Tesis de Master en Ingenieria de Software

Métodos Formales y Sistemas de Informacién

UNIVERSITAT DEPARTAMENTO DE SISTEMAS

POLITECNICA INFORMATICOS Y COMPUTACION
DE VALENCIA

A model-driven framework to infegrate
Communication Analysis and 00-Method

Luz Marcela Ruiz Carmona

Advisors: Oscar Pastor Lopez
Sergio Espaiia Cubille

Centro de Investigacian an Métodos
da Preduccicn de Saftware

A5z UNIVERSIDAD U B
POLITECNICA PRRno
ALY DE V/.\LENCI/.\ Centro de Investigacién en Métodos

de Produccién de Software

Master thesis

A model-driven framework to

Integrate Communication Analysis
and 00-Method

Luz Marcela Ruiz Carmona
Advisors: Oscar Pastor Lépez

Sergio Espana Cubillo

September 2011, Valencia Spain

Hubo una epoca en que todo era mas facil.
Tu mamd decid que ropa te ponias, y vos la
usabas sin ningiin tipo de problema.

Te peinaba, y te encantaba como lo hacia.

Te cuidaba, como nadie podia hacerlo.

Y cuando tenias hambre solo llorabas.

Ibas a ser abogado, tal vez ingeniero o presi-
dente, como muchos nifios mds;

pero un dia, sin que te dieras cuenta, crecis-
te, y aprendiste a decir que no.

No te conformaste.

Y sentiste que querias cometer tus propios
errores, saltar los muros que te defendian en
tu nifiez.

Entonces tomaste el camino mas dificil.

Te dedicaste a lo que realmente querias.

Te animaste a ser distinto.

Y por primera vez sentiste que podias.

Era tu lucha, tu conviccion.

Y sin dudar, arriesgaste todo lo que tenias.
Porque en el fondo, sabias que habia algo
mucho peor que fracasar.

No haberlo intentado!!

Anonimo

Dedicated to my grandmother Lucero.
Thank you for your support, your happiness,
your smiles and your songs from the heaven.

Agradecimientos

M arco Tulio Cicerén, en su tratado sobre la amistad relata: "si al-
guien hubiese subido al cielo y hubiese contemplado la natura-
leza del mundo y la hermosura de los astros; esta habria sido para él
agradabilisima, si hubiera tenido a alguien al que contarlo". De ver-
dad, me siento alegre y afortunada de poder decir, que en estos dos
anos que llevo en el mundo de la investigacion he contemplado cosas
hermosas, y ademas, que siempre he tenido con quien compartirlas.

Deseo expresar mi mads sincero agradecimiento y carifio a mi amigo y
director Oscar Pastor, gracias por darme la oportunidad de hacer par-
te de tu equipo, porque desde el primer dia me hiciste sentir como en
casa, gracias por tus consejos y compafiia, por darme la oportunidad
de estar en el mundo de la investigacion y disfrutar de el de la mejor
forma. Gracias por haberme escogido, y por tu infinita fe y confianza
en mi.

De forma muy especial quiero dar las gracias mi companero, codirec-
tor y jefe Sergio Espana, gracias Sergio por tanto que haces por mi,
por guiarme, animarme, por tu infinita paciencia, porque me has ex-
plicado cosas mil veces y siempre tienes fe de que podré hacerlo
bien®. Gracias por “apretarme las tuercas” cuando mas lo necesitaba
y por hacerme tomar pausas cuando exageraba en las cosas. Gracias
por todo lo que me has ensefiado, gracias por permitirme ser parte de
tu equipo y aprender de tu experiencia, gracias porque estos dos afios
de trabajo contigo me siento muy contenta y feliz con lo que hago.
Gracias por tu positivismo y tu alegria para hacer las cosas, tu animo
proactivo y emprendedor es admirable, me contagia de un ambiente
especial que incrementa mi sentido de pertenencia y compromiso por
nuestros proyectos y trabajos. Gracias porque has hecho parte de mi
crecimiento profesional y personal, y aunque atin me falta mucho
camino por recorrer, tus consejos y sonrisas han hecho parte de mis

cimientos como investigadora, ojald algun dia yo pueda hacer por ti
aunque sea un poco de lo que t1 has hecho por mi.

Quiero dar las gracias al profesor Arturo Gonzalez por permitirme
desarrollar mis temas de investigacion en torno a su propuesta de
Analisis de Comunicaciones.

Quiero dar las gracias a mi profesor Carlos Mario Zapata por sus
consejos de padre, por su compafiia y carino, gracias por esos afios de
trabajo juntos, gracias por que como cualquier padre siempre has de-
seado lo mejor para mi y me dejaste partir de tu grupo seguro de que
iba a crecer profesional y personalmente con el profesor Oscar Pastor.

Quiero dar las gracias a Ana Cidad y a Pele por sus esfuerzos cons-
tantes para que yo pueda estar aca. Muchas gracias Ana, sin tu ayuda
este trabajo no hubiera sido posible.

En Medellin tengo un par de profesores muy especiales que han esta-
do muy pendientes de mi durante estos dos afios, ellos son Demetrio
Arturo Ovalle y Maria Teresa Berdugo, gracias por sus animos e im-
pulsarme tanto al momento de tomar la decisiéon de viajar, gracias
por ser un soporte y compania desde la lejania.

Quiero agradecer al profesor Jean Vanderdonckt por su amabilidad y
disposicion cuando desarrollamos las pruebas de usabilidad de la
herramienta de modelado propuesta en esta tesis. Jean, muchas gra-
cias por tus consejos y habernos ensefiado tus conocimientos ante el
reto que teniamos por resolver, gracias por concedernos tu tiempo y
tus espacios. Trabajar junto a ti fue todo un honor.

Quiero agradecer a Mario Cervera por las tardes de dedicacion y es-
fuerzos ensefidandome a manejar la herramienta MOSKitt y los conse-
jos dados sobre el desarrollo en Eclipse. Mario, gracias por tu ayuda
desinteresada y amabilidad.

En el laboratorio 104 he pasado unas largas jornadas de trabajo, las
cuales han sido especiales y alegres gracias a que tengo la suerte de

contar con unos compaferos de laboratorio excepcionales, como Ig-
nacio, gracias Doctor Panach por tus consejos y chistes malos, gracias
por ensefarme a usar olivanova y estar siempre tan pendiente de mi
horario de trabajo, gracias a ti llegaba siempre temprano, gracias por
tus consejos. Muchas gracias Paco por haberme hecho reir tanto en el
laboratorio, gracias por tu ayuda cuando me enrollaba en lo que no
hacia falta. Mil gracias a Nathalie por sus consejos y estar siempre
ahi, gracias por los cafecitos para despejar un poco la mente y defen-
derme ante los chicos ©. Nelly, muchas gracias por el tiempo de char-
las y consejos. Jose Luis, muchas gracias por siempre querer corregir
mis trabajos, por las bromas y planes en el laboratorio. Gracias Raul
por tu danimo alegre y estar siempre muy pendiente de como estan
todos en el laboratorio. Gracias a Urko y al resto de “pastorcillos” e
integrantes del PROS.

Quiero expresar un especial agradecimiento a Bea y Giovanni, gracias
por las tardes de charlas y risas, por sus consejos, por estar en las
buenas y en las malas, gracias por emocionarse con mis historias y
permitirme disfrutar de su compafiia y alegria.

Muchas gracias a Daniel y Nathalie, gracias por hacer parte de mis
empelicules, gracias porque han sido parte del equipo disefiador de
la portada de la tesis, gracias por estos afios de amistad, gracias por
sus consejos y tardes de amigos, gracias por su compainia, en conjunto
con Laura, Carlino y el equipo paraguayo, han hecho de este par de
anos un tiempo lleno de experiencias muy especiales.

Quiero agradecer a mis comparfieros del master Mariajo, Matthijs,
Anicia y Lore, gracias por las tardes que pasamos realizando trabajos
y estudiando para exdmenes. Su compafiia fue muy importante para
poder finalizar mis estudios.

Lore, porque en muchos momentos de angustia estuviste ahi para
hacerme ver que no valia la pena estar triste o preocupado, gracias
por los momentos de “yapir6” todo lo que pasa, jera verdad!, muchas
veces nos preocupamos de cosas que no tienen sentido y dejamos de
vivir lo que realmente es importante. Gracias amiga paraguayita!

Quiero darle las gracias a mis amigos de Medellin Aleja, Sandra, In-
dira, Yosel, Diana, Gloria, Margarita, Jhon Edison, Jose Fabio, Andrés
y Lili. Gracias a todos mis amigos de la Universidad y de Sura. Gra-
cias amigos por animarme a tomar la decision de viajar y estar siem-
pre tan pendiente de mi, gracias porque aunque estamos muy lejos y
han pasado dos anos, yo se que nuestra amistad sigue intacta, los ex-
trafio y los quiero mucho.

Gracias Erica por vivir esta experiencia conmigo, gracias por estar ahi
a cualquier hora del dia o de la noche, gracias por vivir cada aventura
y momento, gracias por hacerme parte de tu vida aunque kilémetros
de distancia nos separen, gracias por Isabellita y permitirme vivir tu
embarazo como si hubiéramos estado juntas, gracias por orar por mi,
por tus dnimos y alegria, gracias porque siempre has sido un rayo de
Dios en mi vida.

Esther, muchas gracias por tu carifio y comprension, gracias por ser
mi companera de piso y haber vivido una parte de mi aventura. Gra-
cias por tus oraciones, tu danimo y compania. Gracias por tantas no-
ches que me recibiste con la comida caliente porque llegaba muy tar-
de, gracias por ayudarme con tantas cosas que por tiempo no alcan-
zaba a hacer y por tu paciencia conmigo.

Estando en Medellin no alcancé a imaginar que al otro lado del mun-
do tenia una mejor amiga: Paqui, muchas gracias por tus consejos en
el desarrollo de esta tesis. Gracias por mostrarme lo mas lindo de Va-
lencia, y por maravillarte de mi ciudad. Gracias por explicarme tantas
cosas, gracias por ser como mi hermana, por tantas tardes de sonrisas,
planes y empelicules. Gracias por reir y llorar conmigo, y estar con-
migo en las buenas y en las malas. Gracias porque en los momentos
mas tristes estuviste, y te inventabas cosas para hacerme sonreir para
que se me olvidaran las cosas aunque fuera por un instante. Gracias
por que hoy me siento muy afortunada de seas mi amiga ©

Doy gracias a mi familia, a mis tios y primos, especialmente a mi tia
favorita Vicky por sus consejos y sus regafiios amorosos, gracias a Te-
re por su amor y su energia positiva, gracias Tere por ser tan linda y
tan buena conmigo, gracias a Tavo por estar siempre ahi y por ser

una gran compania para mi mama, y claro mil gracias a mi ayudante
favorito Juan José, gracias por ser un nino tan especial y haber llega-
do a nuestras vidas a llenarla de sonrisas y felicidad, aunque no soy
capaz de explicarte porque estoy tan lejos y no voy a jugar contigo, en
un futuro leeras esto y entenderas porqué.

Vero, gracias por ser mi apoyo por haber estado toda la vida junto a
mi, gracias hermana porque sé que siempre estaras ahi para mi y
porque juntas vamos a poder lograr muchas cosas. Te quiero mucho
hermanita, y este trabajo que cierra un trozo de la meta a la que quie-
ro llegar esta dedicado a ti, gracias por vivir conmigo cada instante,
porque cuidas de mis papas y los conscientes. Gracias hermanita por
existir en mi vida, porque sos el regalo mas lindo, gracias por tu pa-
ciencia, porque sé que te hago falta, pero sabes? Me siento muy orgu-
llosa de ti, porque ahora ya eres grande, tomas tus propias decisiones
y eres exitosa. Te quiero mucho!

Quiero finalizar agradeciendo a las personas mas importantes, a
quienes va dedicado todo este trabajo, gracias Papi y Mami, sin su
apoyo, su carifio y sus esfuerzos yo no hubiera sido capaz de salir
adelante ante tantos obstaculos. Gracias por dejarme volar, por que
su compafia me ha seguido a todas partes, gracias porque desde nina
siempre han creido que podia llegar muy lejos, porque a Vero y a mi
nos han dado todo lo que han tenido por amor. Papi y mami, gracias
por tantos sacrificios, porque de lejos he descubierto que ustedes son
mis mejores amigos y mi apoyo incondicional. Gracias por sus ora-
ciones, gracias por el enorme esfuerzo que han hecho en aprender a
usar el computador y el internet para estar conectados conmigo, de
verdad, que tus padres aprendan a manejar tecnologias que no hab-
ian tocado nunca solo por estar contigo no tiene precio. Gracias Papi
y Mami por dejar a un lado sus suefios por vivir los de mi hermanita
y los mios, gracias Papi y Mami por mostrarme que es mas fuerte el
deseo que querer lograr algo que los medios que tienes a tu alrededor
para conseguirlo, gracias por mostrarme que si tengo suenos, puedo
encontrar un camino para alcanzarlos, gracias por permitirme crecer
en un ambiente lleno de Dios y de amor, esa fuerza especial que llena

mi espiritu y me impulsa para ser cada dia mejor y poder llegar a ser
una gran persona y una gran profesional, los amo infinitamente.

Marcela Ruiz

Overview

rganisational systems require elicitation methods and require-

ments specification to identify needs and inherent characteristics
of their business process. Analyse System Information from a com-
municative perspective is necessary, because this perspective in-
volves processes and system actors; all of this having into account
how is the information communicated and how the information in-
teracts between the system and the environment.

Communication Analysis is a requirements engineering method
that proposes to specify business processes from a communicational
perspective. Model-driven development (MDD) is a paradigm that
provides to the requirement models of some advantages: as the po-
tential to derive conceptual models for generating software in an
automatic way. The automatic generation of software products al-
lows an easy adoption of requirements engineering methods in an
industrial environment. OO-Method is a model-driven software de-
velopment method, whose conceptual models are supported by
OLIVANOVA, a models compiler that allows the code automatic gen-
eration. This master thesis presents an integration framework to link
Communication Analysis techniques and OO-Method. This integra-
tion framework follows a model-driven development approach. We
propose a development framework that involves tools (e.g. Eclipse)
to support modelling tasks, proposes modelling techniques and
model-driven development practices that are advised by academy.
We present application prototypes to analyse the advantages and
challenges, the MDD community should confront the support of the
MDD paradigm, and what kind of strategies the MDD community
should propose to involve the MDD paradigm into industrial envi-
ronments.

Resumen

os sistemas organizacionales requieren métodos de captura y

especificacion de requisitos para identificar las necesidades y ca-

racteristicas intrinsecas de sus procesos de negocio. Analizar el
Sistema de Informacion desde una perspectiva comunicativa es nece-
sario, debido a que involucra los procesos y actores del sistema te-
niendo en cuenta como se comunica la informacién y como ésta inter-
actta entre el sistema y el entorno. Andlisis de Comunicaciones es un
método de ingenieria de requisitos que propone describir los proce-
sos de negocio desde una perspectiva comunicacional. El desarrollo
dirigido por modelos (MDD) es un paradigma que puede dotar a los
modelos de requisitos de un valor agregado: el potencial para derivar
de ellos los modelos conceptuales que serviran para la generacion au-
tomatica de software, permitiendo asi una facil adopcién de metodo-
logias de requisitos en un entorno industrial. OO-Method es un
método de desarrollo de software dirigido por modelos, cuyos mode-
los conceptuales se encuentran soportados por OLIVANOVA, un com-
pilador de modelos que permite la generacién automatica de cédigo
ejecutable. Esta tesis de Master presenta una propuesta de integracién
de las técnicas de Analisis de Comunicaciones y OO-Method desde
un enfoque dirigido por modelos. Se propone un marco de desarrollo
que aprovecha herramientas para el soporte de modelado como
Eclipse y se emplean técnicas de metamodelado y desarrollo dirigido
por modelos que en la actualidad es promulgado por la academia. Se
presentan prototipos de aplicaciones, donde se pueden analizar las
ventajas y retos futuros que la comunidad de MDD debe afrontar pa-
ra dar soporte al auge del paradigma y ésta cdémo puede ser involu-
crada en entornos industriales.

Contents

1 [T41 940 To [7 ot 1 1o Y 1 IO 7
1.1 MOEIVATION et 8
1.2 CONTEXE e 9
S T 0] oY [<T o1 4 V7T USRS 10
1.4 The proposed solUtioNccuveiiieiiiiiiiiieeee e 11
1.5 Research methodologycccccueeeeiiiieiiiie e 27
1.6 TheSis SLIUCTUIE ..ciiiiiiiiiiieecee et s 31
2 RY Lo (=30) i 1 1 = | SR 33
2.1 Frameworks for method integrationccccccceveveceiiicceee e 34
2.2 Integration process of RE specification with OO conceptual models
... 36
2.3 Technological support for business process modelling. 37
2.4 Communication Analysis method.........ccccoeeeiiiiiiiiiiiieie e, 38
2.5 OO-MELNO...iiiiiiiiiieiie ettt 45
2.6 Analysis and diSCUSSIONeeeviiieeiiiee e e 46
3 MDD approach: a metamodel to support the techniques of
Communicative Event Diagrams and Message Structures 49
3.1 INIIAl SEAtE ceveivieee s 50
3.2 The metamodelling strategy.....cccccceeeieeiciiiiiiiiiee e, 51
3.3 PIM metamodel specificationccccceeecuiiiiiiiiiiicciieee e, 52
3.4 PSM metamodel specificationcccceeveeeeeiiciieeecee e 54
3.5 Metamodel validation........ccccovuieiiiiiiiiniiiie e 138
3.6 Analysis and diSCUSSIONccciiiiiiiiiiiieee e e 139
4 A modelling tool for Communication Analysis requirements
1 1o s L= KON 141
4.1 Technological SUPPOIt......cccuiiiiieiiceiiee e 142
4.2 PSM metamodel implementation.........cccceecveveeeceeeccieee e 144

4.3 Design of the graphical editor for communicative event diagrams
ANA MESSAZE STIUCTUIES . uevieeiieeiiiiiee e e ettt e e eeecaree e e e e eesabre e e e e e seennenes 150
4.4 How to use the modelling toolccccvveeeeciiii e 152

4.5 Modelling tool validation.........ccccoeecciiiiiiiiiiiiee e 169

4.6 Analysis and diSCUSSIONuuiiieiiieiiiiiee e 191
5 Supporting the model transformation: From Communication
Analysis requirements models to OO-Method object model............. 193
5.2 Technological SUPPOIt.......ccoeiiieiiiiiiiieee et 198
5.3 Rulesimplementation.......cccccoccuvieeeciie e 199
5.4 Transformation eXample.......cccoooiiiiieeiiiiiiiiiiieeee e 200
5.5 Validation of the transformation proposal.........cccccceevirieeiiinnnnes 206
5.6 Traceability SUPPOIt.....ccceecieeiceee et 207
5.7 Analysis and diSCUSSIONcccciieiiiiiiieei et 211
6 CONCIUSIONS ...cueeevvvnercriirniiisiirniiisiinniiiriisisissississssisssssessesnones 213
6.1 CoNribULIONS coeviiiiecieeee e 214
6.2 PUDICAtIONS...ciiiiiiieieiie e e 215
6.3 FULUIE WOIK .eoiiiiiiiiieiie e 217
7 REf@IENCES.........ceeeeeeeeeeeeeeereeeecerreeeeereeeneessennsssssrnnssesnnnnnsenes 219
7.1 References of this thesis........cccocviiriiiiiiiiniiie e, 219
8 Y YT =1 1 T B R 227
8.1 Development of the modelling tool: step by stepcccccuvernneeee. 227
9 APPENA 2.....uuueeeiiivveiiiiiinnisisiisnisisiisniiisissniiisiesssessisnssssssnanes 249

9.1 ATLrules to transform Communication Analysis requirements
models to 00-Method class diagram.........cceecveeeeviieeeeccee e 249

List of figures

Figure 1. General framework of integrationcccccueeeiiiiiiiiiieiiiee e
Figure 2. Stage 1 of the general framework of integration...
Figure 3. Stage 2 of the general framework of integration..........cccecveveevveecvenceesceeenn,

Figure 4. Integration framework to involve Communication Analysis method into a MDD
ENVIFONMENT c..eeiiiiiiiiiiiceee e
Figure 5. Research method followed in the thesis
Figure 6. Communicative event diagram of SuperStationery Co. Sales management

DUSINESS ProOCESS (SAIE) ..eeereeiieeieeiie ettt e s e e e e eseesneeenes 41
Figure 7. Phase 1 eXplanationcceeeeecee et 53
Figure 8. PIM metamodel for communicative event diagrams.........ccccceeveveeiiveeeiiineennne 54
Figure 9. Phase 2 eXplanationc.ceiciiiiiiiiie ettt evte e e saree e 55
Figure 10. PSM metamodel for communicative event diagrams........cc.cceeevevvercveereeenne. 57
Figure 11. Portion of the metamodel including the metaclass AGGREGATION................ 59
Figure 12. Example of the different AND Casescccceevuiiiiiiiiiiiieecireecsreeesiee e 61
Figure 13.Portion of the metamodel including the metaclass AND..........c..ccoeeveeeeiiveeenne 61
Figure 14 Graphical primitive of AND Metaclass......c.ccoeeveveeriiriierieeeesee e 62
Figure 15. Portion of the metamodel including the metaclass BUSINESS_OBJECT_CLASS
.. 63
Figure 16. Portion of the metamodel including the metaclass BUSINESS_OBJECT_FIELD
.. 64

Figure 17. Portion of the metamodel including the metaclass

COMMUNIATION _CHANNEL.ettteieiiiteee ettt e e ettt e e e s e e e s e s anee e e e s esmnneeeneeeeeens
Figure 18. Example of use of COMMUNICATIVE_EVENT ain a CED
Figure 19. Portion of the metamodel including the metaclass COMMUNICATIVE_EVENT

.. 68
Figure 20. Graphical primitive of the COMMUNICATIVE EVENT metaclass.........cceeuuun... 69
Figure 21. Portion of the metamodel including the metaclass
COMMUNICATIVE_INTERACTION ..iitteeee e ettt et e e esiiree e e s s seiianeee s s ssiiene e e s sssavnaeesseaeeens 70
Table 14. Relationships of the COMMUNICATIVE_INTERACTION metaclass.........cc........ 71

Figure 22. Portion of the metamodel including the metaclass COMMUNICATIVE_ROLE72
Figure 23. Portion of the metamodel including the metaclass COMPLEX_SUBSTRUCTURE

.. 74
Figure 25. Portion of the metamodel including the metaclass DATA_FIELD 76
Figure 26. Portion of the metamodel including the metaclass ELEMENT............ccccue...... 78
Figure 27. Portion of the metamodel including the metaclass ENCAPSULATION............ 79
Figure 28. Portion of the metamodel including the metaclass ENDccccoeeveeeiiiveennnne 81
Figure 29. Graphical primitive of the END metaclass.........cccccueeeviiieciiieiniiiecsiieeeieee e 82
Figure 30. Example of EVENT_VARIANTS in a communicative event diagram 82
Figure 31. Portion of the metamodel including the metaclass EVENT_VARIANT 83

Figure 32. Portion of the metamodel including the metaclass FIELD
Table 27. Relationships of the FIELD metaclass.......ccccecevveeveieeicireennnnen.

Figure 33. Portion of the metamodel including the metaclass GOAL........c.ccccceeevverueenee.
Figure 34. Portion of the metamodel including the metaclass INDICATOR
Figure 35. Portion of the metamodel including the metaclass INGOING ...
Figure 36. Graphical primitive of the PRIMARY metaclass........cccceeevveveerieecieeneeseeeeenn.
Figure 37. Portion of the metamodel including the metaclass ITERATION............c.........

Figure 38. Portion of the metamodel including the metaclass LOGICAL_NODE............... 94
Figure 39. Portion of the metamodel including the metaclass MESSAGE_STRUCTURE ..95
Figure 40. Portion of the metamodel including the metaclass MODEL..........ccccceeeuveenn. 97
Table 40. Relationships of the MODEL Metaclass.......ccecuveceereeriieeneeeeeseeee e see e 97
Figure 41. Portion of the metamodel including the metaclass NODE...........c.cccecuveruenee. 98
Figure 42. Portion of the metamodel including the metaclass OPERATIONALISATION...99
Figure 43. Example of OR IN @ CED.....cccuiiiiiiiiiciiee ettt 101
Figure 44. Portion of the metamodel including the metaclass ORcccccceeveeveernnnne 101
Figure 45. Graphical primitive for the OR metaclassccccevveeveereerieecie e 102
Figure 46. Portion of the metamodel including the metaclass ORGANISATION............ 102
Figure 47. Portion of the metamodel including the metaclass ORGANIZATIONAL_ACTOR
.. 104
Table 48. Relationships of the ORGANIZATIONAL_ACTOR metaclass........cceeveerverivnnnne 105
Figure 48. Portion of the metamodel including the metaclass
ORGANISATIONAL_LOCATION ...ttt ettt ettt et seene e 106
Figure 49. Portion of the metamodel including the metaclass
ORGANISATIONAL_IMODULEeeiiiiieiietee ettt e e e e e s s e e s s e e nnenees 107
Figure 50. Portion of the metamodel including the metaclass ORGANISATIONAL_ROLE
.. 109
Figure 51. Portion of the metamodel including the metaclass
ORGANISATIONAL _ROLE_SETetiiiiiteieiieeeiiee ettt ettt sttt s s e e 111
Figure 52. Portion of the metamodel including the metaclass ORGANISATIONAL_UNIT
.. 112
Figure 53. Example of OUTGOING in a communicative event diagram.........c.ccceeeeuven. 114
Figure 54. Portion of the metamodel including the metaclass OUTGOING................... 114
Table 58. Relationships of the OUTGOING Metaclass.......cccvevveereeereeereeeieeseeesieenenenns 115
Figure 55. Graphical primitive of the OUTGOING mMetaclasscccevcvereveereeenceeereesnnenne 115
Figure 56. Example of PRECEDENCE in a communicative event diagram 116
Figure 57. Portion of the metamodel including the metaclass PRECEDENCE................. 116

Figure 58. Graphical primitive of the PRECEDENCE metaclasscccccveevivveeiiveeennneenn.
Figure 59. Portion of the metamodel including the metaclass PRIMARYccceeueue.
Figure 60. Graphical primitive for the PRIMARY mMetaclasscccevceereveereescieesvennnenne
Figure 61. Portion of the metamodel including the metaclass PROCESS.......................
Figure 62. Portion of the metamodel including the metaclass RECEIVER...
Figure 63. Graphical primitive for the RECEIVER metaclass.......cccceveereveeieescienseeninenne

Figure 64. Portion of the metamodel including the metaclass REFERENCE_FIELD........ 123
Figure 65. Portion of the metamodel including the metaclass SPECIALISATION 125
Figure 66. Portion of the metamodel including the metaclass START
Table 70. Relationships of the START Metaclass......ccccceivuviiiiieeiiieieciiee e

Figure 67. Graphical primitive of the START mMetaclasscccecveveeriercieeneesieeseesieens

Figure 68. Portion of the metamodel including the metaclass STRATEGY..........cccevuee. 128
Figure 69. Portion of the metamodel including the metaclass SUBSTRUCTURE............ 130

Figure 70. Portion of the metamodel including the metaclass SUPPORT
Table 76. Relationships of the SUPPORT metaclass........cccccoeveeiiiiieciiee e
Figure 71. Portion of the metamodel including the metaclass SUPPORT_ROLE_SET....133
Figure 72. Portion of the metamodel including the metaclass TEXTUAL_REQUIREMENT

.. 134
Figure 73. Portion of the metamodel including the metaclass DOMAIN............cccevene. 135
Figure 74. Portion of the metamodel including the metaclass OPERATION. 136
Figure 75. Portion of the metamodel including the metaclass REQUIREMENT_TYPE ...137
Figure 76. General view of metamodel validation..........ccceceveieecieenierce e 138
Figure 77. EMF defines Java, XML and UMLccccuveiieiieriieeeiecieesiee e see e 143
Figure 78. Subset of the Ecore Modelcoovuiiiiiiiiiiiiiiciee e 143
Figure 79. Stage 1 phase 2 eXplanationcccocuveeeiiieeniiiie e 144
Figure 80. Creation of a UML class diagram Projectccecceeeveecieeneeriieeseesieeseeneee e 145
Figure 81. Creation of the PSM metamodel with UML 2.1 t0O0IScceecverveeceerenriene 146
Figure 82. Complete description of the PSM metamodel in a tree wayc.ccveeeunnen. 147
Figure 83. Ecore Model Creationccuiiiiiiiiiiieeciiee ettt evee et e s aae e e srae s 148
Figure 84. PSM metamodel in the ECORE specification.........c.cceecuveeeviieeniieeeiiiee e, 149
Figure 85. Workflow to create the modelling environment for CEDcccccceevvernennne 151
Figure 86. SuperStationery Co. organization chartcccoccveeeeecieneesce e 154

Figure 87. Communicative event diagram of SuperStationery Co. Sales manager business
PPOCESS (SAIR) c.vviiurieriieieectee ettt ete e ete et e et e st e s be e be e st e e baestbeebeesaaeeebeesaseebeesraeebeenns

Figure 88. Composition of the CED graphical editor
Figure 89. Specifying the communicative event SALE 1
Figure 90. Specifying a primary actor for SALE 1
Figure 91. Specifying a receiver actor for SALE 1
Figure 92. Specifying ingoing and outgoing interactions for SALE 1
Figure 93. Communicative Event diagram for Sale business process modelled in the

Lo o Y= | =T L1 e S 165
Figure 94. Support to Message Structures with the Xtext environment 167
Figure 95. Support to Message Structures With EMF..........ccccceeiiiiiiiiieiciieeciee e, 168
Figure 96. Example of message structure supported by the EMF environment............ 169
Figure 97. Activity of evaluation of diagramming tool.........cccecvveceeveerieecee e 170
Figure 98. Description of the profile 1: ANa.......ccceeciiieiiiiii i 175
Figure 99. Description of the profile 2: JNON......ccceeviiiiiiiiiccee e 175
Figure 100. Demographic QUESTIONNAITE........ccccuiiiiiiieeiiiee et ee e e 178
Figure 101. Percentage of male and female.ccceecvereerieececeeee e 179
Figure 102. Experience with general purpose diagramming tools.........ccccceevvereercvrenne 179
Figure 103. Experience with CASE modelling tools.........ccccevvieeiiciieecniie e, 180

Figure 104. Experience with modelling methods......
Figure 105. Experience with Communication Analysis requirements models .
Figure 106. Task done in the modelling tool..........cccccvevueeneen. e —————————— 182
Figure 107. Computer System Usability Questionnaire (CSUQ)..

Figure 108. Mean of the answers of the CSUQ questionnaire. ...184
Figure 109. Mean of the answers of the SYSUSE factor.........ccccevevveeevieeeviiieesiiee e, 184
Figure 110. Mean of the answers of the INFOQUAL factorcccevceevciveeeescieeneesieenne 185
Figure 111. Mean of the answers of the INTERQUAL factor........ccceecveveiveseesceeeneenneenne 185

Figure 112. Additional free-response qQUESTIONSccecvvieiiieeiiiieeciiee e ecieeeesreaees 186

Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124.
Figure 125.

Figure 126.

Figure 127.

Percentage of the task successfully performed
Focus group participants
Stage 2 explanation...

Phase 3 eXplanationcocueeceeeieerie e
Operational context of ATL and QVTccceeveeereerieereesie e see e
Phase 4, step of implementation of transformation rules...........ccccccueeunnnn. 199
WOPKSPACE AT L.uueiiiiiieiiiee ettt e e citeeeeveeestae e e sibe e e s baeessateeesbaeessabeesesssteaennnnes 202
Run configuration for ATL transformation..........cccecveeevieeiniieecciee e, 203
SuperStationery Co. Class diagram tree VIEWcccceeceveceevenecieeneeseeenenns 204
SuperStationery Co. Class diagram in UML 2.0cccceecvveveeveeecieeeeseeeeenne 205
Activity of evaluation of the transformation modulecccccveeveieeenneen. 206
Traceability metamodelc.eeoiiiiiiiiiiiiiec e 208
Inheritance relationship between the ELEMENT metaclass and
EMODELELEMENT MELACIASS -...cviveieieieiesie ettt 209
Inheritance relationship between the NAMEDELEMENT metaclass and
EMODELELEMENT MELACIASScovivivriiiiiiiiirereeict ettt 210
ATL rule to create class from aggregation substructurecccccecvveennen. 211
Example of traceability information for The SuperStationery Co. 211

Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.
Figure 133.
Figure 134.
Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 140.
Figure 141.
Figure 142.
Figure 143.
Figure 144.
Figure 145.

Workflow to create the modelling environment for CED
Genmodel model for CEDccocveviiiriieenieniieenieeieenee e
How to run the textual editor for CED ...
Creation of a new empty EMF project ...
Selection of the CED creation wizard.....
Creation of the new CED model............. .
Selection of the model object to create.........ccceeevveeiiciiiieciieccieecee s
Initial state of the SuperStationery model........c.cceevveevviiiiviieeciieecciee e,
Add elements to the Modelceeveeirieeiieseece e
Example of creation of a Communicative EVentc.ccccceveeeveeeceeneesnnenne
SuperStationery example in a text editorccccovveeeiciieeciieecee e
EMFGraph fOr CED....uviiiiiiiciie ettt e s a e eaaes
{01 o ToT I o o @1 = TSRS
EMIMAP FOr CED ittt e e e nae e e s
Fo{a 0} 7={T 0T oY o €1 =1 b PSR SUUR
Launch of the Eclipse application with the plug-in to model CED............... 244
Interface of CED Modelling tool.........ccouviviiiiiiiiiiiiiee et 245

List of tables

Table 1. EBNF grammar of Message StruCtUCTUIES........ccviiiivieiiiieeeciiee e e e esvee e 44
Table 2. Example of @ MesSSage StrUCTUIEcccviiiiiiieeciieeceee et 44
Table 3. Attributes of the AGGREGATION Metaclass.......ccceerverrreerererieerieeieeseeseeeneens 59
Table 4 Relationships of the AGGREGATION mMetaclass.......ccccuvrvveerereieereesieresieeseesenns 60
Table 5. Attributes of the BUSINESS_OBJECT_CLASS metaclass......ccccveevvveeriuveeenineennnne 63
Table 6. Associations of the BUSINESS_OBJECT_CLASS metaclasscccccvveeveveeenineennnne 63
Table 7. Attributes of the BUSINESS_OBJECT_FIELD metaclass.......cccccceereerivveneeenvennennne 64
Table 8. Relationships of the BUSINESS_OBJECT_FIELD metaclass........ccccvrvveervrecveennnnn. 65
Table 9. Attributes of the COMMUNICATION_CHANNEL metaclass.......c.ccevvvervrecveennnnn. 66

Table 10. Relationships of the COMMUNICATION_CHANNEL metaclasscccceeeuveenne 66
Table 11. Attributes of the COMMUNICATIVE_EVENT metaclass.......cccceeevveeriieeeniineennnne 68
Table 12. Relationships of the COMMUNICATIVE_EVENT metaclasscccoeevervvecveernnnn. 69
Table 13. Attributes of the COMMUNICATIVE_INTERACTION metaclasscccccveeveennenn. 70
Table 15. Attributes of the COMMUNICATIVE_ROLE metaclass........cccceevvveeriuieeenineennne 72
Table 16. Relationships of the COMMUNICATIVE_ROLE metaclass..........cccceevveeenineennnne 72
Figure 24. Attributes of the COMPLEX_SUBSTRUCTURE metaclass.......cccecceevvercveenneennee. 74
Table 17. Relationships of the COMPLEX_SUBSTRUCTURE metaclass..........ccceeevverveennn. 75
Table 18. Attributes of the DATA_FIELD mMetaclassccccceevveeiiiieeeiiieeenieeeciee e 77
Table 19. Relationships of the DATA_FIELD metaclassccccceeevieeeeivieeniieesieeesiee e 77
Table 20. Relationships of the ELEMENT Metaclass........cccceevveeiriieeeiiieeenieeeeieeesiee e 79
Table 21. Attributes of the ENCAPSULATION Metaclass......ccccvveveeeerecieereerineseeseeeeens 80
Table 22. Relationships of the ENCAPSULATION metaclass......cccceevveceereeriveenieeseenenns 80
Table 23. Relationships of the END mMetaclass.........cccveiiiiiiiiieiiieeesiiee e eeee e 81
Table 24. Attributes of the EVENT_VARIANT Metaclasscccceeveveeeeiiveeeireeenirieeesieeennns 84
Table 25. Relationship of the EVENT_VARIANTS metaclass......c.ccceevvveceereeriieeneeeseenenne 84

Table 26. Attributes of the FIELD Metaclassccocueeeeiieiciiiie et
Table 28. Attributes of the GOAL metaclass......
Table 29. Relationships of the GOAL metaclass....
Table 30. Attributes of the INDICATOR metaclass....
Table 31. Relationships of the INDICATOR metaclass..
Table 32. Attributes of the INGOING metaclass
Table 33. Relationships of the INGOING Metaclasscccceevveeiiiieeeiiiieeriee e esiee e
Table 34. Attributes of the ITERATION Metaclass.......cccccuvieeiieeiiieeeiiiiee e esiieeesiiee e
Table 35 Relationships of the ITERATION Metaclass......c.ccveerveriveenersceeneeeie e seeeeeens

Table 36. Relationships of the LOGICAL_NODE Metaclass........cccceeveecreereerieeesieeseennenens 94
Table 37. Attributes of the MESSAGE_STRUCTURE metaclasscccccveeevvieeririeeenineennnne 95
Table 38. Relationships of the MESSAGE_STRUCTURE metaclassccccvveeveveeenineennne 96
Table 39. Attributes of the MODEL Metaclasscooeerieerieenieniieiniienieenieenieeiee e e 97
Table 41. Relationships of the NODE Metaclassccceeveeceereeriieenieee e e e 98
Table 42. Attributes of the OPERATIONALISATION metaclass.....cccecuveeveereeriveeneesennnenens 99
Table 43. Relationships of the OPERATIONALISATION metaclass........ccccoeveeerveeenenenn. 100

Table 44. Relationships of the OR Metaclassccccueeeiiiiiiiieeicieeeciee e 102

Table 45
Table 46.
Table 47.
Table 49.
Table 50
Table 51.
Table 52.
Table 53
Table 54
Table 55.
Table 56.
Table 57
Table 59
Table 60.
Table 61.
Table 62

1.1 Motivation

. Attributes of the ORGANISATION mMetaclass......cccervverreerieeereerireceeseeeeeens 103
Relationships of the ORGANISATION metaclass.......... ...103
Attributes of the ORGANIZATIONAL_ACTOR metaclass........... ...104
Attributes of the ORGANISATIONAL_LOCATION metaclasscccccevevveruernnee. 106

. Relationships of the ORGANISATIONAL_LOCATION metaclass........cccecueennenn. 106
Attributes of the ORGANISATIONAL_MODULE metaclasscccceevereveerueennee. 107
Relationships of the ORGANISATIONAL_MODULE metaclassccceeevvveeenne 108

. Attributes of the ORGANISATIONAL_ROLE metaclass.......ccccccveeveveeenveeennnnen. 109

. Relationships of the ORGANISATIONAL_ROLE metaclassccccccvevvrecveennnn. 110
Relationships of the ORGANISATIONAL_ROLE_SET metaclass......c.ccceeeuvnee. 111
Relationships of the ORGANISATIONAL_UNIT metaclass........cccceceevueeenciveennnne 113

. Attributes of the OUTGOING Metaclass.......cccecueerveerierniieniennieenieeieenieeieees

. Relationships of the PRECEDENCE Metaclass........ccceeeevveeeveereeerereneeneesenens

Attributes of the PRIMARY metaclassccoovveeeiiiiiiieeceieee et
Relationships of the PRIMARY mMetaclass........cccccveeiviieeiiiieiiieeeciiee e

. Attributes of the PROCESS Metaclass.......ccccivveiivieiiieeeeiiieecsiee e eeiiee e

Table 63 Relationships of the PROCESS Metaclasscccceevveeiiiieeciieeeniieesivee e

Table 64.
Table 65.
Table 66.
Table 67.
Table 68.

Table 69 Relationships of the SPECIALISATION metaclass....
. Attributes of the STRATEGY metaclass......

Table 71
Table 72.
Table 73.
Table 74.
Table 75
Table 77.
Table 78.
Table 79.
Table 80
Table 81.
Table 82.
Table 83
Table 84
Table 85.
Table 86.
Table 87.

Table 88.
Table 89.

Attributes of the RECEIVER Metaclass......cccecueeveereerrieenieeeeseeeeeseeesee e
Relationships of the RECEIVER Metaclasscccccceeeveereerieeneeseeseesie e
Relationships of the REFERENCE_FIELD metaclass...
Relationships of the REFERENCE_FIELD metaclass...
Attributes of the SPECIALISATION metaclass........

Relationships of the STRATEGY metaclass
Attributes of the SUBSTRUCTURE Metaclass.......ccecveerveeriernieeniennieenieesieennes
Relationships of the SUBSTRUCTURE metaclasscccccevevvereeeceeereeseeeeeennn

. Attributes of the SUPPORT Metaclassccccveeeeieeeiieeeeiiiee e

Relationships of the SUPPORT_ROLE_SET metaclass.......cccceevevveeriveeencineennnne 133
Attributes of the TEXTUAL_REQUIREMENT metaclass......ccccccevveeriveeenineennnne 134
Relationships of the TEXTUAL_REQUIREMENT metaclasscccccerrveeruennnee. 134
. Elements of the DOMAIN Metaclassccceeeeevueereeriieeniiesieeeesee e see e 135
Elements of the OPERATION Metaclasseovveerieevieeneeriieenienieesieesieeniee s 136
Elements of the REQUIREMENT_TYPE metaclass.......cccceevveeevreeeiiieeeiieeennnns 137
. SuperStationery Co. buSiNeSS PrOCESSESuievuviiiiieieeiiieeeiieeeeieeeereeeeieaes 154
B o =Y o o T o TSP 157
Message structure specification of communicative event Salel 158
HEUFISTICS FUIES ..ottt sttt et 172

Planning of the usability evaluation...
POSItIVE fEATUIES.....oviiiiiiiiicic e

1 Introduction

he organisational systems require specification methods to spec-

ify requirements and for identifying needs and characteristics of

business process.
On the other hand, Model Driven Development (MDD) is a paradigm
that provides to the requirement models of some advantages: as the
capacity to derive conceptual models for generating software in an
automatic way. The automatic generation of software products al-
lows an easy adoption of requirement methods in an industrial envi-
ronment.
This chapter presents an integration approach that involves require-
ment specification methods into MDD environments as a first ap-
proach to confront the integration of Communication Analysis
method and OO Method. This approach will be presented in a gen-
eral way. Each phase and stage will be explained and the application
of this approach is presented through this memory. Bellow, we will
present the motivation of this thesis, context, objectives that we want
to achieve, the solution approach, research method and the thesis
structure.

