𝐴𝑜𝑘𝑠 because this variable 

determines which order lines we serve and which product subtypes we can serve these 

lines with. This decision conditions the system’s performance for several reasons, which 

depend on: (i) the rule used to reallocate available quantities to committed orders, when 

we can serve more or fewer order lines; (ii) if we accept order lines, we can make more 

or less profit (this also implies a higher or lower cost of rejecting order lines); (iii) the 

product subtype chosen to serve an order line allows us to serve this order line with or 

without delay; (iv) with the product subtype chosen to serve an order line, we can serve 

more or fewer orders because of homogeneity requirements.  

 

5. Applying the system dynamics model  

 

We employed data based on a real Spanish ceramic company’s problem to define the 

different types of variables. We also considered the assumptions set out below while 

simulating the model: 



     

− The simulation run length is the equivalent to 12 periods of time, where each 

period of time represents 1 week. 

− The company’s objective consists of maximising the profits made after 

reallocating the available quantities to previously committed orders. 

− We contemplated 35 orders made up of 10 order lines with 10 different products. 

− Each order line requires a quantity of between 20 and 4,000 m2 of the final 

product, and total demand is approximately 52,200 m2 of the product. 

− When simulation commences, we know the product quantity available in the 

warehouse, which we classify according to the homogeneous subtype to which it 

belongs. 

− We cannot classify the quantities planned in the MPS into homogeneous sublots 

before their manufacturing. In this case, we estimate the distribution of a lot into 

homogeneous subtypes according to probabilistic distributions. 

− The customer requires homogeneity among all the units that each particular order 

line comprises. 

− We need to serve customers orders within the time interval defined by the 

committed due date during the OP processing, and the maximum delay detailed 

by the customer. 

− The customer allows us to make the same number of deliveries as the number of 

lines that the order includes. However, partial deliveries of order lines are not 

possible. 

Table 4 presents the economic data per unit of each product. 

Table 4. The economic data of each product 

Final 

product 

(𝒌) 

Unitary 

margin 

(𝒑𝒌) 

Unitary 

rejecting cost 

(𝒓𝒄𝒌)  

Unitary 

holding cost  

(𝒉𝒄𝒌) 

1 7.00  5.25  0.064  

2 18.00  13.50  0.052  

3 12.00  9.00  0.040  

4 10.00  7.50  0.036  

5 5.00  3.75  0.036  

6 11.00  8.25  0.052  

7 13.00  9.75  0.040  

8 12.00  9.00  0.036  

9 6.00  4.50  0.052  

10 15.00  11.25  0.045  

 

Additionally, we set the initial value for level variable 𝐶𝑂𝐿𝑜𝑘 to 1, while the rest of the 

level variables take a null initial value. 

5.1. Validation 

We ran several of the tests proposed by Sterman (2000) to validate the contemplated 

model. The first one was the dimensional consistency test, which checks that the measure 

units employed in the model are correct. Secondly, we ran the reproduction test of known 

performances. The computer used to solve the models has an Intel® Xeon® CPU E5-



     

1620 v2© 3.70 GHz processor, with an installed capacity of 32 GB and a 64-bits operating 

system. We achieved the results obtained by mathematical programming with the MPL 

tool and solver GurobiTM 6.0.4, whereas we ran simulation in Vensim. We used the 

same input data for both tests. Moreover, in the simulation model, the auxiliary variable 

Available quantity allocation (𝐴𝑄𝐴𝑜𝑘𝑠) indicated with which subtype we must serve each 

order line. Afterwards, we obtained the results that appear in Table 5, which we used to 

validate the model. Thirdly, we ran an extreme-conditions test in two situations: no 

existing demand and no existing production.  

Table 5. Comparison of the mathematical programming and system dynamics results 

(35 orders) 

Variable 
Mathematical 

programming 

System 

dynamics 

𝐴𝑂𝐿 286 286 

𝑅𝑂𝐿 64 64 

𝐻𝐶 1,981.38 € 1,981.00 € 

𝑅𝐶 171,233.25 € 171,200.00 € 

∑𝑊𝑀
𝑡

 308,561.00 € 308,554.00 € 

𝑃 135,346.37 € 135,300.00 € 

Resolution time 33.18 sec 38 sec 

We carried out an additional test to compare the results obtained by the mathematical 

programming model and the system dynamics model. The intention of this test is to 

compare their performance for larger problems. For this case, we contemplated 70 orders 

and we duplicated the data about the MPS and initial stocks. The results (Table 6) show 

that the mathematical programming model needs almost 10 hours to provide a solution, 

whereas the system dynamics model instantaneously gives a solution. 