8 1.1 Motivation

1.1 Motivation

The Information System development demands requirement meth-
ods to establish the organisation needs. The model driven develop-
ment (MDD) paradigm provides to the requirement models of advan-
tages: as the potential to derive from it the conceptual models for the
automatic software generation. Although there are a successful evo-
lution of software projects, the last CHAOS report to show a 68% of
failed projects or threatened projects [1]. Academy and Industry are
agree in to designate the lack of user participation as a more influent
risk factor that threat software projects [2]. To involve the user in the
development process allow the early correctness of mistakes and it
increments the acceptance of the final software product [3]. An effec-
tive solution to involve the user into the software development proc-
ess is providing requirement engineering practices, but there are
some difficulties in the industry at the moment to apply requirement
engineering methods [4].

The MDD paradigm allows solving some difficulties of the re-
quirements engineering usage. The requirements specifications are
models in the practical industry; these models are the specification of
the software support. This model perspective corresponds with MDD
paradigm [5]. This paradigm allows us to use the models for deriving
conceptual models. This conceptual model derivation highlights the
importance of requirements models and intends the industrial adop-
tion because the requirements models acquire an important role into
the organisation.

We think that is important to provide requirements engineering
methods that are compatible with MDD environments. There are sev-
eral requirements methods in the literature, and these requirement
methods are not designed according to MDD paradigm. For this rea-
son, we propose integration framework that involve the existing re-
quirements engineering methods according the MDD paradigm.

Communication Analysis is a requirement engineering method that
propose the analysis of information systems from a communicational
perspective [6]. This method is currently applied in projects in indus-
trial environments. Due to the fact that this method is used in prac-

Introduction 9

tice, the use of Communication Analysis by industry presents an in-
teresting challenge and research objective: offer a technological sup-
port for modelling the requirements engineering models, and also fa-
cilitate the conceptual model derivation and model transformation. A
technological platform for the requirement method can increase the
adoption of the method by big and medium enterprises; also, the in-
tegration of this method into a MDD environment will allow the
derivation of the conceptual models and the later software product.

This call of the industry and the academy motivate us to design a
framework to integrate Communication Analysis method and
OO-Method. We have to develop several steps that intend to achieve
the main objective: the integration of Communication Analysis
method and OO-Method. The development of each step of the
framework guide the research and engineer activity of this thesis, and
present the resulting products of each task. As a result of this thesis,
we propose a general integration framework, and in addition, the in-
tegration of the Communication Analysis requirement method and
OO-Method; this integration solves the lack of technological support
of the method techniques, and increments the use among software
analyst and requirements engineers.

The integration framework has been created as a previous step be-
fore to carry out the integration of Communication Analysis method
and OO-Method. The integration framework could be used to inte-
grate other requirements engineering method t and conceptual model
method.

1.2 Context

This Master Thesis was developed in the context of the research cen-
ter Centro de Investigacion en Métodos de Produccion de Software of the
Universitat Politecnica de Valéncia. The work that has made the devel-
opment of this thesis possible is in the context of the following re-
search government and industrial projects:

10 1.3 Objectives

¢ MORE-MOSKITT: “extension de la oferta metodoldgica asociada a la
plataforma Moskitt, incorporando a sus componentes actuales métodos
de captura y modelado de requisitos que den respuesta al problema de
modelar adecuadamente los requisitos de un Sistema de Informacion, y
su correcta incorporacion en un proceso completo de produccion de soft-
ware robusto, eficiente y efectivo”. This Project was collaboration be-
tween PROS research center and TECCON Ingenieros Consul-
tores, which had a special interest in to finance the project.

¢ PROS-REQ: Requirement-based production of service-oriented
software TIN2010-19130-C02-02.

1.3 Objectives

The main research goal of this thesis is to propose an approach to inte-
grate Communication Analysis method and OO-Method. This proposal
presents a general framework that guides the integration activity and
provides software artefacts that support the integration between the
requirement method and the conceptual method. This thesis pro-
poses to use the MDD paradigm to develop technological environ-
ments for requirements methods, which provide several advantages
as: agile development of software, availability of open source plat-
forms for MDD developments (e. g, Eclipse) and possibility of soft-
ware automatic generation, etc. In order to obtain the main objective,
we are in front of a set of research questions that we will explain be-
low:

* RQI1: What are the stages and phases that guide the integration of
requirement methods into a MDD environment?

e RQI1.1: What are the results of each task? The answer of
this question allows knowing the resulting products after
carry out each task.

* RQ2: Are there requirements engineering methods integrated
with MDD environments?

Introduction 11

= RQ3: It is possible to integrate Communication Analysis with
OO-Method?
e RQ2.2: What is necessary to know about Communication
Analysis method?
¢ What is necessary to know about OO-Method?
e What are the activities in the model driven development
process?
¢ What is the most adequate technological architecture to
support the integration of Communication Analysis
method and OO-Method?
* RQ4: How can the results of the integration framework are vali-
dated?
¢ What kinds of validations are necessary to validate the
technological support?
* RQ5: How is the technological support that results of the frame-
work application?
¢ How can be used the technological support?

To solve these research questions and to achieve the main research
goal, we have followed a research methodology which will be ex-
plained at section 1.5.

1.4 The proposed solution

Academy and Industry have agreed to point out the lack of users par-
ticipation into software projects as the most influential risk that in the
success of final software product [1] [2].

To involve the user into software development process allows an
early detection and correction of software mistakes, furthermore, the
acceptation of the final product is increased [3]. Adoption of require-
ments engineering techniques is an effective solution to involve the
users into the software development process. Nevertheless, the adop-
tion of requirements methods into the industry do not correspond
with the prospect of the academy [4]. Among factors that hinder a in-
dustrial adoptions of requirements methods, we could to highlight:

12 1.4 The proposed solution

complexity of requirements engineering, lack of training in new
methods and reluctant attitude of the users [7].

Model Driven Development (MDD) paradigm, allows solving
some problems of the requirements engineering. The MDD is a solu-
tion of the software engineering problems because the requirements
specification are an abstract model of the industrial practice that
should to support the software product, thus these concepts are com-
patible with MDD [5]. The MDD paradigm allows to use the models
for documenting and to communicate the organisational needs ac-
cording to the Information System (IS). In addition, MDD techniques
allows to derive the conceptual models of the IS from the require-
ments models. This derivation increases the use of the requirements
models and the adoption by industrial environments. Thus, the re-
quirements engineering have a challenge: to provide requirements
methods that can be used into MDD environments and to provide
strategies for model transformations. The challenge could be con-
fronted in two ways: (i) the requirements engineering community
should to provide new methods that are compliant with MDD envi-
ronments (for instance [8]), or (ii) integrating existing methods into
MDD environments (for instance [9]).

This thesis proposes to follow the integration way. To achieve this
objective, we have propose a general framework that define stages
and phases that involve some task to integrate requirement methods
into MDD environments. Objective is to provide a complete devel-
opment environment of IS. This development environment could be
established in a general framework, which takes into account model
transformations to achieve a software product through models com-
pilation.

Bellow, we will present a detailed description of the stages, phases
and task of the general framework. This thesis provides an applica-
tion of this framework. This example of application was carried out
integrating the requirements models of the Communication Analysis
method into OO-Method, an object oriented method supported by
OLIVANOVA, an MDD environment that support OO Method.

13
to

m

ing methods

ineer
MDD environments, for this reason we have conceived a general

ts eng

iremen

to integrate requ

ming

The generic framework

Introduction
We are a

3INAOW

7001 ONIWWYYOVIQ

NOLLVWYOISNIL = — : - —
: 4O NOLLYNVA €'
4O NOLLYMVAZ €' | IN3HOTIAZ re
TYLNIWZHONI | IN3WdoT3A3a
| anLveaw TYLNINIHONI
| 3aLvyaL

J00L
ONIWWVYOVYIQ V 40
OLLV.ANIWITdWI T'C,

SIINY
NOILYWYO4SNVYL 40
OLLV.ANIWITdWI Tt

3INAOW
NOLLYWHO4SNVAL
J13aon

001 ONINWVHOVIA

(Wsd) NOILYDI4I103dS
FOVNONY
NOILYWHO4SNYL

QOHL3W SIOVNONYT

Is13TON vnLdIONO STy
oL sTadon NOLLYIWHOISNYVYL S1300W 3 O T (Wsd) 39VNONYT
34 wow4 (wsd) s31ny 40 NOLLINI43A T'p 40 TIAONWVLIW WSd WSd ¥ 40 NOISIA T2 T3AOWYLIN
NOLLYAMOASNYAL

NOLLY.LN3W3TdWI ANV NOIS3A T ISVHd

(\}

INOLLY LNIWI1dWIJANY NOIS3A ¥ ISYHd

[ST3AOW TVNLI3ONO: ATA0W TYNLdIONG SIOVNONYT
o o OL 34 WO¥d CERIE NOILY.INZNNO0a
'S30IN9 NOLLVAL¥AA aNv S3NN3aIND
2d WOYA (Wid) 40 T3AOWVLIN Wid WA Y 50 NOISIA 2T R
$30IN9 NOLLVAIIA
NOILVINIWNOOA
QNY S3NIT3AIND ~_
1300 T¥NLd3ONO! T5010LNO /l\}
s73aow
ZTIAON TVNLdTOND
VNLdIONOD HLIM e NIVWOQ 3ONT¥343
$1d3ONOD QOHLIN o) € 3HL HLIM GOHLAW 33 40 SISAVNY ADOTOLNO
24 40 INIWONY o 33 40 LNIWOIY TWII90TOLNO T NIVWOQ 3ONZ¥343
IYNLdIONOD 1YNLd3IONOD
NOLLYDIID3dS WOLLFHOIHL ANV SISATYNY i€ ISVHA NOLLYDIHID3dS WOILFHOIHL ANV SISATYNY T 3SVHd
NYOMIWVYS QAW IHL
SNOLLYIWNYO4SNVYL T3A0OW 40 NOILLINI43A :Z 3DVLS 0L SIOVNONYT ONITIHAOW SLNIWIHINOIY FHL 40 NOLLYLdVAY :T IDVLS

framework that involves several stages, phases and tasks in order to

achieve our objective (see Figure 1).

Figure 1. General framework of integration

14 1.4 The proposed solution

Each stage is divided in two phases, and each phase has several tasks.
We have decided to differentiate each stage according the tasks in-
volved into the MDD process. We distinguish the stage concerning
modelling tasks (stage 1) and the stage concerning model transforma-
tion tasks (stage 2).

Each phase corresponds to activities of analysis and theoretical speci-
fication and design and implementation.

Each task uses existing inputs. For instance, the input method guide-
lines correspond to the guides of the requirement method that will be
integrated into a MDD framework and it is input for the tasks: onto-
logical analysis of RE method and PIM metamodel design of RE method.

Each task has related an objective, for instance, the task diagramming
tool implementation intends the construction of a diagramming tool.
Each task has associated an output product

We present the specification of each stage below.

Stages of the generic framework

We are aiming to integrate requirements methods into MDD envi-
ronments. Thus the general framework has two stages:

- Adaptation of the requirements modelling languages to the MDD

framework

- Definition of model transformations
The Adaptation of the requirements modelling languages to the MDD
framework involves some activities that are related to metamodelling
and to the construction of diagramming tools.
The Definition of model transformations involves some activities related
to model transformation from requirements models to conceptual
models. These activities are aimed at software generation code in an
automatic way.

We present a description of each phases and activities for each stage
below.

Introduction 15

Stage 1: Adaptation of requirements modelling languages to the
MDD framework

Description and objectives
The objective of this stage is to adapt the modelling language of the
requirements method into a MDD environment.

This stage has two phases (see Figure 2): (i) Analysis and theoretical
specification. Which has two task: an ontological analysis of RE' method
that allows to establish correspondences among the elements of the
requirements models and the concepts of a reference ontology [10].
The other task is the design of a metamodel of the requirements modelling
languages, which allows us to establish the method in a metamodel
specification without considering technology restrictions such as the
platform that will support the modelling tool. (ii) Design and imple-
mentation. This phase aims to develop tools to support the require-
ments engineering method. For this reason a modelling tool is de-
signed and implemented to offer a graphical environment for repre-
senting requirements models in conformance to the requirements en-
gineering method. We describe each phase and its corresponding
tasks below.

' RE is Requirements Engineering in sort.

1.4 The proposed solution

STAGE 1: ADAPTATION OF THE REQUIREMENTS MODELLING LANGUAGES TO

THE MDD FRAMEWORK

PHASE 1: ANALYSIS AND THEORETICAL SPECIFICATION

REFERENCE DOMAIN
ONTOLOGY

\/\

RE METHOD
GUIDELINES AND
DOCUMENTATION

_/—\

PHASE 2: DESIGN AND IMPLEMENTATION

METAMODEL
LANGUAGE (PSM)

ITERATIVE
INCREMENTAL
DEVELOPMENT I

METHOD

CONCEPTUAL
1.1 ONTOLOGICAL ALIGMENT OF RE
ANALYSIS OF RE METHOD WITH THE

REFERENCE DOMAIN

ONTOLOGY

1.2 DESIGN OF A PIM
METAMODEL OF
REQUIREMENTS MODELLING
LANGUAGES

PIM METAMODEL OF

RE MODELS

2.1 DESIGN OF A PSM
METAMODEL OF
REQUIREMENTS MODELLING
LANGUAGES METHOD

PSM METAMODEL OF

RE MODELS

2.2 IMPLEMENTATIO
OF A DIAGRAMMING
TOOL

2.3 EVALUATION OF
DIAGRAMMING TOOL

DIAGRAMMING TOOL

Figure 2. Stage 1 of the general framework of integration

Phase 1: Analysis and theoretical specification
This phase has an objective: to carry out an analysis of the require-
ments engineering method to specify the method in a high abstrac-
tion level (for instance, a metamodel). The tasks of this phase are re-
lated to a complete study of the requirements engineering method.
The entries of this phase are: documentation, models, and whole in-
formation about the requirements engineering method that will be

integrate.

TASK ENTRIES OUTPUTS PARTICIPANT

ROLES

Task | Ontological - Reference do- - Conceptual Method engi-
1.1 analysis of main ontology. alignment of re- neer.

reqt'urem'ents - Requirements quwe?ments engi-

engineering . . neering method

engineering

Introduction 17

method. method guide- whit the refer-
lines and docu- ence domain on-
mentation. tology.
Task | Design of a - Requirements - PIM metamodel | Analyst.
1.2 PIM meta- engineering of requirements
model of re- | method guide- engineering
quirements lines and docu- models.
modelling mentation.
languages.

Task 1.1: Ontological analysis of requirement method

The objective of this task is to establish correspondences among the
elements of reference ontology and the modelled primitives of the re-
quirements models. This task is carried out in order to analyse each
primitive of the requirements model and the behaviour of it.

Therefore, these correspondences allow us to think in a high ab-
straction level about the requirements models.

The method engineer needs information about the method and
concepts about the domain, then this task uses the reference domain
ontology and the method guidelines and documentation. The method
guidelines and the documentation are often in a format that is com-
putation independent, this documentation may be reports, models,
templates and whole kind of information that describe the elements
of the method. However, this documentation may be in a computa-
tion format represented at a technological platform, for instance Mi-
crosoft Visio.

Products
Entries
- Reference domain ontology.
- Requirements engineering method guidelines and documenta-
tion.
Outputs
- Conceptual alignment of requirements engineering method
with the reference domain ontology.

Task 1.2: Design of a PIM metamodel of requirements modelling lan-
guages

18 1.4 The proposed solution

The objective of this task is to represent the requirements models of
the method in a high level of abstraction (a metamodel). The meta-
model help us to establish the elements, constraints and the informa-
tion of the requirements models.

During this task, the metamodel is described regardless of con-
cepts about the technological platform: it is, therefore, at the Platform
Independent Model layer (PIM). This level of abstraction allows us to
create the metamodel without considering technological constraints
of a specific target platform; nonetheless, later on, the developers can
choose the most suitable platform for implementing the CASE tool.
This metamodel can be represented in a piece of paper or using any
general-purpose diagramming tool. This metamodel should be speci-
tied according the desires of the analysts and the method experts, for
instance, if analysts consider that is necessary to indicate the data
type of the attributes, this metamodel should have this information.
Products

Entries
- Requirements engineering method guidelines and documenta-
tion.
Outputs
- PIM metamodel of requirements engineering models.

Phase 2: Design and implementation
The objective of this phase is to offer a technological environment to
provide a support to requirements models of the requirements engi-
neering method. Thus, a modelling tool is necessary for representing
instances of the requirements metamodel. In order to define a model-
ling tool, it is possible to define a metamodel that includes informa-
tion about technological platform. Thus, platform specific metamodel
is appropriate to include both method-related and technology-related
information. The PIM metamodel designed in the task 1.2 is the entry
to build the PSM metamodel. Then, with the appropriate technology
it is possible to obtain a modelling tool that provides a modelling en-
vironment.

Finally, an evaluation exercise is proposed to evaluate the usability
of the diagramming tool. This evaluation can be carried out several
times, according to the analyst criterion.

Introduction 19
TASK ENTRIES OUTPUTS PARTICIPANT
ROLES
Task | Design of a PSM | - Metamodel -PSM metamodel | Analyst.
2.1 metamodel or language (PSM). | of requirements | Developer.
requirements - PIM meta- engineering
modelling lan- model of re- models.
guages method. | quirements en-
gineering mod-
els.
Task | Implementation | -PSM metamodel | - Diagramming Developer.
2.2 of a diagram- of requirements | tool.
ming tool. engineering
models.
Task | Evaluation of - Diagramming --Diagramming Developer.
2.3 diagramming tool. tool.
tool.

Task 2.1: Design of a PSM metamodel of requirements modelling lan-
guages
The objective of this task is to involve both technical and implementa-
tion characteristics into a metamodel that gather method information
and technological platform information. In order to achieve this ob-
jective, it is necessary to take into account the characteristics of the
target platform, and how to specify these characteristics into a meta-
model. Thus, the PIM metamodel of the requirement models could be
represented in the chosen technological platform. As a result, a PSM
metamodel is obtained.
Products

Entries

- Metamodel language (PSM).

- PIM metamodel of requirements engineering models.

Outputs

-PSM metamodel of requirements engineering models.

Task 2.2: Implementation of a diagramming tool

20 1.4 The proposed solution

The analyst should decide about the technological implementation of
the diagramming tool for the requirements models. The PSM meta-
model created at task 2.1 contains the information about the method
and the implementation constraints, thus, developer builds a model-
ling tool using the MDD strategy that they consider more appropri-
ate. For instance, the developer could use Eclipse technologies, or Mi-
crosoft technologies.

Products
Entries
-PSM metamodel of requirements engineering models.
Outputs
- Diagramming tool.

Task 2.3: Evaluation of diagramming tool
In order to provide a usable modelling tool, the analyst should design
testing environments. The analyst takes into account the feedback of
the final users, or the feedback provided by the experts. In any case, it
is important carry out evaluation activities of the technological sup-
port of the method.
Products

Entries

- Diagramming tool.

Outputs

- An Improved version of the diagramming tool.

Stage 2: Definition of model transformation

Description and objectives
The objective of this stage is to define model transformation from re-
quirements models to conceptual models in a MDD environment.

A support to the integration of requirements engineering method and
conceptual models is intended, for this reason we propose two
phases: (i) Analysis and theoretical specification of the derivation
guidelines. Which is has two tasks: an ontological alignment of the
PIM metamodel of the method and design and definition of the rules

Introduction 21

derivation. (ii) Design and implementation. This phase aims to de-
velop tools support for the models transformation. For this reason, a
transformation module is proposed to offer an environment to carry
out model transformation activities. Figure 3 presents the general
framework focused on stage 2. We describe each phase with their cor-
responding tasks below.

STAGE 2: DEFINITION OF MODEL TRANSFORMATIONS

PHASE 3: ANALYSIS AND THEORETICAL SPECIFICATION

CONCEPTUAL
pIONIOIOGICA ALIGMENT OF RE
ALIGMENT OF RE METHOD CONCEPTS

METHOD WITH WITH CONCEPTUAL
ONCEPTUAL MODE MODELS

ONCEPTUAL MODEL
GUIDELINES AND

DOCUMENTATION
-2 DEFINITION O DE?;Y,\:‘)T;%S LI,QIED =
DERIVATION GUIDES, MODELS TO
FROM RE TO CONCEPTUAL MODEL.
NCEPTUAL MODE

PHASE 4: DESIGN ANDIMPLEMENTATION

TRANSFORMATION
4.1 DEFINITION OF RULES (PSM) FROM RE|
TRANSFORMATION MODELS TO
RULES ONCEPTUAL MODEL

TRANSFORMATION
LANGUAGE
SPECIFICATION (PSM)

MODEL
4.2 IMPLEMENTATION
TRANSFORMATION
OF TRANSFORMATION MODULE

RULES

~_1

ITERATIVE
INCREMENTAL
DEVELOPMENT I

L —

4.3 EVALUATION OF
TRANSFORMATION
MODULE

Figure 3. Stage 2 of the general framework of integration

Phase 3: Analysis and theoretical specification

TASK ENTRIES OUTPUTS PARTICIPANT
ROLES

22

1.4 The proposed solution

Task | Ontological - Conceptual - Conceptual Method engi-
3.1 alignment of | alignment of re- alignment of the neering.
requirements | quirements engi- | requirements en-
engineering neering method gineering method
method with | concepts with concepts with
conceptual reference domain | conceptual mod-
models. ontology. els.
- Conceptual
models guide-
lines and docu-
mentation.
Task | Definition of | - Conceptual - Derivation Method engi-
3.2 derivation models guide- guides (PIM) neering.

guides, from

lines and docu-

from require-

requirements | mentation. ments engineer-
engineering - Conceptual ing models to

to concep- alignment of the conceptual mod-
tual models. requirements en- | els.

gineering method
concepts with
conceptual mod-
els.

Task 3.1: Ontological alignment of RE method with conceptual mod-
els
The objective of this task is to align the concepts of both methods.
Thus, it is necessary to analyse the concepts of the conceptual models
and the concepts of the requirements models. This is the previous
step for build the derivation guides. A complete description of this
task is specified in [11].
Products

Entries

- Conceptual alighment of requirements engineering method

concepts with reference domain ontology.

- Conceptual models guidelines and documentation.

Outputs

- Conceptual alignment of the requirements engineering models

with conceptual models.

Introduction 23

Task 3.2: Definition of derivation guides from RE to conceptual mod-
els
The derivation guides are the principal product of this phase. In this
task, the guides should be represented in natural language o pseu-
docode, aiming a human reader (e.g. an analyst that intends to apply
them in real projects). This guides allow us to represent the deriva-
tion guides in the transformation language more appropriate accord-
ing the chosen technology.
Products

Entries

- Conceptual models guidelines and documentation.

- Conceptual alignment of the requirements engineering

method concepts with conceptual models.

Outputs

- Derivation guides (PIM) from requirements engineering mod-

els to conceptual models.

Phase 4: Design and implementation

The objective of this phase is the definition of transformation rules
that will be specified in a technological platform. In order to provide
a transformation module, the analyst uses the PSM metamodel of the
requirements models and conceptual models to define the transfor-
mation rules. Finally, the analyst should design software evaluation
activities for the transformation module. These activities should in-
volve the experts and the final users.

TASK ENTRIES OUTPUTS PARTICIPANT
ROLES
Task | Definition of - Conceptual - Transformation | Method engi-
4.1 rules transfor- models guide- rules (PSM) from | neering.
mation lines and docu- requirements

mentation. engineering

- PSM meta- models to con-

model of re- ceptual models.

quirements en-
gineering mod-
els.

- Transformation
language specifi-

24

1.4 The proposed solution

cation (PSM).

- Derivation
guides (PIM)
from require-
ments engineer-
ing models to
conceptual
models.

Task
4.2

Implementation
of transforma-
tion rules

- Transformation
language specifi-
cation (PSM).

- Transformation
rules (PSM) from
requirements
engineering
models to con-
ceptual models.

- Model trans-
formation mod-
ule.

Analyst.
Developer.

Task
4.3

Evaluation of
transformation
module

- Model trans-
formation mod-
ule.

- Model trans-
formation mod-
ule.

Analyst.

Task 4.1: Definition of transformation rules
The objective of this task is to define the transformation rules taking
into account the metamodels (requirements and conceptual models),
the transformation language chosen, and the derivation guides previ-
ously defined. The transformation language specification is according
to the technology chosen (e.g. ATL o QVT).
Products

Entries

- Conceptual models guidelines and documentation.

- PSM metamodel of requirements engineering models.

- Transformation language specification (PSM).

- Derivation guides (PIM) from requirements engineering mod-

els to conceptual models.

Outputs

- Transformation rules (PSM) from requirements engineering

models to conceptual models.

Task 4.2: Implementation of transformation rules

Introduction 25

The objective of this task is to implement the transformation rules in
the chosen technological platform. A model transformation module is
the principal product of this phase.
Products

Entries

- Transformation language specification (PSM).

- Transformation rules (PSM) from requirements engineering

models to conceptual models.

Outputs

- Model transformation module.

Task 4.3: Evaluation of transformation module
The transformation module should be evaluated in order to offer a
transformation support appropriate to the users and experts of the
method. In addition, it is important the usability of the modelling tool
and transformation module to improve the tool acceptance and in-
dustrial distribution.
Products

Entries

- Model transformation module.

Outputs

- Model transformation module.

Example of the generic framework application

In order to show the application of the proposal, we have carried out
a probe of concept that consists to integrate Communication Analysis
method and OO-Method (the main objective of this thesis). Figure 4
presents an example of how the general framework could be used in
order to integrate a requirements method into a MDD environment.

1.4 The proposed solution

26

3INAOW
NOILVWHOASNYYL
J3aon

J1NAOW
NOILLVIWYOJSNVYL -1
40 NOLLVNTVAS €% _ ININdOT3AIA

IVLNINIHONI

| 3nLveaL

< — |

SIINY
NOILVWYO4SNVYL 40
NOLLVINIWITdWI T°F,

(wsd)
s3Iy
NOILVWYO4SNVYL

NOILYOIHIO3dS
JOVNONVT LY

SIINY

7001 ONIWWYYOVIA

TOOL ONIWWVYOVIQ
40 NOLLYNIVAI £

7100L
ONIWWYYOVIA 40
OLLV.INIWITdWI °C,

ST73a0N

NOILLVIWYOISNVYL
40 NOLLINI43d T'v

QOHL3IW-00 OL

S13AOW TVNLdIONOD

[S1300W VO WO¥A (Wid|
S$3AINO NOILVAI¥3A

NOILV.LNIWITdWIANY NOIS3A ¥ ISVHd

QOHLIW

-00 OL VO WOdd
S3AINS NOLLYAIN3A
O NOLLINIJ3A ¢°

QOH13W-00
40 NOILY.LNIWNOOA

STIAOW TVNLIIDNO!
QOH13W-00 H1IM
VJ 40 INIWOITV
IVNLdIDONOD

ANV S3NIM3AIND
1300 VNLJIONO:

3AOW TVNLdIDNO:

2 QOHLIW-00 <

SINIWIHINDIY VO
40 T3AOWVLIIN WSd

SFINLONYLS
JOVSSAW ANV
43D 40 13A0OWYLIW
/Sd 40 NOIS3A T

S73a0n
SLINIWIHINOIY VO
40 TIAOWVIIN Wid

SFINLONYLS
JOVSSAW ANV
430 40 13A0OWYLIW
WId 40 NOIS3d T

A90TOLNO
NIVWOQ IONIHI4TH

HLIM VD 40 LNIWOTTV/ ™
JVOISOTOLNO T°E

NOLLYDIHID3dS3 TWOIHOIHL ANV SISATYNY € ISVHd

NOILLVIWYO4SNY¥L 13A0W 40 NOILLINI43A i ADVLS

FHL HLIM QOHL3IW
VO 40 LNaWoIv
VNLdIONOD

~ ")

QOH13IW
V0 40 SISATIVNY
TYOISOTOLNO T'T

NOLLYOIIO3dS VOIIOIHL a
HHOMIWYHS AAIW ¥ NI ST3A0W

_ 1N3INdOT3A3A

| IYINIWIHONI

| JAILYYEALI

13AONWYL3N
34003

NOLLVLNIWITdIWI ANV NOIS3A T ISVHd

~—")

V2 40 S3aIN9
IYOIOO0TOAOHLINW

~—")

W3LSAS
NOILYINHOLNI
1Nogvy AD0TOLNO
NIVYINOQ 3ONIH343d

V SISATIVNY T 3SVHd

SINIWIHINOIFY SISATYNY NOLLYDINNWWOD 40 NOLLY.LAVAY T ADV.LS

Figure 4. Integration framework to involve Communication Analysis

into a MDD environment

method

Introduction 27

Communication Analysis is a requirements engineering method that
proposes to analyse the IS from a communicational perspective [6].
The Communication Analysis proposal and its structure is presented
at [12]. In complex projects, the system is refined into subsystems,
each process is modelled through a Communicative Event Diagram
(CED) and its corresponding messages are modelled through Mes-
sage Structures. The principal business objects are identified and each
communicative event is described by mean of templates.

The integration framework intends to involve the Communication
Analysis techniques into a MDD environment. The Conceptual
alignment of Communication Analysis method, methodological
guides of the method and the derivation guides from the OO-Method
conceptual models to Communication Analysis requirements models
are proposals of PhD thesis of Sergio Espafa [11]. Thus, taking this
proposal we can to offer a technological support into a MDD envi-
ronment.

Chapters 4, 5 and 6 present the development of each phase of the
integration framework. We have described the decisions and resul-
tant products of each stage.

1.5 Research methodology

The thesis follow the general guides of the scientific method [13] and
the advices specified at [14]. The Figure 5 shows the structure of the
work method.

28 1.5 Research methodology

T5. ANALYSIS OF RESULTS

T5. IMPLEMENTATION *Analysis

T4. SPECIFICATION EVALUATION ‘Explanation

IMPLEMENTATION T4. RESEARCH «Conclusions
T1. PROBLEM T1. RESEARCH
INVESTIGATION PROBLEM
-?Le:;:egg::rs INVESTIGATION

EC. <Problematic phenomena RC. .Ereos;::ﬁf:)\g”?]aelr
ENGINEERING | -Causes RESEARCH ~Unit of stud
CYCLE «Impacts CYCLE asoareh o

*Research questions
«Conceptual model
«Current knowledge

«Solution criteria

T3. SPECIFICATION
VALIDATION
+Solution properties T2. SOLUTION T3. DESIGN
+Satisfaction of criteria SPECIFICATION VALIDATION

*Whose goals achieved/inhibited +Available solutions +Conclusion validity
*Trade-offs +Design new ones «Internal vaI|d|.ty.
*Sensitivity «Construct validity

*External validity

Figure 5. Research method followed in the thesis

EC1: Propose an integration framework to involve requirements
methods into MDD environments
T1: Problem investigation
T1.1: Define motivation, main goal and research questions (please
see sections 0 and 1.3).
T2: Solution specification
T2.1: Study of state of the art in integration methods approaches
(please see Chapter 2).
T2.2: Design a general integration framework to involve require-
ment methods into MDD environments (please see section 1.4).
T3: Specification validation
Specification validation consists in to apply the proposed frame-
work, where the objective is to provide a technological support for
Communication Analysis and OO Method integration. To follow
the stages and phases proposed at the integration framework in-
duces to follow two engineering cycles: EC2 and EC3, which in-
duce to follow two research cycles: RC1 and RC2 respectively.

EC2: Provide a technological support for Communication Analysis
method.

T4: Problem investigation

T4.1: Define a motivation for proposing a technological support
(please see Chapter 5).
T5: Solution specification

Introduction 29

T5.1: Study of available technological support for building model-
ling tools (please see section 4.1).

T5.2: Select the most adequate development tool for modelling
support (please see section 4.1).

Té6: Specification validation

T6.1: Provide a test case to be implemented in the selected devel-
opment tool (please see section 4.4).

T7: Specification implementation

T7.1: Develop of the modelling tool for Communication Analysis
method (please see Append 1)

T7.2: Provide an example about how to use the modelling tool
(please see section 4.4).

T8: Implementation evaluation

T8.1: Validate the created modelling tool for Communication
Analysis method. (T8 requires an evaluation exercise of the model-
ling tool, which implies RC1).

RC1: Validate the technological support for Communication Analy-

sis method
T9: Research problem investigation
T9.1: Define the goal of the modelling tool validation (please see
section 4.5).
T9.2: State of the art about modelling tool validations.
T9.3: Are there a method about how to validate modelling tools?
T9.4: What kinds of evaluations are more adequate?
T10: Research design
T10.1: Define the research team, which include involving to Jean
Vanderdonckt (an expert about usability evaluations of software
products) and experts about Communication Analysis method
(Sergio Espana) and an expert in the modelling tool.
T10.2: Design the material for the heuristic evaluation and expres-
siveness (please see subsection 4.5.1).
T10.3: Design the material for the usability evaluation with users
(User testing) (please see subsection 4.5.2)
T10.2: Design the environment where will be carried out the
evaluation.
T10.3: Install the modelling tool.

30 1.5 Research methodology

T11: Design validation

T11.1: Evaluate the material for the heuristic evaluation.

T11.2: Evaluate the material for the usability evaluation with users.
T11.3: Carry out a test of the usability evaluation with users with a
set of people to identify mistakes on the material.

T11.4: Check the correct installation of the modelling tool.

T12: Research

Not applicable

T13: Analysis of results

T13.1: Specity the results of the evaluations into an Excel form.
T13.2: Analyse the results through the SPSS software for checking
the mean and other interesting information (please see section 4.6).

EC3: Provide a technological support for the integration of Com-

munication Analysis method and OO-Method.
T14: Problem investigation
T14.1: Define a motivation for proposing a technological support
(please see Chapter 6).
T15: Solution specification
T15.1: Study of available technological support for model trans-
formation (please see section 5.2).
T15.2: Select the most adequate technological support for model
transformation (please see section 5.2).
T16: Specification validation
T16.1: Provide a test case to be implementing in the selected de-
velopment tool (please see section 5.4).
T17: Specification implementation
T17.1: Develop of the transformation module (please see section
5.3 and Append 2)
T17.2: Provide a traceability support (please see section 5.6)
T18: Implementation evaluation
T18.1: Validate the integration module. (T18 requires an evaluation
exercise of the integration module, which implies RC2).

RC2: Validate the technological support for the integration of
Communication Analysis method and OO-Method
T19: Research problem investigation

Introduction 31

T19.1: Define the goal of the transformation module validation
(please see section 5.5).

T20: Research design

T20.1: Define the research team.

T20.2: Design the material for the evaluation.

T20.3: Design the environment where will be carried out the
evaluation.

T20.4: Install the transformation module.

T21: Design validation

T21.1: Evaluate the material for the heuristic evaluation.

T21.2: Evaluate the material for the usability evaluation with users.
T21.3: Carry out a test of the usability evaluation with users with a
set of people to identify mistakes on the material.

T21.4: Check the correct installation of the transformation module.
T22: Research

Not applicable

T23: Analysis of results

T23.1: Specify the results of the evaluations into an Excel form.
T23.2: Analyse the results through the SPSS software for checking
the mean, and other interesting information.

T24: Specification implementation
Not applicable.

T25: Implementation evaluation
Not applicable.

1.6 Thesis structure

The approach followed in this work involves raising the abstraction
level of the model-driven framework integration proposed. The work
has been structured to reflect this abstraction process. First, Chapter 2
gives an overview of some relevant concepts related to frameworks
for method integration, Integration process of RE specification with
OO conceptual models, Technological support for business process

32 1.6 Thesis structure

modelling, Communication Analysis Method and OO-Method. Chap-
ter 3 specifies the MDD approach to support the Communication
Analysis techniques. In order to do so, the techniques are formalized
in a metamodels, and abstract and concrete syntax are specified.
Chapter 4 presents the modelling tool for Communication Analysis
requirements models. This chapter present the chosen technological
support, the design of the graphical editor, an example of how to use
the modelling environment and the modelling tool validation. Chap-
ter 5 presents the transformation support. This chapter presents the
rules implementation, a transformation example, transformation
validation and a support for the traceability, a plus that let us to fol-
low the transformation process. Chapter 6 summarizes the contribu-
tions, present the publications and provides some insight about fur-
ther work. Finally the section with references is presented and two
appends. The first one is about the development steps of the model-
ling tool and the second one is about the source code of transforma-
tion rules.

2 State of the art

his chapter reviews the state of the art related to this thesis. It

embraces different fields, disciplines and techniques that are re-

lated to frameworks of method integration, integration process of
requirements specification with object oriented conceptual models
and technological support for business process modelling.

We present an overview about Communication Analysis method
and OO-Method. Finally, we present a discussion about the works
analysed, and how these works have been influent and important to
draw up this thesis.

34 2.1 Frameworks for method integration

2.1 Frameworks for method integration

The diversity of development and change situations gives rise to a
need to combine and integrate different methods [15]. There are sev-
eral cases about method integration: to integrate several methods, to
combine several methods or parallel execution of methods. Many
current methods seem to be the result of integration of different
methods or method fragments [16].

Bellow, we will present some approach about method integration
frameworks; these frameworks propose different ways to confront
method integration.

A metamodel approach

The use of methods can provide some assurance toward the quality
of the resultant systems. Actually, many well-known development
methods, such as structured analysis and design, object oriented
analysis and object oriented design are supported by CASE tools with
facilitate the development. A metamodel propose is presented at [17],
the proposal shows an approach to integrate multiple methods
through the use of metamodel. The approach lies in two aspects: the
use of semantic equivalence between method components to establish
uniformity between individual methods and the incorporation of
procedural information, task and their order into the metamodel. The
proposal presents a demonstration using a CASE tool to integrate ob-
ject diagrams, state transition diagrams and data flow diagrams.

The core of the proposal lies on the metamodel strategy, the ex-
perience of this work indicates that the metamodel captures the
common concepts of individual methods, and the metamodel can
also facilitate the creation of a method database, and later it is possi-
ble to create a standard environment to support a set of methods. The
use of metamodels allows the creation of modelling tools for support-
ing diagramming according to integrated method.

The experience presented in this article highlight some ideas having
into account in the integration framework proposed in this thesis. The
first task of our proposal brings the methods to will be integrated to

State of the art 35

metamodel specification; a high abstraction level for relating the two
methods to integrate (Communication Analysis and OO-Method).

Interoperability in MDD approach

MDD approaches propose the automatic generation of software
products by means of the transformation of the defined models into
the final program code. In the MDD context, interoperability can be
considered a trend of model-driven technologies, where different de-
veloping and modelling approaches, tools and standards can be inte-
grated and coordinated to reduce the quality of the final software
products. An interoperability proposal is presented by [Giachetti
2011] [18], which proposes an approach to achieve the interoperabil-
ity in MDD processes. This interoperability approach is based on cur-
rent metamodelling standards, modelling language customization
mechanisms, and model-to-model transformation technologies. The
proposal presents the integration of modelling languages, to obtain a
suitable interchange of modelling information and to perform auto-
matic interoperability verification.

A multi-perspective framework for method integration

The development of large and complex systems necessarily involves
many people, each one with their own perspective on the system.
This is particularly true for composite systems, that is, systems which
deploy multiple component technologies. The intersections between
perspectives however are far from obvious because the knowledge
within each is represented in different ways. Furthermore, because
development may be carried out concurrently by those involved, dif-
ferent perspectives may be at different stages of elaboration, and may
be subject to different development strategies. The approach pro-
posed at [19] presents the perspective problem, in particular, the
problem of method integration in this direction. The approach pre-
sents a model of ViewPoint, a concept that encapsulate partial repre-
sentation process and specification knowledge about a system and its
domain; thus, a model of ViewPoint interaction in which inter-
ViewPoint rules are defined during method design. The approach in-

36 2.2 Integration process of RE specification with 00 conceptual models

volves process modelling to guide ViewPoint interaction. The
multi-perspective development is managed by prescribing rules rep-
resented at the ViewPoints.

2.2 Integration process of RE specification with OO
conceptual models

There are several approaches to link requirements specifications with
object oriented conceptual models. To bellow are presented works
that confront the integration process between requirements specifica-
tion with object oriented conceptual models in different ways. The
experience of these works has influent the development of the inte-
gration framework and guides the thesis proposal.

The proposal presented by [de la Vara 2011] [20] lies of a methodo-
logical approach for business process-based requirements specifica-
tion and object oriented conceptual modelling of information sys-
tems. The approach consists of four stages: organisational modelling,
purpose analysis, specification of system requirements and deriva-
tion object-oriented diagrams.

The four stage of this proposal integrates system requirements into
OO conceptual modelling. As a result of the integration, system re-
quirements can be useful for an OO perspective, IS modelling and
development. For performing the stage, first ETDs (Extended Task
Description) are analysed to specify several details that are necessary
for derivation of the OO conceptual schema of an IS. Next, a class
diagram and state transition diagrams are modelled by following two
sets of rules that determine the correspondence between the system
requirements of an IS and its OO conceptual schema. The rules trans-
formations are presented in natural language and these are fully
automatable. The analyst criteria can be taking into account during
rules automation.

The further link with OO-Method is possible, characteristics and de-
tails distinctive between OO-Method and the OO conceptual schema

State of the art 37

generated need the analyst criteria to establish the correspondence
between ETDs and OO-Method conceptual schema.

2.3 Technological support for business process modelling.

Actually there are different tools for supporting business process
modelling; bellow we will present an overview of some tools for sup-
porting business process modelling. Study the existent tools allow us
to know the support for BPM and the current technology to develop
business process modelling environments.

AuraPortal BPM [21] is a software to support enterprise management.
The BPM module support project management to model level, or-
chestration, monitoring and business rules specification. Distribution
of this tool is commercial.

MOSK:itt is a modelling framework supported by Eclipse, which in-
cludes plug-ins to modelling support of BPMN and UML [22].
MOSKitt is a FREE CASE tool, built on Eclipse which is being devel-
oped by the Conselleria de Infraestructuras, Territorio y Medio Am-
biente to support the gvMétrica methodology (adapting Métrica III to
its specific needs). gvMétrica uses techniques based on the UML
modeling language. MOSKitt's plug-in architecture makes it not only
a CASE Tool but also a Free Modelling Platform to develop this kind
of tools. MOSKitt is being developed within the gvCASE project
framework. This is one of the projects integrated ingvPontis, the Con-
selleria global project for the migration of its entire technological en-
vironment to free Software.

Recently, a plug-in for Microsoft Visio have been developed; Interfac-
ing Technologies Corporation is the company that carry out the
plug-in development [23]. This plug-in supports BPM diagrams. Dis-
tribution of this plug-in is commercial.

38 2.4 Communication Analysis method

24 Communication Analysis method

Communication Analysis is a method for the development and com-
puterisation of enterprise Information Systems. This method focuses
on communicative interactions that occur between the IS and its envi-
ronment. Communication Analysis is currently being used by impor-
tant Spanish enterprises and governmental institutions. The commu-
nicational perspective of the method has been overviewed in a previ-
ous publication [12].

From a systemic point of view, the kind of problem that Commu-
nication Analysis confronting involves at least three systems. The Or-
ganisational System (OS) is a social system that is interested in ob-
serving, controlling and/or influencing a portion of the world. We re-
fer as Subject System (SS) to the portion of the world in which the OS
is interested (a.k.a universe of discourse). An Information System (IS)
is a socio-technical system, a set of agents of different nature that col-
laborate in order to support communication between the OS and its
environment.

Communication Analysis proposes a requirements structure that
allows a stepwise refinements approach to ISs description. Also, the
proposed method allows tackling with static and dynamic percep-
tions of reality (by giving support to discovering and describing that
duality). The structure and the method flow are divided in five levels:

L1.System/subsystems level refers to an overall description of the
organisation and its environment (OS and SS, respectively) and also
involves decomposing the problem in order to reduce its complexity.

L2.Process level refers to business process description both from
the dynamic viewpoint (by identifying flows of communicative inter-
actions, a.k.a. communicative events) and the static viewpoint (by
identifying business objects).

L3.Communicative interaction level refers to the detailed descrip-
tion of each communicative event (e.g. the description of its associ-
ated message) and each business object.

L4.Usage environment level refers to capturing requirements re-
lated to the usage of the CIS, the design of user interfaces, and the
modelling of object classes that will support IS memory.

State of the art 39

L5.0perational environment level refers to the design and imple-
mentation of CIS software components and architecture.

Levels L1, L2 and L3 belong to the problem space, since they do
not presuppose the computerisation of the IS and they aim to dis-
cover and describe the communicational needs of users. Levels L4
and L5 belong to the solution space, since they specify how the com-
municational needs are going to be supported.

On the system/subsystem requirements level, the analyst describes
the OS from the strategic point of view. On the one hand, when the
organisation is complex, it is advisable to decompose the problem
into subsystems or organisational areas. On the other hand, the ana-
lyst elicits requirements related to strategic-level business indicators.

On the process requirements level, Communication Analysis pro-
poses describing business processes from a communicational per-
spective. The aim is to discover communicative interactions between
the IS and its environment, and to describe them taking into account
their dynamic and static aspects; that is, creating the Communicative
Event Diagram and the Business Objects Glossary, respectively. In the
following, a series of definitions clarify the concepts upon which the
modelling techniques are built.

We refer as communicative interaction to an interaction between
actors with the aim of exchanging information. FRISCO report [16]
presents a generic model of ISs that considers an IS as a support for
communicative interactions. In a previous publication, the authors
extend this model in order to deepen the communicative point of
view [24]. Depending on the main direction of communication, the
following types of communicative interactions can be distinguished:
¢ Ingoing communicative interactions primarily feed the IS mem-

ory with new meaningful information. These interactions often

appear in the shape of business forms.

¢ QOutgoing communicative interactions primarily consult IS mem-
ory. These interactions often appear in the shape of business indi-
cators, listings and printouts.

The ingoing communicative interactions entail more analytical com-

plexity.

40 2.4 Communication Analysis method

e A communicative event is a set of actions related to information
(acquisition, storage, processing, retrieval and/or distribution),
which are carried out in a complete and uninterrupted way, on
the occasion of an external stimulus [25].

Communication Analysis offers unity criteria to allow identifying
communicative events, also facilitating the determination of their
granularity. This way, a communicative event can be seen as an ingo-
ing communicative interaction that fulfils the unity criteria. Each
unity criterion is related to a communication function (see [26] for de-
tailed information).

Communication Analysis proposes to specify the flow of commu-
nicative events by means of the Communicative Event Diagram
(CED). The primitives of this modelling technique are shown at the
bottom of Figure 6 (CED example) and explained next.

State of the art 41

SALE 1

ACLIENT ORDER
ORDER PLACES <}
AN ORDER

=
=}

S

<
AN ALESWMAN CLIENT
MANAGER
&
SALE 2

ASSIGNMENT _ [saLes manacer ASSIGNED ORDER
» ASSIGNS >
SUPPLIER

siEs SALES MANAGER SUPPLIER
MANAGER

=P
=P

(" _SALE3 SUPPLIER EVALUATES THE ORDER _
RESPONSE SALE 3.1 SALE 3.2
-t ORDER ORDER < RESPONSE
IS REJECTED IS ACCEPTED
T
SALES C I
MANAGER

T
SALESMAN \ J SUPPLIER

— @

SAET LOGISTICS INFO__
LOGISTICS INFO o | TRANSPORT MNGR LOGISTICS INFO

o LOGISTICS

TRANSPORT
MANAGER

o
=
E
22:::
3

JRANSP. ASSISTANT,
SUPPLIER
SALE 5
INSURANCE INFO INSUR. DEPT. CLERK INSURANCE INFO__
SPECIFIES [
CLAUSES
INSURANCE INSUR. DEPT. CLER! CLIENT
DEPTARTMENT
CLERK
SALE 6
SHIPPING NOTIF. SUPPLIER NOTIFIES SHIPPING NOTIF.
< HE <}
THE GOODS
SALES SALESMAN SUPPLIER
MANAGER
A < IDENTIFIER EVENT Y INGOING OUTGOING
z T\r @:QGMEORT J— VARIANTS \L = < v v
© PRIMARY/ SPECIALISED PRECEDENT OR > >
— RECEIVER COMMUNICATIVE COMMUNICATIVE ~ PRECEDENCE SUBSEQUENTEVENT “OR’ COMMUNICATIVE
ACTOR EVENT RELATION (OUT OF SCOPE) MERGE INTERACTION

Figure 6. Communicative event diagram of SuperStationery Co. Sales
management business process (Sale)

Each communicative event is represented as a rounded rectangle and
is given an identifier and a descriptive name. The identifier serves for
traceability purposes and it is usually a code composed of a mne-
monic (related to the system to which the event is ascribed) and a
number (e.g. PHO 3). For each event, involved actors are identified.

Communication Analysis distinguishes several roles (see theoretical

basis in [24]):

e The primary actor triggers the communicative event by establish-
ing contact with the OS and provides the conveyed input infor-
mation. Therefore, primary actors are modelled as senders of in-
going communicative interactions.

42 2.4 Communication Analysis method

e The support actor is in charge of physically interacting with the IS
interface in order to encode and edit input messages. Support ac-
tors are specified at the bottom of the event rounded rectangle.
Sometimes the primary actor and the support actor are different
persons. Other times both roles are played by the same person.

e Receiver actors are those who need to be informed of the occur-
rence on an event. In order to truly understand the meaning of
messages in organisations, it is necessary to analyse these actors.
They are modelled as receivers of outgoing communicative inter-
actions.

¢ Reaction processors are those in charge of performing the IS reac-
tion to the message. This role is not depicted in the CED.

The messages associated to communicative events are conveyed via
ingoing communicative interactions and outgoing communicative in-
teractions. In the CED, messages are given a name. Communicative
interactions are modelled as arrows placed in the horizontal axis. The
vertical axis is reserved for precedence relations among communica-
tive events, which are also modelled as arrows.

Communicative events are specialised whenever each specialised
variant leads to a different temporal path (i.e. distinct precedence re-
lations). It must be avoided specializing an event as a result of differ-
ent communication channels, since the message remains the same.

This requirements level also provides a static perspective of busi-
ness processes, by means of business objects. We refer as business ob-
jects to the conceptions of those entities of the Subject System in
which the OS is interested. Frequently, stakeholders describe busi-
ness objects as complex aggregates of properties. Business objects are
identified and described in a Business Object Glossary. Also, users
are asked to hand out business forms to the analysts, who catalogue
them for later form analysis.

On the communicative interaction level, the communicative events
that appear in the CED need to be described in detail. Requirements
associated to an event are structured by means of an Event Specifica-
tion Template. The template is composed by a header and three cate-
gories of requirements: contact, communicational content and reac-

State of the art 43

tion requirements. These categories are related to phatic, referential
and cognitive communication functions, respectively.

The header contains general information about the communicative
event; that is, the event identifier, its name, a narrative description
and, optionally, an explanatory diagram. The event identifier and
name come from the CED; event identification needs to be kept con-
sistent throughout the entire analysis and design specification in or-
der to enhance requirements traceability. Since requirements specifi-
cations is meant, first of all, to facilitate problem understanding, a
narrative description of the event is strongly advised. Also, whenever
the event is complex, an explanatory diagram illustrating its associ-
ated flow of tasks shall be included. Contact requirements are related
to the conditions that are necessary in order to establish communica-
tion.

Communicational content requirements specify the message con-
veyed in an event and related restrictions. With regard to the mes-
sage, both metalinguistic aspects (e.g. message field structure, op-
tionality of fields) and linguistic aspects (e.g. field domains, example
values) need to be specified. Communication Analysis proposes a
message modelling technique. Message Structures (MS) is a model-
ling technique that is based in structured text and allows specifying
the message associated to a communicative event[27]. The structure
of message fields lies vertically and many other details of the fields
can be arranged horizontally; e.g. the information acquisition opera-
tion, the field domain, the link with the business object, an example
value provided by users.

A communicative event can not be fully understood until its MS is
defined in detail. Specifying with precision an event MS forces and
helps analysts and users to appropriately mark the event boundary
and meaning. Table 1 shows a Messages Structure grammar.

message structure

= structure name, ’=’, initial substructure;

initial substructure

= aggregation substructure | iteration substructure;
aggregation substructure

= ’<’, substructure list, ’'>’;

iteration substructure

= ’{’, substructure list, ’}’;

specialisation substructure

= ’[’, substructure list,{ ’|’, substructure list },’]’;
substructure list

44

2.4 Communication Analysis method

= substructure, { ’+’, substructure };
complex substructure

= aggregation substructure

| specialisation substructure;
substructure

= substructure name,

iteration substructure

’=', complex substructure |

field;

Table 1. EBNF grammar of Message Structuctures

Table 2 shows an example of a message structure.

FIELD oP DOMAIN EXAMPLE VALUE
ORDER =
< Order number + g number 10352
Request date + i date 31-08-2009
Payment type + i text Cash
Client + i Client 56746163-R, John Papiro Jr.
DESTINATIONS =
{ DESTINATION =
< Address + i Client address| Blvd. Blue mountain, 35-14A, 2363 Toontown
Person in charge + i text Brayden Hitchcock
LINES =
{ LINE =
< Product + i Product ST39455, Rounded scissors (cebra) box-100
Price + i money 25,40 €
Quantity > i number 35
}
>
}
>

Table 2. Example of a message structure

Reaction requirements describe how the IS reacts to the communica-

tive event occurrence. Typically, the IS

stores new knowledge, ex-

tracts all the necessary conclusions that can be inferred from new
knowledge, and makes new knowledge and conclusions available to
the corresponding actors. Therefore, this category of requirements in-
cludes business objects being registered and outgoing communicative
interactions being generated by the event, among other requirements.

State of the art 45

2.5 0O0O-Method

OO-Method is an approach for automatic software generation on the
basis of OO conceptual modelling. It is supported by the OLIVANOVA
tool and can decrease development time and increase productivity.
Conceptual modelling with OO-Method is independent from the tar-
get technological platform (e.g., Java or .Net).

OO-Method consists of the following conceptual models:

Object model: this model specifies the structure and static relation-
ships between the classes of a software system by means of a graphi-
cal diagram that can be considered equivalent to UML class diagram;
it includes classes, their attributes and methods, and the relationships
between the classes.

Dynamic model: this model specifies the dynamic and behavioural
side of the classes of the object model by means of graphical diagrams
that can be considered equivalent to UML state transitions diagrams;
the valid lifecycles of the classes are represented in this model, as
well as the possible interactions between the objects (i.e., instances of
the classes).

Functional model: this model specifies the semantics of the change of
an object state as a result of method execution (e.g., a change in the
number of kilometres of a car) by means of a declarative textual
specification.

Presentation model: this model specifies the characteristics of the
user interface of a software system and how the users will interact
with the system; the model is created by means of a pattern-based
graphical model through 3 levels of detail, from more general to more
specific characteristics.

Applications generated from conceptual modelling with OO-Method
have three-layer architecture. The presentation layer contains the
software components responsible for presenting users the application
interface to interact with a software system. The application layer
provides services that implement the functionality of an application.
The persistence layer provides services to store and obtain the pieces
of data necessary for execution of an application. The software proc-
ess of OO-Method consists of two stages. First, system analysts (mod-

46 2.6 Analysis and discussion

ellers) create a conceptual schema, which corresponds to a represen-
tation of the problem space (i.e., the application domain). A UML-
based notation and textual specifications are used. Second, the code
of an application is generated on the basis of the Execution Model of
OLIVANOVA, which corresponds to a representation of the solution
space and can be targeted at different technologies. When comparing
OO-Method with other approaches for software modelling and de-
velopment, it deals with the static (data-oriented) and the dynamic
(behaviour-oriented) views of an IS. Both views are necessary for
complete IS modelling and development. In addition, it relies on an
underlying formal model, integrates formal and semi-formal tech-
niques, and (in conjunction with OLIVANOVA) allows generation of
complete and ready-for-running applications by precisely specifying
an IS.

In relation to MDA (Model Driven Architecture; [28]), a detailed de-
scription of its correspondence with OO-Method can be found in [29].
The main points are that: 1) an OO-Method conceptual schema corre-
sponds to a Platform-Independent-Model; 2) the execution model
corresponds to a Platform-Specific-Model, and; 3) the code generated
corresponds to an Implementation Model.

2.6 Analysis and discussion

This chapter intends to present some previous experience about
method integration. The works presented in this section had rele-
vance during the development of this thesis. Lessons learn and ad-
vices of the works presented in this section were taken into account.

We do not include a state of the art with information about trans-
formation rules definition and ontological alignment, because these
topics are out of the scope of this literature review. For more informa-
tion about these topics please see [11].

About technological decisions, MOSKitt have been an example
about how to implement the techniques in Eclipse.

The review about Communication Analysis and OO-Method is
important to carry out the integration process. This chapter present

State of the art 47

an outline of these methods, for more information see the references
presented in each one.

3 MDD approach: a
metamodel to support the
techniques of
Communicative Event
Diagrams and Message
Structures

he development of Information Systems demands requirements
methods to establish the needs of the organisation. The paradigm
of the Model Driven Development (MDD) can to provide to the
requirements models some advantages, as to derive conceptual mod-
els from it. These conceptual models will be used to generate soft-
ware in an automatic way. This chapter presents the strategy in order
to specify the metamodels of the requirements techniques of the
Communication Analysis method. In addition, this chapter presents
the metamodel validation as an interesting way to improve and to

50 3.1 Initial state

correct some mistakes in the metamodel specification. Finally an
analysis and discussion is presented to conclude and to distinguish
lessons learned.

3.1 Initial state

Communication Analysis proposes a requirements structure that low
a stepwise refinements approach to Information System description.
The method proposes a static and dynamic perception of reality. The
method refers a process level, which refers to business process de-
scription from a communicational perspective; the aim is to discover
communicative interactions between the IS and its environment and
to describe them taking into account their dynamic and static aspects;
that is, creating the Communicative Event Diagram (CED) [6]. The
flow of communicative events is specified by CED technique. Besides,
the method provides a communicative interaction level, which refers
to the detailed description of each communicative event.

Communicate Event Diagrams and Message Structures are two
novel techniques to analyse the communicative interactions in an in-
formation system.

An overview of the Communication Analysis method and the
techniques of Communicative Event Diagrams and Message Struc-
tures are presented at the primitives of this modelling technique are
showed at Chapter 3.

Taking into account the CED primitives and the Message Structures
primitives, we can refer two abstraction levels for the syntax:
Abstract syntax: The abstract syntax defines the concepts of language
and their relationships. The abstract syntax can be represented by
means of a metamodel [30].

Concrete syntax: The concrete syntax defines the graphical appear-
ance of language. The concrete syntax can be represented by means of
a textual languages, this mean that it defines how to form sentences.
For a graphical language this means that it defines the graphical ap-

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 51

pearance of the language concepts and how they may be combined
into a model [30].

Following this definitions, we propose the specification of a
metamodel to represent the CED language definition and the Mes-
sage Structures language definition. This abstract syntax definition
will be presented at section 3.2.

A proposal for the concrete syntax will be presented at Chapter 5,
and we will speech about other ways to represent the concrete syntax.

3.2 The metamodelling strategy

Model Driven Architecture™ or MDA is an approach to using models
in software development; and MDA propose the well-known and
long establish idea of separating the specification of the operation of a
system[31].

Although MDA is commonly applied to product software devel-
opment, we thing is interesting to apply this concept for developing
methods. Therefore, we have built metamodels with different levels
of abstraction.

In order to achieve this proposal, we have designed a MDD
framework to develop and to support of Communication Analysis
requirements models; this framework contains different stages and
activities (for a complete explanation of this framework see the sec-
tion 1.4).

These activities are taking into account several steps for the meta-
model definition according to the MDA guide; thus is considered the
following kinds of metamodels:

The requirements for the system are modelled in a computation
independent model (CIM). The CIM describes the situation in which
the system will be used. The CIM is a model of a system that shows
the system in the environment in which it will operate, and thus it
helps in presenting exactly what the system is expected to do. The
CIM specification can be represented by means of a textual explana-
tions, technical reports, etc.

52 3.3 PIM metamodel specification

The system is described by means a platform independent model
(PIM), thus it helps to describe the system but does not show details
of its use in a specific technological platform. A PIM might consist of
enterprise descriptions and it can follow a particular architectural
style (object oriented, aspect oriented, etc.).

The PIM can be transformed in a model that specifies how the sys-
tem uses the chosen platform. Thus, this is a platform specific model
(PSM). The PSM provide more details about the implementation. A
PIM can be transformed to different PSM; this depends of the end
platform.

Due to a metamodel is a model, the MDA approach can be applied
to the methods development. This approach pretends to apply the
MDA concepts in an orthogonal way over the models in a software
development process. These metamodels are aligning to a method
textual description or an ontology reference for the method.

We will focus over CIM models (requirements models in a soft-
ware development process), then, the Communication Analysis re-
quirements models are specified in a metamodel that represents a
high level of abstraction of these.

In order to build the Communication Analysis requirements mod-
els, the textual description of the method is specified at Chapter 3, the
PIM metamodel will be specified at section 3.3, and the PSM meta-
model will be specify at section 3.4.

3.3 PIM metamodel specification

According to the framework described at section 1.4 and according to
the metamodelling strategy previously explained, the stage 1 should
contain a PIM metamodel specification [32].

The phase 1 of the stage 1(See Figure 7) is composed of two activi-
ties: The firs activity is the ontological analysis of Communication
Analysis method. In this activity is studied the conceptual framework
about system information then, it is possible to carry out a conceptual
alignment of Communication Analysis method (to distinguish the

MDD approach: a metamodel to support the techniques of Communicative Event
Diagrams and Message Structures 53

principal concepts and primitives). Some examples about conceptual
framework and ontological analysis are available at[10].

Espana [33] proposes the ontological alignment for the Communi-
cation Analysis Method.

STAGE 1 STAGE 2
PHASE 1 PHASE 3
PHASE 2 PHASE 4

PHASE 1: ANALYSIS AND THEORETICAL SPECIFICATION

REFERENCE DOMAIN CONCEPTUAL
ONTOLOGY ABOUT 1.1 ONTOLOGICAL ALIGMENT OF CA
INFORMATION ANALYSIS OF CA METHOD WITH THE
SYSTEM METHOD REFERENCE DOMAIN
ONTOLOGY

"

METHODOLOGICAL
GUIDES OF CA

-

Figure 7. Phase 1 explanation

.2 DESIGN OF PI/
METAMODEL OF CED
AND MESSAGE
STRUCTURES

PIM METAMODEL OF
CA REQUIREMENTS
MODELS

——

The second activity is about design of PIM metamodel. The PIM
metamodel contains a set of elements (metaclasses) and relationships
that represents concepts of the method. Each metaclass and relation-
ship corresponds to a concept of the ontology (for more details see
Espafia 2011 [33]). The metamotel lets to build CED and to build mes-
sage structures. The PIM metamodel is designed following the UML
class diagram [34]. We use Microsoft Visio [35] to represent the
metamodel in a graphical way. The PIM metamodel is the principal
result of the phase 1. This metamodel is showed at Figure 8.

The elements, relationships, cardinalities and roles intend to repre-
sent the semantic of the Communication Analysis requirements mod-
els. Each modelling decision was taken according to the ontological
analysis of the method. For this reason, each element of the meta-
model corresponds with one element of the ontology. For more de-
tails see [33].

54 3.4 PSM metamodel specification

M 1:1 om
0oRG_MopuLes| ORGANSATIONAL. | ore MobuLE STRATEGIES | STRATEGY
M | MODULE |
ORG_LOCATIONS, NAVE 1 DESCRIPTION
ORGANISATIONAL ACRONYM ORG_MODULE STRATEGY_DATE
LOCATIO! > bescriPTION ACTION_PLAN
ACRONYM oM 0:1[STRATEGY
DESCRIPTION ORGANISATION GOALS
o MSION e OPERAT‘I:)AN(;:IES:/?T:: o INDICATOR
POST_NUMBER 1 FEOCESS] NAME GOAL oM
COUNTRY. DESCRIPTION OPERS| CURRENT VALUE OPERS NAME
NAME OM| TARGET _VALUE INDICATOR| DESCRIPTION
M UNIT oM ACRONYM 11 GOALS TARGET_DATE 1:1| METRIC
ORG_UNITS| ORG_UNITS DESCRIPTION |PROCESS b
M PROCESSE:
ORG_ACTORS TM[ORG_UNITS oM O:M_SELECTED_EVENTS
ORGANISATIONAL,
— 1MID| oM 1:1 EVENT
AGIOR EVENTS| EVENTS ‘ [
FIRST_NAME " oM
LAST NAME FRv vy R 1 NGOG |1 1 EVENT [Nope |SOURCE OUTGOING [precepEnce
PHONE_NUMBER PRIMARY IN| IN EVENT = TARGET — TNGOMING
COMMENTS (D 101 oM
DESCRIPTION
I T T 1
1:1|0RG_ROLE oM 1:1 e ENCAPSULATION |[LOGICAL_NODE |[END |[START |
RECEIVER | ouT| a
O:M|COM_ROLES VARIANT NUMBER
COMMUNICATIVE_ e NAME
m
ROLE o o SpEC COND PRECONDITION
IS_INTERFACE ACTOR
| -/ SUPPORT = ISATIONg |ENCAPS
INTERACT\DN‘ SPECIALISATIONS B
BUSINESS_ COMMUNICATIVE oM
OBJECT_CLASS |0:M M
OBJECT CLASSES INTERACTIO!

111 oM
NAVE NAME MEDIUM_
DESCRIPTION DESCRIPTION INTERACTION VEDIUM REQS| L

- INTERACTION: []
1:1§)OBJECT CLASS ~MESSAGE STR INTERACTIONS|
OM _CHANNELS| CHANNEL \CCREDITATION
MESSAGER oM REQUIREMENT
om| FiELDS SUBSTRUCTURE NAME
BUSINESS. DESCRIPTION
o NAME NAME
OEuECTARE) DESCRIPTION DESCRIPTION | &las1RUCTURE ‘ AVAILABILITY. L
NAME 0:m| EXAMPLE e
MIN_CARD |
DESCRIPTION WESSAGE STR COMPONENTS | MIN.CARD SUBSTRUGTURE | EonTaCT
REQUIREMENT }»
1:1 A
INITIAL] 1:1 [1 EVENT_
COMPLEX_ FIELD PRECONDITION oM
SUBSTRUCTURE
» e . M}:4 REQUIREMENTS|
DERIVATION_FORMULA STRUCTURAL. TEXTUAL_
{DOMAN | ExamPLE SCONS| T REQUREMENT
L | > i
oM| M CONTEXTUAL_ MESSAGE_ BESCRIETION
REFERENCES| T HE TH
0:1]_AGGREGATION ITERATION SPECIALISATION - DATA_FIELD L 11 |
AGGREGATION (ESEIELDESE| | oy [MESSAGE_PARTI
IS_IDENTIFIER CULARISATION
AGGREGATION REFERENCE] IDENTIFIER |
1 141 FIELDS
REACTION
>
0:1 01
EXTENSION_ IDENTIFIER_
MARK MARK
0:1 [EXTENSION_ Y om
ENTENSION MARK| MARK MARK SCOPE | DERIVATIONS

Figure 8. PIM metamodel for communicative event diagrams

3.4 PSM metamodel specification

According to the metamodelling strategy explained at section 3.2, the
stage 1 should contain a PIM and a PSM metamodel specification.

The phase 2 of the stage 1 (See Figure 9) is composed of three activi-
ties: The firs activity is the design of the PSM metamodel. In this ac-
tivity is used the PIM metamodel obtained in the phase 1 (See section

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 55

3.3). The PSM design uses also the ECORE specification [36] and the
UML 2.1 tools of Eclipse Modelling Framework (EMF) [36] [37]. The
PSM metamodel is the principal result of the phase 2. The second and
third activities will be explained at Chapter 5.

STAGE 1 STAGE 2
PHASE 1 PHASE 3
PHASE 2 PHASE 4

PHASE 2: DESIGN AND IMPLEMENTATION

ECORE 2.1 DESIGN OF PSM PSM METAMODEL OF
METAMODEL OF CED ' CA REQUIREMENTS
DA AND MESSAGE MODELS
STRUCTURES

DIAGRAMMING TOOL

2.2 IMPLEMENTATION
— = OF DIAGRAMMING
| TOOL

ITERATIVE
INCREMENTAL |
DEVELOPMENT |

2.3 EVALUATION OF
DIAGRAMMING TOOL

Figure 9. Phase 2 explanation

The PSM metamodel contains a set of elements (metaclasses), which
are platform-oriented. This metamodel is an extension of the PIM
metamodel. The PSM intends to complement the PIM metamodel
with the necessary elements in order to represent the concrete syntax
of the requirements models besides, the PSM metamodel includes
concepts in order to improve the expressiveness of the concrete syn-
tax. A modelling tool is intended, for this reason some graphical at-
tributes, metaclasses and relationships are added into the PSM
metamodel. To achieve this, data types, relationships, roles, meta-
clases, attributes etc. were created, and the elements presented at the
PIM metamodel were taken into account. This metamodel is showed
at Figure 10.

56 3.4 PSM metamodel specification

3.4.1 PSM metamodel elements

This section describes (in alphabetical order) each metaclass of the
PSM metamodel.

For each metaclass, a definition and a short description explains
the context and meaning of each one. A diagram is included for a bet-
ter understanding of the metaclass context in the metamodel. The at-
tributes of the metaclass are listed, including for each one name and
semantics. The constraints of the metaclass are listed, including a
short description. A graphical primitive is explained to show the
graphical notation that corresponds to each metaclass. Finally, the re-
lationships that the metaclass is involved in are listed from the meta-
class perspective, including for each one the name of the relationship
if there is one, the role that the class being described plays in said re-
lationship if there is one, the target class to which the metaclass is as-
sociated, and its semantics.

MDD approach: a metamodel to support the techniques of Communicative Event

57

Diagrams and Message Structures

INFWLVIHL = NIVIWOQ : UIBWOP = UBB|00g : 07 SPUSIKe = Wu;m_mw.mam Buls sy %]
NOLLYIINNWOD GHNTT = = - AL INIWRIINOTY | 30k = He = m
WOIWVHIE ODIND = | quanvivaE M monzwaggy s NOHVSIIVIDIST NOLWELIES vorLYoIuooY 5 Buins : uopdasap = Buins : uoRdlasap = _

NOLLYSTYINDLLYYd 39VSSIW = - e Buins : aweu = Buins : g1 = RELLOTSH [
ANIVHISNOD WNUX3LNGD = ST 1Bpow =
ANIVHLSNOY TVANLINALS = T3I4T103r80 SSINISNE S INFWIHINDIY WNLXEL S [+770] JuBusRF 20

NOLLIGNODR4d ININI =1 s - - 3]
M - PRy 18lq0ssauIsNg —
INIWIHINDTY NOLIVOLINEA = = i iR =
ANFWANINOFY ALTTIAVIIVAY = =
INIWTAINDTY NOLLVLIGIAIOY =1 = uewop)
INIWFHINOTY WNIQEW = = Buws : uogduosep = o)
_ a ~ _ - INIWITI (5]
1AL INSWIHINDIY [F FUNLINYLSANS XTTAWOI = SSV12™153rd0 SSINISNA = JANNYHI NOLLYIINAWKOI = >
UCRERWINUS d i ssepp1pa(gossausng _ o [0)
._.ma 50" en mw_:m::z_i reldwox Lol [BUUBY> UONEDIURLIWED | (0] Jopefeuonesiuebio o
ol] i Bus : SIwAWWeD =
Buws © pieY Xew = MEE, 2P . ' * Lol saqunu™zuoyd = N
= Ll NS dbessou HORRRRII AREIINULIOD : uondussap = 1 aweuTise| = +
Buws : uondinssp = Buns : uondinsap = : uondiossp = UB3|00g : JOPE LA S| = Buins : aweu ISy =]
Burns : aweu = [rol Buigs : aueu = 0S : AWeu = w
— P s _ -~ ~ 135 9104 180ddNS 5 || F70Y FALLYIINIWWGI = YOLOV TYNOLLYSINYOUO =)
FHNLOMYLSENS = SPNAANS FUNLINULS IIVSSIW = (OLLIVHIINT FALLVIINAWWOI = A - - =
= o) = i s oj0i voddns 501 e
w_:tiu.ﬂ%m&wi E;ﬁ.:.,ﬂ&mmws.__ ﬂ&_tm..s_._d\ss_s.tsﬂ TR 0] L sperjewoesebio m
i]
uopesyessuab, = _ m
suopesiepads - [-70T 310030% ™) yoadns =5
WOE | aNvE buis : ope seEn = - _ L o
Bups : uopjpucsasd = Buwns : puod s pads = . Buroty (&)
Bung : sweu = Buwis : a1 = oI Bl BAREIIUNWIWOY BuioBino y
Buu = INIODLNO = =i — = o
LNVIHVA INIAZ 5 ﬂéei___.%s_cEss.?_a.a vanmEa H = [t
mvisE | anaF | 9down Tversor S NOILYINSAVONT = & [+0] = —_—
-) ajosjeuonesiuetid [3)
Bupss : uopdyosap = 108 WNOLLVSINYSYO = o
. buws : a1 = —
BuUILOY| [4-0] jobuey. Tk NIOONI = E AUV ol fPuonesiueSio =}
_ - _ i LT Sporjeuonesiuets g
NI T e JAON NIATIALIVIINAWWOD = juana ORI AR oo BujoBu L) 5
[,0] wena — Ty i o
. s _— feob [0l [1,] : L1] <]
1S £ P £ s : ajepiabie) = Tuondwsep || o = - Jyun"jeuoges|ueBi m
6uins : vondiossp = Buins : anjeaiebie = 6Buns : uondinssp = wivoioe = || 135 310U TVNOLLVZINVOUO [,wn_l_mcazmmzm?a
Bupng : aweu = uoRestieuonesado gy e anenueuma = (7o) 1206 Bupns : aweu = —
e i 500 TN [EUORESUEDID M
&l %o - ol ol ~ _
HOLVIIGNI 5 NOILVSITYNOLLYY3dO w9 = $5300Ud 5 [T NN TvNOL 8 %]
r
uoges|ieuofeiado [+70] feob A
+"1 buns : Anunoa = S
#A6mens | [170] Buing : soquinu~ysod = —
Aauon = ainpow jeusyesiuebio i o Buns : Ap =
P = R0 = Bupns : ueld uope = Buus : uoissu = Guns : ssaippe =)
uonessudb = oL = ajep Abajens = Buns : uondiosap = Bus : vopdunsap = fas)
ndul = RqunN = UL uoRdisap = 6uins : wAuooe = | 42ddn NOLLVSINVO¥O = Auone = =
Buas ; aweu = Wm,.a Bulas : aweu = = Buws : aweu =)
NOLLY¥3dO (= NIVWOA [of 1) —
o = SInpotl [euonesiue — — *SInpew jeuopesjuebio = —. = &
nesRwuR» «uopeRWNu ADILVHIS 5 TINAOW TVNOLLVSINVOHO = uonedof OLLVIOT TWNOLL 8

[1]

58 3.4 PSM metamodel specification

List of metaclasses:

3.4.1.1 AGGREGATION metaclass
3.4.1.2 AND metaclass

3.4.13 BUSINESS_OBJECT_CLASS
metaclass

3.4.1.4 BUSINESS_OBJECT_FIELD
metaclass

3.4.1.5 COMMUNICATION_CHANNEL
metaclass

3.4.1.6 COMMUNICATIVE_EVENT
metaclass

3.4.1.7 COMMUNICATIVE
INTERACTION metaclass

3.4.1.8 COMMUNICATIVE_ROLE
Metaclass

3.4.1.9 COMPLEX_SUBSTRUCTURE
metaclass

3.4.1.10 DATA_FIELD metaclass
3.41.11 ELEMENT metaclass
3.4.1.12 ENCAPSULATION
metaclass

3.4.1.13 END metaclass
3.4.1.14 EVENT_VARIANT
metaclass

3.4.1.15 FIELD metaclass
3.4.1.16 GOAL metaclass
3.4.1.17 INDICATOR metaclass
3.4.1.18 INGOING metaclass
3.4.1.19 ITERATION metaclass

3.4.1.20 LOGICAL_NODE metaclass

3.4.1.21 MESSAGE_STRUCTURE
metaclass

3.4.1.22 MODEL metaclass
3.4.1.23 NODE metaclass
3.4.1.24 OPERATIONALISATION
metaclass

3.4.1.25 OR metaclass

3.4.1.1 AGGREGATION metaclass

3.4.1.26 ORGANISATION metaclass
3.4.1.27 ORGANIZATIONAL_ACTOR
metaclass

3.4.1.28 ORGANISATIONAL_LOCATION
metaclass

3.4.1.29 ORGANISATIONAL_MODULE
metaclass

3.4.1.30 ORGANISATIONAL_ROLE

metaclass
3.4.1.31 ORGANISATIONAL_ROLE_SET
metaclass
3.4.1.32 ORGANISATIONAL_UNIT
metaclass

3.4.1.33 OUTGOING metaclass
3.4.1.34 PRECEDENCE Metaclass
3.4.1.35 PRIMARY metaclass
3.4.1.36 PROCESS Metaclass
3.4.1.37 RECEIVER Metaclass
3.4.1.38 REFERENCE_FIELD
Metaclass

3.4.1.39 SPECIALISATION
metaclass

3.4.1.40 START Metaclass
3.4.1.41 STRATEGY metaclass
3.4.1.42 SUBSTRUCTURE Metaclass
3.4.1.43 SUPPORT Metaclass
3.4.1.44 SUPPORT_ROLE_SET
metaclass

3.4.1.45 TEXTUAL_REQUIREMENT
metaclass

3.4.1.46 DOMAIN enumeration
3.4.1.47 OPERATION enumeration
3.4.1.48 REQUIREMENT_TYPE
enumeration

It specifies a composition of several substructures in a way that they
remain grouped as a whole. It is represented by angle brackets < >.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 59

This metaclass specialises from Complex substructure

Example

For instance, LINE=<Product+Price+Quantity> specifies that an order line
consists of information about a product, its price and the quantity
that the client requests.

Metamodel view of AGGREGATION metaclass

Q ORGANISATIONAL _ACTOR

= first_name : String
=1 last_name : String
=1 phone_number : Stiing
=l comments : String

[0..*]|organisational _actor

agaregation| [0..*]

=] AGGREGATION = = ITERATION =] SPECIALISATION

= MESSAGE_STRUCTURE [0.*] E SUBSTRUCTURE
mess_struct

s
=1 name © String [0.1] substructures = name : String
=1 description : String h = description : String
= min_card : String

direct_items
— =1 max_card : String

ms ¥ message_structure[o,.1]
[1.%]
complex_substructures[1.*] initial_CS parent

= COMPLEX_SUBSTRUCTURE

domain
pointers [0..*]

= REFERENCE_FIELD

=l extends_bo : Boolean

Figure 11. Portion of the metamodel including the metaclass

AGGREGATION
Attributes
NAME TYPE DESCRIPTION

name String | [Inherited from substructure] The name of the aggregation.

description | String | [Inherited from substructure]The description or the aggrega-
tion in natural language.

min_card String | [Inherited from substructure] The minimum cardinality of
the aggregation.

max_card String | [Inherited from substructure] The maximum cardinality of

the aggregation.

Table 3. Attributes of the AGGREGATION metaclass

60

3.4 PSM metamodel specification

Associations
ROLE PARTICIPANT DESCRIPTION
organisa- ORGANISATIONAL | An aggregation is related to several or-
tional_actor _ACTOR ganisational actors.
direct_items SUBSTRUCTURE [Inherited from complex substructure] An

aggregation is composed by several sub-
structures.

message_structure

MESSAGE_STRUC
TURE

[Inherited from complex substructure] An
aggregation can be part of one message
structure.

ms MESSAGE_STRUC | [Inherited from complex substructure] An
TURE aggregation is contained into one mes-
sage structure.
parent COMPLEX_SUBST | [Inherited from substructure] An aggrega-

UCTURE

tion can to be a parent complex substruc-
ture.

mess_struct

MESSAGE_STRUC
TURE

[Inherited from substructure] An aggrega-
tion can be related to one message struc-
ture.

pointers REFERENCE FIELD | [Inherited from complex substru] An ag-
gregation can to have several pointers
from existing reference field.
Table 4 Relationships of the AGGREGATION metaclass
Constraints

This metaclass does not have constraints.

Graphical primitive

This metaclass does not have graphical primitive.

3.4.1.2 AND metaclass

The and-fork and the and-join are implicitly represented by two or
more precedence relations departing from or arriving to a communi-
cative event, respectively; however, they can be explicitly drawn if
needed to express complex logical expressions.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 61

This metaclass specialises from Logical node
Example

C occurs after A and B occur (See Figure 12)
—) =

—

Figure 12. Example of the different AND cases

The Figure 12 shows two ways that represents the AND case. These
ways can be used to represent the AND in a CED.

Metamodel view of AND metaclass

SOLrce outgoing
Enooe ® [0..*] "= PRECEDENCE
- [0.*1,
target incoming
= ENCAPSULATION E LOGIGAL NODE S EnD = START

=1 number : String

=l name : String

=1 precondition : String

=l interface_actor : String El anD Hor

Figure 13.Portion of the metamodel including the metaclass AND

Attributes

This metaclass does not have attributes of its own.

62 3.4 PSM metamodel specification

Associations
ROLE PARTICIPANT DESCRIPTION

outgoing PRECEDENCE [Inherited from Logical node] An And can
to have many outgoing precedence from
it (See C1).

incoming PRECEDENCE [Inherited from Logical node] An And can
to have many incoming precedences to it
(See C1).

Constraints

C1. For each instance of AND metaclass, is necessary that two or
more PRECEDENCE arrive to it, and only one PRECEDENCE goes
out from it.

Graphical primitive

Figure 14 shows the graphical representation to use the AND meta-
class in a CED. Remember that the semantics of the AND metaclass
can be represented in two ways (see Figure 12).

&

Figure 14 Graphical primitive of AND metaclass
3.4.1.3 BUSINESS_OBJECT_CLASS metaclass

A business object is a composite thing of the system, which an organ-
isational system is interested in acquiring knowledge about it. This
metaclass represents a type of business objects.

Example

A class of business objects is a set of business objects of the same type,
e.g. Truck.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures

63

Metamodel view of BUSINESS OBJECT_CLASS metaclass

] BUSINESS_OBJECT_FIELD

=l name : 5tring
= description : String

business_cbject_field| [0..*]

business_cbject _clas

H cOMMUNICATIVE_INTERACTION

=1 name : String

=1 description ; String

[0..*] | communicative_interaction

[0..*]|business_object_class

£l BUSINESS_OBJECT_CLASS

=] name : String
=1 description ; String

Figure 15. Portion of the metamodel including the metaclass
BUSINESS_OBJECT_CLASS

Attributes

NAME TYPE DESCRIPTION
name String | The name of business object class. For example, “TRUCK”.
description | String | The description of the business object in natural language.

Table 5. Attributes of the BUSINESS_OBJECT_CLASS metaclass

Associations
ROLE PARTICIPANT DESCRIPTION
business_object_field BUSINESS _OBJEC | A business object class can to
T_FIELD be related several business

object fields.

communicative_interaction | COMMUNICATIVE_|

NTERACTION

A business object can to be
related communicative inter-
actions that are part of the
organisational process.

Table 6. Associations of the BUSINESS_OBJECT_CLASS metaclass

b4 3.4 PSM metamodel specification

Constraints

This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.

3.4.1.4 BUSINESS_OBJECT_FIELD metaclass

A business object field is a business object that is part of a business
object class.

Metamodel view of BUSINESS_OBJECT_FIELD metaclass

E BUSINESS_OBIECT_FIELD

=l name : String
= description : String

[0..*]| business_object_field
business_object_class
Q BUSINESS_OBIJECT_CLASS
=l name : String

= description : String

Figure 16. Portion of the metamodel including the metaclass
BUSINESS_OBJECT_FIELD

Attributes
NAME TYPE DESCRIPTION
name String The name of the business object field.
description String The description of the business object field in natural
language.

Table 7. Attributes of the BUSINESS_OBJECT_FIELD metaclass

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 65
Associations
ROLE PARTICIPANT DESCRIPTION
business_object_class BUSINESS OBJE | A business object field can to
CT_CLASS be related with one business
object class.

Table 8. Relationships of the BUSINESS_OBJECT_FIELD metaclass

Constraints

This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.
3.4.1.5 COMMUNICATION_CHANNEL metaclass

We propose the COMMUNICATION_CHANNEL metaclass in order to
represent the specific communication medium of a communicative
interaction. This medium is used by an ORGANISATIONAL_ACTOR,
which communicates an event occurrence.

Examples

The organisational actors can to use a set of devices or mediums in
order to communicate information. For example: fax, telephone,
email, in person, etc.

66 3.4 PSM metamodel specification

Metamodel view for COMMUNICATION_ CHANNEL metaclass

= COMMUNICATION_CHANNEL

=1 description : String

[0..*] | communication_channel

[0.*] communicative_interaction

E] cOMMUNICATIVE_INTERACTION

= name : String
=] description @ String

Figure 17. Portion of the metamodel including the metaclass
COMMUNIATION_CHANNEL

Attributes
NAME TYPE DESCRIPTION
description | String | The description of the communication channel in natural

language.