 

Table 6. Comparison of the mathematical programming and system dynamics results 

(70 orders) 

Variable 
Mathematical 

programming 

System 

dynamics 

𝐴𝑂𝐿 578 578 

𝑅𝑂𝐿 122 122 

𝐻𝐶 €2,500.5  €2,496  

𝑅𝐶 €330,598.5  €330,600  

∑𝑊𝑀
𝑡

 €632,946  €632,946  

𝑃 €299,847  €299,850  

Resolution time 9 h 13 min 20 sec 40 sec 

 



     

The mathematical programming model has also been solved for an instance of data 

comprised by 140 orders. In this case, a near to the optimum solution has been found in 

48 hours, with a GAP of 0.17%. This GAP represents the difference between the best 

solution found and the best bound. However, after 96 hours of execution, the GAP has 

not decreased. Computational results show how the time needed to solve the MILP model 

increases with the number of already committed orders. 

 

5.1.1. Sensitivity analysis 

With the sensitivity analysis, we examined the model’s performance by modifying the 

values assigned to its constant parameters. In this model, one parameter in particular can 

substantially change the model’s performance, which can actually imply a certain degree 

of uncertainty. This parameter is 𝛽𝑘𝑠, which represents the distribution of a lot into 

homogeneous sublots. We carried out a Monte Carlo sensitivity analysis on this 

parameter, where we assigned the distribution function to follow, as well as its minimum 

and maximum values. We studied the effects that these changes had on level variables 

Profit (Figure 4) and Accepted Order Lines (Figure 5). It is important to note that the first 

four weeks belong to the warm up simulation period. As we contemplated only 13 periods 

of time, we did not achieve the steady state with the Profit level variable because the 

profit calculations were higher than costs on the simulation horizon. Nevertheless, the 

average profit reached the steady state, as shown in Figure 6. With the Accepted Order 

Lines, as it is a level variable, it accumulates the accepted orders without reaching a steady 

state. Figure 7 presents the average Accepted Order Lines where the steady state is 

reached. 

Considering that a robust model maintains a fixed design and still accommodates plenty 

of changes of uncontrollable environmental factors, we were able to ensure the model’s 

robustness as the decision made about product allocation to orders was limited. We 

verified this robustness when we observed that the values obtained by a sensitivity 

analysis for the studied level variables were lower than those initially obtained. This was 

because not enough homogeneous product was available when assigning the different 

values to the homogeneity coefficient to serve some order lines that could be served 

beforehand. Thus we made less profit and served fewer order lines, which are the results 

that we expected of the model. Although we carried out other sensitivity tests with several 

parameters (maximum deliveries allowed, initial stock, etc.), we conclude that they had 

no significant effect on the model and the homogeneity coefficient had the strongest 

impact on LHP. Due to space requirements, we do not provide these sensitivity analyses 

here. 



     

 

 

Figure 4. Profit. Sensitivity analysis  

 

 

Figure 5. Accepted order lines. Sensitivity analysis 
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Figure 6. Average profit. Sensitivity analysis 

    
Figure 7. Average accepted order lines. Sensitivity analysis 
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Flow variable 𝑆𝑄′𝑜𝑘𝑠 defines the relation between the available quantities of 

homogeneous product and committed orders. Then we need to reformulate the equation 

that determines the performance of this variable. During the reallocation process, we 

made the decisions presented in (36): if the current period comes before the due date, we 

do not serve the order line. However, if the current time period comes after the range of 

dates defined by the committed due date and the maximum deliveries allowed, then we 

do not serve the order line. If we have already served this order line during the same 

period of time, but with a different homogeneous subtype, we cannot serve the order line. 

If the available quantity of product is greater than or equals the sum of the order line 

demand, plus the quantity of available product destined to serve other orders, then we 

serve the order lines with the product that has this homogeneous subtype. 