Table 9. Attributes of the COMMUNICATION_CHANNEL metaclass

Associations

ROLE PARTICIPANT DESCRIPTION

communicative_interaction | COMMUNICATIVE | A communication channel can
_INTERACTION to be related with many com-
municative interactions that
are part of the organisational
process.

Table 10. Relationships of the COMMUNICATION_CHANNEL metaclass

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 67

Constraints

This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.
3.4.1.6 COMMUNICATIVE_EVENT metaclass

A communicative event describes the occurrence of an ingoing com-
municative interaction and the corresponding reaction of the organ-
isational system. A communicative event describes the information
about this event occurrence.

This metaclass specialises from Encapsulation
Examples

Actor B communicates information to Information System; this in-
formation is related to the event A. Actor C consults information
from Information System.

0, —— O

ACTOR B ACTOR C

Figure 18. Example of use of COMMUNICATIVE_EVENT a in a CED

68

3.4 PSM metamodel specification

Metamodel view for COMMUNICATIVE_EVENT metaclass

=l procEss

= name : String

= acronym : String

= desaription : String

= nGoinG

T\ngoingfcommunicativefintel action

process

EoaL =l PRECEDENCE
= name : String
= description : String X
incoming| outgoing
[0..*]] goal [0.*] [0.71
[1.*] . -
events [0..*]] event soLrce soLIce
E cOMMUNICATIVE_EVENT El nope
=1 1D : String
»= description : String
avent
= ENCAPSULATION

| EVENT_VARIANT

=1 number : String

=] name : String

=1 precondition : String
= interface_actor © String

=1 1D : String
= specilisat_cond : String

[0..*] | specialisations
generallsatlon’

Figure 19. Portion of the metamodel including the metaclass

COMMUNICATIVE_EVENT

Attributes
NAME TYPE DESCRIPTION

ID String | The unique identification for each communicative event.
It is advisable that the ID corresponds to the union of the
value of attribute number and the process acronym.

description String | The description of the communicative event in natural
language.

number String | [Inherited from Encapsulation] The number of the com-
municative event.

name String | [Inherited from Encapsulation] Name that describes the
communicative event

precondition String | [Inherited from Encapsulation] Description of the pre-
condition of the communicative event in natural lan-
guage

interface_actor | String | [Inherited from Encapsulation] List with the organisa-

tional roles that play the role of interface actors.

Table 11. Attributes of the COMMUNICATIVE_EVENT metaclass

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 69
Associations
ROLE PARTICIPANT DESCRIPTION

goal GOAL The communicative events related to a
process intend to fulfil one or several or-
ganisational goals.

process PROCESS The communicative events are part of
one organisational process.

ingo- INGOING The occurrence of one communicative

ing_communicativ
e_interaction

event is related to one ingoing communi-
cative interaction.

specialisations

EVENT_VARIANT

[Inherited from Encapsulation] A commu-
nicative event can to be compound by
several specialisations or event variants.

outgo- OUTGOING [Inherited from Encapsulation] A commu-

ing_communiactiv nicative event can to be related by sev-

e_interaction eral outgoing communicative interac-
tions.

outgoing PRECEDENCE [Inherited from Node] A communicative
event can to have many outgoing prece-
dences from it.

incoming PRECEDENCE [Inherited from Node] A communicative

event can to have many incoming prece-
dences to it.

Table 12. Relationships of the COMMUNICATIVE_EVENT metaclass

Constraints

This metaclass does not have constraints

Graphical primitive

D
DESCRIPTION
|

Figure 20. Graphical primitive of the COMMUNICATIVE EVENT metaclass

70 3.4 PSM metamodel specification

3.4.1.7 COMMUNICATIVE INTERACTION metaclass

A communicative interactions is an exchange of messages, these mes-
sage contain some data about the subject system. This interchange of
message is carried out by at least two organizational actors.

This is an abstract class, which is specialized into Ingoing and Outgo-
ing (see pages 89 and 113 for more details)

Metamodel view

[0.*]

EISUPPORT | iy E COMMUNICATIVE_INTERACTION

communicative_interaction)
=1 name : String

= description : String
Q COMMUNICATION_CHANNEL

communicative_interaction communicative_interactiol
[a.* [0..%]
= description : String [0..%]
T business_object_class
communication_channel
[0..%] E BUSINESS_OBIECT_CLASS

=l name : String
= description @ String

Figure 21. Portion of the metamodel including the metaclass
COMMUNICATIVE_INTERACTION

Attributes
NAME TYPE DESCRIPTION
name String The name of the communicative interac-
tion.
description String The description of the communicative in-
teraction in natural language.

Table 13. Attributes of the COMMUNICATIVE_INTERACTION metaclass

Associations

ROLE PARTICIPANT DESCRIPTION

support SUPPORT A communicative interaction can

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 71
to be supported by several support
roles.

business_object_class BUSINESS_OBJEC | A communicative interaction can

T_CLASS to be related with several business
object class.
communication_channel COMMUNICATIO | A communicative interaction can
N_CHANNEL to be carried out by means of sev-
eral mediums or communication
channel.

Table 14. Relationships of the COMMUNICATIVE_INTERACTION metaclass
Constraints

This metaclass does not have constraints
Graphical primitive

This metaclass does not have graphical primitive

3.4.1.8 COMMUNICATIVE_ROLE Metaclass

Different business actors can to interact with many communicative
events, and they may to performance a specific communicative role.
This communicative role can be of three types: primary, receiver or
support. When a business actor is responsible to communicate the
new meaningful information to the information system, this actor
performs a primary role. When a business actor requests the retrieval
of data from de information system memory, this actor performs a re-
ceiver role. When a business actor supports message transfers in
some way (ingoing to the communicative event or outgoing from the
communicative event), this actor performs a support role.

This is an abstract metaclass, which is specialized into Primary, Re-
ceiver and Support (see pages 117, 120 and 131 for more details).

72 3.4 PSM metamodel specification

Metamodel view for COMMUNICATIVE_ROLE metaclass

E] ORGANISATIONAL_ROLE

= name : String
=1 description : String
=1 duties : String

organisational _role|

cormmunicative_role [0..*]
E| cOMMUNICATIVE_ROLE
=1 is_interface_actor ; Boolean

=1 description : String

Figure 22. Portion of the metamodel including the metaclass
COMMUNICATIVE_ROLE

Attributes
NAME TYPE DESCRIPTION
description String The description of the communicative role in
natural language.
is_interface_actior | Boolean Indicates whether the communicative role is an
interface actor, i.e. whether it plays the role of
the interface actor for a communicative event.

Table 15. Attributes of the COMMUNICATIVE_ROLE metaclass

Associations

ROLE PARTICIPANT DESCRIPTION

organisational_role | ORGANISATIONAL_ROLE | A communicative role can be played
by one organisational role.

Table 16. Relationships of the COMMUNICATIVE_ROLE metaclass

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 73

Constraints

This metaclass has no constraints.

Graphical primitive

This metaclass has no graphical primitive.

3.4.1.9 COMPLEX_SUBSTRUCTURE metaclass

This metaclass is a part of the Messages Structures method [38]. An
actor gives information to the IS using the Message Structure guide-
lines. A Message Structure is composed of substructures.

A complex substructure is a substructure (See section 3.4.1.42 for
more details) that contains an internal composition. This internal
composition is of different types. The types can take values as aggre-
gation, iteration or specialisation.

This metaclass specialises from Substructure.

Examples

AGGREGATION, it specifies a composition of several sub-
structures in a way that they are grouped as a whole. It is
represented by angle brackets < >. For instance, a-<B+cD>
specifies that an order A consists of info B, C and D.
ITERATION, it specifies a set or repetition of the substruc-
tures it contains. It is represented by curly brackets (. For
instance, an M is an iteration substructure whit aggregation
substructure inside. M={A=<B+C+D>).

SPECIALISATION, it specifies one or more variants (i.e.
structural alternatives). For instance MsG=<a+b+OPTION=[c|d]+e>,
both <atb+cte> and <a+b+d+e> are valid messages; see [38] for a
more illustrative example.

74 3.4 PSM metamodel specification

Metamodel view for COMPLEX_SUBSTRUCTURE metaclass

= MESSAGE_STRUCTURE El SUBSTRUCTURE
_[0..1] substructures,
= name : String mess struct [U“*]"EI name ; String
= description : String - = description @ String
=1 min_card : String
ms massage_structure = max_rard : String
[0..1] -
direct_items
lex_substiciied | initial 1%
complex_substructure initial_Cs, parent

H coMPLEX_SUBSTRUCTURE

domain
[0..*]]| pointers

=] REFERENCE_FIELD

&=l extends_bo ; Boolean

Figure 23. Portion of the metamodel including the metaclass
COMPLEX_SUBSTRUCTURE

Attributes
NAME TYPE DESCRIPTION

name String [Inherited from Substructure] The
name of the complex substructure

description | String [Inherited from Substructure] The
description of the complex substruc-
ture in natural language

min_card String [Inherited from Substructure] Indi-
cates a constraint about minimum
cardinality of the complex substruc-
ture.

max_card String [Inherited from Substructure] Indi-
cates a constraint about maximum
cardinality of the complex substruc-
ture.

Figure 24. Attributes of the COMPLEX_SUBSTRUCTURE metaclass

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 75
Associations
ROLE PARTICIPANT DESCRIPTION
pointers REFERENCE_FIELD A complex substructure can to
be related to many reference
fields.
direct_items SUBSTRUCTURE A complex substructure has

several direct items.

mess_struct

MESSAGE_STRUCTURE

A complex substructure can to
be related a message struc-
ture.

message_structure

MESSAGE_STRUCTURE

A complex substructure can to
be related one message struc-
ture.

ms MESSAGE_STRUCTURE A complex substructure is part
of one message structure.
parent COMPLEX_SUBSTRUCTURE A complex substructure has a
parent that is a complex sub-
structure.
Table 17. Relationships of the COMPLEX_SUBSTRUCTURE metaclass
Constraints

This metaclass has no constraints.
Graphical primitive

This metaclass has no graphical primitive.
3.4.1.10 DATA_FIELD metaclass

The Data field metaclass is a part of the explanation of Message Struc-
tures [38]. A message structure is composed of substructures. A data
tield is a substrucrure. A data field represents a piece of data with ba-
sic domain (numbers, text, etc.).

This metaclass specialises from Field.

76 3.4 PSM metamodel specification

Examples

The substructure a-<B+c+D> have the data fields B, C, D. These data
fields can to be Text, numeric or other basic data type.

Metamodel view for DATA_FIELD metaclass

= MESSAGE_STRUCTURE = sUBSTRUCTURE
_mess_struct [0.*]

= name : 5tiing [0..1] substructures =l name : String

= description @ String = description : String

direct_items_ = min_card : String
[1..*] =1 max_card ; String

[0..1] | message_structure ms
[1.*]

initial_CS | complex_substructures parent
Q COMPLEX_SUBSTRUCTURE
= FIELD
.
) =1 operation : OPERATION
Hoa =1 derivation_formula : String
= is_identifier : Boolean
=1 example ; String
[0.. Bhinters
L
REFERENCE_FIELD Q DATA_FIELD

=1 extends_bo : Boolean =1 domain : DOMATN

Figure 25. Portion of the metamodel including the metaclass DATA_FIELD

Attributes
NAME TYPE DESCRIPTION
domain DOMAIN The different domains of the data field are

indicated in the metaclass of type enu-
meration (see metaclass DOMAIN). This
domains can be text, numeric, etc.

is_identifier Boolean [Inherited from Field] It is a Boolean value.
It indicates if a data field is an identifier
field of a substructure. This attribute is a
mark to support the model transformation.

operation OPERATION [Inherited from Field] The operation indi-
cates the origin or the information that the

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 77

»n u

field refers. It values can be “input”, “out-
put” or “derivation”.

derivation_formula | String [Inherited from Field] if the attribute opera-
tion is of type “derivation”, the derivation
formula indicates the formula in natural

language or OCL.
name String [Inherited from Substructure] The name of
the data field
description String [Inherited from Substructure] The descrip-
tion of the data field in natural language
example String [Inherited from Substructure] An example
about the data field in natural language.
min_card String [Inherited from Substructure] Indicates a

constraint about minimum cardinality of
the data field.

max_card String [Inherited from Substructure] Indicates a
constraint about maximum cardinality of
the data field.

Table 18. Attributes of the DATA_FIELD metaclass

Associations
ROLE PARTICIPANT DESCRIPTION
mess_struct | MESSAGE_STRUCTURE A data field can to be related to several
message structures.
parent COMPLEX_SUBSTRUCTURE | A data field is associated to one complex
substructure (named parent).

Table 19. Relationships of the DATA_FIELD metaclass

Constraints
This metaclass has no constraints.
Graphical primitive

This metaclass has no graphical primitive.

78 3.4 PSM metamodel specification

3.4.1.11 ELEMENT metaclass

The Element metaclass is an abstraction of the whole elements that
are part of de communicative event diagram.

This is an abstract class, which is specialised into Communication
channel, communicative role, communicative interaction, message
structure, node, organisational role, organisational role set, prece-
dence, process, support role set and textual requirements.

Example

A communicative event is an element of the communicative event
diagram.

Metamodel view

C ELEMENT E TEXTUAL _REQUIREMENT

= I0 : String
=1 description @ String

clement clement Bl type : REQUIREMENT _TYPE
[0..*])
[0..*] | textual_requirerment
model
£l MoDEL

Figure 26. Portion of the metamodel including the metaclass ELEMENT
Attributes

This metaclass has not attributes of its own.

Associations
ROLE PARTICIPANT DESCRIPTION
model MODEL An element can to be contained in one
model.
tex- TEXTUAL_REQUIREMEN | An element can to have assigned sev-
tual_requireme | T eral textual requirements.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 79

nt

Table 20. Relationships of the ELEMENT metaclass

Constraints
This metaclass has not constraints.
Graphical primitive

This metaclass has not graphical primitive.

3.4.1.12 ENCAPSULATION metaclass

An encapsulation is an abstraction that generalises the communica-
tive event and event variant concepts.

This is an abstract metaclass, which is specialised into Communica-
tive event and Event variant.

Metamodel view for ENCAPSULATION metaclass

= COMMUNICATIVE_EVENT Clnope farget [0..*]incomind |] prECEDENCE

oLrce [0..*] outacing,

=1 1D : String
(=l description | String

= ENCAPSULATION

] EVENT_VARIANT
= number ; String
= outGoing =10 : String 5l name : String

(=1 speciaisat_cond : String =l precondition : 5tring
=1 interface_actor ; String

specidlisations [0..*]
generalisation ' eventT

T outgoing_communicative_interactior
[0..7]

Figure 27. Portion of the metamodel including the metaclass
ENCAPSULATION

Attributes

NAME | TYPE DESCRIPTION

80

3.4 PSM metamodel specification

number String The number of the encapsulation.

name String Name that describes the encapsulation

precondition String Description of the precondition of the encapsu-
lation in natural language

inter- String List with the organisational roles that play the

face_actor role of interface actors.

Table 21. Attributes of the ENCAPSULATION metaclass
Associations
ROLE PARTICIPANT DESCRIPTION

specialisa- EVENT_VARIANT | An encapsulation can to be compound by sev-

tions eral specialisations or event variants.

outgo- OUTGOING An encapsulation can to be related by several

ing_communi outgoing communicative interactions.

ca-

tive_interacti

on

outgoing PRECEDENCE [Inherited from Node] An encapsulation can to
have many outgoing precedences from it.

incoming PRECEDENCE [Inherited from Node] An encapsulation can to
have many incoming precedences to it.

Table 22. Relationships of the ENCAPSULATION metaclass
Constraints

C2. The encapsulation number should be different for each encapsu-
lation in a communicative event diagram.

Graphical primitive

This metaclass has no graphical primitive.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 81

3.4.1.13 END metaclass

An end node represents that the communicative event to which it is
connected do not have any successor events.

This metaclass specialises from Node.

Metamodel view for END metaclass

Elnope %ouice [0..*] outgoing. = PRECEDENCE
- [0..*Jncoming
target
=] ENCAPSULATION = LOGIGAL NODE = EnD =] sTART

= nurmber ¢ String

=1 name : String

= precondition : String
= interface_actor @ String

Figure 28. Portion of the metamodel including the metaclass END
Attributes

This metaclass has no attributes of its own.

Associations
ROLE PARTICIPANT DESCRIPTION
outgoing PRECEDENCE [Inherited from Node] An end can to have
many outgoing precedences from it (see C3).
incoming PRECEDENCE [Inherited from Node] An end can to have
many incoming precedences to it.

Table 23. Relationships of the END metaclass

Constraints

C3. An end cannot have any outgoing precedence.

82 3.4 PSM metamodel specification

Graphical primitive

.

Figure 29. Graphical primitive of the END metaclass
3.4.1.14 EVENT_VARIANT metaclass

An event variant is each alternative behaviour within a specialised
communicative event. Each event variant has a corresponding spe-
cialisation condition, which is a well-formed formula that can refer to
one or several fields of the message structure.

A communicative event can to be specialised in different events. This
specialisation represents complex communicative event. Through this
specialisation is possible to show the all ways of an event occurrence
in a particular process.

This metaclass specialises from Encapsulation.

Examples

The Figure 30 shows an example of an event specialization. The
communicative event SALE3 is specialized in the events SALE3.7 and
SALE3.2.

SALE 3 SUPPLIER EVALUATES THE ORDER
4 SALE 3.1 SALE 3.2 A

3 L
ORDER ORDER
IS REJECTED IS ACCEPTED

SALESMAN

Figure 30. Example of EVENT_VARIANTS in a communicative event diagram

MDD approach: a metamodel to support the techniques of Communicative Event
Diagrams and Message Structures

83

Metamodel view for EVENT_VARIANTS metaclass

oLrce
= COMMUNICATIVE_EVENT Einope € + —— | PRECEDENCE
[0.. *outgoing
. Jtarget L
=11D : String T —e
=1 description : String -l Incoming
E ENCAPSULATION

] EVENT_VARIANT
= nurmber ; String
=1 1D : String = name : String

=l specialisat_cond : String &= precondition : String
=1 interface_actor : String

generalisation f TEVEM

_ outgoing_communicative_interaction
[0..%]

[0..*%] specialisationsT

= ouTGoING

Figure 31. Portion of the metamodel including the metaclass
EVENT_VARIANT

Attributes

NAME

TYPE

DESCRIPTION

String

The unique identification for each communi-
cative event. It is advisable that the ID corre-
sponds to the union of the value of attribute
number and the process acronym.

specialisat_cond

String

The description of the specialisation condi-
tion in natural language.

number

String

[Inherited from Encapsulation] The number
of the event variant.

name

String

[Inherited from Encapsulation] Name that
describes the event variant.

precondition

String

[Inherited from Encapsulation] Description of
the precondition of the event variant in natu-
ral language

interface_actor

String

[Inherited from Encapsulation] List with the
organisational roles that play the role of in-
terface actors.

84

3.4 PSM metamodel specification

Table 24. Attributes of the EVENT_VARIANT metaclass

Associations
ROLE PARTICIPANT DESCRIPTION
generalisation ENCAPSULATION | An event variant can to be contained into

one encapsulation, i.e., communicative event
or event variant.

specialisations

EVENT_VARIANT

[Inherited from Encapsulation] An event vari-
ant can to be compound by several speciali-
sations or event variants.

outgo- OUTGOING [Inherited from Encapsulation] An event vari-

ing_communiac ant can to be related by several outgoing

tive_interaction communicative interactions.

outgoing PRECEDENCE [Inherited from Node] An event variant can
to have many outgoing precedences from it.

incoming PRECEDENCE [Inherited from Node] An event variant can

to have many incoming precedences to it.

Table 25. Relationship of the EVENT_VARIANTS metaclass

Constraints

C4. The number of the event variant should be a consecutive number
of its corresponding communicative event. For example, if the com-
municative event that will be specialises is SALE 1, it corresponds to
event variants should to have the value 1.1 and 1.2 in its correspond-
ing numbers.

Graphical primitive

The graphical primitive is the like COMMUNICATIVE_EVENT graphical
primitive (see Figure 20).

3.4.1.15 FIELD metaclass

A field represents a basic information element of the message struc-
ture; it is not composed of other elements. A message structure is

MDD approach: a metamodel to support the techniques of Communicative Event
Diagrams and Message Structures 85

composed of substructures. A field is a substructure (for more details
see [38]).

This is an abstract metaclass, which is specialised into Data field and
Reference field.

Metamodel view for FIELD metaclass

] MESSAGE_STRUCTURE £ SUBSTRUCTURE
substructures

=l name : 5tring) ess struct [U”*]slﬁl name : String
= description : String TUT]S =l description : String
=1 min_card : String

F&es]:??ge_structure ms direct_items = max_card : String
[1.*]
- [1..%] parent
initial_CY complex_substructure
E comMPLEX_SUBSTRUCTURE E fep

=l operation : OPERATION
=1 derivation_formula © String
=1 is_identifier : Boolzan

= example : String

Figure 32. Portion of the metamodel including the metaclass FIELD

Attributes
NAME TYPE DESCRIPTION

operation String The operation indicates the origin or the in-
formation that the field refers. Its values can
be “input”, “output” or “derivation”.

derivation_formula | String If the attribute operation is of type “deriva-
tion”, this attribute indicates the derivation
formula.

name String [Inherited from Substructure] The name of
the field

description String [Inherited from Substructure] The description
of the field in natural language

example String [Inherited from Substructure] An example
about the field in natural language.

min_card String [Inherited from Substructure] Indicates a
constraint about minimum cardinality of the

86 3.4 PSM metamodel specification

field.

max_card String [Inherited from Substructure] Indicates a
constraint about maximum cardinality of the
field.

is_identifier Boolean Indicates whether the field is an identifier
field or not.

Table 26. Attributes of the FIELD metaclass

Associations
ROLE PARTICIPANT DESCRIPTION
mess_struct | MESSAGE_STRUCTURE A reference field can to be associated to
several message structures.
parent COMPLEX_SUBSTRUCTURE | A reference field is associated to one
complex substructure (named parent).

Table 27. Relationships of the FIELD metaclass
Constraints
This metaclass has no constraint.
Graphical primitive
This metaclass has no graphical primitive.
3.4.1.16 GOAL metaclass

An organisational goal is a goal that ought to affect the actions of an
organisational system (that is, the behaviour of its actors).

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 87

Metamodel view

= ORGANISATIONAL_MODULE

=1 name : String
=1 acronym : String
=1 description : String

organisational_madule

goal [0..%]

E GoaL

=] name : String

(=1 description : String

[0..*] |goal
[0..*] | event

Q OPERATIONALISATION
goal oper
&—————————® current_value © String
[0..*] = target_value : String
=1 target_date : String

= COMMUNICATIVE_EVENT

=10 : String

=1 description : String

Figure 33. Portion of the metamodel including the metaclass GOAL

Attributes
NAME TYPE DESCRIPTION
name String The name of the goal in natural language.
description String The description of the goal in natural lan-
guage.
Table 28. Attributes of the GOAL metaclass
Associations
ROLE PARTICIPANT DESCRIPTION

organisational_module | ORGANISATIONAL_MODULE A goal is related to one

organisational module,
which is specialised into
organisation and organisa-
tional unit.

oper OPERATIONALISATION A goal is related with sev-

88 3.4 PSM metamodel specification
eral operationalisations.
event COMMUNICATIVE_EVENT A goal is related with sev-
eral communicative
events.
Table 29. Relationships of the GOAL metaclass
Constraints

This metaclass does not have constraints

Graphical primitive

This metaclass does not have graphical primitive

3.4.1.17 INDICATOR metaclass

A business indicator is a metric that allows measuring a specific as-
pect of a set of phenomena occurring in a subject system, along with
rules that allow to carry out the measurement action and to interpret
the result.

Example

For example, a stock Price, consumer confidence, time to market, etc.

Metamodel view

Q OPERATIONALISATION Q INDICATOR
[0..*]

= current_value : String % Stionglisati] name @ String

= target_value : String operationalsation ingicator &= description ; String

= target_date @ String =] metric @ String

Figure 34. Portion of the metamodel including the metaclass INDICATOR

Attributes

NAME

TYPE DESCRIPTION

name

String The name of the indicator.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 89

description String The description of the indicator in natural
language.

metric String The metric related to the indicator in natural
language.

Table 30. Attributes of the INDICATOR metaclass

Associations
ROLE PARTICIPANT DESCRIPTION
operationalisation | OPERATIONALISATION An indicator has several opera-
tionalisations.

Table 31. Relationships of the INDICATOR metaclass

Constraints

This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.
3.4.1.18 INGOING metaclass

The ingoing metaclass represents the ingoing communicative interac-
tion. This ingoing communicative interaction feeds the information
system memory with new meaningful information. The information
is provided by a communicative role that is played by a primary ac-
tor.

This class specialises from Communicative Interaction

90 3.4 PSM metamodel specification

Examples

For instance, the placement of an order by a client corresponds to an
ingoing communicative interaction, because is new information for
the information system.

Metamodel view for PRIMARY metaclass

£ COMMUNICATIVE_EVENT

QPRIMARV Jprimary QINGUING ingoing_communicative_interaction
ingoing_communicative_interaction . event = ID : String
aaing, 1= description © String
message_structure
E suppoRrT
support E MESSAGE_STRUCTURE
[0.7]
&l name : String
(=1 description : String
[0.*]
[0..*] _communicative_interaction Fommunic tive_interaction
cormnmunication_channel E BUSINESS_OBIECT_CLASS
] = COMMUNICATIVE_INTERACTION | [, +]
=] COMMUNICATION_CHANNEL commiunicative_interaction
N - ; bt Business_object_clast (=l name : String
E_' name : String . 1 & description : String
= description @ String (=1 description : String [0.*]

Figure 35. Portion of the metamodel including the metaclass INGOING

Attributes
NAME TYPE DESCRIPTION
name String [Inherited from Communicative interaction]
The name of the communicative interaction.
description String [Inherited from Communicative interaction]
The description of the communicative inter-
action in natural language.
Table 32. Attributes of the INGOING metaclass
Associations
ROLE PARTICIPANT DESCRIPTION
event COMMUNICATIVE_ | Aningoing is related to one and only one
EVENT communicative event.
primary PRIMARY An ingoing is a communicative interaction

which communicative role is played by one
primary actor.

mes- MESSAGE_STRUCTU | An ingoing do have related one message
sage_structure | RE structure.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 91

support SUPPORT [Inherited from Communicative interaction]
An ingoing can to be supported by several
support roles.

business- BUSINESS_OBJECT_ | [Inherited from Communicative interaction]

object_class CLASS An ingoing can to be related with several
business object class.

communica- COMMUNICATION_ | [Inherited from Communicative interaction]

tion_channel CHANNEL An ingoing can to be carried out by means
of several mediums or communication
channel.

Table 33. Relationships of the INGOING metaclass

Constraints

This metaclass does not have constraints

Graphical primitive

s
Figure 36. Graphical primitive of the PRIMARY metaclass
3.4.1.19 ITERATION metaclass

An iteration substructure specifies a set or repetition of the substruc-
tures it contains. It is represented by curly brackets { }.

Example

For instance, an order can have several destinations and, for each des-
tination, a set of order lines is defined. Both DESTINATIONS and LINES
are iteration substructures. LINES={LINE=<Product+Price+Quantity>}

92

3.4 PSM metamodel specification

Metamodel view of ITERATION metaclass

] AGGREGATION = ITERATION = SPECIALISATION

£ MESSAGE_STRUCTURE = SUBSTRUCTURE

_mess_struct

F
&

& name : String [0..1] substru&i}:u@]s & name : String

(=1 description : String

[1.%]
omplex_substructureg initial €S)

= COMPLEX_SUBSTRUCTURE E FIELD

=1 description : String
=1 min_card @ String

ms message_structure = max_card : String

[0..1] direct_items
parent [1.*]

=l operation : OPERATION
dornain = derivation_formula @ String

=1 is_identifier : Boclean

= example : String

pointers

0 g
Q REFERENCE_FIELD

= extends_bo : Boclean

Figure 37. Portion of the metamodel including the metaclass ITERATION

Attributes
NAME TYPE DESCRIPTION

name String | [Inherited from substructure] The name of the iteration.

description | String | [Inherited from substructure]The description or the iteration
in natural language.

min_card String | [Inherited from substructure] The minimum cardinality of
the iteration.

max_card String | [Inherited from substructure] The maximum cardinality of
the iteration.

Table 34. Attributes of the ITERATION metaclass
Associations

ROLE

PARTICIPANT DESCRIPTION

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 93
direct_items SUBSTRUCTURE [Inherited from complex substructure] An
iteration is composed by several substruc-
tures.
message_structure | MESSAGE_STRUC | [Inherited from complex substructure] An
TURE iteration can be part of one message
structure.
ms MESSAGE_STRUC | [Inherited from complex substructure] An
TURE iteration is contained into one message
structure.
parent COMPLEX_SUBST | [Inherited from substructure] An iteration
UCTURE can to be a parent complex substructure.
mess_struct MESSAGE_STRUC | [Inherited from substructure] An iteration
TURE can be related to one message structure.
pointers REFERENCE FIELD | [Inherited from complex substru] An it-
eration can to have several pointers from
existing reference field.

Table 35 Relationships of the ITERATION metaclass

Constraints
This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.

3.4.1.20 LOGICAL_NODE metaclass

A logical node is an abstraction that generalizes the Or and And con-
cepts.

This is an abstract metaclass, which is specialised into Or and And.

94 3.4 PSM metamodel specification

Metamodel view for LOGICAL_NODE metaclass

source outgoing

H nobe [0.4] ®] PRECEDENCE
target incoming

= ENCAPSULATION = LOGIGAL NODE EEnD £l sTART

=1 number : String

=1 name : String

= precondition ; String
= interface_actor : String

Figure 38. Portion of the metamodel including the metaclass
LOGICAL_NODE

Attributes

This metaclass does not have attributes of its own.

Associations?
ROLE PARTICIPANT DESCRIPTION

outgoing | PRECEDENCE [Inherited from Node] A logical node can
to have many outgoing precedences
from it.

incoming | PRECEDENCE [Inherited from Node] A logical node can
to have many incoming precedences to
it.

Table 36. Relationships of the LOGICAL_NODE metaclass

Constraints

This metaclass does not have constraint.

2 It is important taking into account the constraints associated to And and Or metaclases.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 95

Graphical primitive
This metaclass does not have graphical primitive.
3.4.1.21 MESSAGE_STRUCTURE metaclass

A message structuctures is a model of the message that corresponds
to a communicative interaction.

Example

To see examples about message structures and more details, please to
see [39], and the technical report [27].

Metamodel view

mess_struct substructures
[0.1] i 3 [0..*]

& NGoING naoing | E/MESSAGE_STRUCTURE E SUBSTRUCTURE

message_structure

= name : String = name : String
message_structure = description : String =1 description : String
) =1 min_card ! String
outgomgl [0..*] ms message_structure | = max_card : String
£l OUTGOING [0..1]
complex_substructures [[1..*] initial_CS

E cOMPLEX_SUBSTRUCTURE

Figure 39. Portion of the metamodel including the metaclass
MESSAGE_STRUCTURE

Attributes
NAME TYPE DESCRIPTION
name String The name of the message structure.
description String The description of the message structure in
natural language.

Table 37. Attributes of the MESSAGE_STRUCTURE metaclass

96 3.4 PSM metamodel specification

Associations
ROLE PARTICIPANT DESCRIPTION

outgoing OUTGOING A message structure can to be
associated to several outgoing
communicative interactions.

ingoing INGOING A message structure is related
to one ingoing communicative
interaction.

substructures SUBSTRUCTURE A message structure contains
several substructures.

initial_CS COMPLEX_SUBSTRUCTURE A message structure has asso-
ciated one initial complex sub-
structure.

com- COMPLEX_SUBSTRUCTURE A message structure is related

plex_substructure with several complex substruc-
tures.

Table 38. Relationships of the MESSAGE_STRUCTURE metaclass

Constraints

This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.
3.4.1.22 MODEL metaclass

The model metaclass is the container of whole elements of the meta-
model.

MDD approach: a metamodel to support the techniques of Communicative Event
Diagrams and Message Structures 97

Metamodel view

5 eLEMENT

[0..*] | element

model

E MoDEL

=l name : String

Figure 40. Portion of the metamodel including the metaclass MODEL

Attributes
NAME SEMANTICS
NAME Model name
Table 39. Attributes of the MODEL metaclass

Relationships

ROLE PARTICIPANT DESCRIPTION
element ELEMENT A model can to contain several elements.

Table 40. Relationships of the MODEL metaclass

Constraints

This metaclass has not constraints of its own.
Graphical primitive

This metaclass has not graphical primitive of its own.

98 3.4 PSM metamodel specification

3.4.1.23 NODE metaclass

A node is an abstraction in order to generalise concepts that will be
associated through precedences relationships.

This is an abstract metaclass, which is specialised into Encapsulation,
Logical node, End and Start.

Metamodel view for NODE metaclass

ENODE Tigget [0..*] incoming | = PRECEDENCE

source [0..*] outgoing

Figure 41. Portion of the metamodel including the metaclass NODE
Attributes

This metaclass does not have attributes of its own.

Relationships
ROLE PARTICIPANT DESCRIPTION
outgoing PRECEDENCE A node can to have several outgoing prece-
dences.
incoming PRECEDENCE A node can to have several incoming pre-
cedences.

Table 41. Relationships of the NODE metaclass

Constraints
This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 99

3.4.1.24 OPERATIONALISATION metaclass

The metaclass operationalisation intends to represent the activities for
achieving goals that corresponds with some indicators and follows
some organizational strategies.

Metamodel view

=l STRATEGY

=l name : String

=1 description @ String
= strategy_date : String
=1 action_plam @ String

[0.1] strategy

[1..*]] operationalisation

H GoaL | OPERATIONALISATION H INnpICATOR
ngal—ope"g [0.*] indicator
=l name : String [0..*] =l current_value : String ®—— tionalisati #=] name : String
=1 description @ String =1 target_value : String Operationalisation =1 description @ String
=] target_date : String =1 metric : String

Figure 42. Portion of the metamodel including the metaclass

OPERATIONALISATION
Attributes
NAME TYPE DESCRIPTION
current_value String The current value of the operation
target_value String The target value of the operation
target_date String The target date of the operation

Table 42. Attributes of the OPERATIONALISATION metaclass

Associations
ROLE PARTICIPANT DESCRIPTION
strategy STRATEGY An operation is related to several or-
ganisational strategies.
indicator STRATEGY An operation is associated to one or-
ganisational indicator.

100 3.4 PSM metamodel specification

goal GOAL An operation is related to one organ-
isational goal.

Table 43. Relationships of the OPERATIONALISATION metaclass

Constraints
This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.

3.4.1.25 OR metaclass

The or-merge indicates that only one of the incoming precedence rela-
tions needs to hold. Note that the or-branch is implicit and corre-
sponds to event specializations.

This metaclass specialises from Logical node.

Examples

Figure 43 shows an example of an OR case in a communicative event
diagram. This example shows that is necessary that occur the com-
municative event D or F or E to occur the communicative event A.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 101

SALE 1

A CLIENT
PLACES
AN ORDER

SALESMAN

SALES MANAGER
ASSIGNS
SUPPLIER

SALES MANAGER

SALE 3 _SUPPLIER EVALUATES THE ORDER

4 SALE 3.1 AW SALE 3.2 A
ORDER ORDER
IS REJECTED IS ACCEPTED

SALESMAN

Figure 43. Example of OR in a CED

Metamodel view for OR metaclass

Figure 44. Portion of the metamodel including the metaclass OR

source outgoing
Elnope ® o *] PRECEDENCE
target incoming
= ENCAPSULATION = LOGIGAL NODE EEND

=1 number ; String

=l name : String

=1 precondition ; String

=l interface_actor : String = anD Hor

Attributes

This metaclass does not have attributes of its own.

Relationships

ROLE

TO METACLASS

SEMANTICS

outgoing

PRECEDENCE

[Inherited from Logical node] An Or can to have
many outgoing precedences from it (See C5).

102 3.4 PSM metamodel specification
incoming | PRECEDENCE [Inherited from Logical node] An Or can to have
many incoming precedences to it (See C5).
Table 44. Relationships of the OR metaclass
Constraints

C5. For each or, it is necessary that two or more incoming prece-
dences arrive to it; and only one precedence can to come out of an or.

Graphical primitive

<

Figure 45. Graphical primitive for the OR metaclass

3.4.1.26 ORGANISATION metaclass

An organisation represents the information of a
terprise.

subsystem of the en-

This metaclass specialises from Organisational module.

Metamodel view

=] ORGANISATIONAL _L OCATION =] ORGANISATION Hol
=1 name : String

=1 acronym : String

=1 description @ String
=1 address : String

= city @ String

=1 post_number @ String
=1 country : String

[=1 mission : String

I
organisational_ngodul]e
organisational_location

[1.%] organisational_module

goal [[0..*]

= coaL

= name : String
(= description : String

= na
=1 acronym © String
=] de:

RGANISATIONAL _MODULE

me : String

scription ¢ String

organisational_module|

[0..*]
strategy

=] STRATEGY

=l name : String

=1 description : String
= strategy_date : String
= action_plan @ String

Figure 46. Portion of the metamodel including the metaclass

ORGANISATION

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 103
Attributes
NAME TYPE DESCRIPTION

mission String The mission of the organisation.

name String [Inherited from Organisational module] The
name of the organisation.

acronym String [Inherited from Organisational module] The
acronym of the organisation.

description String [Inherited from Organisational module] The
description of the organisation in natural lan-
guage.

Table 45. Attributes of the ORGANISATION metaclass

Associations
ROLE PARTICIPANT DESCRIPTION
strategy STRATEGY [Inherited from Organisational module] An

organisation has associated several organ-
isational strategies.

goal GOAL [Inherited from Organisational module] An
organisation has associated several organ-
isational goals.

lower ORGANISATIONAL_ | [Inherited from Organisational module] An
UNIT organisation has several organisational
units.
organisa- ORGANISATIONAL_ | [Inherited from Organisational module] An
tional_location | LOCATION organisation is associated with several or-

ganisational location.

Table 46. Relationships of the ORGANISATION metaclass

Constraints
This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.

104 3.4 PSM metamodel specification

3.4.1.27 ORGANIZATIONAL_ACTOR metaclass

Is an actor that interacts with the organisational system in some way.
The organisational actors can be no human actors (e.g. a sensor) the
most of times organisational actors are human.

Examples

For instance, John, Tony and Peter are members of the enterprise.

Metamodel view for ORGANIZATIONAL_ACTOR metaclass

= ORGANISATIONAL _ROLE

= name : String
=1 description : String
= duties @ String

[0.7] organisational _role

[0..*] [organisational _actor

] ORGANISATIONAL_ACTOR

L
organisationa il = ORGANISATIONAL_UNIT

= first_name : String organisational_actor
= last_name : String [1.%]

=l phone_number ; String

=1 comments @ String

organisational_actor
[0..%]

[0..*]
aggredation

E] AGGREGATION

Figure 47. Portion of the metamodel including the metaclass
ORGANIZATIONAL_ACTOR

Attributes

NAME TYPE DESCRIPTION
first_name String The first name of the organisational actor.
last_name String The last name of the organisational actor.
phone_number | String The phone number of the organisational actor.
comments String Some comments about the organisational actor.

Table 47. Attributes of the ORGANIZATIONAL_ACTOR metaclass

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 105
Relationships
ROLE PARTICIPANT DESCRIPTION

organisa- ORGANISATION | An organisational actor can to be related to

tional_role AL_ROLE several organisational roles.

organisa- ORGANISATION | An organisational actor can to be related to

tional_unit AL_UNIT several organisational units.

aggregation AGGREGATION | An organisational actor can to be associated to
several complex substructure of type aggrega-
tion.

Table 48. Relationships of the ORGANIZATIONAL_ACTOR metaclass
Constraints
This metaclass does not have constraints.
Graphical primitive
This metaclass does not have graphical primitive.
3.4.1.28 ORGANISATIONAL_LOCATION metaclass

An organisational location is a specific place in space and time where
a sub-system of the organisational system is situated.

Example

An organisational location is usually defined by the managerial staff
and many factors usually influence their situation (e.g. closeness to
raw materials and market, availability of communication and power
supply infrastructures, government incentives).

106 3.4 PSM metamodel specification

Metamodel view

Q ORGANISATIONAL _LOCATION

S name : String [1.] £ ORGANISATIONAL_MODULE
& acronym : String organisational_location

=1 description @ String e —

= address : String o ganlsatlonal_mqulfa =1 acronym : String
= city : String " & description : String
= post_number : String

= country : String

® name @ String

Figure 48. Portion of the metamodel including the metaclass
ORGANISATIONAL_LOCATION

Attributes
NAME TYPE DESCRIPTION

name String The name of the organisational location.

acronym String The acronym of the organisational location.

description String The description of the organisational location
in natural language.

address String The address of the organisational location.

city String The city where the organisational location is
placed.

post_number String The post number of the organisational loca-
tion.

country String The country of the organisational location.

Table 49. Attributes of the ORGANISATIONAL_LOCATION metaclass

Associations
ROLE PARTICIPANT DESCRIPTION
organisational | ORGANISATIONAL_MODULE | One organisational location can to
module be associated to several organisa-
tional modules.

Table 50. Relationships of the ORGANISATIONAL_LOCATION metaclass

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 107

Constraints

This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.
3.4.1.29 ORGANISATIONAL_MODULE metaclass

This is an abstract metaclass, which is specialised into Organisation
and Organisational unit.

Metamodel view

| ORGANISATIONAL | OCATION %] ORGANISATIONAL_MODULE Q STRATEGY
isati i organisational_module i
=1 name : String gp1ganiational location (= name : String @ name : String
B act ony‘m : String or ganlsatlona_modkjle@ acronym ; String str ate;;y =1 desaription : String
=1 descr iptm‘n ! String L (=1 description ; String [0.*]] i strategy_date : Stiing
(=1 address ! sf- =] action_plan : String
= iityl.lessst‘fingl‘ng upper organisational_module
= post_number 1 String
& country @ String
goal [0..*]
] ORGANISATIONAL _UNIT
Tower =oAL

[1.*]
&1 name : String
= description : String

Figure 49. Portion of the metamodel including the metaclass
ORGANISATIONAL_MODULE

Attributes
NAME TYPE DESCRIPTION
name String The name of the organisational module.
acronym String The acronym of the organisational module.
description String The description about the organisational
module in natural language.

Table 51. Attributes of the ORGANISATIONAL_MODULE metaclass

108 3.4 PSM metamodel specification

Associations
ROLE PARTICIPANT DESCRIPTION

strategy STRATEGY An organisation module has associated sev-
eral organisational strategies.

goal GOAL An organisation module has associated sev-
eral organisational goals.

lower ORGANISATIONAL_ | An organisation module has several organisa-

UNIT tional units.

organisa- ORGANISATIONAL_ | An organisation module is associated with

tional_locatio | LOCATION several organisational locations.

n

Table 52. Relationships of the ORGANISATIONAL_MODULE metaclass

Constraints

This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.
3.4.1.30 ORGANISATIONAL_ROLE metaclass

An organisational role is a set of organisational actors that are ex-
pected to perform a certain type of actions conforming to the organ-
isational norms; they are often considered to have a similar goal in
common, or to have similar functions.

Example

For instance, “John and Vicky are department clerks”. Department
clerk is an organisational role that can be played by John and Vicky.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 109

Metamodel view

] ORGANISATIONAL _UNIT

[1..*] organisational_unit

£ ORGANIZATIONAL_ROLE_SET

[1..*] organisational_role o
(%] organisational_role_set
= ORGANISATIONAL_ROLE [tloile oo

= name : String
=1 description : String
=1 duties : String

organisational_role

organisational_actor

[0.

]

organisational_role Q COMMUNICATIVE ROLE
communicative_role

*
[0..%] = is_interface_actor : Boolean

= description : String

[0.*1

= ORGANISATIONAL_ACTOR

=1 first_name : String
=1 last_name : String
= phone_number : String
= comments : String

Figure 50. Portion of the metamodel including the metaclass

ORGANISATIONAL_ROLE

Attributes
NAME TYPE DESCRIPTION
name String The name of the organisational role.
description String The description of the organisational role in
natural language.
duties String The description of the duties of each organ-

isational role.

Table 53. Attributes of the ORGANISATIONAL_ROLE metaclass

Associations
ROLE PARTICIPANT DESCRIPTION
organisational_unit ORGANISATIONAL_UNIT An organisational role can

to be associated to one or

110 3.4 PSM metamodel specification

several organisational units.

organisational_role_set | ORGANISATIONAL_ROLE_SET | An organisational role is re-
lated to one organisational
role set.

communicative_role COMMUNICATIVE_ROLE An organisational role can
to be played by several
communicative roles.

organisational_actor ORGANISATIONAL_ACTOR An organisational role can
to be played by several or-
ganisational actors.

Table 54. Relationships of the ORGANISATIONAL_ROLE metaclass

Constraints

This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.
3.4.1.31 ORGANISATIONAL_ROLE_SET metaclass

This is a container metaclass, which contains objects of type Organ-
isational role.

The objective of this metaclass is to provide a place where is possible
to instance graphically objects of type organisational role.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures AN

Metamodel view

E ORGANIZATIONAL _ROLE_SET

crganisational_role_set

[1.*]
organisational_role

E ORGANISATIONAL_ROLE

= name ; 5tring
(=1 description ; String
=1 duties : String

Figure 51. Portion of the metamodel including the metaclass
ORGANISATIONAL_ROLE_SET

Attributes

This metaclass does not have attributes of its own.

Associations
ROLE PARTICIPANT DESCRIPTION
organisational | ORGANISATIONAL_ROLE An organisational role set can to con-
_role tain several objects of type organisa-
tional role.

Table 55. Relationships of the ORGANISATIONAL_ROLE_SET metaclass

Constraints
This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.

12 3.4 PSM metamodel specification

3.4.1.32 ORGANISATIONAL_UNIT metaclass

An organisational unit is a sub-system of an organisational system,
usually conceived with the goal of reducing the complexity of organ-
isational administration and management.

This class specialises from Organisational module.
Example

The organisational units can to be represented by organisational ar-
eas, departments, centres, divisions, directorates, teams, etc.

Usually, the organisational units make use of available installa-
tions, for example, buildings, warehouses, shopping centres, etc.

Metamodel view

=] ORGANISATIONAL_MODULE

=l name : String
&= acronym : String

(1.4 ool = description : String
1.
lower

=] ORGANISATIONAL_UNIT =l PROCESS
Prgamsatmna_umt process -

[0.*] [0.*]

TE name : Stiing
= acronym : String
= description : String

organisational _unit

[1.*] organisational_unit

[1.7]

[1.7]

[1.*] . -
ciganisational_role organisational _actor

=] DRGANISATIONAL_ROLE =] ORGANISATIONAL_ACTOR
= name : String 1= first_name : String

= description : String = last_name : String

= duties : String =l phone_number : String

= comments : String

Figure 52. Portion of the metamodel including the metaclass
ORGANISATIONAL_UNIT

Attributes

This metaclass does not have attributes of its own.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 113
Associations
ROLE PARTICIPANT DESCRIPTION

upper ORGANISATIONAL_MODULE | An organisational unit is con-
tained in to one organisational
module.

process PROCESS An organisational unit is related
to several organisational proc-
esses.

organisational_actor | ORGANISATIONAL_ACTOR An organisational unit has re-
lated several organisational ac-
tors.

organisational_role | ORGANISATIONAL_ROLE An organisational unit has re-
lated several organisational
roles.

Table 56. Relationships of the ORGANISATIONAL_UNIT metaclass

Constraints

This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.
3.4.1.33 OUTGOING metaclass

An outgoing communicative interaction is a communicative interac-
tion whereby one of the interacting partners belongs to the informa-
tion system and another interacting partner is a recalled facts re-
ceiver. The main communicative goal of the interaction is to retrieve
knowledge from the information system and to convey it to recalled
facts receiver.

Examples

Figure 53 shows a Client that receives information from the commu-
nicative event Sale5.

114 3.4 PSM metamodel specification

(SALE 5)

INSUR. DEPT. CLERK| INSURANCE INFO
SPECIFIES
CLAUSES

\INSUR. DEPT. CLERK/ CLIENT

Figure 53. Example of OUTGOING in a communicative event diagram

Metamodel view for OUTGOING metaclass

o = EncapsuLATION
outgoing_communicative_interaction

E RECEIVER | givay H outcomne

outgoing_communicative_interaction

event | = number : String
= name : String
EMESSAGE_STRUCTURE = precondition : Stiing
= interface_actor : String

[0..*]
Ltacin
message_structure

E supPORT Elmeomne

support [0..*] = name : String

=1 description : String

] COMMUNICATION_CHANNEL | communicative_interaction | commUNICATIVE_INTERACTION

0..*
r:[ommmeatmn_chanmel [0.*] = name : Stiing
communicative_interaction = description @ Stiing

= description : String

[0..*] | communicative_interaction
[0.*]
] BUSINESS_OBJECT_CLASS

business_object_class

= name : String
= description : String

Figure 54. Portion of the metamodel including the metaclass OUTGOING

Attributes
NAME TYPE DESCRIPTION
name String [Inherited from Communicative interaction]
The name of the communicative interaction.
description String [Inherited from Communicative interaction]
The description of the communicative inter-
action in natural language.
Table 57. Attributes of the OUTGOING metaclass
Associations
ROLE PARTICIPANT DESCRIPTION

event ENCAPSULATION An outgoing is related to one encapsula-

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 115
tion.

receiver RECEIVER An outgoing is related to one receiver
communicative role.

mes- MESSAGE_STRUCTU | An outgoing has related one message struc-

sage_structure | RE ture.

support SUPPORT [Inherited from Communicative interaction]

An outgoing can to be supported by several
support roles.

busienss_object | BUSINESS_OBJECT_ | [Inherited from Communicative interaction]

_class CLASS An outgoing can to be related with several
business object class.

communica- COMMUNICATION_ | [Inherited from Communicative interaction]

tion_channel CHANNEL An outgoing can to be carried out by means
of several mediums or communication
channel.

Table 58. Relationships of the OUTGOING metaclass
Constraints

This metaclass does not have constraints.

Graphical primitive

>
Figure 55. Graphical primitive of the OUTGOING metaclass
3.4.1.34 PRECEDENCE Metaclass

A precedence relation between two communicative events is a rule
consisting of a relationship that defines the relative time between
them.

Examples

Figure 56 shows an example where for communicative event Sale6 to
occur, Sale4 has necessarily occurred before.

116 3.4 PSM metamodel specification

SALE 4)
TRANSPORT MNGR
ARRANGES
LOGISTICS

\TRANSP. ASSISTANT)

SALE 6)
SUPPLIER NOTIFIES
THE SHIPPING OF
THE GOODS

\ SALESMAN)

Figure 56. Example of PRECEDENCE in a communicative event diagram

Metamodel view for PRECEDENCE metaclass

ElnopE “farget [0.*Tincoming " = PRECEDENCE
[0..*}putgoing,

-
L

sOUrce

Figure 57. Portion of the metamodel including the metaclass PRECEDENCE
Attributes

This metaclass has no attributes of its own.

Relationships

ROLE TO METACLASS SEMANTICS
source NODE A precedence has only one source node
target NODE A precedence has only one target node

Table 59. Relationships of the PRECEDENCE metaclass

Constraints

This metaclass has no constraints of its own.

MDD approach: a metamodel to support the techniques of Communicative Event
Diagrams and Message Structures 17

Graphical primitive

Figure 58. Graphical primitive of the PRECEDENCE metaclass
3.4.1.35 PRIMARY metaclass

A primary role indicates, in the action context of a communicative
event, the set of organisational actors that are designated for report-
ing to the information system an occurrence of a certain type of
communicative event.

This metaclass specialises from Communicative role.

Metamodel view

El PRIMARY

rimary

= ORGANISATIONAL_ROLE

ingoing_communicative_interaction
=1 name : String

= description : String] RECEIVER £ INGOING
= duties : String
L
organisational_role
H supPORT

[0-*1 | £ cOMMUNICATIVE_ROLE
communicative_role .

=1 is_interface_actor : Boolean
=1 description : String

Figure 59. Portion of the metamodel including the metaclass PRIMARY

118

3.4 PSM metamodel specification

Attributes
NAME TYPE DESCRIPTION
description String [Inherited from communicative role] The de-
scription of the communicative role in natural
language.
is_interface_actor | Boolean [Inherited from communicative role] Indicates

whether the communicative role is an interface
actor, i.e. whether it plays the role of the inter-
face actor for a communicative event.

Table 60. Attributes of the PRIMARY metaclass

Associations
ROLE PARTICIPANT DESCRIPTION
organisa- ORGANISATIONAL_ROLE [Inherited from communicative role]
tional_role A communicative role can be played
by one organisational role.
ingo- INGOING A primary communicative role is re-

ing_communicati
ve_interaction

lated to one ingoing communicative
interaction.

Table 61. Relationships of the PRIMARY metaclass

Constraints

This metaclass does not have constraints.

Graphical primitive

CLIENT

Figure 60. Graphical primitive for the PRIMARY metaclass

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 119

3.4.1.36 PROCESS Metaclass

The organisational units are related to organisational process, where
the communicative events occur to achieve the organisational goals of
the enterprise.

Metamodel view for PROCESS metaclass

E ORGANISATIONAL _UNIT

[0.] organisational_unit
[0..*] Process

£l PROCESS

=l name : String
= acronym : String
=1 description : String

process

events | [1..%]
E COMMUNICATIVE_EVENT

=1 ID : String
=1 description : String

Figure 61. Portion of the metamodel including the metaclass PROCESS

Attributes
NAME TYPE DESCRIPTION
name String The name of the process.
acronym String The acronym of the process.
description String The description of the process in natural language.

Table 62. Attributes of the PROCESS metaclass

120 3.4 PSM metamodel specification

Associations

ROLE PARTICIPANT DESCRIPTION

organisational_unit | ORGANISATIONAL_UNIT | A process is associated to several
organisational units.

events COMMUNICATIVE_EVENT | A process is related to several
communicative events.

Table 63 Relationships of the PROCESS metaclass

Constraints

This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.
3.4.1.37 RECEIVER Metaclass

The receiver role is played by a set of organisational actors that re-
quest the retrieval of data from the information system memory.

This metaclass specialises from Communicative role.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 121

Metamodel view

E pPRIMARY

= ORGANISATIONAL _ROLE

=1 name : 5tring

(=1 description : String

(=1 duties : String

.
crganisational_role|

[0..%]

= RECEIVER
- recener

outgoing_communicative_interaction

£ SUPPORT E outGoING

H COMMUNICATIVE_ROLE

—e_
communicative role = is_interface_actor : Boolean

(=1 description : String

Figure 62. Portion of the metamodel including the metaclass RECEIVER

Attributes
NAME TYPE SEMANTICS
description String [Inherited from communicative role] The de-
scription of the communicative role in natural
language.
is_interface_a | Boolean [Inherited from communicative role] Indicates

ctor

whether the communicative role is an interface
actor, i.e. whether it plays the role of the inter-
face actor for a communicative event.

Table 64. Attributes of the RECEIVER metaclass

Associations

ROLE TO METACLASS SEMANTICS
organisa- ORGANISATIONAL_ | [Inherited from communicative role] A
tional_role ROLE communicative role can be played by one

122 3.4 PSM metamodel specification

organisational role.
outgo- OUTGOING A receiver communicative role is related
ing_communicati to one outgoing communicative interac-
ve_interaction tion.

Table 65. Relationships of the RECEIVER metaclass

Constraints

This metaclass does not have constraints.

Graphical primitive

Figure 63. Graphical primitive for the RECEIVER metaclass
3.4.1.38 REFERENCE_FIELD Metaclass

The reference field metaclass specifies a field whose domain is a type
of business objects.

Examples

The SUBSTRUCTURE A-<B+C+D> has the DATA_FIELD B, and D; C is a ref-
erence field that is a reference to C object. This object is already
known by de IS.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 123

Metamodel view for REFERENCE_FIELD metaclass

= MESSAGE_STRUCTURE = SUBSTRUCTURE

=1 name : String
=1 description : String

—mess_struct =
[0..1] substructures = name ! String
[0..*] = description : String
= min_card : String
=1 max_card ; String

direct_items
[1.%]

parent

=] coMPLEX_SUBSTRUCTURE EH fELD

domain

=1 operation : OPERATION
=1 derivation_formula @ String
=1 is_identifier : Boolean

=1 example : String

[0..*] | pointers

| REFERENCE_FIELD = DATA_FIELD

= extends_bo ; Boolean | & domain @ DOMAIN

Figure 64. Portion of the metamodel including the metaclass

REFERENCE_FIELD

Attributes
NAME TYPE SEMANTICS

extends_bo Boolean It is a Boolean value that indicates if a reference
field extends an existing business object. This at-
tribute is a mark to support the model transforma-
tion.

is_identifier Boolean [Inherited from Field] It is a Boolean value. It indi-
cates if a data field is an identifier field of a sub-
structure. This attribute is a mark to support the
model transformation.

operation OPERATION | [Inherited from Field] The operation indicates the
origin or the information that the reference field
refers. It values can be “input”, “output” or “deri-
vation”.

deriva- String [Inherited from Field] if the attribute operation is

tion_formula

of type “derivation”, the derivation formula indi-

124

3.4 PSM metamodel specification

cates the formula in natural language or OCL.

name

String

[Inherited from Substructure] The name of the
reference field

description

String

[Inherited from Substructure] The description of
the reference field in natural language

example

String

[Inherited from Substructure] An example about
the reference field in natural language.

min_card

String

[Inherited from Substructure] Indicates a con-
straint about minimum cardinality of the reference
field.

max_card

String

[Inherited from Substructure] Indicates a con-
straint about maximum cardinality of the refer-
ence field.

Table 66. Relationships of the REFERENCE_FIELD metaclass

Associations
ROLE PARTICIPANT SEMANTICS
mess_struc | MESSAGE_STRUCTURE A reference field can to be associated to
t several message structures.
parent COMPLEX_SUBSTRUCTU | A reference field is associated to one com-
RE plex substructure (named parent).
domain COMPLEX_SUBSTRUCTU | A reference field refers only one complex
RE substructure (named domain).
Table 67. Relationships of the REFERENCE_FIELD metaclass
Constraints

This metaclass does not have constraints.

Graphical primitive

This metaclass does not have graphical primitive.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 125

3.4.1.39 SPECIALISATION metaclass

The specialisation specifies one or more variants; that is, structural al-
ternatives.

Metamodel view of SPECIALISATION metaclass

|| MESSAGE_STRUCTURE = SUBSTRUCTURE
mess_struct [0.*
=1 name : String [0..1] substructures” =l name : String
=1 description @ String . =1 description @ String
=1 min_card @ String

0..1] | message_structure = 'd St
ms [0.1] ge_ direct_jtems. = max_card : String

parent [1..*]
comples_substructures 1, *]imival cs

£ coMPLEX_SUBSTRUCTURE EHrELD

=l operation : OPERATION
=l derivation_formula @ String
=l is_identifier : Boolean

=l example : String

ormain

[0.. tpinters

REFERENCE_FIELD
£ AGGREGATION = ITERATION = SPECIALISATION = =

= extends_bo : Boolean

Figure 65. Portion of the metamodel including the metaclass

SPECIALISATION
Attributes
NAME TYPE DESCRIPTION
name String | [Inherited from substructure] The name of the specialisation.

description | String | [Inherited from substructure]The description or the speciali-
sation in natural language.

min_card String | [Inherited from substructure] The minimum cardinality of
the specialisation.

max_card String | [Inherited from substructure] The maximum cardinality of
the specialisation.

Table 68. Attributes of the SPECIALISATION metaclass

126 3.4 PSM metamodel specification

Associations
ROLE PARTICIPANT DESCRIPTION
direct_items SUBSTRUCTURE [Inherited from complex substructure] A
specialisation is composed by several
substructures.
message_structure | MESSAGE_STRUC | [Inherited from complex substructure] A
TURE specialisation can be part of one message
structure.
ms MESSAGE_STRUC | [Inherited from complex substructure] A
TURE specialisation is contained into one mes-
sage structure.
parent COMPLEX_SUBST | [Inherited from substructure] A speciali-
UCTURE sation can to be a parent complex sub-
structure.
mess_struct MESSAGE_STRUC | [Inherited from substructure] A speciali-
TURE sation can be related to one message
structure.
pointers REFERENCE FIELD | [Inherited from complex substru] A spe-
cialisation can to have several pointers
from existing reference field.

Table 69 Relationships of the SPECIALISATION metaclass

Constraints
This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.

3.4.1.40 START Metaclass

A start node indicates that the communicative events to which it is
connected do not have any precedence events.

The metaclass specialises from Node.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures

127

Metamodel view for START metaclass

E NODE s0LUrce

[0..*] outgoing | = PRECEDENCE

target

=] ENCAPSULATION

= nurmber © String
= name ; String
=1 precondition @ String

=1 interface_actor : String

[0..*] incoming P

| LOGIGAL NODE = enp =/ START

Figure 66. Portion of the metamodel including the metaclass START

Attributes

This metaclass does not have attributes of its own.

Relationships
ROLE PARTICIPANT SEMANTICS
outgoing | PRECEDENCE [Inherited from Node] A start node can to
have several outgoing precedences.
incoming | PRECEDENCE [Inherited from Node] A start node can to
have several ingoing precedences according to
C6.

Table 70. Relationships of the START metaclass

Constraints

C6. An START node cannot have ingoing relationships.

Graphical primitive

Figure 67. Graphical primitive of the START metaclass

128

3.4.1.41 STRATEGY metaclass

3.4 PSM metamodel specification

An organisational strategy is the set of interrelated organisational
goals that is defined by the managerial staff of an organisational sys-
tem or sub-system, along with their corresponding business indica-
tors, a current value for each business indicator, a target value for
each business indicator, and an action plan intended for achieving the
organisational goals.

Metamodel view

E| ORGANISATIONAL_MODULE

=l name ; String
=1 acronym : 5tring
= description : String

organisational_maodule

= STRATEGY

- (=] name ; String

St'[ate,,?" = description : String
=1 strategy_date : String

=1 action_plan : String

[0..1] strategy

[1..*]] operationalisation
£ OPERATIONALISATION
=1 current_value : String

=1 target_value : String
=1 target_date : String

Figure 68. Portion of the metamodel including the metaclass STRATEGY

Attributes
NAME TYPE DESCRIPTION
name String The name of the strategy.
description String The description of the strategy in natural lan-
guage.
strategy_date String The date of register.
action_plan String The action plan of the strategy.

Table 71. Attributes of the STRATEGY metaclass

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 129
Associations

ROLE PARTICIPANT DESCRIPTION
organisa- ORGANISATIONAL_MODULE A strategy is related to one or-
tional_module ganisational module.
operationalisa- | OPERATIONALISATION A strategy is associated to sev-
tion eral operationalisations.

Table 72. Relationships of the STRATEGY metaclass

Constraints

This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.
3.4.1.42 SUBSTRUCTURE Metaclass

The substructure metaclass specifies an element that is part of a mes-
sage structure [38].

This is an abstract metaclass, which is specialised into Complex sub-
structure and Field.

130 3.4 PSM metamodel specification

Metamodel view for SUBSTRUCTURE metaclass

E|MESSAGE_STRUCTURE £ SUBSTRUCTURE

4 substructures,
= name : String ess struct [0 *]wlgl name ; String
= description : String rEUT]S " 7 & description : String
=1 min_card : String
=1 max_card : 5tring

direct_iterns
[1.%]

E coMPLEX_SUBSTRUCTURE | Paent

Figure 69. Portion of the metamodel including the metaclass

SUBSTRUCTURE
Attributes
NAME TYPE DESCRIPTION

name String The name of the reference substructure.

description String The description of the substructure in natural lan-
guage.

example String An example about the substructure in natural lan-
guage.

min_card String Indicates a constraint about minimum cardinality
of the substructure.

max_card String Indicates a constraint about maximum cardinality
of the substructure.

Table 73. Attributes of the SUBSTRUCTURE metaclass

Associations
ROLE PARTICIPANT DESCRIPTION
mess_struct | MESSAGE_STRUCTURE A substructure can to be associated to
several message structures.
parent COMPLEX_SUBSTRUCTURE | A substructure is associated to one com-
plex substructure (named parent).

Table 74. Relationships of the SUBSTRUCTURE metaclass

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 131

Constraints

This metaclass does not have constraints.
Graphical primitive

This metaclass does not have graphical primitive.

3.4.1.43 SUPPORT Metaclass

A support role participates as interacting partners, not being a pri-
mary actor or a receiver actor.

This metaclass specialises from Communicative role.

Metamodel view for SUPPORT metaclass

= pRIMARY
=] DRGANISATIONAL_ROLE

=] name : String
=l description : String = RECEIVER
=] duties : String

organisational_role

=l suppoRT [0.*]
o suppart
[L.°] support? support_role_set Lc0mmunicativefinteraction
] = COMMUNICATIVE_INTERACTION
= COMMUNICATIVE_ROLE =l sUPPORT_ROLE_SET
[0..*] =l name : String
communicative_role| = is_interface_actor : Boolean = description : String

=1 desaription © String

Figure 70. Portion of the metamodel including the metaclass SUPPORT

Attributes
NAME TYPE SEMANTICS

description String [Inherited from communicative role] The de-
scription of the communicative role in natural
language.

is_interface_a | Boolean [Inherited from communicative role] Indicates

ctor whether the communicative role is an interface
actor, i.e. whether it plays the role of the inter-

132 3.4 PSM metamodel specification

face actor for a communicative event.

Table 75. Attributes of the SUPPORT metaclass

Associations
ROLE TO METACLASS SEMANTICS
organisa- ORGANISATIONAL_ | [Inherited from communicative role] A
tional_role ROLE communicative role can be played by one
organisational role.
communica- COMMUNICATIVE_I | A support communicative role is related
tive_interaction NTERACTION to one communicative interaction.
support_role_set | SUPPORT_ROLE_SE | A support is contained into one support
T role set.

Table 76. Relationships of the SUPPORT metaclass
Constraints
This metaclass does not have constraints.
Graphical primitive
This metaclass does not have graphical primitive.
3.4.1.44 SUPPORT_ROLE_SET metaclass

This is a container metaclass, which contains objects of type Support
role.

The objective of this metaclass is to provide a place where is possible
to instance graphically objects of type support role.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures

133

Metamodel view

£l supPORT

[1..

*1

support

support_role_set

E SUPPORT_ROLE_SET

Figure 71. Portion of the metamodel including the metaclass
SUPPORT_ROLE_SET

Attributes

This metaclass does not have attributes of its own.

Associations
ROLE PARTICIPANT DESCRIPTION
support SUPPORT A support role set can to contain sev-
eral instances of support role.

Table 77. Relationships of the SUPPORT_ROLE_SET metaclass

Constraints

This metaclass does not have constraints.

Graphical primitive

This metaclass does not have graphical primitive.

3.4.1.45 TEXTUAL_REQUIREMENT metaclass

The textual requirements represent some types of requirements that
could be to affect some elements of the metamodel.

134

3.4 PSM metamodel specification

Metamodel view

El ELEMENT

element

{U-])
extual_requirement

El TEXTUAL _REQUIREMENT

= ID : String

=1 description : String
=l type : REQUIREMENT _TYPE

Figure 72. Portion of the metamodel including the metaclass
TEXTUAL_REQUIREMENT

Attributes
NAME TYPE DESCRIPTION
ID String The identification of the requirement.
description String The description of the requirement in
natural language.
type REQUIREMENT_TYPE | The type of the textual requirement.

Table 78. Attributes of the TEXTUAL_REQUIREMENT metaclass

Associations
ROLE PARTICIPANT DESCRIPTION
element ELEMENT A textual requirement is related to
one element of the metamodel.

Table 79. Relationships of the TEXTUAL_REQUIREMENT metaclass

Constraints

This metaclass does not have constraints.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 135

Graphical primitive
This metaclass does not have graphical primitive.

3.4.1.46 DOMAIN enumeration

This enumeration corresponds to the pre-defined domains that exist
for all data fields in a message structure.

Metamodel view

wenumeration:»
DOMAIN

=1 Number
= Text
= Date
= Money

Figure 73. Portion of the metamodel including the metaclass DOMAIN

Elements
ELEMENT DESCRIPTION
Number Values are natural, integer, real, autonumeric.
Text Values are character strings.
Date Values are time points of variable precision, days, months,
years, hours, minutes and seconds.
Money Values are real.

Table 80. Elements of the DOMAIN metaclass

3.4.1.47 OPERATION enumeration

This enumeration corresponds to the pre-defined operations that ex-
ist for all fields in a message structure.

136 3.4 PSM metamodel specification

Metamodel view

«anumerations
OPERATION

=linput
= generation
= derivation

Figure 74. Portion of the metamodel including the metaclass OPERATION

Elements
ELEMENT DESCRIPTION

input Value that indicates the information of the field is provided
by the primary actor.

generation Vale that indicates the Information System can automatically
generate the information of the field.

derivation Value that indicates the information of the field is already
known by the Information System and, therefore, it can be
derived from its memory. This operation can have an associ-
ated derivation formula.

Table 81. Elements of the OPERATION metaclass

3.4.1.48 REQUIREMENT TYPE enumeration

This enumeration corresponds to the pre-defined requirement types
that exist for classifying the textual requirements.

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures

137

Metamodel view

wanumer ation:
[E] REQUIREMENT_TYPE

= MEDIUM_REQUIREMENT

=1 ACCREDITATION_REQUIREMENT

= AVAILABILITY _REQUIREMENT
= WERIFICATION_REQUIREMEMT
= EVEMT_PRECONDITION

= STRUCTURAL_CONSTRAINT
= CONTEXTUAL_COMNSTRAINT

= MESSAGE_PARTICULARISATION
= LINKED_BEHAVIOUR

= LINKED_COMMUNICATION

= TREATMENT

Figure 75. Portion of the metamodel including the metaclass

Elements

REQUIREMENT_TYPE

ELEMENT

DESCRIPTION

medium_requirement

This element indicates the medium requirements.

accreditation_requirement

This element indicates the accreditation require-
ments.

availability_requirement

This element indicates the availability requirements.

verification_requirement

This element indicates the verification requirements.

event_precondition

This element indicates the event precondition re-
quirements.

structural_constraint

This element indicates the structural requirements.

message_particularisation

This element indicates the message particularisation
requirements.

linked_behaviour

This element indicates the linked behaviour require-
ments.

linked_communication

This element indicates the linked communication re-
quirements.

treatment

This element indicates the treatment requirements.

Table 82. Elements of the REQUIREMENT_TYPE metaclass

138 3.5 Metamodel validation

3.5 Metamodel validation

The PIM metamodel for CED (See subsection 3.3) was built following
the concepts explained at Communication Analysis method (See
Chapter 3). We have analysed the principal primitives of the commu-
nicative event diagrams and we have represented it through meta-
classes and relationships in the PIM.

For the metamodel validation, we have established an iterative
and incremental procedure. This procedure intends to validate
whether the metamodel was implemented correctly, whether the
metamodel brings to the Communication Analysis experts a meta-
model closer to their ideas and whether the metamodel is closer to
the method.

A general view of the metamodel validation is presented at Figure
76.

CHANGES DEFINITION

AND MODIFICATIONS METHOD ANALYSIS

{ ERRORSAND |
| SUGGESTIONS |
| LIST]

METAMODEL
VERSION |

ERROR DETECTION

AND SUGGESTIONS EXPERT EVALUATION

(" METAMODEL |
EVALUATION
REPORT

Figure 76. General view of metamodel validation

First, a method analysis activity was necessary in order to design a
tirst metamodel version, later; it was revised by an expert in Com-
munication Analysis method. This expert analyse the metamodel and

MDD approach: a metamodel to support the techniques of Communicative Event

Diagrams and Message Structures 139

writes a metamodel evaluation report. This report is filtered so as to
obtain a list of errors and suggestions; thus in this way it is possible
to carry out definition changes and modifications for later to generate
a new metamodel version aligned with the method and the expert
evaluation.

Following this iterative procedure, and after of several iterations, it
was possible to obtain a stable metamodel version (PIM metamodel
presented at subsection 3.3).

The experts have used the metamodel to model different cases. For
this purpose the expert have used Microsoft Visio [35] to model dif-
ferent instances of the CED metamodel.

3.6 Analysis and discussion

After of metamodel specification, we have learnt some lessons about
the metamodelling strategy.

It is possible to offer a MDD environment to cover from requirements
specification to code generation. It helps to requirements models to
be part into the software development.

The MDA guidelines allow us to distinct two levels of metamodel-
ling. The first level is about the reasoning of the method and concepts
without to having into account a technological platform (named PIM
metamodel). The second level allows us to represent some concepts
that are platform-oriented into the metamodel of the concepts of the
method.

A metamodel validation was carried out with experts in Communica-
tion Analysis method. This validation follows an iterative process,
which allowed to improve the metamodel specification and to correct
some mistakes.

The PSM metamodel specification is the primary artefact for building
a modelling tool in addition, the metamodel is used by several lan-

140 3.6 Analysis and discussion

guage transformation engine. The following chapters present the
building of a modelling tool for supporting the modelling of CED
and message structures, and the use of a language transformation en-
gine for supporting the requirements models transformation.

4 A modelling tool for
Communication Analysis
requirements models

To facilitate the use of Communication Analysis method, we pro-
pose a technological support to close the gap between the imple-
mentation of software systems and the requirements models.

To achieve this aim, we propose to develop a modelling tool for
supporting the modelling of communicative event diagrams and
message structures (requirements techniques of Communication
Analysis method.). This chapter presents the technological support
and decisions about the technology to support the method. In addi-
tion, we present the metamodel implementation and how to use the
graphical editor to build communicative event diagrams and message
structures. Furthermore, we present a modelling tool evaluation that
allows us to improve the proposal and involve the user experience
into the development of the modelling tool.

The Append 2 presents the development of the modelling tool step
by step, which includes the design of the metamodels for specifying

142 4.1 Technological support

the concrete syntax for the models. This chapter concludes with some
analysis and discussions about this phase of the project.

4.1 Technological support

Eclipse is an open source software development project, which pur-
pose is to provide a highly integrated tool platform. The work in
Eclipse consists of a core project, which includes a generic frame
work for tool integration, and a Java development environment built
using it. Other projects extend the core framework to support specific
kinds of tools and development environments. The projects in Eclipse
are implemented in Java and run on many operating systems includ-
ing Windows and Linux [36].

Eclipse.org [37] is a consortium of a number of companies that
have made a commitment to provide substantial support to the
Eclipse project in terms of time, expertise, technology, or knowledge.

The Eclipse platform is a framework for building integrate devel-
opment environments (IDEs). The Eclipse platform itself and the tools
that extend it are both composed of plug-ins. A simple tool may con-
sist of a single plug-in, but more complex tools are typically divide
into several [36].

Eclipse Modelling Framework (EMF) is a modelling framework for
Eclipse. EMF relates modelling concepts directly to their implementa-
tions, thereby bringing to Eclipse and Java Developers in general, the
benefits of modelling with a low cost of entry. Thus, EMF is a frame-
work and code generation facility that lets you define a model. EMF
unifies the three important technologies: Java, XML and UML. Re-
gardless of which one is used to define it, an EMF model is the com-
mon high level representation that “glues” them all together [36] (see
Figure 77).

A modelling tool for Communication Analysis requirements models 143

UML XML

EMF MODEL

JAVA

Figure 77. EMF defines Java, XML and UML

The model used to represent models in EMF is called Ecore (See PSM
implementation at subsection 4.2.1). Ecore is itself an EMF model,
and thus is its own metamodel.

A simplified subset of the Ecore model is shown in Figure 78. This
subset contains a set of metaclases that represent another model.
Ecore is a subset of UML [36].

| EAttribute

- eAttribuleType EDataType
eAllributes name : String 1 -
EClass * 0+ |
name . String :
e eReferences J ERaferance
0 hame String

! eReferenceType containment : boolean

Figure 78. Subset of the Ecore model

A modelling tool is intended, for this reason a PSM metamodel was
defined (see subsection 3.4). This PSM metamodel corresponds to an
EMF specification.

The following subsections explain how was the PSM metamodel
implementation, this development is supported by Eclipse technol-
ogy; specifically EMF and Graphical Modelling Framework (GMF)
[40].

144 4.2 PSM metamodel implementation

4.2 PSM metamodel implementation

According to the framework described at section 1.4 (The framework
of integration), the phase 2 of the proposal includes a task about the
implementation of a modelling tool (see Figure 79). This task includes
the implementation of the PSM metamodel into the chosen technol-

ogy.

We have used Eclipse UML 2.1 tools [40] to model the PSM meta-
model. We have preferred to implement the PSM metamodel in the
UML 2.1 Eclipse tools because the graphical representation let us to
have a complete vision of the metamodel. The Ecore metamodel is
available in a graphical representation too, but the use of the graphi-
cal tools for Ecore metamodels are difficult to use; especially at the
moment to specify relationships and cardinalities. Moreover, the use
of UML 2.1 Eclipse tools let us obtain the Ecore model automatically.

Having the Ecore model, we can to use the GMF so as to build a
graphical interface to model communicative event diagrams and
message structures. The implementation of the PSM metamodel will
be shown below.

STAGE 1 STAGE 2
PHASE 1 PHASE 3
PHASE 2 PHASE 4

PHASE 2: DESIGN AND IMPLEMENTATION

ECORE
METAMODEL

.1 DESIGN OF PS| PSM METAMODEL OF
METAMODEL OF CED CA REQUIREMENTS
AND MESSAGE MODELS

STRUCTURES D

2.2 IMPLEMENTATION
—>| OFDIAGRAMMING =
TOOL

DIAGRAMMING TOOL

ITERATIVE
INCREMENTAL
DEVELOPMENT

2.3 EVALUATION OF
DIAGRAMMING TOOL

Figure 79. Stage 1 phase 2 explanation

A modelling tool for Communication Analysis requirements models 145

4.2.1 Use of Eclipse Modelling Framework tools

First, create an UML 2.1 project. Go to file - new — other. In the New
window, select the Class Diagram wizard for UML 2.1 Diagrams pro-
ject (see Figure 80).

£ Plug-in Development - Eclipse

Fil= Edit Mavigate Search Project Run Window Help

[=<jv g&v 0 - %v ﬁ|-ﬁ:=Plug—inDeveI...
W E- - J= &' avs

Select a wizard

Creates Class diagram.

I"—‘||
L &

Wizards:

type filber bext

>

= (= UML 2.1 Diagrams
@ Activity Diagram

Class Diagram

[d] companent Diagram

@ Cormposite Structures Diagram

@ Deplovment Diagram

@ Profile Definition Diagram

@ Sequence Diagram

; @ State Machine Diagram
o @ Use Case Diagram

[#- [User fAssistance

=R

B = ¥pand

= ¥rend

£

®

Figure 80. Creation of a UML class diagram Project

Two files are created (umlclass type and uml type). The umiclass file
is used to model de PSM metamodel previously created (See section
3.4). The PSM metamodel is specified graphically using the UML 2.1
tools.

146 4.2 PSM metamodel implementation

To take the elements from the palette and put it in to the workspace
to represent the metaclasses, attributes, relationships, cardinalities,
data types, roles, constraints, etc. While the metamodel is being cre-
ated graphically, the uml file contains the metamodel information in a
tree way (See Figure 81). To illustrate, the Figure 81 presents the
graphical view and the tree view of the metamodel. The orange box
emphasizes the metaclass COMMUNICATIVE_EVENT in both views.

£ ATL - camm-2.0/ca.metamodel.um! - Eclipse
Fle Edt Navigate Search Project Run UMLEdtor Compatbity Window Help

4 LA RAL MR =0 & | € an | &) sava
* |) ca.metamodel.umiclasss 53 #) ca.metamodal.uml 3 =8
3 - rganisational_module T A palette b /' <hssociation’> A _organisational_location_organisational_module A i
10 e : sting “r?ée‘?;’i & rame : ¢ YT /' <hssaciation> A_organisational_module_strateqy =3
scronym : String "7 & descripti kaam /" <hssociation A_strstegy_operationalisation
description : String & strategy El Class ; <hssociation: A_goal_oper
5 =) action_p [Package <hssodiation’> A_goal_organisational_module
organisational_module ; & <Assaciation’ A_upper _lower
[0..1] | strat BB Erumeration /' <hssoiation’> A _organisational_unit_process
[1.% [DataType /" <hssociation A_indicator_operationalisation
god [0.7) aper: 3 PrimtiveT... /" <hssociation> A_organisational_unk_organisational _actor

/" <Assodiation> &_organisational_unit_organisational_role

GOAL | DPERS
B U o {7} Constraint /' <Assodiation> &_organisational_role_organisational _actor
i X po o 1 Associstion /" <issociation A_communicative_role_organisational_rle
= ;me -5"“95 goal [0.*] & current Class ® & <Class> PRIMARY
153 ceacription: : Sting. = ::g::- EE Interface # [<Class> RECEIVER
[L.‘é h = Comnent ® & <class> suppoRT
ever
” e 1 =1 Attribute # H <lass> outGoInG
| | COMMUNICATIVE_EVENT : S0t | o operston % & <Class> COMMUNICATIVE INTERA TION
ingoing| 4~ B attributes H s s OMMUNICATIVE_EVENT
*«——|" =D : String i & Enum Literal ® & <Class> EVENT_vaRIANT
i & description : String i o Port # 2 <clss> avcaesuarion
(e e o - — w-] cohess (ocn none
Eevear | e ® = <class> wope
= EVENT_VARIANT 2 Element ® E <class> Eno
) number : “ tmport ® 5 <Clss> sTarT
=10 String S name : § ssocistion & | <Class> PRECEDENCE
1 speciaisat_rond : String Gl precondt | * e & = <Class> alD
A &l interface » " Dependency ®] <Class> or
speciasations. | [0..*] | 7 Genersiz... /' <issodation’ A_suppart_communicative_interaction
o Provided /" <Association> &_receiver_oukgoing_communicative_inkeraction
message_structue lmessaae _stru P rberface /" <hssociation> A_primary_ingoing_communicative_interaction
IVE INTERACT EIMESSAGE_STRUCTURE & Requred / <Assodiation> &_ingoing_communicative_interaction_event
] OV — Interface & <Assodiation’> A_specialisations_generalisation
[rase_s /" <hssodiation> A_outgoing_communicative_interaction_event
sting (= nae : String [0.1] (2} Constréined 7 <hormatons i sroveen et - -
on : String [description : String Element / <hssociation> A_god, :v;nt
" Nary i
ricative_nteracton | s 'message_struchre Dependency /' <hssodiation source
0.4 [0.1] Target /" <hssociation> A_source_outgoing
] i L Ny ® [<Class> BUSINESS_OBJECT_CLASS
[z complan_substrUb s |ininal_cs —_— gneﬁn!ﬂentv ® & <Class> MESSAGE_STRUCTURE
o & |2 <Closs> BUSINESS_OBJECT_FIELD
_OBJECT_CLASS = COMPLEX_ a s BB <chss> LESIRUCARE
P & |2 <Class> COMMUNICATION_CHANKEL
: [. Realzation ® 2 <Class> CoMPLE SUBSTRUCTURE
+ String doman | 2 Tenplate # = <Class> B0
: Binding # | <Class> REFERENCE_FIELD
=) Annotated # & <Class> DATA_FIELD
Element # |2 <Class> TEXTUAL_REQUIREMENT
n =) o instance & = <Class> MODEL o
< > Snerifiratinn ¥ € b
o° Selected Object: <Class> COMMUNICATIVE_EVENT ff e BO@®9

Figure 81. Creation of the PSM metamodel with UML 2.1 tools

The complete specification of the PSM metamodel is presented at
Figure 82.

A modelling tool for Communication Analysis requirements models 147

€ Java - camm-2.0/ca.metamodel.um|
Fle Edk Nevigete Search Project Bun UMLEdior Window Help
m $-0 - I EHG- I OS S
o

[d] cametamodelumiclass | &) cametamodeluml 52 =

<Model> camtamode]
% 7, cElement Inport> Boolean

i, <Element Inport> String

% <Elemert Import> Unlimiesdhiatursl
%3, <Element Import> Integer
1 <Class> ORGANISATIONAL LOCATION
1= <Class> ORGANISATIONAL MODULE
- <Class» STRATEGY
- «Class> OPERATIONALISATION
& <Class> Goal
<Class> PROCESS
Class> ORGANISATIONAL_LINIT
<Class> CRGAMISATION
<Class> NDICATOR
Class> ORGANISATIONAL_ACTOR
<Class> ORGAMISATIONAL ROLE
<Class> COMMUAICATIVE ROLE.