𝑆𝑄′𝑜𝑘𝑠 =

{
 
 
 
 

 
 
 
 

𝑖𝑓 𝑡 ≥ 𝑑𝑑𝑜

{
 
 
 

 
 
 

𝑖𝑓 𝑡 ≤ 𝑑𝑑𝑜 +𝑚𝑎𝑥𝑑𝑜

{
  
 

  
 0, 𝑖𝑓 ∑𝑆𝑄′𝑜𝑘𝑠′(𝑡)

𝑠

𝑠′

> 0                                                           

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 {
𝐷𝑜𝑘 , 𝑖𝑓 𝐴𝑄𝑊𝑘𝑠(𝑡) ≥ 𝐷𝑜𝑘(𝑡) +∑𝑆𝑄′𝑜′𝑘𝑠(𝑡)

𝑜

𝑜′

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                        
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                                          

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                                                                  

        ∀𝑜, 𝑘, 𝑠      (36) 

This equation must represent each order, product and subtype, and 1,260 equations (35 

orders · 10 products · 36 subtypes) would constitute flow variable 𝑆𝑄′𝑜𝑘𝑠. 

Based on the system considered in Scenario 1, we ran two experiments in which the 

company’s policies about delivering orders changed. Scenario 2 contemplates what 

would happen if the company did not allow delays in order deliveries. Scenario 3 

recreates a situation in which there is no maximum allowable delay, but it is possible to 

serve orders until the end of the simulation horizon. The intention of these scenarios is to 

assess the influence that flexibility in deliveries would have on the assessed system.  

Subsequently, we propose three experiments in which the homogeneity coefficient 

(distribution of a production lot into homogeneous sublots) changes. For this purpose, the 

values assigned to auxiliary variable 𝛽𝑘𝑠 vary. We consider each production lot to be 

divided into three homogeneous sublots. Then we define the homogeneity coefficient as 

𝛽𝑘𝑠 = 𝛽𝑘1-𝛽𝑘2-𝛽𝑘3, where 𝛽𝑘1, 𝛽𝑘2, and 𝛽𝑘3 are the proportion of the production lot 

classified as homogeneous subtypes 1, 2, or 3 respectively. In Scenario 1, we divide each 

production lot into three unbalanced homogeneous sublots, and by following distribution 

𝛽𝑘𝑠 = 0.7-0.2-0.1 in Scenario 4, we obtain a single homogeneous lot after production (𝛽𝑘𝑠 
= 1.0-0.0-0.0). In Scenario 5, we obtain two balanced homogeneous sublots with a 

production lot (𝛽𝑘𝑠 = 0.5-0.5-0.0) and, to finish, we obtained three unbalanced 

homogeneous sublots in Scenario 6 with the production lot with distribution 𝛽𝑘𝑠 = 0.4-

0.3-0.3. These scenarios attempt to assess the influence of LHP on the process of 

reallocating available quantities to committed orders. 

5.3. Assessing the results 

For each scenario, we analyse the maximum deliveries allowed in deliveries (𝑚𝑎𝑥𝑑𝑜), 
the number of order lines accepted and rejected, and the economic results comprised of 

the total rejecting costs, total margin and total profit obtained. Table 7 offers the results 

obtained after running the simulations which correspond to the first, second and third 



     

scenarios. We designed this set of scenarios to assess the effect of flexibility on the 

deliveries of orders. 

Table 7. Results of scenarios with flexibility in deliveries 

Variable Scenario 1 Scenario 2 Scenario 3 

𝑚𝑎𝑥𝑑𝑜 2 periods of time  0 periods of time unlimited 

𝐴𝑂𝐿 316 287 326 

𝑅𝑂𝐿 34 63 24 

𝑅𝐶 €149.600 €189.974 €116.051 

∑𝑊𝑀
𝑡

 €337.468  €283.573  €382.138 

𝑃 €187.900  €93.599  €266.087  

AOL: order lines accepted; ROL: order lines rejected; RC: rejecting cost; ∑ 𝑊𝑀𝑡 : total margin; 

P: total profit obtained. 

 

These results revealed that the greater the flexibility allowed in order deliveries, the better 

the obtained results. Scenario 1 allowed a maximum delay of two periods of time per 

order. Here the profit made duplicated the results obtained by Scenario 2, which allowed 

no delays. Moreover, the delay allowed in Scenario 1 enabled us to serve 29 more order 

lines than when not permitting delays. From the results obtained in Scenario 3, which set 

no limit to the time in which to make deliveries, we served even more order lines (39 

more than in Scenario 1). Therefore, we conclude that the results considerably improve 

by allowing flexibility when delivering orders. 

Table 8 presents the results obtained for the scenarios that assessed system performance 

when making changes to the homogeneous sublots obtained with each production lot. 