A | Jocation Lmadule
<Assoration A_organisationl_modue_strategy
<Association> A_strategy_operationslisation
ehssociation> A_goal_oper
Association> A_goal_organisationsl_module
<Assosiation> &_upper_loner
‘<Assoation> A_organisational_Uni_process
<Association> A_indicator_operationalisation
ehssociation> A_crgarisational_unk_orgarisational_attor

cAssociation’> A_orgarisstionsl_unit_organisational_role
<Assosiation’> A_orgarisationsl_role_orgarisational_actar
<Assoration> A_communicative_role_organisational_role
<Class > PRIMARY

«Class > RECEIVER

<Class» SUPPORT

<Class> HGOTHG

<Class > OUTGOING

<Clasz> COMMUNICATIVE IVTERACTION

Class’> COMMUNICATIVE_EVENT

Class:» EVENT_VARIANT

<Class> ENCAPSLLATION

aon

<Clazs> NODE
<Class> END

2
Ja
ki
3
G

Class> PRECEDENCE

Class> AND

<Class> OR,

‘<Assodiation> A_support _communicative_interaction
‘<Association> A_receiver_outgoing_commuricative_interaction

<Associations> A_primary_ingeing_communicative_interaction
Association> A_ingoing_commuricative._interaction_event
<Association _specilisations_generalsation
ehssociation> A_outqoing_commuricative_nteraction_event
<Association’> &_process_events

<ssociation’> A_geal_event

-/ <hssoration> source

/" <hssociation> A_source_outgoing
i «Class> BUSINESS_OBJECT_CLASS

Class> MESSAGE_STRUCTURE
(=] <Class> BUSTNESS_CBJECT FIELD

<Claso> SUBSTRUCTURE
(=] <Class> COMMUNICATION_CHANREL

<Clasz> COMPLEY, SUBSTRUCTLRE.
& & <clase> FED
= <Class» REFERENCE_FIELD
1] aClass> DATA_FIELD
=] <Class> TEXTUAL_REQUIREMENT
[<Class> MoDEL
H <lass> mevenr
o <hssoriation A_business_object_field_business_objact_dass
/' <ssociation’> A_tommuricative _nteraction_business_object_class
/' <hssociation> A_communicative_interaction_communication_channel
<ssociation’> A_demain_painkers
" chssoriation A_parent_direct_items
' <Association A_slement_model
/' <ssociation> A_testual_requirement_slemert
5 & <Class> ORGANIZATIONAL ROLE_SET
[<Class» SUPPORT ROLE_SET
‘cassociation> A_support_suppart_role_set

AN A DOOOOOOOOOOOODODN S NS SN S S DO

A |role_set |role
1 [<Enumeration’> REQUIREMENT_TYPE

#/ <hssociation’> f_outgoing_Mmessage_structure

/ shssociation> A_ingoing_message_structure

/ zhssosiation> A_Iniisl_C5_message_structure

« <Assoriation> A_complex_substructures_ ms

/ <Pissociation’> A_mess_struct_substructures
-5 class> AcaREGATION
<Class» ITERATIGN
«Class:» SPECIALISATION

#[E] <Enumeration> DOMATH

/ <Pissociation’> A_organisational_actor_aggregation

(€] <Enumeration> OPERATION

" pathman:/ /ML LIERARIESUMLPrimitiveT voes brary ul -

MOm

Selected Object: platform:/...efcamm-2.0jca, metamodel uril

sleRBE

Figure 82. Complete description of the PSM metamodel in a tree way

148 4.2 PSM metamodel implementation

To obtain the ECORE specification, go to menu; option UML Editor —
Convert To — Ecore Model (See Figure 83).

& Plug-in Development - camm/ca.metamodel. uml - Eclipse
File Edit Mavigate Search Project Run BEGNSE(EE Window Help

o z ; N —
S : :t\"" =0 % ¥ ET: ihlld . ﬁ|-&:=F‘Iug-in Devel... |
: : : lidate . ille's
e Ne=a A g =Rlemly aJJava
8 pack 22 Fpug- | T O [can Element » pometamodel.uml 23 =
= =
& |® T||FE Pack.age ¥ fetamodsl, urnl Al =
= Profile » B
L L Stereotype 3

@ ca.metamaodel, uml

Load Resource...
ca.metamodel. umlclass

& t Ta
Externalize

Metamodel
Iodel Library

v v

Generate

Refrash =|_element
Show Propetties Yisw

= <Class> SLESYSTEN
./ <hssociation:= A_system_subsystem

- <Gl pROGESS
./ <hssociation= A_subswstem_process

] <lass BNCARSLLA TFON

./ <hssociation= A_process_encapsulation

Q “Class s COMMUNICATIVE_EVENT

Q <Class= COMMUMICATIVE_SUBEYENT

./ =#ssociakion = &_communicative_event_communicative_s

E Soapns MODE

E «ciams> toarea_vops

E] «Class> END

H «class= sTART

] «class= anD

Q <Class=> OR

E] <Class= supPoRT

E «Class> RECEIVER

/" <Association A _receiver_encapsulation

&

(38 R = R R = B T = |

&= «Class> PRIMARY
A «hssociation= A_prirnary _cormrmunicative_event
H <ciasns cOMMUNICATIVE ROE
E <iClass > COMMUNMICATIONAL _CHANMEL
/ <pssociation > A_communicational_channel_communicativ
/ <pssociation A_message_struckure_communicative _rol
Q SCasss ORGANIZA TTONAE_ACTOR
«hssociation= A_support_aorganizational _actar
. rtacee rnercnenes ¥

4 | Bz | *

:0 Selected Object: <Model> ca.metamodel

fsQAEBEE

Figure 83. Ecore model creation

A modelling tool for Communication Analysis requirements models

149

Thus the Ecore specification for the PSM metamodel is obtained (See

Figure 84).

The Ecore metamodel is intended because this metamodel will be the
principal artefact in order to implement the modelling tool.

& Java - camm-2.0/cametamodel.eco|

File Edt Mavigate Search Project Run Sample Ecore Editor Window Help

B0 Q- BHE- GG -

E OrganisationalLocation
OrganisationalModule
Strategy
Operationalisation

]
5]
5]
H Goal
E| CommunicativeEvent -> Encapsulation
E Encapsulation - Mode
H node -» Element
H Element
E Model
B TextualRequirement -> Element
‘2 RequirementType
H Precedence - Element
E| CQutgoing -> CommunicativeInteraction
Q Communicativelnteraction - Element
E Support - CommunicativeRole
B communicativerole - Elament
H organisationalrole - Element
B organisationalunit > SrganisationalModule
H Process -» Element
E Organisationalactar
H aggregation -» Complexsubstructure
H cComplexsubstructure -> Substructure
B substructure

E Messagestructure - Element
d E Ingoing - = Communicativelnkerackion

E Primary - > CommunicativeRole

H referenceField -» Field

B Field -> Substructure

€ Opetation

H organizationalroleset - Element

B supportRoleSet - Element,

B Businessobjectclass

H BusinessObjectField

B CommunicationChannel - > Element

E Receiver - > CommunicativeRole

E EventYariant - Encapsulation

B Indicator

H organisation - OrganisationalModule

H Logigaltode - = Node

B end - Mode

E start -> Node

B and -> LogigalNode

B or -> Logigaliode

H bataField - > Field

2 Domain

H teration - > ComplexSubstructure

H specialisation - Complezsubstructure

= 0r Selecked Object: platForm:...camm-2 Ofcametamodel.ecare

e ek BB

E i§J Java ‘

an w

Figure 84. PSM metamodel in the ECORE specification

150 4.3 Design of the graphical editor for communicative event diagrams and

message structures

4.3 Design of the graphical editor for communicative event
diagrams and message structures

The Graphical Editing Framework (GEF) provides technology to cre-
ate rich graphical editors and views for the Eclipse Workbench User
Interface [40]. The Graphical Modelling Framework (GMF) is an
Eclipse project that aims to provide a generative bridge between the
EMF and GEF [40].

GMF is an Eclipse project with the potential to become a keystone
framework for the rapid development of standardized Eclipse
graphical modelling editors. Architects and developers involved in
the development of graphical editors or of plug-ins integrating both
EMF and GEF technologies should consider building their editors
against the GMF Runtime component. This framework let us to build
modelling tools based on Eclipse editors like UML editor, Ecore edi-
tor, BPM Editor, etc. The Framework can be divided en two main
components: the tooling and the runtime. The tooling consists of edi-
tors to create/edit models describing the notational, semantic and
tooling aspects of a graphical editor. The generated plug-ins depend
on the GMF Runtime component to produce a world class extensible
graphical editor [41].

We have followed a workflow in order to create a graphical model-
ling environment for communicative event diagrams and message
structures. The Figure 129 shows the workflow followed. This work-
flow was built according to the Eclipse Tutorials [37].

We can to distinguish three important phases. The first phase is
the definition of domain models. These set of models intent specify
the non-graphical information managed by the editor. The second
phase is the definition of diagram models. These models define
graphical elements to be displayed in the editor. The Third phase is
the generation of graphical editor. This phase basically takes the
models previously created in order to generate the java code that will
be representing the graphical editor.

A modelling tool for Communication Analysis requirements models 151

PHASE 1: DEFINITION OF DOMAIN MODELS

UML (" CREATE F”é"r'f'SEE
METAMODEL f== UMLCLASS =p{ "oR CEL
—_— > _ MODEL

ECORE GENERATE gmme
METAMODEL (= ECORE =p{ FORCE
1 | MODEL
GENMODEL GENERATE o
METAMODEL =5 GENMODEL OR CEl
1 | MODEL |

PHASE 2: DEFINITION OF DIAGRAM MODELS

GMFGRAPH (" CREATE gmigraph
METAMODEL =5 GMFGRAPH = "0 =F
1 | MODEL Eos
GMFTOOL (" CREATE F%n;ﬂgch
METAMODEL —» GMFTOOL —» FORCE
—_— > _ MODEL
4 N fma
GMFMAP CREATE gmfmap
METAMODEL —» GMFMAP —» "OXCED
.~ | MODEL |

PHASE 3: GENERATION OF GRAPHICAL EDITO

/e -\ gmfgen
GMFGEN GENERATE e
METAMODEL GMFGEN MODEL
.~ | MODEL |
DIAGRAM 7 =\ DIAGRAM
CODE %F]EEEQLE P CODE FOR
METAMODEL CED
___ _ CODE _—

Figure 85. Workflow to create the modelling environment for CED

At the Append 1, we present an analysis about each phase and we
will explain how was made each activity.

152 4.4 How to use the modelling tool

44 How to use the modelling tool

This subsection intends to show the use of the graphical editor for
communicative event diagrams and message structures. Then, we
have used a fictional example of a process named SuperStationery
Co. A textual explanation of the process is presented at the following
subsection. We have selected a part of the business process to explain
the use in the modelling tool. The steps to build the corresponding
communicative event diagram and to specify the message structures
in the modelling tool are explained below.

Now, we will introduce a textual description that corresponds to part
of the business processes of a fictional small and medium enterprise
named SuperStationery Co. This company provides stationery and
office material to its clients. The company acts as intermediary.

SuperStationery Co. Textual description

SuperStationery Co. is a company that provides stationery and office
material to its clients. The company acts as an intermediary: the com-
pany has a catalogue of products that are bought from suppliers and
sold to clients. Most clients call the Sales Department, where they are
attended by a salesman. Then the client requests one or several prod-
ucts that are to be sent to one or many destinations. The salesman
takes note of the order (see the Order form at Table 84). Other clients
place orders by email or by fax. Then the Sales Manager reviews the
order and assigns it to one of the many suppliers that work with the
company, using his own judgement (the Sales Manager notes down
the Supplier section of the Order form; additionally, the company
wants to record the assignment date). An order form is sent by fax to
the supplier. The supplier receives the order form and checks
whether they have enough stock or not. In case they have enough
stock of all the products requested in the client order, they accept the
order (the supplier indicates the planned delivery date —that is, the
date at which the supplier commits to deliver the order- and the
salesman also notes down the response date); otherwise, they reject it.
In case the order is rejected, the Sales Manager assigns it to a different
supplier (this can happen many times until the order is accepted).

A modelling tool for Communication Analysis requirements models 153

Once the order is accepted, the salesman sends a copy of the order to
the Transport Department and the Insurance Department. In the
Transport Department, the Transport Manager arranges how the
goods will be carried to the destinations; this implies selecting one of
the truck drivers hired by the company and deciding the order in
which the truck will visit each of the client destinations. The Trans-
port Manager prefers to work in paper and pencil; then he gives the
logistics information to his assistant, the assistant fills the logistics
form and sends it to both the client and the supplier. In the Insurance
Department, the clerk specifies the insurance clauses, stapling them
to the order form. SuperStationery has contracted an insurance policy
with an insurance company. The policy has a set of generic insurance
clauses. For each order, the Insurance Department clerk can specify
additional clauses that extend or restrict the coverage. The clerk
sends the order form and the insurance information back to the Sales
Department, where the salesman faxes the insurance information to
the client. When the transportation vehicle (usually a truck, but some-
times a van) picks up the goods from the supplier's warehouse, the
supplier phones the company to report that the shipments are on
their way to their destinations (a timestamp is recorded).

As the company prospers, the amount of orders increases and,
thus, the company needs more truck drivers to deliver the goods in
time. Therefore, from time to time the transport manager hires a new
truck driver. Truck drivers have their own truck.

The company has a director and is divided into four departments (see
Figure 86).

154 4.4 How to use the modelling tool
COMPANY
DIRECTOR
ADMINISTRATIVE
ASSISTANT
LOGISTICS DEPARTMENT QUALITY ASSURANCE SALES DEPARTMENT INSURANCE
DEPARTMENT DEPARTMENT
TRANSPORT SALES INSURANCE
MANAGER QUALITY MANAGER DEPARTMENT

ASSURANCE
MANAGER

| | TRANSPORT
ASSISTANT

TRUCK
DRIVER
(CA. 20)

MANAGER

INSURANCE
SAszMAN ACCOUNTANT DEPARTMENT
CLERK

Figure 86. SuperStationery Co. organization chart

The company work practice has been decomposed into business

processes (see Table 83)

BUSINESS PROCESS DEPARTMENTS
Acronym | Name Director | Logistics | Quality | Sales Insurance
A.
Clie Client manage- X X
ment
Prod Product manage- X X
ment
Logi Logistics X
Sale Sales manage- X X X
ment
Risk Risk management X
Acco Accounting X
Supp Supplier manage- X X
ment

Table 83. SuperStationery Co. business processes

The analysis of the process description about SuperStationery Co.
could be represented in a communicative event diagram. The Figure
87 shows the communicative event diagram for Sale business process
modelled in Visio tool[35]. A complete explanation about building

A modelling tool for Communication Analysis requirements models 155

communicative event diagram for SuperStationery Co. is available at
[42].

PROD 2 CLIE1

SALE 1
A CLIENT ORDER
g ORDER PLACES -
-« AN ORDER
SALESMAN
SALES CLIENT
MANAGER
SALE 2
ASSIGNMENT _ | sALEs mANAGER ASSIGNED ORDER
o SUPPLIER o
SALES MANAGER
SALES ﬁ/— SUPPLIER
MANAGER
(~_SALE 3_SUPPLIER EVALUATES THE ORDER _)
RESPONSE (SALE 3.1 \ (SALE 3.2 \ RESPONSE
- ORDER ORDER -
IS REJECTED IS ACCEPTED
Z A Y
SALES N~ SALESMAN /) / SUPPLIER
MANAGER
L — LOGISTICS INFO > O

=

LOGISTICS INFO TRANSPORT MNGR
> ARRANGES LOGISTICS INFO 0
LOGISTICS gl
- JRANSP. ASSISTANT,

TRANSPORT CLIENT
MANAGER
SALE 5 SUPPLIER
INSURANCE INFO INSUR. DEPT. CLERK INSURANCE INFO
_— SPECIFIES >
CLAUSES

NSUR. DEPT. CLER]
INSURANCE CLIENT
DEPTARTMENT
CLERK
SALE 6

SHIPPING NOTIF. SUPPLIER NOTIFIES SHIPPING NOTIF.
<7 THE SHIPPING OF |-
THE GOODS
SALESMAN
SALES SUPPLIER
MANAGER

LEGEND

=P

<IDENTIFIER
SADENT - > INGOING OUTGOING
B e e ——— PRECEDENT OR
SPECIALISED SUBSEQUENT EVENT L
PRIMARY ~ COMMUNICATIVE ~ COMMUNICATIVE PRECEDENCE (FROMADIFFERENT ‘OR’ COMMUNICATIVE
ACTOR EVENT EVENT RELATION PROCESS) MERGE INTERACTION

Figure 87. Communicative event diagram of SuperStationery Co. Sales
manager business process (Sale)

The aim is to show how to use the modelling tool, thus, for practical
purposes; we have decided to present the analysis of one communica-
tive event of the Sale process. The purpose is to illustrate its represen-
tation in the modelling tool.

156 4.4 How to use the modelling tool

We have chosen the communicative event Sale 1 (A CLIENT PLACES AN
ORDER) to guide the use into the modelling environment.

First, We will analyse the event description template of the Sale 1 [6].
This includes the analysis of forms or another documents related to
the event, and the analysis of it related message structure [38].

Event description template

Sale 1. A client places an order

General Information

Goals
The objective of the organisation is to attend the clients when they request
goods.
From the point of view of the information system, the objective of this event
is to record the order that the client places, and to let the Sales Manager
know that a new order has arrived.

Description
Most clients call the Sales Department, where they are attended by a sales-
man. Then the client requests one or several products that are to be sent to
one or many destinations. The salesman takes note of the order. Other cli-
ents place orders by email or by fax.

Contact requirements

Actor responsibilities
® Primary actor: Client
e Communication channel: In person, by phone, by fax
¢ Support actor: Salesman
Temporal requirements
e Occurrence temporal restrictions: Only working days during reception
hours (09:00-18:00)
* Frequency of occurrence: 500 orders per week

Business forms

ORDER

Order number: 10352 Request date: 31-08-2009
Payment type: [X] Cash [_] Credit[_] Cheque Planned delivery date:05-09-2009

A modelling tool for Communication Analysis requirements models 157
Client

VAT number: 56746163-R

Name: John Papiro Jr.

Telephone: 030 81 48 31
Supplier

Code: OFFIRAP

Name: Office Rapid Ltd.

Address: Brandenburgen street, 46, 2983 Millhaven
Destination: Blvd. Blue mountain, 35-14A, 2363 Toontown
Person in charge: Brayden Hitchcock
| Code Product name Price Q |[Amount
1 | ST39455 | Rounded scissors (cebra) box-100 250 € 35 (889,00 €
2 | ST6399 |Stdplescoopr 26-22 blister 500 5,60 € 60 |336,00€
3 | CA479-9 | Stereofoam cups box-50 (pack 120) 18,75 € 10 |187,50€

1412,50 €
Destination: Greenhouses street, 20, 2989 Millhaven
Person in charge: Luke Padbury
| Code product name price Q |Amount
1 | ST6399 | etaples cooper 26-22 bliste9000 5,60 € 3 444,50 €
2 | CA746-3 | Sugar lumps 1kg 2,30 € 3 6,90 €
451,40 €
Total 1863,90 €
Table 84. Order form
Communication requirements
Message structure
FIELD oP DOMAIN EXAMPLE VALUE
ORDER =
< Order number + g number 10352
Request date + i date 31-08-2009
Payment type + i text Cash

158 4.4 How to use the modelling tool

Client + i Client 56746163-R, John Papiro Jr.
DESTINATIONS =
{ DESTINATION =
< Address + i Client address| Blvd. Blue mountain, 35-14A, 2363
Person in charge +| i text Brayden Hitchcock
LINES =
{ LINE =
< Product + i Product ST39455, Rounded scissors (cebra)
Price + i money box-100
Quantity > i number 25,40 €
} 35
>
b
>

Table 85. Message structure specification of communicative event Salel

Structural restrictions
One order can have many destinations.
One destination can have many lines.
Contextual restrictions
Orders are identified by Order number.

The product price in the line takes its value from the current price of the
product in the catalogue.

Reaction Requirements

Treatments
The order is updated.
Linked communications

The order form is sent to the supplier.

After of the analysis of the event description template, we can repre-
sent the communicative event Sale 1 using the modelling tool.

A modelling tool for Communication Analysis requirements models 159

Creation of workspace

To use the Eclipse modelling tool, it is necessary launch it, in this
way, we go to the Eclipse environment, to the workspace with our
project, then right-click the diagram file and select Run As -> Eclipse
Application (see Figure 144). This action opens a new instance of
Eclipse workspace. This workspace does not have projects (This hap-
pen the first time when the workspace was not launched before).

Into the new instance, Click the menu option File and select New ->
Project -> General -> Project. Assign the Project name (for instance “Su-
perStationery-Example”) and click the Finish button.

Then, right-click the SuperStationery project file and selects New ->
Other -> Example EMF Model Creation Wizards -> Cametamodel Model.
Assign the File name (for instance “SuperStationery”) and click the
Next button. Then, select the Model Object to create, here chose in the
combo box the object named Model. The XML Encoding might be
UTEF-8. Click the Finish button. At this point, the workspace looks like
Figure 145.

Now, becoming to the textual description about SuperStationery Co.
we want to focus the communicative event Sale 1 (A client places an
order). Thus, the information presented at the event description tem-
plate is used to complement the communicative event diagram.
Several information of the event description template could be
stored in an Eclipse project through it representation in the commu-
nicative event diagram. This is because the metamodel specifies
primitives for communicative event diagram, and the event specifica-
tion template (i.e., message structure specification, see the subsection
3.4 for more details about the metamodel specification).
We intend to specify the event Sale 1 in the Eclipse workspace previ-
ously created.

The Figure 88 presents the composition of the modelling tool. In the
project explorer we can manage the projects (assign name project,
create new project, change to other project, etc). In the Modelling

160 4.4 How to use the modelling tool

space we can to model the communicative event diagrams. The tool
palette provides the modelling elements.

Now, we can to start the modelling of the communicative event Sale
1. So, there are two ways to create a new communicative event. Go to
the palette and click the element named “Communicative event”,
then, click in the modelling space. A new communicative event ap-
pears in the modelling space. Another way is to put the mouse on the
modelling space, immediately, a contextual menu will appear, when
this contextual menu appears, click on the communicative event
symbol. A new communicative event appears in the modelling space.

& Java - SuperStationery-Example/SuperStartionery.cametamodel_diagram - Eclipse Platform

File Edit Diagram Mavigate Search Project Run Window Help

1 (wij ﬁ' 0'%' @&?@' - Ne=R o e o E"g}JJavall—I\jResuur:e
B o o -
[£ Package Expl 3 h Hierarchy |~ £ I8il] SuperStartionery.cametamode]_diaaram 5% 2 = [
= <===:‘> @ e r{,} Palette l}‘
(== SuperStationery-Example % ol
SuperStartionery, cametamodel_diag @ start
[4] Superstationery. cametamodel @End
& and
@Or
ﬁ. Primary actor
ﬁ‘ Receiver ackor

ﬁ Support ackor

E Cammunicative event
[Communicative subevent
L Precedence relationship

s Ingoing interaction

= Qukgoing interaction

L E Communication channel

I
>

< |

ia§ =3]
< I WRO,JJEaéuTuL Ai0n | = Properties O E]
i o t—' EXPLORER MODELLING SPACE TOOL PALETTE

Figure 88. Composition of the CED graphical editor

To define the properties of the communicative event, right-click the
communicative event and to select the option Show Properties view.

A modelling tool for Communication Analysis requirements models 161

This action opens new tab properties. There is possible to specify the
name, the Id, the number, and the whole properties of communica-
tive events (see Figure 89).

& Java - SuperStationery-Example/SuperStationery.cametamodel_diagram -... ILJ @| E|

File Edit Diagram Mavigate Search Project Run Window Help

L=<j' 3&' G'%' ﬁ&‘?@' ﬁiajjava“.[.jllesource
e =R R #is
SuperStationery.cametamodel_diagram &3 =0
=
% Palette [
=]
‘Eg . [}) & e~ N
é) @ Start
& CLIENT PLACES &M ORDER
(@) End
\GALESMAN) & And
or
. Primary actor
ﬁ. Receiver ackar

“f - Support actor
E Communicakive event

1 Communicative
subevent

= Properties 23 e ¥ =0

w

B communicativeEvent

Core Property Walue
Business Form U= Crder Form
Description U= Most. dlients call the Sales Dep...
Frequence Ccurr =500 orders per week
Goal I= The objective of the organisati, ..
1d I=SALE 1
Incomming
Marne U= a4 CLIENT PLACES AN ORDER
Mumber [|
Oukgaoing
Primary
Receiver

i e

Figure 89. Specifying the communicative event SALE 1

The event Sale 1 has the support actor named Salesman. The receiver
actor can be added to the communicative event in two ways. From

162 4.4 How to use the modelling tool

the contextual menu, put the mouse over the communicative event
and a contextual menu will appear to add a new support actor. An-
other way is to add the support actor from the palette. To click the
element support actor and click on the communicative event to add
the new support actor. In the tab properties is possible to specify the
description and the other properties of support element.

The fields incoming, outgoing, primary and receiver are related to
the relationships of the communicative event.

The primary actor of the communicative event Sale 1 is Client. To
assign the primary actor is possible to follow the same steps that were
explained for communicative event. Go to the palette and click the
element named “Primary actor”, later, click in the modelling space. A
primary actor element appears on the modelling space (see Figure
90).

& Java - SuperStationery-Bample/SuperStationery.cametamodel_diagram -... @@@

Eile Edt Diagram [avigate Search Project Run iwindow Help

wij = -2 R W - 55 (8 7ava |7 Resource
(A=l &g
| Tahoma M BB I | A&
ﬂl SuperStationery.cametamodel_diagram &3 =0
=
L Palette [
& s
head- s
2 TEET
s Start
A CLIENT PLACES AN ORDER @ st
® End
i]
l ALESMAN & And
or
CLIENT $p- Primary actor
$. Receiver actor
S Support actor
& communicative event
[Cammunicative
< 3 subevent b
= Properties 53 = e = =]

$¢- StickyFigurePrimary

Property Walue
Drescription '= CLIENT
Organizational Actor
Primary

Core

Appearance

Figure 90. Specifying a primary actor for SALE 1

A modelling tool for Communication Analysis requirements models 163

It is possible to add a primary actor from contextual menu that ap-
pears when the mouse is over the modelling space.

In the tab properties is possible to specify the description and the
organizational actor. The primary field specifies the relationships
with a communicative event.

The receiver actor of the communicative event Salel is Sales Manager.
To add the receiver actor, follow the steps like primary actor (see Fig-
ure 91).

& Java - SuperStationery-Example/SuperStationery.cametamodel._diagram - Eclipse Platform Q@E‘
File Edit Diagram Mavigate Search Project Run Window Help
© i -0 Q- EE G- @5 Eﬁ_&_’;JJavailgResnurce
: o
— -&
EI SuperSkationery cametamodel_diagram 7 = =
=
L2 Palette
s
heam-
1} - TET
Skart
& CLIENT PLACES AN ORDER r @ s
| (@ End
IAL
M \'J‘ \GALESMAN) \ & and
&or
CLIENT - Primary actor
- Receiver actor
- Support actor
E Communicative event
[Cammunicative
subsevent
< » | Precedence v
) Properties 52 = a2 S]
T¢- StickyFigureReceiver
Core FProperty Yalue
Description = SALES MANAGER.
Organizational Actar
Receiver
Pome

Figure 91. Specifying a receiver actor for SaLe 1

Now, the relationships among the actors and the communicative
events can be specified. So as to click the element named “Ingoing in-
teraction” to add the relationship between the primary actor and the
communicative event. Click on the primary actor and to bring the
mouse to the communicative event. Another way is to put the mouse

164

over the primary actor and to bring the mouse to the communicative
event. These steps can be followed to add the outgoing interaction be-
tween the communicative event and the receiver actor. The state of

4.4 How to use the modelling tool

the CED for Sale 1 is showed at Figure 92.

& ava - SuperStationery-Example/SuperStationery.cametamodel_diagram - Eclipse Platform

i g*

o

wi= P 0 Q-
i o
: [Tahoma vle ¥B | A-
¢ @ SuperStationery.cametamodel_diagram &3
=
g
I SALE L \

A CLIEMT PLACES AN ORDER

Eile Edit Diagram MNavigate Search Project Run Window Help

RUN- N R Y oW

M\\l ORDER

CLIENT

£
E properties o0

=% Primary

Core

Appearance

Property
Communicational Channel
Communicative Event
Description
Message Structure
Sticky Figure Primary

\GALESMAN /

Value

1= ORDER

ORDER m

SALES MAMNAGER

E Communicative Event A& CLIEN. ..

ff Sticky Figure Primary CLIENT

o Palette

EEX

e i%}J Java i[[j Resource

-
<~> Qr

ﬁ Primary ackor

§- Receiver actor

ﬁ Support actor

E Communicative event

[Communicative
subesent

| Precedence
relationship

web INQoing inkeraction
4= Qutgoing interaction

E Communication channe! &

S[em~ -0

Figure 92. Specifying ingoing and outgoing interactions for SaLe 1

Thus, after of to analyse the other communicative events that are part
of the Sale business process, we can to have the CED showed at Fig-

ure 93.

A modelling tool for Communication Analysis requirements models 165

& Java - SuperStationery-Example/SuperStartionery.cametamodel_diagram - Eclipse Platform

Eile Edit Diagram Mavigate Search Project Run Window Help

| i~ Q- EHGEG SO Y T e T ﬁ|@.’]ava|r|‘jp\esource
: | Tahoma 9 B 7 A By — - Yy By 0B+ Rav
SuperStartionery.cametamodel_diagram 23‘_‘_ =g
i &l
B (@] & R0 2 N Qe Y ngﬂ .l =
i “'| [" CATALOGLE FOMPANY DIRECT DEFTNES CAT... SALESMAN REGISTERS A CLIENT e — -‘ (

||\'l\! |S0LES MAMAGER. |SALESMAN i"ll\u

u o J J

- S el

SALES MANAGER. , [AL_T =
0 e — ST "F "R TRuc AN DED | n,(
"| [_7 NSIRAOICY ISR CEPT CLERK CONTRACTS.. FRANSPORT MHGR HIRES TRLC... L"l \
|| 1"\".\ TRUCK CRIVER
[T) TRANE MANAGER, [TRANSP MANAGER.
TR CEPT CLEAK
hg 2 . iz LOGISTICS TG =.‘ [—
] T MPIGR, ARRANGES L. "I\
| Mﬁ..i)?l i"l I\
il T i
TRAMPORT MANGGER. ‘I ‘.'l"\||
© e O U
1T msmence mEa = [HSUR CERT (1 E9K SPECTFIES "| & SRR
N T N
TNSURANCE DEPARTMENT CLERK QBT
T_|Cél e SR SHIPPING NOTTF. T_‘C%
NOTIFIES THE SHIFFL.
I| ;\& I| |,-‘.\
u ()]
| a
SALES MANAGER. semm ¥
3 >
e s B

Figure 93. Communicative Event diagram for Sale business process
modelled in the graphical editor.

166 4.4 How to use the modelling tool

Support to Message Structure

In the event description template for Sale 1, is specified the message
structure. We have developed two supporting tools to include the
message structure specification in the CED: one uses the Xtext tech-
nology, and the other uses the Eclipse Modelling Framework [38].

Support to Message Structures with Xtext

Message Structures is a modelling language based on structured text,
that can be specified using the Extended Backus-Naur Form notation
[38]. This characteristic facilitates the development of a domain-
specific language (DSL) tool. Figure 94.a shows the Message Structure
grammar as defined in the Xtext environment, an Eclipse-based envi-
ronment for the development of textual DSLs [43].

This environment allows the automatic generation of textual edi-
tors for the defined DSLs. Figure 94.b shows the specification of the
message structure ORDER, using the Xtext tool. An advantage of this
environment is that it can be integrated with other Eclipse-based
modelling tools.

A modelling tool for Communication Analysis requirements models 167

grammar org.xtext.example.mydsl.CAMS with

org.eclipse.xtext.common.Terminals

generate cAMS "http://www.xtext.org/example/mydsl/CAMS"

MessageStruc:

strucName +=StrucName

(initialSubstruc +=InitialSubstruc);

StrucName: =
strucName=ID '='; {5
InitialSubstr: ORDER=
(aggregationSubstruc +=AggregationSubstruc) | £
(iterationSubstruc +=IterationSubstruc); OrderNumber+
AggregationSubstruc: RequestDate+
'<' (substrucList +=SubstrucList)'>"; PaymentType+
IterationSubstruc: Client+

"{'" (substrucList +=SubstrucList)'}"'; DESTINATIONS=
SpecialisationSubstruc: -
'"['" (substrucList +=SubstrucList) {DESTINATION
('"|'" (substrucList +=SubstrucList))']'; <hddress+
SubstrucList: PersonInCharge+
(substruc+=Substruc) ('+'(substruc+=Substruc))*; LINES=
Substruc: (LINE=
(field +=Field) | <Product+
substrucName=ID'=" Frice+
(complexSubstruc+=ComplexSubstruc) ; Quancicy
Field: >
fieldName=ID; }
ComplexSubstruc: =
(aggregationSubstruc+=AggregationSubstruc) |
(iterationSubstruc+=IterationSubstruc) | }
(specialisationSubstruc+=SpecialisationSubstruc); *

a) DSL definition in Xtext for Message Structures b) Example of a message structure

Figure 94. Support to Message Structures with the Xtext environment
Support to Message Structures with Eclipse Modelling Framework

We have presented a metamodel that specifies the communicative
event diagrams and message structures as part of the Communication
Analysis method. This metamodel was designed to allow modelling
message structures. The Figure 95 shows a part of this metamodel.
The metaclases that have black border represent the primitives for
message structures.

168 4.4 How to use the modelling tool

organizational_actor [o..*
stickyFigurePrimary [0..%] stickyFigureReceiver [0..%] = organizational_actor
] STICKY _FIGURE_PRIMARY] STICKY _FIGURE_RECEIVER] orRGANIZAFIONAL_ACTOR = supPORT
=1 description : String =1 description : String =l narma : String =1 description @ String
. =l type : String
[DSt:EkyFlgureDr\maryT— S[unn% ?“pﬂ?rt
- o..1] organizational_actor| [0.*]([0..
following] Lprevios 1.4 E cormamacarive Rot
= suesirRUCTURE direct_iterrs i encapsulation
et =1 description : String ENESPSUANon o 1 oS A Fron
=1 narne : String =1 cormmunicational_charnel [1..%]
; P
(=0 order : String) [0..+] communicative_rol [0..#] [=1id : String
= context_restrictions : String all_itermns receiver =1 number : Integer
=1 structural_restrictions : String #— = ion ¢ Stri
primary. = PRIMARY |] RECEIVER =1 description : String
=1 name : String
=1 goal : String
= arimary =1 frequenceoar
FIELD
message_structLe [o0..1] = buisinessFarm
] PFE | parent | message_structe
=1 aperation @ String = cornmunicative_ewent
: COMPLEX_SUBSTRUCTURE
E gg;:_\?";ﬂt}'s'tﬁ:;ng — £ COMMUNICATIVE_EVENT

=1 typme @ String

taraet [, -+ JEormunicative_svent
E para_rELD 0..%7 | pointers communicative_subevent
P E———] REFERENCE_FIELD = cOMMUNICATIVE_SUBEVENT
=1 isldentifier : Boolean

Figure 95. Support to Message Structures with EMF

Figure 96 shows the message structure as an instantiation of the
metamodel, in the form of an Ecore tree. The tree graphically repre-
sents the composition of complex substructures, leaving the operators
= and + implicit. The type of each substructure is stored in the prop-
erty type of the metaclass COMPLEX_SUBSTRUCTURE (e.g. the tab
named Properties shows that the complex substructure DESTINATIONS
is of type iteration).

On the one hand, the implementation in Xtext ensures the compliance
with the EBNF grammar for Message Structures and it offers an edi-
torial environment that is more efficient and usable. On the other
hand, the implementation in EMF extends the CASE tool for Com-
munication Analysis; moreover, its Ecore metamodel offers the pos-
sibility of defining model to model transformations using languages
such as ATL Transformation Language (ATL [44]) or
Query/View/Transformation (QVT [45]). In any case, both implemen-
tation approaches are complementary.

A modelling tool for Communication Analysis requirements models 169

B £ = O || EX properties 232
i Resource Set Property Walue
= L& platForm: fresourcefgfOrder . cametarnodel Context Restrickions =
=< Madel Direct: Items < Complex Substructure DESTIMATION. ..
= < Complex Substructure ORDER Firsk < Complex Substructure DESTIMATION
Data Fisld OrderMumber Fallowing < Complex Substructure DESTIMATION
Marne = DESTINATIONS

Data Field RequestDate =
Crder =
Data Field Payment Type

-4 & ¢ ¢ ¢

- ' Parent % Complex Substructure ORDER
Reference Field Client Pr < Complex Substructure ORDER.
= Complex Substruckure DESTIMNATIONS Pointors & Reference Fiold Addross
% Complex Substructure DESTINATION Prewious % ReFerence Fisld Clisnt
< Reference Field Address Structural Restrictions 1=
<~ Data Field PersonInCharge Type 1= ITERATION

= <~ Complex Substructure LINES
= <+ Complex Substructure LINE
< Reference Field Product
- Data Field Price
4 Data Field Quantity

Figure 96. Example of message structure supported by the EMF envi-
ronment

4.5 Modelling tool validation

Due to the increasing interest in the MDA paradigm, the conceptual
models have become the backbone of the software development
process. So far some methods exist to develop a user interface accord-
ing to a MDA-compliant method, none of them explicitly connects
usability to their process activities[46].

Many approaches to evaluate the usability of software systems
have bean proposed in the last years [47], [48], [49], [50], [51], [52].
Most of them focus on defining a set of attributes that explains usabil-
ity and on developing guidelines and heuristics for testing it.

According to the integration framework, the Figure 97 presents the
activity of evaluation of the diagramming tool as part of this pro-
posal.

This subsection intends to show two ways were carried out to
validate the diagramming tool. The diagramming tool should to sup-
port the activities of the analyst. This means that, the diagramming
tool should to provide a usable interface. The goal is to increment the
productivity and efficiency of the analyst[32]. With this goal in mind,
we have proposed two types of validations: a heuristic evaluation of
usability and expressiveness and a usability evaluation with users
(user testing). These validations are explained below:

170 4.5 Modelling tool validation

STAGE 1 STAGE 2
PHASE 1 PHASE 3
PHASE 2 PHASE 4

PHASE 2: DESIGN AND IMPLEMENTATION

PSM METAMODEL OF
CA REQUIREMENTS
MODELS

.1 DESIGN OF PS
METAMODEL OF CED
AND MESSAGE
STRUCTURES

.2 IMPLEMENTATIO!
— S5 iAGRAMMING DIAGRAMMING TOOL
| TOOL
TERATIVE |
INCREMENTAL |

DEVELOPMENT I

ECORE
METAMODEL

| 2.3 EVALUATION OF
DIAGRAMMING TOOL

Figure 97. Activity of evaluation of diagramming tool

4.5.1 A heuristic evaluation of usability and expressiveness

For the heuristic evaluation of usability and expressiveness, an expert
in the Communication Analysis method has tested the modelling
tool. Whit this test, we intend to have a first report about the usability
and expressiveness of the modelling tool from an expert point of
view.

The ten principles proposed by Nielsen [53] have bean used as
heuristic rules (see Table 86).

1. VISIBILITY OF SYSTEM STATUS The system should always keep users
informed about what is going on,
through appropriate feedback within
reasonable time.

2. MATCH BETWEEN SYSTEM AND | The system should speak the users' lan-
THE REAL WORLD guage, with words, phrases and con-
cepts familiar to the user, rather than
system-oriented terms. Follow real-
world conventions, making information

A modelling tool for Communication Analysis requirements models 171

appear in a natural and logical order.

3. USER CONTROL AND FREEDOM

Users often choose system functions by
mistake and will need a clearly marked
"emergency exit" to leave the un-
wanted state without having to go
through an extended dialogue. Support
undo and redo.

4, CONSISTENCY AND STANDARDS

Users should not have to wonder
whether different words, situations, or
actions mean the same thing. Follow
platform conventions.

5. ERROR PREVENTION

Even better than good error messages
is a careful design which prevents a
problem from occurring in the first
place. Either eliminate error-prone
conditions or check for them and pre-
sent users with a confirmation option
before they commit to the action.

6. RECOGNITION RATHER THAN
RECALL

Minimize the user's memory load by
making objects, actions, and options
visible. The user should not have to re-
member information from one part of
the dialogue to another. Instructions
for use of the system should be visible
or easily retrievable whenever appro-
priate.

7. FLEXIBILITY AND EFFICIENCY OF
USE

Accelerators -- unseen by the novice
user -- may often speed up the interac-
tion for the expert user such that the
system can cater to both inexperienced
and experienced users. Allow users to
tailor frequent actions.

8. AESTHETIC AND MINIMALIST
DESIGN

Dialogues should not contain informa-
tion which is irrelevant or rarely
needed. Every extra unit of information
in a dialogue competes with the rele-
vant units of information and dimin-
ishes their relative visibility.

9. HELP USERS RECOGNIZE,

Error messages should be expressed in

172 4.5 Modelling tool validation

DIAGNOSE, AND RECOVER FROM plain language (no codes), precisely in-
ERRORS dicate the problem, and constructively
suggest a solution.

10. HELP AND DOCUMENTATION Even though it is better if the system
can be used without documentation, it
may be necessary to provide help and
documentation. Any such information
should be easy to search, focused on
the user's task, list concrete steps to be
carried out, and not be too large.

Table 86. Heuristics rules

The classification of usability problems (CUP) scheme is used for the
purpose of specifying the usability problems found during the heu-
ristic evaluation [54]. This classification provides a clear framework
for the analysis of the usability of the modelling tool for Communica-
tion Analysis method. It facilitates the classification of problems
found during the heuristic usability evaluation. As recommended in
[55], the CUP scheme has been adapted to the needs of the current
evaluation; the fields of the resulting template are explained below
(see Table 87).

ID Unique identifier for referencing each usability problem.

In this field, puts a numeric value that is increasing as the number
of problems that have been found.

DESCRIPTION | Simplified textual description of the problem of usability found.

TRIGGER Description of the heuristic rule applied to the problem of usability
found.

In this field, put the number of heuristic rule is related to the us-
ability problem found (see Table 86)

IMPACT Analysis of problems encountered in the implementation and im-
pact values.

The allowed values to describe the impact are:

1. Minor: Problems involved in the execution of the tasks of

A modelling tool for Communication Analysis requirements models 173

the application, but these problems do not interfere with which
they are carried out.

2. Moderate: Problems that significantly prevent the comple-
tion of the application’s tasks, where users can find an alternate
way to complete the task.

3. Severe: Problems that do not allow the user to successfully
complete the tasks being carried out in the application.

In this field, puts the number of values to describe of impact of us-
ability problem found.

PREVENTION | Ideas on how you can be carried out various activities in the im-
OF plementation.
USABILITY

PROBLEMS In this field, indicate a simplified textual description about a better

way for activity carry out.

Table 87. Description of the adapted classification of usability problems
(CUP) scheme

After of the evaluation carried out by the expert, it was found four
problems of expressiveness and 25 problems of usability. The expert
took five hours to evaluate the modelling tool and to write the report
into the CUP scheme (see Table 87).

4.5.2 An usability evaluation with users (user testing)

User testing provides valuable design feedback, but generally this
feedback arrives in the later stages of development when it is difficult
to modify the design. For this reason we propose involve the user ex-
perience with the modelling tool into the first stages of the develop-
ment.

After of the heuristic evaluation, we carried out a usability evaluation
with users. This usability evaluation was designed with the advice of
the professor Jean Vanderdonckt. He is professor at the Université
Catholique de Louvain (UCL). He is head of Belgian Laboratory of
Computer-Human Interaction (BCHI) and Coordinator of the

174 4.5 Modelling tool validation

UsiXML Consortium [56]. He is author of several research papers
about human-computer interaction and one book [57].

The usability evaluation with users was carried out after to solve
some problems found during the heuristic evaluation (see subsection
4.5.1). An improve version of the modelling tool was used to carry
out the evaluation with users and this version was used to design the
exercises for the usability evaluation of the modelling tool.

We have identified clearly two profiles, these profiles will be de-
fined below following the technique of PERSONA from Alan Cooper
[58]. We have followed a research paper that describe the advantages
of use this technique to define profiles, moreover, this analysis allow
us to focus on the end users of our evaluation, their task, activities
and knowledge[59].

The use of persona allow us to identify clearly the different pro-
tiles for our user testing activity, in addition, the task, questionnaires,
activities and the other aspects of the user testing evaluation was
been adapted to these profiles. We think that the profiles identifica-
tion it was an important step for the activity of the usability evalua-
tion, especially for the team of the design of the exercise, because this
helped us to communicate the ideas according the defined profiles
and also to provide an exercise according to the user capabilities.

Users description

The usability evaluation was carried out with master students of
software engineering. These students have a profile close to the pro-
tile of the end-user of the modelling tool.

We can to distinguish two types of users. There are described be-
low (Figure 98 and Figure 99):

A modelling tool for Communication Analysis requirements models 175

» na

Ana is 28 years old. She works as analyst of the information system
at a pension insurance company.

Ana carries out several activities to maintain the software application
that support the pension business. These activities include the
elicitation of the requirements specification. She uses the
Communication Analysis method to elicitate and to analyse the
requirements. This means that the she have several meetings with the
end-users of the system, and after of this, she draws a plan to develop
the requirements captured.

Ana uses different tools to support the manage of the requirements.

She uses Microsoft Visio to specify the communicative event diagram

models, and also she uses Microsoft Word and Excel to specifies the
message structures and event description template.

Figure 98. Description of the profile 1: Ana

Jhon

Jhon is 28 years old. He works as analyst of the information system at
a pension insurance organization.

John carries out several activities to maintain the software application
that support the pension business. These activities include the
elicitation of the requirements specification. He does not uses
requirements elicitation method to elicitate and to analyse the

requirements. This means that the He have several meetings with the

end-users of the system, and after of this, He draws a plan to develop
the requirements specified.

"
ot

For this activities, Jhon does not uses modeling tools that help him
with the manage of the requirements. He uses Microsoft Word and
Excel to specifies the information that he wants to analyse.

Figure 99. Description of the profile 2: Jhon

176

4.5 Modelling tool validation

At last, with the profiles clearly identify, we have proceeded to de-
sign the scenario for the usability evaluation with the users.

To follow, we describe the activities, a short description of each one
and the allowed time respectively.

Design of the scenario for the usability evaluation

The activities that were carried out are described in the planning

showed on Table 88.

ACTIVITY

DESCRIPTION

ALLOTTED TIME

Demographic question-
naire

General information
about the subjects is col-
lected.

10 minutes

Demonstration

A researcher demon-
strates the usage of the
modelling tool by carry-
ing out a task similar to
the one that the user will
perform.

5-10 minutes

Exploring the application

Users are given some
time to discover by
themselves the various
features of the modelling
tool.

10 minutes

Task performance

Subjects are given a task
that they have to carry
out by using different
features of the modelling
tool.

25-30 minutes

Break

Users take a break.

5 minutes

Usability questionnaire

Subjects complete the
CSUQ questionnaire and
some additional free-
response questions.

15-20 minutes

Focus group

A focus group (a type of
moderated team inter-

25-30 minutes

A modelling tool for Communication Analysis requirements models 177

view) is conducted. The
aim is to gather qualita-
tive information about
the impressions of the
subjects about the mod-
elling tool; for this pur-
pose, the user responses
to free-responses ques-
tions are discussed.

Table 88. Planning of the usability evaluation

First, the students filled the demographic questionnaire (see Figure
100).

178 4.5 Modelling tool validation

Demographic Questionnaire
Q1. Mark your gender:
Male: __ Female: __

Q2. Indicate your age: ___

Please the following questi about your previous experience with
modelling tools.

Explanation of the scale:

1= Mo experience; | have never used these type of tools

2=have used these type oftools to create simple models for training purposes (e.g.
inundergraduate or master courses)

3=1have used these type of tools to create moderately complex examples for
training purposes

4=|usethese type oftods ionally in my professional projects to create mid-
sized projects

5= use these type oftods almost daily in my professional projects

1 2 3 4 5

Q

©

What is your experience with general-purpose
diagramming tools (e.g. Microsoft Visio, Dia)

Q4 | What Is your experience with CASE modelling
tools (e.g. Rational Rose, ArgoUNL)

Please answer the following question about your previous experience with
modelling methods.

Explanation of the scale:

1=1have neveruserthis method

2=have seen examples in class

3=1have solved small exercises

4=]have solved moderately complex cases
5=1Ihave solved real cases professionally

Q5 | Business process modelling, in general

{using any kind of notation)

Q6 | Communication Analysis models
{a specific requirements method)

Figure 100. Demographic questionnaire

The results were analysed and are presented below. The Gender, Age
and some questions about previous knowledge were specified into
the demographic questionnaire.

A modelling tool for Communication Analysis requirements models

179

Gender

Figure 101. Percentage of male and female.

The median of the age of the participants is 27 years old.

The level of knowledge of the participant in modelling tools, CASE
tools and requirements models are presented below:

10

Number of subjects
v

Experience with general-purpose diagramming tools

Level of experience

m 1= No experience; | have never used these
type of tools

M 2= have used these type of tools to create
simple models for training purposes (e.g.in
undergraduate or master courses)

= 3= have used these type of tools to create
moderately complex examples for training
purposes

W 4= use these type of tools occasionally in
my professional projects to create mid-
sized projects

W 5= use these type of tools almost daily in
my professional projects

Figure 102. Experience with general purpose diagramming tools

180 4.5 Modelling tool validation
Experience with CASE modelling tools
10
9 M 1=No experience; | have never
used these type of tools
8
w 7 M 2 =| have used these type of tools
g to create simple models for
'.g‘ 6 training purposes (e.g. in
2 5 undergraduate or master courses)
g M3 =1 have used these type of tools
2 4, to create moderately complex
g examples for training purposes
Z 3
M 4 =] use these type of tools
2 occasionally in my professional
1 projects to create mid-sized
projects
0 M 5= use these type of tools
. almost daily in my professional
Level of experience projects
Figure 103. Experience with CASE modelling tools
Experience with modelling methods
12
10 B 1=1 have never user this
method
8
o 8 B 2 =1 have seen examples in
E class
]
S 6
° ¥ 3 =1 have solved small
2 exercises
E 4
> B 4= have solved moderately

level of experience

complex cases

B 5= have solved real cases
professionally

Figure 104. Experience with modelling methods

A modelling tool for Communication Analysis requirements models 181

Experience with Communication Analysis

requirements models
10

9 B 1 =1 have never user this
ﬁ 3 method
% 7 A M 2 =| have seen examples in
3 6 class
b~ -
g 3 3 =1 have solved small
-g 41 exercises
5 37
z 5 B 4 =| have solved moderately

1 - complex cases

0 - B 5= have solved real cases

level of experience professionally

Figure 105. Experience with Communication Analysis requirements
models

These results allow us to know about the level of expertise of the stu-
dents in general. According to these graphics, the users have been
familiarised with diagramming tools, modelling methods, CASE tools
and they have experience with the requirements models of Commu-
nication Analysis method. Thus, the participant of the experiment is
persons that can to carry out the exercise of the experiment without
problems and also they can give us feedback according their previous
experience with requirement methods, modelling tools, etc.

Then, the researcher starts the demonstration explaining how to rep-
resent a communicative event diagram into the modelling tool.

Later, the users can to explore the modelling tool and to ask some
questions to the researcher.

Thus, the communicative event diagram showed at Figure 106 was
given to the users in a print format. The users should to performance
the task into the modelling tool, they has 30 minutes for drawing the
model into the modelling tool.

182 4.5 Modelling tool validation

= - [=]x]
PF-0-@- E#H G- 5 | & ava |[(5Resource
X - [100% v
e 2 _feu = O|ld =g
5
=¥ = 25 Palette 3 |
EE=Y] by NEEEE N
default.
fefault.mmimplicit — precedente
default.mmimpiict 2
‘/Etnmmumcatmr\a\channe\
S O=
B
i ot jna empresa soicita un proyecte| Nugvo proyecto A
< Empresa 1 Ingeriero Jefe
) proyectos-2.can Atencién d clients N
(5 proyectos.camets Receiver
) proyectos,comet: 4 Support
o StickyFigurePrimary
——————
1 ingeriero jefe asigna n ingerniero al provecto| Proyectos asgnacos f\?
oo et Bandeldemoyects || Ingerier ﬁsmwﬁguvmzewav
Qant
[o
o« [
3 BMpresa revisa el PresupUEsto para proyecto —’7 r @
Empresa
Presupuesto |5 Presupuesto aprabaro Ingeriero Jefe
o hay suficiente presupuesto =]
La empresa acepta presupuesto
< >
a 5| [2 Problems | @ Javadoc | [2) Declaration | = properties 1% e Y70

Figure 106. Task done in the modelling tool.

After the break, the users response, the computer system usability
questionnaire CSUQ [60]. These questions ask to the users about their
points of view about the modelling tool. Through the CSUQ ques-
tionnaire is possible to identify three factors that corresponds with
some questions of the CSUQ); these factors corresponds with some
human factors related to the Information System (see Figure 107).
These factors are System Usefulness (SYSUSE), Information Quality
(INFOQUAL), and Interface Quality (ITERQUAL). The answers of
the CSUQ questionnaire are in a scale from 1 to 7, then, we can to
analyse the mean of the answers for each factor and the mean of the
overall.

A modelling tool for Communication Analysis requirements models

183

Computer System Usability Questionnaire (CSUQ)
Please rate the usability of the System using the following form:
DISAGREE AGREE
1 2 3 5 6 7
L. | overall, | am satisfied with how easy itisto
use this system.
2. | itwas simple to use this system.
3.1 Ican effectively complete my work using this
system.
4. | 1am able to complete my work quicklyusing
this system.
3. | lam able to efficiently complete my work
using this system.
8. | Ifeel comfortable using this system.
7. | Itwas easytolearn to use this system.
8. | Ibelieve | became productive quickly using
this system.
9. | The system gives error messages that clearly
tell me howto fix problems.
10. | Whenever| make a mistake using the system,
| recover easily and quickly.
11.| The information (suchas online help, on-
screen messages, and other documentation)
providedwith this systemis clear
11.| Iitis easyto find the information | needed
13.| The information provided forthe systemis
easy to understand.
14.| The information is effectivein helping me
complete the tasks and scenarios.
15.| The organization of information onthe
system screensis clear.
16.| The interface of this systemis pleasant.
17| Ilike using the interface of this system.
1. | This system has all the functions and
capabilities | expectitto have.
19.| overall, | am satisfied with this system.

Figure 107. Computer System Usability Questionnaire (CSUQ)

The mean of the answers of the CSUQ questionnaire is presented in a
box plot presented at Figure 108.

184 4.5 Modelling tool validation

CSUQ-Mean

Figure 108. Mean of the answers of the CSUQ questionnaire

The answers of the CSUQ questionnaire have a mean of 4.57. Having
into account the maximum value of the CSUQ scale is 7; with this re-
sult we can to infer that the most of the answers had a positive result.

The SYSUSE factor indicates the perception of the users about the
system usefulness. This factor corresponds with the questions 1 to 8.

The mean of the answers is of 5,53, the Figure 109 presents a box
plot with the values of the answers.

7,00

-

6,00

5,00

4,00

3,00

2,00

1,00

T
SYSUSE

Figure 109. Mean of the answers of the SYSUSE factor

A modelling tool for Communication Analysis requirements models 185

The INFOQUAL factor indicates the perception of the users about the
information quality of the system. This factor corresponds with the
questions 9 to 15. The mean of the answers is of 3, 59, the Figure 110
presents a box plot with the values of the answers.

T
INFOQUAL

Figure 110. Mean of the answers of the INFOQUAL factor

The INTERQUAL factor indicates the perception of the users about
the interface quality of the system. This factor corresponds with the
questions 16 to 18. The mean of the answers is of 4, 43, the Figure 111
presents a box plot with the values of the answers.

INTERQUAL

Figure 111. Mean of the answers of the INTERQUAL factor

186 4.5 Modelling tool validation

Later, the students filled the questionnaire with some additional
questions (Figure 112).

Additional questions E. When you need to make changes to previous work, how easy is it to make the
change? Which particular changes and why?

A Please listthree positive features of the modeliing toal {i.e. three characteristics of
the tool that you apprediate)

1

B. Please listthree negative features or drawbacks of the modelling tool (i e. three
characteristics of the tool that you dislike) F. Do some kinds of mistake seem paricularty common or easy tomake? Which ones?

1

C. Please estimate what percentage of the task you have successfully performed?

G. After completing this questionnaire, can you think of obvious ways that the design of
the system could be improved? What are they?

D. What kind of features of the tool or modelling elements are more difficult to see or
find?

Figure 112. Additional free-response questions

The additional questions are classified in this manner:

The questions A, B, and D were classified according to the usability
model [61]. The attributes of this usability model constitutes a taxon-
omy of the aspects that are part of the usability of software applica-
tion. We have follow the usability model to build a complete and de-
tailed taxonomy, then, the results of the questionnaires was added in
order to obtain the results showed at Table 89 and Table 90.

A modelling tool for Communication Analysis requirements models 187

The answers were classified according to the attributes of the usabil-
ity model. Negative and positive features were been into account.

FEATURE Q TOTAL
POSITIVE FEATURES 4. Attractiveness
4.1. Background Color
1. Learnability 2 Uniformity
1.1. Help Facilities 0 4.2. Font Color Uni-
1.2. Predictability 0 formity
1.3. Informative Feed- |0 4.3. Font Style Uni-
back formity
1.4. Memorabitity 0 4.4. Font Size Uniform-
TOTAL 2 ity
2. Understandability 1 4.5. Ul Position Uni-
2.1. Legibility 4 formity
2.2. Readability 2 4.6. Subjective Appeal-
2.3. Familiarity 0 Ing
2.4. Workload Reduc- |7 TOTAL
tion 5. Compliance
2.5. User Guidance 0 5.1. Degree of Fulfil-
TOTAL 14 ment with the ISO/IEC
e 9126
. | 1
3 ?? felra':' Illtyb'l't 5 5.2. Degree of Fulfill-
1. NS abilty ment with the 1SO 9241-
3.2. Data Validity 0 10
3.3. Controlability 1 5.3. Degree of Fulfill-
3.4. Capability of Ad- |1 ment with the Microsoft
aptation style guide
3.5. Consistency 0 5.4. Degree of Fulfill-
0 ment with the Java style
3.6. Error Management _?_l:)'f:f;L
3.7. State System 0
Monitoring
Table 89. Positive features
| FEATURES | Q MGATIVE FEATURES

188

4.5 Modelling tool validation

1. Learnability

1.1. Help Facilities

4.1. Background Color
Uniformity

1.2. Predictability

1.3. Informative Feed-
back

W=

4.2. Font Color Uni-
formity

1.4. Memorabitity

o

4.3. Font Style Uniform-
ity

TOTAL

2. Understandability

4.4. Font Size Uniform-
ity

2.1. Legibility

2.2. Readability

4.5. Ul Position Uni-
formity

2.3. Familiarity

2.4. Workload Reduc-
tion

Wo|o|N|Oo

4.6. Subjective Appeal-
ing

TOTAL

2.5. User Guidance

o

5. Compliance

TOTAL

3. Operability

3.1. Installability

5.1. Degree of Fulfill-
ment with the ISO/IEC
9126

3.2. Data Validity

3.3. Controlability

3.4. Capability of Adap-
tation

N |O|O|O

5.2. Degree of Fulfill-
ment with the ISO 9241-
10

3.5. Consistency

3.6. Error Management

5.3. Degree of Fulfill-
ment with the Microsoft
style guide

3.7. State System
Monitoring

5.4. Degree of Fulfill-
ment with the Java style
guide

TOTAL

10

TOTAL

4. Attractiveness

Table 90. Negative features

The answers of the question C indicate us the perception of the user
about the percentage of the task successfully performed (see Figure

113).

A modelling tool for Communication Analysis requirements models 189

120%
100%

® 80%

]

S 60%

° . M PERCENTAGE OF THE

S 40% TASK SUCCESFULLY
20% PERFORMED

0%
1357 911131517192123

Subjects

Figure 113. Percentage of the task successfully performed

In general, the perception of the users about the percentage of the
task successfully performed is of 100%. This indicates that the users
have perceived that they can to do the task completely.

The questions E and F were classified according to the cognitive di-
mensions of information artefacts purposed by [62].

Cognitive dimensions are a tool to aid non-HCI specialists in
evaluating wusability of information-based artefacts (summative
evaluation). Since they are addressed to non-specialists, they con-
sciously aim for broad-brush treatment rather than lengthy, detailed
analysis. Their checklist approach helps to ensure that serious prob-
lems are not overlooked.

The dimensions treated in this evaluation were the viscosity, visi-
bility and juxtaposability and the error-proneness.

The viscosity is the resistance to change, the cost of making small
changes.

We have classified the questions about the viscosity taking into ac-
count positive and negative sides; in this manner we have two groups
of answers:
¢ There is no problem when making changes to existing diagrams.

e There are some problems when making changes to existing dia-
grams.

190 4.5 Modelling tool validation

The first statement had 10 answers related to it.
The second statement had 6 answers related to it.

The visibility and juxtaposability is the ability to view components
easily and the ability to place any two components side by side.

We have classified the questions about the visibility and juxtapos-
ability taking into account positive and negative sides; in this manner
we have two groups of answers:

e There are not features or modelling elements that were difficult to
see or to find.

¢ There are features or modelling elements that were difficult to see
or to find.

The first statement had 5 answers related to it.

The second statement had 16 answers related to it.

The error-proneness is the possibility that the notation invites mis-
takes.

We have classified the questions about the error-proneness taking
into account positive and negative sides; in this manner we have two
groups of answers:
¢ There are possible seemed mistakes common or easy to make.
¢ There are not mistakes common or easy to make.

The first statement had 15 answers related to it.

The second statement had 0 answers related to it.

After the classification of the answers, we have identified problems
related to the usability and expressiveness. Some problems are re-
lated to the PSM metamodel, other problems are related to the Eclipse
technology. Finally, the users declared that the modelling tool was
easy to use, light and agile. And according to the answer C, the users
can to carry out the totality of the modelling exercise.

Finally, a focus group was conducted. Each user spoke aloud about
his/her perceptions about the modelling tool. The users spoke about
positive and negative characteristics of the modelling tool. Some so-
das were given to the focus group participants to motivate the dis-

A modelling tool for Communication Analysis requirements models 191

cussion. A microphone was located at the center of the room to re-
cord the opinions and comments during the focus group.

0

Figure 114. Focus group participants

A lot of comments and suggestions were discussed by the users. This
suggestions and comments were saved and classified in an Excel file
after the focus group for its future analysis.

4.6 Analysis and discussion

The development of this project phase has carried out several ad-
vances to aim the principal objective: to integrate a requirements
method into a MDD environment. The specifications of the meta-
models was the first step, now with the modelling tool is possible to
use and to distribute a tool for showing how to use the method in a
technological platform. During the development of this phase of the
project we have found several challenges, for instance we have decide
what is the better technological platform for supporting the require-
ments models, this having into account the others steps of the project
as the transformation models. Another challenge was the preparation
of the heuristic and usability evaluation, this exercise was so difficult
because into the literature, we can not to find how to test modelling
tools, how to carry out exercise as user-testing for modelling tools
and what kind of heuristics were more appropriate for this type of
evaluations. The usability evaluation with master students left us
several lessons learned, some of these lesson are corresponding to the
modelling tool and the role of the user, other lessons are about the

192 4.6 Analysis and discussion

design of the exercise. Thanks to the advice of the professor Jean
Vanderdonck who helps us a lot to design the exercise, his support
and experience left us a lot of lessons learned and mark a point to
start for offering a modelling tool usable and friendly with the users.
We have planed to repeat the exercise of user-testing with the model-
ling tool improved.

5 Supporting the model
transformation: From
Communication Analysis

requirements models to
OO-Method object model

I\/I odels are now part of an increasing number of engineering
processes. However, in most cases they are confined to a simple

documentation role instead of being actively integrated into the
engineering process. The MDD approach considers the models as
tirst class entities and also considers the tools, repositories, etc. can be
represented as models [37]. In order to these ideas, model transforma-
tion appears as a central operation. Model transformation aims to
provide a mean to specify the way to produce target models from a
number of source models. In this way, we have proposed this chapter
with several activities that aim to transform the requirements models
of the Communication Analysis method to conceptual models of the
OO-Method. The strategy will be presented, the technological sup-

194 4.6 Analysis and discussion

port, examples of the use of the transformation module and a pro-
posal of the validation of the transformation models. In addition is
presented a module of traceability support. Finally we conclude with
an analysis and discussions about lessons learned.

5.1.1 Initial state

Having into account the proposal for integrating requirements mod-
els into MDD environments, We propose a stage with several activi-
ties that aim to transform requirements models specified in commu-
nicative event diagrams and message structures (two novel tech-
niques of the Communication Analysis method) to conceptual mod-
els (conceptual models of OO-Method). This thesis proposes to follow

the activities presented in stage 2 (design and implementation),
please see Figure 115.

STAGE 2: DEFINITION OF MODEL TRANSFORMATION

PHASE 3: ANALYSIS AND THEORETICAL ESPECIFICATION

CONCEPTUAL

3.1 ONTOLOGICAL

ALIGMENT OF
'ALIGMENT OF CA WITH wrrﬁ OO-MEOTHCOAD
OO-METHOD CONCEPTUAL MODELS
ONCEPTUAL MODELS ONCEPTUAL MODE

GUIDELINES AND
DOCUMENTATION OF
OO-METHOD

DERIVATION GUIDES

3.2 DEFINITION OF
DERIVATION GUIDES
FROM CA TO
OO-METHOD

PHASE 4: DESIGN ANDJIMPLEMENTATION

4.1 DEFINITION OF
TRANSFORMATION
RULES

ATL LANGUAGE
SPECIFICATION

PIM) FROM CA MODEL!
TO OO-METHOD
CONCEPTUAL MODELS

TRANSFORMATION
RULES
(PSM)

4.2 IMPLEMENTATION
OF TRANSFORMATION
RULES

(=
ITERATIVE
INCREMENTAL
DEVELOPMENT l
L—

4.3 EVALUATION OF
TRANSFORMATION
MODULE

MODEL
TRANSFORMATION
MODULE

Figure 115. Stage 2 explanation

Supporting the model transformation: From Communication Analysis requirements
models to 00-Method object model 195

The activities corresponding to the phase 3 are part of previous work
of Espana et al [6], [63] [64]. The ontological alignment of PIM meta-
model is based on the conceptual alignment of communication analy-
sis (see phase 1). In [6], [26] and [12] are explained the Communica-
tion Analysis perspective. In [29] is explained the OO-Method per-
spective.

The definition of derivation guides are presented in [63] [65]. The
derivation guides are presented in natural language. This let to ana-
lyse the derivation guidelines without concepts about implementa-
tion and technological target platform (see Figure 116).

STAGE 1 STAGE 2
PHASE 1 PHASE 3
PHASE 2 PHASE 4

PHASE 3: ANALYSIS AND THEORETICAL ESPECIFICATION

CONCEPTUAL
ALIGMENT OF CA
WITH 00-METHOD
CONCEPTUAL MODELS

3.1 ONTOLOGICAL
ALIGMENT OF CA WITH
00-METHOD
ONCEPTUAL MODE

ONCEPTUAL MODEL
GUIDELINES AND
DOCUMENTATION OF
OO-METHOD

DERIVATION GUIDES
PIM) FROM CA MODEL
TO OO-METHOD
CONCEPTUAL MODELS

3.2 DEFINITION O
DERIVATION GUIDES
FROM CA TO
00-METHOD

Figure 116. Phase 3 explanation

The phase 4 contains the activities about the implementation of deri-
vation guides in a technological platform. The first activity intends to
establish a set of transformation rules. The derivation guides are
product of the phase 3, and these are represented in natural language.
This derivation guides are used to define a set of transformation rules
that can be implemented. First is interesting to have this transforma-
tion rules in a pseudocode, because it is possible to implement the
transformation rules into different languages depending the target
platform.

So as to implement the transformation rules, an analysis of differ-
ent technological support for models transformation was necessary.

196 4.6 Analysis and discussion

OMG purpose the Query/Views/Transformations (QVT) RFP
standard [45]. Others proposal evolved the OMG process, ATLAS
Transformation Language is one of them [44]. This proposal are sup-
ported by Eclipse [66] [67] and both follow a similar operational con-
text and share some common features (see Figure 117).

MOF

Conformsto Conformsto Conforms to

MMa MMt MMb

Conforms to Based on Conforms to Based on Conforms to

Ma Tab Mb

executed
input output

Figure 117. Operational context of ATL and QVT?

Tab is a transformation program which execution results in auto-
matic creation of Mb from Ma. These three entities are all models
conforming to MMt, MMb, and MMa MOF metamodels respec-
tively. MMt corresponds to the abstract syntax of the transformation
language. QVT and ATL provide their own metamodels defining
their abstract syntaxes [68].

No a single language can be adapted to all application domains.
This means that it is not different for model engineering and espe-
cially for model transformation. Simple problems can often be solved

3 Figure taken from Jouault and Kurtev [68].

Supporting the model transformation: From Communication Analysis requirements
models to 00-Method object model 197

using one language; more complex problems sometimes need several.
Therefore, it is important to acquire knowledge about the strong and
weak points of existing languages and their applicability [68].

QVT operates in the layered MOF-based metamodelling architecture
prescribed by OMG. The abstract syntax of QVT is defined as a MOF
2.0 metamodel. This metamodel defines three sublanguages for trans-
forming models. OCL 2.0 [69] is used for querying models.

The QVT language is formed of three languages with declarative
and imperative constructs. The languages are named Relations, Core
and Operational Mappings.

The languages Relations and Core are declarative languages at two
different levels of abstraction. Operational Mappings is an imperative
language that extends Relations and Core languages.

These languages can be implemented in a set or in a separate way;
this depends of the transformation rules that will be specified.

ATL architecture is composed of three layers: the ATLAS Model
Weaving (AMW) [70] [71], ATL and ATL Virtual Machine (ATL VM).

ATL provides both declarative and imperative constructs and is
therefore a hybrid model transformation language.

The coming sections present the implementation of the rules trans-
formation. We decided to support the rules transformation by ATL
language. The rules use declarative language and imperative lan-
guage to express the heuristics. Then, we consider ATL as the best
option according to its architecture and hybrid language (support of
declarative and imperative sentences). The technological support will
be presented at section 5.2. Other advantage of the ATL is the imple-
mentation on the Eclipse platform. This let to use the metamodels
that have been built. The rules implementation will be presented at
section 5.3. The case of SuperStationery Co specified at the technical
report available at [42] present the rules transformation carried out of
a manual derivation way. The section 5.4 presents the results of to
apply the ATL rules to obtain the conceptual model for SuperStation-
ary Co lab demo. Section 5.5 presents a proposal to validate the cor-
rectness and completeness of the models resulting of to apply the

198 5.2 Technological support

ATL transformation rules versus the models resulting of to apply the
rules of a manual way. Section 5.6 presents a proposal for managing
the traceability between the models. Finally, section 5.7 presents
analysis and conclusions of this chapter.

5.2 Technological support

ATL is a hybrid model transformation language developed as a part
of the ATLAS Model Management Architecture. ATL is supported by
a set of development tools built on top of the Eclipse environment: a
compiler, a virtual machine, an editor, and a debugger.[44]. Accord-
ing to the Figure 117, the abstract syntax of ATL takes place in MMt,
this metamodel corresponds to ATL abstract syntax. Transformation
programs are written using ATL concrete syntax.

The declarative part of ATL is based on the notion of matched rule.
A rule consists of a source pattern matched over source models and
of a target pattern that gets created in target models for every match.

ATL offers two imperative constructs: called rule and action block. A
called rule is explicitly called, like a procedure, but its body may be
composed of a declarative target pattern. Matched rules and called
rules may be used together in a single transformation program. Ac-
tion blocks are sequences of imperative instructions that can be used
in either matched or called rules.

Transformation programs written in ATL are inherently unidirec-
tional. Source models are only navigable and target models are not
navigable.

An execution engine and development tools (code editor, com-
piler, debugger, etc.) are available on Generative Modelling Tech-
nologies (GMT) project [72]. GMT is the official research incubator
project of the top-level Eclipse Modelling Project.

The execution support for ATL is on a virtual machine. The virtual
machine is implemented on Eclipse Modelling Framework (EMF) [40]
and Netbeans MetaData Repository (MDR) [73]. Virtual machine op-
erations are adapted to OCL helpers implementation [69].

Supporting the model transformation: From Communication Analysis requirements
models to 00-Method object model 199

ATL is developed on top of the Eclipse platform, the ATL Integrated
Environment (IDE) provides a number of standard development
tools (syntax highlighting, debugger, etc.) that aims to ease develop-
ment of ATL transformations [66].

To below, we present the implementation of the rules transformation
in ATL, in order to obtain the conceptual models from specifications
that follow the Communication Analysis method.

5.3 Rules implementation

The rules transformation intend to derive the OO-Method conceptual
models from Communication Analysis requirement models. The
derivation guidelines have been published in conference papers [63]
and in a technical report [65].

The activity to implement the transformation rules is part of the
phase 4 of the proposal (please see Figure 118). In this figure is possi-
ble to see how interact the different resulting products of the other ac-
tivities (PSM metamodels, specifications, definitions, etc.).

STAGE 1 STAGE 2
PHASE 1 PHASE 3

PHASE 2 PHASE 4

TRANSFORMATION
RULES
(PSM)

4.1 DEFINITION OF
TRANSFORMATION
RULES

MODEL

PHASE 4: DESIGN AND IMPLEMENTATION
4.2 IMPLEMENTATION TRANSFORMATION
MODULE

ATL LANGUAGE
SPECIFICATION
OF TRANSFORMATION j=efp>!

| — _> RULES

INCR AL I
DEVELOPMENT |
L —

4.3 EVALUATION OF
TRANSFORMATION
MODULE

Figure 118. Phase 4, step of implementation of transformation rules

200 5.4 Transformation example

After to analyse the derivation guidelines, it was possible to represent
each rule on ATL. In this way, each rule mentioned at [65] corre-
sponds with a rule in the ATL code.

The PSM metamodel for Communication Analysis requirements
models (communicative event diagrams and message structures) pre-
sented at section 4 was used as the source metamodel for transform-
ing process (ecore metamodel).

The target metamodel for transforming process is the UML meta-
model of MDT-UML2Tools of GMF [37]. The conceptual model
metamodel of OO-Method not is represented in an Eclipse technol-
ogy, for this reason, we have decide to use the UML metamodel of
Eclipse. At section about future works (please see page 217), we pur-
pose some alternatives to close the requirements models to concep-
tual models. Interoperability concepts to derive the conceptual mod-
els of OO-Method from requirements models of Communication
Analysis could be a solution [74]. Although, the target model is the
UML metamodel, it is still possible to see a resulting model so close
to OO-Method specification. This happens because several primitives
of OO-Method are specified in the UML metamodel.

The ATL code of the rules transformation is showed in the Append 2.

5.4 Transformation example

Taking into account the example showed at section 4.3, we wants to
transform this communicative event diagram and message structures
to its corresponding conceptual model.

The manual derivation of the conceptual model and the complete
specification of the SuperStationery Co. lab demo is available in [42]*.

4 The technical report “Integrating of Communication Analysis and the OO-Method: Manual

derivation of the conceptual model. The SuperStationery Co. lab demo” contains the com-

Supporting the model transformation: From Communication Analysis requirements
models to 00-Method object model 201

Thus, taking The SuperStationery Co. lab demo, we will see how is
possible to obtain the conceptual models in an automatic way
through to execute the ATL transformation code (please see the code
at append 2).

To below, we present how to execute the ATL transformation code
to see the conceptual model in two different specifications provides
by Eclipse: tree representation and graphical representation.

After to specify the communicative event diagram and to specity its
corresponding message structures into the modelling tool, the trans-
formation module can be executed.

Then, returning to the example seen in the section 4.3, to remember
that the communicative event diagram and message structures for
The SuperStationery Co. were specified into the modelling tool.

The following steps indicate how to execute the ATL code.

¢ The communicative event diagram with The SuperStationery Co.
specification should be exported in a XMI format.

¢ Open the ATL module and Import the XMI of The SuperStation-
ery Co. The workspace looks like the Figure 119.

plete specification for deriving the conceptual model (communicative event diagrams, mes-
sage structures and event specification templates). We do not consider necessary to present

this information in this thesis for simplified the explanation.

202 5.4 Transformation example

& ATL - Eclipse
File Edit Mavigate Search Project Run Compatibilty ‘Window Help

| mii PR 0 Q- =08 B € an |& sava
: o (o
[[j Project Explorer &3 = (| = 8-
=
— .
= 5| @ -
=125 camm2umimm »~ o=
[Z] cazuml.asm

cazurml, atl

(-] cametamodel. ecore
.@ SuperSkationery . xmi

[E=] @ tracer.ecore

[E=] @ uml.ecore

EConsole ‘_3;_—|Error Log EProperties) =9 T (]

ca2uml.atl - camm2umimm

Resource Property Value b
= Infa
derived false
editable true
last modifie 26 de junio de 2011 21:5...
linked false
v. | akimn A PAriiranke and Sakkin v
¢ | > ¢ |
o® €] cazurnl.atl - cammzurmlrrn :
P e B

Figure 119. Workspace ATL

The workspace contains:
® ca2uml.atl -> File with the ATL code.
® cametamodel.ecore -> File with the Communication Analy-
sis requirements metamodels.
® SuperStationery.xmi -> Communication Analysis require-
ments model for The SuperStationery Co.
® tracer.ecore -> File with the traceability metamodel (the
traceability metamodel will be explained at section 5.6).
* uml.ecore -> File with the UML metamodel.
* Right-click the ca2uml.atl file and to select Run As -> 1 ATL trans-
formation.
¢ The run configurations should be established according to the
Figure 120.

Supporting the model transformation: From Communication Analysis requirements
models to 00-Method object model 203

& Run Configurations @

Create, manage, and run configurations @

Mame: | cazurnl |

" ATL Configuration @ Advanced | £ Common

ATL Module A
| Teammurmlmm/cazuml, atl | l Workspace.‘.]
Metamodels

cametamodel: | Teamm2urmimmycametamodel ecore |

[11s metametamodel

[Workspace...] [File system, ..] [EMF Registry. ..]

uml: | Teamm2urmlmmfuml. ecore

[11s metametamodel

[Workspace...] [File system, ..] [EMF Registry. ..]

tracer: | feammz2umlmm/tracer . ecore

[11s metametamodel

Source Models

[Workspace...] [File system, ..] [EMF Registry. ..]

IN: | Teammzurmlmm/prueba, xmi

conforms ko cametamadel

Target Models

Workspace. ..] lFiIe system, .,]

QUT: | TeammzZumlmm/prueba-out uml

conforms ko urml

[Workspace...] lFiIe system, .,]

trace: | TeammzZumimmytraceability omi |
conforms to tracer [Workspace...] lFiIe system, .,]
Libraries hd

) [Run] [Close]

Figure 120. Run configuration for ATL transformation

¢ Two new files should to appear: SuperStationery.uml and traceabil-
ity.xmi.
The file SuperStationery.uml contains the derived conceptual
model for SuperStationery Co. This conceptual model is represented
in a tree view (please see Figure 121).

204 5.4 Transformation example

& ATL - camm2umlmm/SuperStationery. uml - Eclipse
File Edit Mavigate Search Project Rum UML Editor Compatibility ‘Window Help

E4- fs- O Q- o 79 [€ A |8 s
; s G
[Project Explorer 52 = B |] superstationery.uml 53 i
> =
=] <F=T> ~ = B = (e Zumimnm,Suy o
=] é e r2urii 2 =-E2 «<Model> SuperStationery o=
[Z) cazuml.asm B <Primitive Type:= String
a cazuml.atl [+ <Primitive Type= Integer

<Prirnitive Type= Boolean

<Primitive Type:= Date

<Prirnitive Type= Real

H <dlass» CLIENT

] «Class> CLIENT_ADDRESS

/' =hssociation> CLIENT_CLIEMT_ADDRESS
E «class= sUPPLIER

£ <class» PRODUCT

/ <hssociation> &_PRODUCTs

= «class» ORDER

/ <hssociation CLIEMT_ORDER

] «Class» DESTINATION

/" <hssociation> CLIENT_ADDRESS_DESTINATION
/" <hssociation’ ORDER_DESTINATION

H «dass» LINE

/" «hssociation > PRODUCT _LIME

/' =hssociation > DESTINATION_LINE

- «Association > SUPPLIER,_CRDER.

] «Class» TRUCK DRIVER

/" =hssociation> TRUCK DRIVER_ORDER
= «Class> INSURANCE POLICY

[<hssociation > INSURANCE POLICY_ORDER

(-] cametamodel, ecore

2] @ SuperStationery .uml
@ SuperStationery . xmi
L& traceahility.smi

(-] tracer.ecore

[+ @ uml.ecore

L B R = Bl S Rl s R SR

v
El console @ Error Log | = Properties 23 =" {im]
o [u]% =
Property Value
< b4

Lo

s B

Selected Object: platfor. .. mimm)Superstationery . uml

Figure 121. SuperStationery Co. Class diagram tree view

The file traceability.xmi contains information about the traceability

among the elements of the metamodels. The traceability metamodel

and traceability model will be explained at section 5.6.

e Right-click the SuperStationery.uml file and to select Initialize
Class Diagram. This action generates the conceptual model in a
graphical representation (please see Figure 122).

Supporting the model transformation: From Communication Analysis requirements

models to 00-Method object model

205

13e7d) LoNa0yd mau

BLIIS : SIUBLLLWOD =1
gy 1 aoud =

Bugs : aweu 1onpoud =)
Buys ¢ spod1onpoud =

vd)T dwelsaluy T BuiddiysT1es 8

12naodd m
“TeixET 1d JsesneTenxa 185

YIqUO ™ ¥ANddNS

102 d JY3ddns” meu

aleq: slep uonensibal =
Buls i =

Buns : epodiisod =
BLI3s : ssaippe =

Bugs : suoydspl =
BLUls @ Bquunuiea =]
buls @ swel 1e|ddns =

15nacud| [10] [3d JsjuBIWon RSB0/ 3es @5 | S30U0 $A1ddNS Buls © epod =
INIT LOAa0Hd ' uopisap3d)3sMOdsTy 38 @ | [+7°0] [10]
BisseT3d jayep jusiIbisse 1S 4 H3rddns m

saNIT| [4 0] SN IEpIoETd 430 meu 4

+BETd)aNIT MU i a1eq : dwejsawn Buddys =

busS @ sasne|n enxe &=

BULIS | 53UBLILOT 8160 =
a1eq : 21Ep ssuodsal =

21eq : 21Ep ABAEp paULed =
NNF BUIS : Uosep =

JebBaiur ¢ Aluenb =
2y : 2oud =

¥3TH0™ ADIIOd FONENSNI

"'170d FONTENSNT mau §8

BULS @ sSENED =
Bus TlequnuTAzod =

saNDT | [0) aleq Emulw:mc‘_m_mmm =
i Buls : adiy uswied =
INIT NOILYMILS3A i
MNOLLYNILS3A |[10]

JebEqul | laquInuIspIo =
o doysTyd JuspioTdojsT e 4 MNOILYNILSIT ¥3aq40
“bETd JNOLLYNLLSIT MaU & [SROTIVNILSIa d9ad0
[+0] [10]

[+0]

H3iado m H30HO YIATHA HONHL

[« 01| su3auo

Jsb=3ur © Jepic dols =1 [10]
Buys @ ebeeys uuosied =
NOLL¥NILS3A m 43qY0 LNITTD
SNOILLYNILS3A | [4 0]
OLLYNILS3A SSIWAdY LNITD rol | aErm
S53¥aAY LNIID | [1q] A
gy N3 meu i -
Q: a8iep uonensifal = B9 =
L E_M = S53¥aAY LN3ITD™INIID buns : suoydsiel = «anpuLIch:
“rEU] ¢ epod 1sod = BLWELTIUBID =
BuLys | ssalppe =1 2 ﬁmm.m,_m__ooq Sl ._m_w_m_m__u IBCWINLT1BA =]
*
JRbau]
S534aav INIITD m INIITD m LI

SEEH0 A2[0d JONTHr15N]
(170l

SHJE0 ENEIDTEL
[«O

Buins @ Auedwod =

ADI10d JONVHNSNI H

rIBAET JUIATEA MOMELT MaU g

Jebaqur i ()T peol WnWIxeLW &
bulls ¢ lequinuaed =

Buns : suoydaje) =

Bus © Bweu 1zalp =

Bus ¢ lequinuTIeA &

UIATHA HONHL

21ed (= ueajood =
«BAILILIC AL
bus =
115 55
FEIN

i «[BpoL» 5

Figure 122. SuperStationery Co. Class diagram in UML 2.0

206 5.5 Validation of the transformation proposal

5.5 Validation of the transformation proposal

The technological implementation of the rules transformation pro-
vides the advantage to integrate the requirements models into the
engineering processes.

Thus, with the conceptual models in an electronic format, it is possible to carry
out interoperability activities to represent the generated conceptual models in the
conceptual models of OLIVANOVA.

We consider the implementation of the rules transformation as an
important step to achieve to close the gap between the requirements
models and the software application. For this reason the last activity
of the phase 4 is the evaluation of the module transformation. It is
necessary to provide a transformation module improved in an incre-
mental way.