Table 8. Results of the scenarios with homogeneity in distribution 

Variable Scenario 1 Scenario 4 Scenario 5 Scenario 6 

𝛽𝑘𝑠 0.7 – 0.2 – 0.1 1.0 – 0.0 – 0.0 0.5 – 0.5 – 0.0 0.4 – 0.3 – 0.3 

𝐴𝑂𝐿 316 328 322 310 

𝑅𝑂𝐿 34 22 28 40 

𝑅𝐶 €149.571  €127.544  €137.185  €168.613  

∑𝑊𝑀
𝑡

 €337.468 €366.813  €353.959  
€312.055  

𝑃 €187.873  €239.269 €216.774  €143.442  

AOL: order lines accepted; ROL: order lines rejected; RC: rejecting cost; ∑ 𝑊𝑀𝑡 : total margin; P: total 

profit obtained. 

 

From the obtained results, we conclude that we can serve more order lines when 

homogeneous sublots include a bigger lot fraction. This positively affected the profits 

made as we rejected fewer orders, and we obtained a higher margin for the served 

products. Additionally, readers are referred to the following url in order to open through 

Vensim  the simulation model as a published version at: 



     

 http://www.cigip.upv.es/docs/2017_IJPR_Esteso_et_al_Publish.vpm 

 

6. Conclusions 

This article has presented a system dynamics model for the SP process in the ceramic 

sector based on the reallocation of stocked and planned available quantities to previously 

committed orders. This model has considered partial deliveries of order lines and the 

customer’s requirement of homogeneity among units that comprise an order line, what 

makes the task of serving orders even more difficult. Additionally, a mathematical 

programming model with the same purpose has been proposed and used to validate the 

systems dynamics model. The comparison between the two models shows the better 

performance of the systems dynamics model as the number of orders increases with near 

optimal solutions in a very short time.  

Once the system dynamics model validation has been proved, different what-if scenarios 

have been simulated to assess the system’s real performance to such scenario. For that, 

the number of order lines accepted/rejected and economic results were analysed. Firstly, 

a new policy for the reallocation process based on serving the orders with the older 

available quantity that meet the customer’s requirements was defined. This policy has 

been used for all the following scenarios. Secondly, we compare the system’s 

performance when changing the maximum delay allowed per order. Here, we found that 

more orders can be served when the flexibility in deliveries increases. Finally, we 

generated three scenarios to verify the system’s performance in light of different 

distributions of a production lot into different homogeneous sublots. From this set of 

scenarios, we conclude that it is easier to serve orders with homogeneous product when 

few sublots are obtained from a production lot. Therefore, the fewer the sublots obtained 

from a lot, the better the achieved results.  

In literature, system dynamics models mainly focus on strategic problems (Tako and 

Robinson, 2011; Jeon and Kim, 2016). However, the computational efficiency of the 

proposed system dynamics model proves that it is also an excellent operational tool to 

reallocate available products to committed orders. Managerial implications focus on 

integrating the system dynamics model into the information system of companies. 

Moreover, it is possible to use the tool to do what-if analyses according to managers’ 

requirements. Specific system dynamics formation for managers would be desirable to 

obtain more flexible and robust simulation models. 

Some future improvements for the current proposal have been detected. In this work, we 

particularly managed to adjust the SP process in a way that real and planned available 

quantities of product were reallocated to previously committed orders. This process is 

held at the start of the simulation so that it is decided if the produced units are going to 

be stocked, reserved to serve a committed order until its due date, or directly served to 

customers. In future works, different inventory reallocation policies could be employed; 

e.g. instead of serving an order with the oldest homogeneous sublot, we could serve it 

with the smaller homogeneous sublot that meets the order requirements. This would 

decrease the number of small homogeneous sublots available at the company and would 

increase the probability to serve big amounts of product with homogeneous product. 

Furthermore, the simulation could consider orders of different sizes. It would better 

http://www.cigip.upv.es/docs/2017_IJPR_Esteso_et_al_Publish.vpm


     

represent reality as each order can be comprised by a different number of order lines. 

Similarly, it would be possible to consider that the same product can be demanded in 

more than one line of the same order. Finally, the system dynamic model could be 

extended by assuming that two or more lines of the same order need to be homogeneous. 

This would be very valuable by ceramic industries in which it is necessary to ensure that 

products that are going to be assembled together display homogeneity with each other.  
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