STAGE 1 STAGE 2
PHASE 1 PHASE 3
PHASE 2 PHASE 4

PHASE 4: DESIGN AND IMPLEMENTATION

4.1 DEFINITION OF TRANS:SE:;ATION
TRANSFORMATION (PSM)
RULES
ATL LANGUAGE
SPECIFICATION
MODEL
4.2 IMPLEMENTATION
OF TRANSFORMATION [ERENSEORMATION
RULES MODULE

ITERATIVE |
INCREMENTAL |
DEVELOPMENT 4.3 EVALUATION OF
L — —{ TRANSFORMATION
MODULE

Figure 123. Activity of evaluation of the transformation module

Previous experiments have been carried out with master students to
evaluate the completeness and correctness of the generated concep-
tual models using the rules transformation in a manual way.

Supporting the model transformation: From Communication Analysis requirements
models to 00-Method object model 207

We intend to check the agility and facility to use the transforma-
tion module versus to use the transformation rules in a manual way.

We plane to carry out an exercise with master students. Previous
experiments have tested the manual use of the transformation rules.
We consider interesting to analyse the correctness and completeness
of the generated conceptual models using the implemented transfor-
mation rules.

And also, we plane to carry out a usability evaluation and expres-
siveness of the modelling tool with the transformation module. We
plane to use the same framework that was described at section 4.5.

5.6 Traceability support

Model transformation is expressed in terms of heuristics. These heu-
ristics define how a set of source models are transformed in a set of
target models. These heuristics are defined in term of metamodels.
The model weaving is an important operation in MDE. Model weav-
ing intends to handle fine-grained relationships between elements of
distinct models, establishing links between them. These links are cap-
tured by a weaving model. It conforms to a metamodel that specifies
the link semantics[71].

There are tools for supporting model weaving. Didonet Del Fabro
et al [71] purpose AMW weaving tool. AMW is available in the
Eclipse platform (GMT project [72]) and it reuses part of the infra-
structure of the ATL IDE [66]. It provides an API to access models
and metamodels that are based on the Ecore [36] metamodel. This
implementation offers a user interface for weaving task.

Due to the complexity of the transformation rules for transforming
requirements models into conceptual models, we consider necessary
to specify our own metamodel traceability. The inherent complexity
of the rules not was adaptable to the AMW weaving tool. The weav-
ing tool lets to specify the matching between elements. The ATL

208

transformation code contains imperative code, this difficult to express

5.6 Traceability support

it in a declarative way, or a matching way.

We intents to follow the MDE principle “everything is a model”
[31]. For this reason, it is possible to consider a metamodel traceabil-
ity for our metamodels. The Figure 124 presents our proposal of
traceability metamodel. We intend not to introduce metaclasses to the
source and target metamodels. Following the idea presented by
Jouault [75], the metamodels specified with Ecore metamodel [36] are
linked with this metamodel. For this reason, the elements of each

metamodel can to inherit of the class EOBJECT.

& ATL - camm2umlmm/tracer.ecore_diagram - Eclipse

File Edit Diagram Mavigate Search Project Run Compatibilty Window Help
Ci"EH& -0 Q- =R T € ar & 1ava
b (o -
| Tahama vls #|B I A-&-.9
[d] *tracer ecore_diagram &2 =g
° 4
)
H Elerment
"= elemnerthame
= elementType
=
=
1,1 1.1
soLrceElernent targetElernent
sourceTrace targetrace
=Ty %t
H Trace
= traceMame
El console | € Error Log |] Properties 53 =B S|
H EClass
Gl Property Value
AT Abstrack I+t False
BE Default Yalue =
ESuper Types B EModelElement - EObject
Inskance Type Mame =
Interface I False
Mame = Element:
< >
e
Pe [

Figure 124. Traceability metamodel

Supporting the model transformation: From Communication Analysis requirements
models to 00-Method object model 209

Thus, the metamodel of Communication Analysis requirements
models (please see section 4) also have an inheritance relationship
with the Ecore class EOsJecT. The same for the UML metamodel (see
Figure 125 and Figure 126).

& ATL - camm2umimm/cametamodel.ecore_diagram - Eclipse

File Edit Diagram Mavigate Search Project Run Compatibility window Help

"B & %-0-Q- = 2 E € A1 & avs
; - % G-
EITahoma VIQ vi B I |A- &-.
cametamodsl.ecore_diagram &3 ==
= P 4 =
i B ==

H EModelElerment

@ getEAnnotation

=]
H Element]
7
[~
vl
M
S >
El console | € Error Log | = Properties 52 |5 |:{=::> T o
H EClass
Core Property Value
[— Abskrack lsge true
RE Default Yalue =
ESuper Types H EModelElement - EObject
Instance Type Mame =
Inketface lsge False
Mame = Element
£ >
1o
s [

Figure 125. Inheritance relationship between the ELevEnT metaclass and
EMopELELEMENT metaclass

210 5.6 Traceability support

& ATL - camm2umimm/uml.ecore_diagram - Eclipse I._|@|rz|
File Edit Diagram Mavigake Search Project Run Compatibility Wwindow Help

C-He i #%-0- Q- =20 2 B (€ a1 | & ava

: X5 o -

iiTahoma vig v B I A~ &-,

*uml.ecore_diagram i3 =0
=5 =
P B MarmedElemant Bl o
= "o name 3 —
= visibility

= gualifiedMame

[hittp: f fwewewe, eclipse, org emff2002/GentModel

v
< | >
El console | €] Error Log | & Properties 52 = | 15 |:{=::> == |
B EClass
Core Property Walue
AT Abstract e brie
BR Default Yalue =
ESuper Types B Element - EMadelElement
Instance Type Marme =
Interface vk False
MName U= MamedElemnent
< ¥
g
e 5

Figure 126. Inheritance relationship between the NAvEDELEMENT meta-
class and EMopeLELEMENT metaclass

According to the traceability metamodel, the ATL code contains sen-
tences to save information about each transformation. For instance,
Figure 127 shows the header of the rule to create a class from aggre-
gation substucture®. This header contains information about the ele-
ments (source and target), and save information about the name of
the element and its type.

3 The complete ATL code is presented at Append 1.

Supporting the model transformation: From Communication Analysis requirements
models to 00-Method object model 211

Then, the ATL code generates the conceptual model and the in-
formation about the traceability between models. The information
about the traceability is saved in a XMI format

rule process_create classiactive substructure: cametamodel!Substructure]{
to
class: uml!Class(name<-active substructure. name),
elementdrc: tracer !Element (elementName<- active substructure.name,

elementType <- 'Aggregation substructure'),
elementTrg: tracer !Eletment (elementlatne<- class.nsme,
elementType <- 'Class',targecTrace<-Sequence{elementTrgl) ,

trace: tracer!Trace |
tracelName<-'Create Class',
cargetElement <- elementTrg)

Figure 127. ATL rule to create class from aggregation substructure

Executing the code showed at Figure 127, The SuperStationery Co.
example has the traceability information presented at Figure 128.

B X
1<?¥ml wersion="1.0" encoding="IS0-3859-1"2>
Z<xmi:ENT xmi:version="2.0" xmlns:xmi="http://vuw.omy.org/ZMI" xmlns:tracer="tracer">
3 <tracer:Element sourceTrace="/0" elementMame="CLIENT" elementType="Aggregation subsStructure";>
4 <tracer:Element targetTrace="/1" elementName="CLIENT" elewentType="Class"/>
5 «tracer:Trace traceName="Create Class" targetElement="/1" sourceElemenc="/0"/>

Figure 128. Example of traceability information for The SuperStationery
Co.

It is possible to add more traceability information. Thus, the traceabil-
ity metamodel lets to add the information that the analyst wants to
save. The ATL rules can to contain a lot of traceability rules according
to the metamodel. Then, the traceability metamodel is adaptable to
different kind of traceability information.

5.7 Analysis and discussion

Model transformation aims to provide a mean to specify the way to
produce target models from a number of source models. In this way,
we have proposed a stage with several activities that aim to trans-
form requirements models specified in communicative event dia-

212 5.7 Analysis and discussion

grams and message structures (two novel techniques of the Commu-
nication Analysis method) to conceptual models (conceptual models
of OO-Method). This thesis proposes to follow the activities pre-
sented in stage 2 (design and implementation) of the general frame-
work (please see Figure 115).

To achieve this objectives, we have implemented the transforma-
tion rules purposed by Espafia et al [63]. Then, a study about trans-
formations engine was carried out. QVT [45] is a standard purposed
by the OMG for model transformation, and it is implemented in
Eclipse environment [76]. ATL is other transformation engine devel-
oped in the GMT project of Eclipse [72]. The result of this study let us
to choose ATL as the better option to implement the. This is because
the rules are expressed in declarative and imperative sentences. The
hybrid nature of ATL provides patterns and a language to specify
this kind of heuristics [66].

A transformation example is presented for illustrating the result of
to execute the transformation rules.

The imperative code of the transformation rules facilitates the im-
plementation of the heuristics. The transformation rules are imple-
mented using declarative and imperative code, for this reason we de-
cide to use ATL.

6 Conclusions

fter to develop the activities related to this master thesis, We ana-
lyse the result of our work. This chapter presents the main con-
clusions that can be highlight after development of this thesis.

This chapter presents contributions related to the objectives and
research questions presented at chapter 1. In addition, we present a
list of publications related to this thesis, which confirm the acceptance
level and relevance of this project. In addition, we present a list of
technical reports that was prepared during development of this the-
sis. This technical reports are a more detailed documents, where is
possible to find more information abut different topics related to this
thesis.

Furthermore, a list of before publications of this thesis is pre-
sented. These publications are the research background of the author
of this thesis.

Finally, we conclude with future work.

214 6.1 Contributions

6.1 Contributions

The main research goal of this thesis is to propose an approach to in-
tegrate Communication Analysis method and OO Method. This pro-
posal presents a general framework that guides the integration activ-
ity and provides software artefacts that support the integration be-
tween the requirement method and the conceptual method. This the-
sis proposes to use the MDD paradigm to develop technological envi-
ronments for requirements methods, which provide several advan-
tages as: agile development of software, availability of open source
platforms for MDD developments (e. g, Eclipse) and possibility of
software automatic generation, etc. The principal contributions of this
master thesis are presented below.

Generic model-driven framework to integrate requirements engi-
neering methods. A model-driven framework to guide the integra-
tion activities of both, requirements engineering methods and con-
ceptual models. This framework presents the phases, stages and ac-
tivities that are necessary to carry out an integration process. This ge-
neric framework follows a model-driven architecture perspective;
modelling artefacts (e.g. metamodels, modelling tools, etc.) are sug-
gested to achieve the integration.

Integration of Communication Analysis and OO-Method. The ge-
neric model-driven framework is instanced to achieve the main objec-
tive of this thesis: integrate Communication Analysis and OO-
Method. Development of this thesis presents the integration process
and presents the different software artefacts obtained.

Technological artefacts to support the Communication Analysis
techniques. A set of metamodels that describe techniques of Com-
munication Analysis were built. In addition, a modelling tool to sup-
port the method techniques was proposed. These artefacts intend to
offer technological support for Communication Analysis techniques.
These artefacts are used later at the moment to build a support for in-
tegrating methods.

Conclusions 215

Technological artefacts to support the integration between Com-
munication Analysis and OO-Method. A set of transformation rules
were designed. These transformation rules were specified in ATL.
ATL is a transformation language engine supported by Eclipse. Thus,
a module to support the models transformation between Communi-
cation Analysis and OO-Method is presented.

A usability evaluation proposal to evaluate modelling tools. A us-
ability evaluation design for modelling tools is presented. The evalua-
tions include the point of view of the Experts of the methods and the
point of view of the potential users of the modelling tool. The usabil-
ity evaluation was an important experience to improve the modelling
tool.

6.2 Publications

Publications related to this thesis

* Ruiz, M, Espana, S., Gonzélez, A, Pastor, O. Analisis de Co-
municaciones como un enfoque de requisitos para el desarro-
llo dirigido por modelos.VII Taller sobre Desarrollo de Soft-
ware Dirigido por Modelos (DSDM'10) Valencia, Espafia Sep-
tember 7, 2010

* Espana, S, Ruiz, M., Gonzdlez, A, Pastor, O. Integrando
Técnicas Avanzadas de Modelado de Requisitos en MOSKitt.
MOSKittDay - eclipseDay 2010 Valencia, EspafaNovember
30-31, 2010

* Ruiz, M., Gonzdlez, A, Espafa, S., Pastor, O. Message Struc-
tures: a modelling technique for information systems analysis
and design. 14th Workshop On Requirements Engineering
(WER 2011). Rio de Janeiro, Brazil April 27-29, 2011

* Espafia, S., Ruiz, M., Pastor, O., Gonzdlez, A. Systematic deri-
vation of state machines from communication-oriented busi-
ness process models. IEEE Fifth International Conference on

216

6.2 Publications

Research Challenges in Information Science (RCIS 2011) Gua-
deloupe, France May 19-21, 2011

Gonzdlez, A, Espana, S., Ruiz, M., Pastor, O. Systematic deri-
vation of class diagrams from communication-oriented busi-
ness process models. International Workshop on Business
Process Modelling, Development and Support (BPMDS 2011).
London, United Kingdom June 20-21, 2011

Ruiz, M., Ameller, D., Espana, S., Botella, P., Franch, X., Pas-
tor, O. Ingenieria de requisitos orientada a servicios: carac-
teristicas, retos y un marco metodoldgico.VII Jornadas de
Ciencia e Ingenieria de Servicios. A Coruna, Espafia Septiem-
bre 5-9, 2011

Thechnical reports related to this thesis

Espana, S.; Gonzdlez, A.; Pastor, 0, Ruiz, M. Integration of
Communication Analysis and the OO Method: Rules for the
manual derivation of the Conceptual Model. Informe técnico
ProS-TR-2001-04. arXiv.org: http://arxiv.org/abs/1103.3686
Espafia, S.; Gonzdlez, A.; Pastor, O.; Ruiz, M. A practical
guide to Message Structures: a modelling technique for in-
formation systems analysis and design. Informe técnico ProS-
TR-2011-02. arXiv.org http://arxiv.org/abs/1101.5341
Espana, S.; Gonzalez, A.; Pastor, O.; Ruiz, M. Integration of
Communication Analysis and the OO Method: Manual deri-
vation of the Conceptual Model. The SuperStationery Co. lab
demo. Informe técnico ProS-TR-2011-01. arXiv.org
http://arxiv.org/abs/1101.0105

Publications before this thesis

Zapata, C., Ruiz, M., Pastor, O. Desde Esquemas Preconcep-
tuales hacia OO-Method. Revista Facultad de Ingenieria, Uni-
versidad de Antidquia; Medellin Clave: A Volumen: 56 Pagi-
nas, inicial: 203 final: 212 Fecha: 2010 Editorial (si libro): ISSN
0120 — 6230 Lugar de publicacion: Medellin, Colombia

Zapata, C., Ruiz, M., Villa, F. UNC-Diagramador una herra-
mienta upper CASE para la obtencion de diagramas UML

Conclusions 217

desde Esquemas Preconceptuales. Revista Universidad Eafit
Clave: A Volumen: 43 Pé4ginas, inicial: 68 final: 80 Fecha:
2007 Editorial (si libro): ISSN 0120-341X Lugar de publicacién:
Medellin, Colombia

6.3 Future work

In order to reduce the gap between the industries and the academy,
we will intend to carry out a comparative study between manual
model transformation and automatic model transformation. So as to
do this study, the previous evaluation of the modelling tool, and the
experiments carried out following manual model transformation
could be analysed.

In addition, a study about the BPMN acceptation in the industrial en-
vironment is intended. This study intends to present the acceptance
level of BPMN vs. modelling languages produced in the academy, for
instance the communicative event diagrams (CED) of the Communi-
cation Analysis method.

Moreover, we intend to propose a PhD project that includes exploit-
ing the ideas proposed in this master thesis.

7 References

7.1 References of this thesis

1.

I. The Standish Group International, "The Standish Group, CHAOS Summary 2010," ed,
2010.

. W. Bussen and M. D. Myers. Executive information system failure: a New Zealand case

study. Journal of Information Technology, vol. 12(2), 1997, pp. 145-153.

S. T. Foster Jr. and C. R. Franz. User involvement during information systems
development: a comparison of analyst and user perceptions of system acceptance Journal

of Engineering and Technology Management, vol. 16(3-4), 1999, pp. 329-348.

N. Juristo, A. M. Moreno, and A. Silva. Is the European industry moving toward solving

requirements engineering problems? . Software IEEE, vol. 19(6), 2002, pp. 70-77.

. B. Nuseibeh and S. Easterbrook, "Requirements engineering: a roadmap." In: Conference

on The Future of Software Engineering (ICSE'00), New York, USA, 2000.

S. Espafia, A. Gonzalez, and O. Pastor, "Communication Analysis: a requirements
engineering method for information systems." In: 21st International Conference on
Advanced Information Systems (CAiSE'09), Amsterdam, The Netherlands, 2009.

220 7.1 References of this thesis

7. D. Zowghi and C. Coulin. Requirements Elicitation: A Survey of Techniques, Approaches,
and Tools. Engineering and Managing Software Requirements, 2005, pp. 19-46.

8. S. Kabanda and M. Adigun, "Extending model driven architecture benefits to requirements
engineering." In: South African institute of computer scientists and information
technologists on IT (SAICSIT ' 06), Republic of South Africa, 2006.

9. M. Alferez, U. Kulesza, A. Sousa, J. Santos, A. Moreira, J. Aratjo, and V. Amaral, "A
Model-driven Approach for Software Product Lines Requirements Engineering," in
Software Engineering and Knowledge Engineering SEKE (2008) 2008, pp. 779-784.

10. O. Pastor, S. Espafia, and A. Gonzalez, "An Ontological-Based Approach to Analyze
Software Production Methods." In: United Information Systems Conference (UNISCON
2008), Klagenfurt, Austria, 2008.

11. S. Espana, "Methodological integration of Communbication Analysis into a Model-
Driven software development framework," PhD. Computer Science, Departamento de
Sistemas Iformaticos y Computacion (DSIC), Universitat Politécnica de Valéncia,
Valencia, 2011.

12. A. Gonzalez, S. Espafia, and O. Pastor, "Towards a Communicational Perspective for
Enterprise Information Systems Modelling." In: The Practice of Enterprise Modeling: from

Business Strategies to Enterprise Architectures (PoOEM), Stockholm, Sweden, 2008.

13. M. Bunge, Philosophy of science: from explanation to justification vol. 2: Transaction
Publishers., 1998.

14. R. Wieringa, "Design science as nested problem solving." In: 4th International
Conference on Design Science Research in Information Systems and Technology
(DESRIST '09), New York, USA, 2009.

15. K. Kronlof, Method integration: concepts and case studies. Chichester, UK.: John Wiley
and Sons Ltd., 1993.

16. K. Kumar and R. J. Welke, Methodology EngineeringR: a proposal for situation-specific
methodology construction. NY, USA: John Wiley & Sons, 1992.

References 221

17. M. Saeki. A meta-model for method integration. Information and Software Technology,
vol. 391997, pp. 925-932.

18. G. Giachetti, "Supporting Automatic Interoperability in Model Driven Development
Processes," Departamento de Sistemas Informaticos y Computacién (DSIC), Universitat

Politécnica de Valéncia, Valencia, Spain, 2011.

19. B. Nuseibeh, "A Multi-Perspective Framework for Method Integration," Department of
Computing, Imperial College of Science, Technology and Medicine, London, UK, 1994.

20. J. L. de la Vara, "Business Process-Based Requirements Specification and Object-
Oriented Conceptual Modelling of Information Systems," Departamento de Sistemas
Informaticos y Computacion (DSIC), Universitat Poliecnica de Valéncia, Valencia, Spain,
2011.

21. AuraPortal. AuraPortal BPMS. Available: http://www.auraportal.com

22. MOSKitt. Modelling Software Kitt. Available: http://www.moskitt.org/

23. I. T. Corporation. Visio Stencil and Template for UML 2.2. Available:
http://softwarestencils.com/uml/index.html

24. O. Pastor, A. Gonzalez, and S. Espaila. Conceptual alignment of software production

methods. Conceptual modelling in information Systems enginnering, 2007, pp. 209-228.

25. A. Gonzalez, "Algunas consideraciones sobre el uso de la abstraccion en el analisis de los
sistemas de informacion de gestion," Departamento de Sistemas Informaticos y

Computacion (DSIC), Universitat Politécnica de Valéncia, Valencia, Spain, 2004.

26. A. Gonzalez, S. Espaiia, and O. Pastor, "Unity criteria for business process modelling: A
theoretical argumentation for a software engineering recurrent problem." In: Third
International Conference on Research Challenges in Information Science (RCIS 2009),
Fes, Morocco, 2009.

27. S. Espafia, A. Gonzalez, O. Pastor, and M. Ruiz, "Message Structures: a modelling
technique for information systems analysis and design." Pros Research Center, Valencia,
Espafia, 2011.

28. OMG, "MDA Guide," in How is MDA used?, ed: OMG, 2003, pp. 1-62.

222 7.1 References of this thesis

29. O. Pastor and J. C. Molina, Model-Driven Architecture in practice: a software production

environment based on conceptual modeling. New York: Springer, 2007.

30. J. den Haan, "The Enterprise Architect, Building an agile enterprise," in MDE - Model
Driven Engineering - reference guide, J. d. Haan, Ed., ed, 2009.

31. OMG, "MDA Guide," in How is MDA used?, ed: OMG, 2003, pp. 1-62.

32. M. Ruiz, S. Espaiia, A. Gonzalez, and O. Pastor, "Anélisis de Comunicaciones como un
enfoque de requisitos para el desarrollo dirigido por modelos." In: VII Taller sobre
Desarrollo de Software Dirigido por Modelos (DSDM 2010), Jornadas de Ingenieria de
Software y Bases de Datos (JISBD) Valencia, Espaiia, 2010.

33. S. Espaiia, PhD. Computer Science, Departamento de Sistemas Iformaticos y

Computacion (DSIC), Universitat Politécnica de Valéncia, Valencia, 2011.

34. OMG, "OMG Unified Modeling LanguageTM (OMG UML), Infrastructure," ed, 2010,
pp. 1-226.

35. Microsoft. (2010, Microsofi Visio 2010. Available: http://visiotoolbox.com/2010/

36. F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose, Eclipse Modeling
Framework: A Developer's Guide: Addison-Wesley Professional, 2003.

37. Eclipse.org. Model Development Tools (MDT) / UML2. Available:
http://wiki.eclipse.org/MDT-UMI.2

38. S. Espafia, A. Gonzélez, O. Pastor, and M. Ruiz, "Integration of Communication Analysis
and the OO-Method: Manual derivation of the conceptual model. The SuperStationery Co.
lab demo." Departamento de Sistemas Informaticos y Computacion, Universidad
Politécnica de Valencia, Spain, Available at
http://hci.dsic.upv.es/ca/SuperStationery-"TR-v2.0.pdf 2011.

39. A. Gonzilez, M. Ruiz, S. Espafia, and O. Pastor, "Message Structures a modelling
technique for information systems analysis and design." In: XIV Workshop on

Requirements Engineering (WER'11), Rio de Janeiro - Brasil, 2011.

40. Eclipse.org. Eclipse Modeling ~ Framework (EMF). Available:
http://www.eclipse.org/modeling/emf/

References 223

41. F. Plante, "Introducing the GMF Runtime." IBM, 2006.

42. S. Espaiia, A. Gonzalez, O. Pastor, and M. Ruiz, "Integration of Communication Analysis
and the OO-Method: Manual derivation of the conceptual model. The SuperStationery Co.
lab demo." 2011.

43. H. Behrens, M. Clay, S. Efftinge, M. Eysholdt, P. Friese, J. Kéhnlein, K. Wannheden, S.
Zarnekow, and and contributors. (2010, 2010-11). Xtext user guide (v 1.0.1). Available:
http://www.eclipse.org/Xtext/documentation/1 0 1/xtext.pdf

44. F. Jouault and I. Kurtev, "Transforming models with ATL." In: Satellite Events
MODELS 2005, Montego Bay, Jamaica, 2005.

45. OMG, "Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification," ed,
2011.

46. S. Abrahao and E. Insfran, "Early Usability Evaluation in Model Driven Architecture
Environments." In: Sixth International Conference on Quality Software (QSIC'06), 2006.

47. L. Constantine and L. A. D. Lockwood, Software for Use: A Practical Guide to the
Models and Methods of Usage-Centered Design. New York: Addison-Wesley Pub Co,
1999.

48. D. Hix and H. R. Hartson, Developing User Interfaces: Ensuring Usability Through
Product and Process. New York: John Wiley and Sons, 1993.

49. ISO, "ISO-IEC 9126-1: Software Engineering - Product Quality - Part 1: Quality Model,"
ed, 2001.

50. J. Nielsen, Usability engineering. London: Academic Press, 1993.

51. B. Sheneiderman, Designing the User Interface: Strategies for Effective Human-
Computer Interaction, 3rd ed. Boston, MA, USA: Addison-Wesley, 1997.

52. D. Wixon and C. Wilson, "The usability engineering framework for product design and
evaluation," in Handbook of Human-Computer Interaction, M. Helander, et al., Eds., ed:
Elsevier Science B.V, 1997.

224 7.1 References of this thesis

53. J. Nielsen, Heuristic evaluation, in Usability inspection methods. New York, USA: John
Wiley and Sons, 1994.

54. E. T. Hvannberg and E. L.-C. Law, "Classification of usability problems (CUP) scheme."
In: Human Computer Interaction INTERACT'03, 2003.

55. S. G. Vilbergsdottir, E. T. Hvannberg, and E. L.-C. Law, "Classification of Usability
Problems (CUP) Scheme: Augmentation and Exploitation." In: NordiCHI 2006: Changing
Roles, Oslo, Norway, 2006.

56. UsiXML. (2011, USIXML USer Interface eXtensible Markup Language. Available:
http://www.usixml.org

57. A. Seffah, J. Vanderdonckt, and M. Desmarais, Human-Centered Sofiware Engineering,
Software Engineering Models, Patterns and Architectures for HCI: Springer, 2009.

58. A. Cooper, "Putting personas under the microscope," in Journal, A blog about design,

business and the world we live in., ed, 2009.

59. F. Long, "Real or Imaginary; The effectiveness of using personas in product design," in
Proceedings of the Irish Ergonomics Society Annual Conference (IES Conference 2009),
Dublin, Irland, 2009, pp. 1-10.

60. J. R. Lewis. IBM computer usability satisfaction questionnaires: psychometric evaluation
and instructions for use. International Journal of Human-Computer Interaction, vol. 7(1),
Jan-March 1995 1995, pp. 57-78.

61. S. Espafia, 1. Pederiva, I. Panach, S. Abrahao, and O. Pastor, "Evaluacion de la
Usabilidad en un Entorno de Arquitecturas Orientadas a Modelos." In: IDEAS 2006,
Argentina, 2006.

62. T. Green and A. Blackwell, "Cognitive Dimensions of Information Artefacts: a tutorial "
In: BCS HCI conference, 1998.

63. A. Gonzalez, S. Espafia, M. Ruiz, and O. Pastor, "Systematic derivation of class diagrams
from communication-oriented business process models." In: 12th edition of the Business
Process Modeling, Development, and Support (BPMDS) series, in conjunction with
CAiSE’11, London, Uk, 2011.

References 225

64. S. Espaia, M. Ruiz, O. Pastor, and A. Gonzalez, "Systematic derivation of state machines
from communication-oriented business process models." In: Fifth IEEE International

Conference on Research Challenges in Information Science, Guadaloupe, France, 2011.

65. S. Espaiia, A. Gonzalez, O. Pastor, and M. Ruiz, "Rules for the manual derivation of the
Conceptual Model." ProS Research Centre, Universitat Poliécnica de Valéncia, Valéncia,
Spain, 2011.

66. Eclipse.org. ATL, the Atlas Transformation Language. Available:

http://www.eclipse.org/atl/

67. Eclipse.org. M2M/QVT Declarative (QVTd). Available:
http://wiki.eclipse.org/M2M/Relational QVT Language %28QVTR%2
9

68. F. Jouault and I. Kurtev, "On the architectural alignment of ATL and QVT." In: The 21st
Annual ACM Symposium on Applied Computing SAC'06, Dijon, France, 2006.

69. OMG, "Object Constraint Language 2.0 (OCL)," ed, 2006.

70. M. Didonet Del Fabro, J. Bézivin, F. Jouault, and P. Valduriez. Applying Generic Model
Management to Data Mapping. Journées Bases de Données Avancées (BDA0S), 2006.

71. M. Didonet Del Fabro, J. Bézivin, F. Jouault, E. Breton, and G. Gueltas, "AMW: A
Generic Model Weaver." In: 1¢éres Journées sur 1'Ingénierie Dirigée par les Modéles (IDM
05), Paris, 2005.

72. Eclipse.org. GMT Project. Available: http://www.eclipse.org/gmt/

73. NetBeans.org. NetBeans.org open source project.

74. B. Marin, G. Giachetti, and O. Pastor, "Intercambio de modelos UML y OO-Method." In:
Congreso Iberoamericano en "Software Engineering" (CIbSE'07), Isla de Marguerita,
Venezuela, 2007.

75. F. Jouault, "Loosely Coupled Traceability for ATL." In: European Conference on Model
Driven Architecture (ECMDA) workshop on traceability (2005) Nuremberg, Germany,
2005.

226 7.1 References of this thesis

76. Eclipse.org. Eclipse.org. Available: http://www.eclipse.orq/

8 Append 1

8.1 Development of the modelling tool: step by step

The Graphical Editing Framework (GEF) provides technology to cre-
ate rich graphical editors and views for the Eclipse Workbench User
Interface [40]. The Graphical Modelling Framework (GMF) is an
Eclipse project that aims to provide a generative bridge between the
EMF and GEF [40].

GMF is an Eclipse project with the potential to become a keystone
framework for the rapid development of standardized Eclipse
graphical modelling editors. Architects and developers involved in
the development of graphical editors or of plug-ins integrating both
EMF and GEF technologies should consider building their editors
against the GMF Runtime component. This framework let us to build
modelling tools based on Eclipse editors like UML editor, Ecore edi-
tor, BPM Editor, etc. The Framework can be divided en two main
components: the tooling and the runtime. The tooling consists of edi-
tors to create/edit models describing the notational, semantic and
tooling aspects of a graphical editor. The generated plug-ins depend
on the GMF Runtime component to produce a world class extensible
graphical editor [41].

228 8.1 Development of the modelling tool: step by step

We have followed a workflow in order to create a graphical model-
ling environment for communicative event diagrams and message
structures. The Figure 129 shows the workflow followed. This work-
flow was built according to the Eclipse Tutorials [37].

We can to distinguish three important phases. The first phase is
the definition of domain models. These set of models intent specify
the non-graphical information managed by the editor. The second
phase is the definition of diagram models. These models define
graphical elements to be displayed in the editor. The Third phase is
the generation of graphical editor. This phase basically takes the
models previously created in order to generate the java code that will
be representing the graphical editor.

Now, we will analyze each phase and we will explain how was
made each activity.

PHASE 1: DEFINITION OF DOMAIN MODELS
v | [CREATE | [iy
METAMODEL UMLCLASS H MODEL
. MODEL

|

q ™~
ECORE GENERATE ecore
FOR CED
METAMODEL ECORE *—y T

MODEL)
- y

|

GENMODEL GENERATE) ggr;?mgge[;
METAMODEL GENMODEL H s
. MODEL

B

PHASE 2: DEFINITION OF DIAGRAM MODELS

1

gmfmap

P
GMFMAP CREATE
METAMODEL GMFMAP {—» FOR CED

. MODEL

MODEL

P
gmfgraph
et || GMFGRAPH | FORCED
MODEL
_ MODEL =L
GMFTOOL (" CREATE gmftool
METAMODEL GMFTOOL H FOR CED
_ MODEL |

PHASE 3: GENERATION OF GRAPHICAL EDITOI

GMFGEN GENERATE) foriven
METAMODEL GMFGEN H o
mooe) | "0
UE GENERATE) DIAGRAM
CODE CODE FOR
DIAGRAM {-»
METAMODEL CED
CODE

|

Figure 129. Workflow to create the modelling environment for CED

Append 1 229

Phase 1: Definition of domain models

The phase 1 consists about the creation of the Domain models. The
CED metamodel was specified through of the UML class model (see
section 3.4). Later, the Ecore model was generated. Now, the first step
consists in to create a new EMF project. This means to select File ->
New -> Project -> Eclipse Modelling Framework -> EMF Project. Choose
the Ecore model resource (The Ecore model previously created), and
click the finish button to close the wizard and to establish the genera-
tion. The genmodel for CED looks like Figure 130.

YT e e, o)

File Edit Source Refactor Mavigate Search Project Run Generator Window Help

e - H 0 Q- B ®C - o[ETgmiee)

D b aJJava
+] Package E b %Plugf\ns.; = 0| . cametamodel.genmodel 33 5 = ()
= <§>| - I g Cametamodel =
| » 'E} camm i B Cametamodel o=
E Model 5|

a =% diagramador
4 [= model
&) cametamodel.ecore

E Element

E System -> Element

E Subsystem -> Element

E Process -> Element

| Encapsulation -> Node

E Mode -> Element

E Precedence -> Element

E Receiver -> CommunicativeRol

% cametamodel.ecorediag
cametamodel.genmaodel

E CoemmunicativeRol -> Element

E CommunicationalChannel -» Element

E ComplexSubstructure -> Substructure, Element
| Substructure

E ReferenceField -> Field

[l Field -» Substructure

[SstickyFigureReceiver -> Element

E OrganizationalActor -> Element

H Support -» Element

B stickyFigurePrimary -» Element

E Primary -> CommunicativeRol

H CommunicativeEvent -> Encapsulation

H CommunicativeSubevent -» Encapsulation
H LogicalNede -> Node

El End -> Node

H start-> Node

E And-> LegicalMNode

E Or-> LogicalMode

E DataField -> Field

1k . = @ Error Lo .'E,Tasks.i.l_—& Problem E Properti BN o =' ﬁ
nf cametamodel.genmodel - diagramador/model

Figure 130. Genmodel model for CED

230 8.1 Development of the modelling tool: step by step

At this point, it is possible to generate the editor code. EMF provides
a textual editor to implement models according to the Ecore model.

This textual editor is a concrete syntax for the CED (See Chapter 0
for more explanation about the concrete and abstract syntax for
CED).

In order to obtain the textual editor, right-click the genmodel file
and select Generate Model Code, later, select Generate Edit Code and
Generate Editor Code. With these actions, we can to obtain a source
file, an edit file and an editor file. These files contain the classes with
the model implementation and the editor implementation.

We can to use the textual editor to specify CED in a tree view. To
specify CED in a tree view, follow these steps:

e Right button over the editor project select Run As -> Eclipse Applica-
tion (see Figure 131). This action to run other instance of Eclipse
application with the plug-in that we have created. This plug-in
contains the metamodels to create CED.

€ Plug:in Development - Eclipse

Figure 131. How to run the textual editor for CED

Append 1 231

¢ In the new Eclipse environment, create a new EMF project. Select
File -> New -> Project -> Eclipse Modelling Framework -> Empty EMF
Project (See Figure 132). Assign a name to the new EMF project.

& New Project |z|@

Select a wizard

Create an empty Java plug-in project with EMF dependencies |

Wizards:

| J

ig Java Project "~
& tava Project from Existing Ant BuildFile
@ opendrchitecturettare Project
g2 Plug-in Project
@ Heexk Project
= General
= aTL
= Vs
E-[= Eclipse Maodeling Framewark,
T EMF Project
AR Ernpty EMF Project
== Ecore Toals
[Graphical Madeling Framewark
= Java |

3

Figure 132. Creation of a new empty EMF project

e Select File -> New -> Other -> Example EMF Model Creation Wizard ->
Cametamodel Model. This action opens the wizar associated to
CED models (See Figure 133). Click the Next button.

232 8.1 Development of the modelling tool: step by step

Select a wizard

Create a new Cametamodel model |

izards:

== Example EMF Model Creation Wizards

|

! Canstrainks Madel
@ Datatypes Madel
[&! Rdb Model
@ Sirnpleuml Madel
&7 UML Model
@ Wiew Maodel
[57 %50 Madel
= GMF-spand
[= @raphical Modeling Framework
= Java
(= lava Emitker Templates
[= IET Transfarmations

o

£

@

Figure 133. Selection of the CED creation wizard

In the wizard, to create the new CED, select the EMF project pre-
viously created and to assign a name to the model. Notice that the
model extension is “.cametamodel”, this name corresponds with
the metamodel name that defines the model (see Figure 134).
Click the Next button.

Append 1 233

& New |ZI®

Cametamodel Model

Create a new Cametamodel model

240

Enter or select the parent Folder:

| SuperStationery-Example |

>

1= Superstationery-Example

File name: | Superstationery, cametamaodel

@ [< Back " Mext = l Finish

Figure 134. Creation of the new CED model

¢ In this step, you should select a model object to create. Choose in
the Model Object section Model element. This object indicates the
root element of the model that will be created. The value for the
XML Encoding section should be UTF_8 (see Figure 135). Click the
Finish button.

234 8.1 Development of the modelling tool: step by step

& New |Z|@@
Cametamodel Model \
Select a model object ta create
g
Model Object
3|
#ML Encoding
UTF-8 M |
©)

Figure 135. Selection of the model object to create

Now, we have a new file named “SuperStationery.cametamodel”.
This file has hierarchical structure. This file contains a root element
named Model. This element can contain the elements that we have de-
fined in the metamodel specification.

The initial state of the SuperStarionary project is showed at Figure
136.

Append 1 235

— =
& Java - SuperStationery-Example/SuperStationery.cametamodel - Eclipse Platform |._|E|E|
Ele Edit Mavigate Search Project RBun Cametamodel Editor Window Help
i - R v AL g I EEET I ®C ﬁ|aJJava|[(jRasourca
[+ Package 24 Tz Hierarch | = 8 _Q Superstationery, cametamnodel £3 = [l
= % o 7 |l Resource Set
=2 SuperStationery-Example = L|—<>] platfarm:/resourcefSuperStationery-Example/Superstationery. cametamod
e =< [
% SuperStationery.cametamodel
v
< >
Selection | Parent | List | Tree | Table | Tree with Columns
< | 5 [E__Prnhlems 1@ Javadoc @ Declaration | = Properties &3 =]
1 Selected Object: Model

Figure 136. Initial state of the SuperStationery model

The element Model is container for the other elements that are part of
the SuperStationery model.

In order to add elements, right button over the Model element and se-
lect New Child. This action shows a menu whit a set of elements that
could be added to the Model (see Figure 137).

236 8.1 Development of the modelling tool: step by step

File Edit Mavigate Search Project Run Cametamodel Editor Window Help

i i @ P30 Q- EHE ®O 4 ﬁlaJJava“.—[\jResource
[% Package % 'E: Hierarch | = O || 2] SuperStationery.cametamadel 53 =]
= <f{> ~ M :E\:, Resource Set

=] Q platform: fresource/SuperStationery-Example/Super Stationery . cametamod A
=] s
[=)-1=F SuperStationery-f|

Q SuperSkatione {?Precedence
éf Receiver
| § Communicational Channel
ﬁ Complex Substructure
| <§’ Sticky Figure Receiver
& support 15| Copy
| “# sticky Figure Primary
f Primary
| ¥ Communicative Event
.é.’ Communicative Subevent Validate T
| {? End
ﬁ Start Run As r
| <<; and Debug As 4
{? or Prafile As L4
Yalidate
Team r
Compare With 4
Replace With 4
WikiTesxk L4
Load Resource...
Refresh
Show Properties View
At
ad >
Selection | Parent | List | Tree | Table | Tree with Columns
< 1 > [£ Problems | @ Javadoc @ Declaration | = Properties 52 =0
P ome

Selected Object: Model

Figure 137. Add elements to the Model

For instance, if we want to add a new communicative event, we need
to go to the option Communicative Event. Automatically, in the model
appears a communicative event and a Properties tab is available to
edit the information about this element (see Figure 138 for a commu-
nicative event example).

Append 1 237

& Java - SuperStationery-Example/SuperStationery.cametamodel - Eclipse Platform

File Edit Mavigate Search Project Run Cametamodel Editor Window Help

| i w P -0 Q- I EHEG @ - B | &’ 1ava | [Resource
z = -
i Package &2 Tg Higrarch | = O [<>] SuperStationery,cametamodel 23 SuperStartionery. cametamodel =[]
B & | & 7 || f5Resource Set
= Q platform: /resource) SuperStationery-Example/Super Stationery . cametamodel -~

(=1 SuperStationery-Example
o (=< Model

! Superstationery,cametamodel Y
= E Cormmunicative Event SALES MANAGER ASSIGNS SUPPLIER
4% Support SALES MANAGER

“
£ L4
Selection | Parent | List | Tree | Table | Tree with Columns
[£1 Problems | @ Javadoc @ Declaration | =] Properties 53 =08
o a5 R Y
Property Yalue
Business Form =
Description =
Frequence Ccurr =
Goal =
d I=sSAlEZ
Incomming L Precedence, Precedence
Marme IE4°ALES MAMAGER.
Mumber -3
Cukgoing L Precedence
Primary w Primary ASSIGMENT
Receiver &= Qeceiver ASSIGNED ORDER
< 2 [< >

e

Figure 138. Example of creation of a Communicative Event

This activity should be carried for each element that will be part of
the model.

The Figure 139 shows the complete example about SuperStation-
ery Co Model implemented in a textual editor.

We do not recommend the use of the textual editor for CED because
this way could be so slow. The textual editor does not provide a
flexible interface and it does not provide a preview of the model. For
this reason some mistakes and fails could be made in the model.

238

Eile Edit Mavigate Search Project Run Cametamodsl Editor

8.1 Development of the modelling tool: step by step

xample/SuperStationery.cametamodel - Eclipse Platform

indow Help

i} P Q- Q- B SCRIER: K= 5 &7 save
<::| -
[# Package % . Te Hierarch | = O || 1] Superstationery.cametamedel &3 = [m]

B % | Resourcs Set
=] '_oj platfarm: fresource/SupetStationery-Examplef Super Stationery, cametamadel
- 4

) Communicative Event COMPANY DIRECT DEFINES CATALOGUE
E Communicative Event A CLIENT PLACES AN ORDER

| Precedence
E Communicative Event SALESMAN REGISTERS A CLIENT

| Precedence

E Communicative Event SALES MAMNAGER. ASSIGNS SUPPLIER

E Communicative Event SALESMAN REGISTER A SUPPLIER

| Precedence
[E Communicative Event SUPPLIER EYALUATES THE ORDER.

| Precedence
E Communicative Event TRAMSPORT MHUGR ARRAKGES LOGISTICS
& E Communicative Event INSUR.DEPT.CLERK.SPECIFIES CLAUSES
L Precedence
| Precedence

& E Communicative Event TRANSPORT MHGR HIRES TRUCK DRIVER

| Precedence
E Communicative Event INSUR.DEPT .CLERK CONTRACTS INSURANCE POLICY
E Communicative Event SUPPLIER MOTIFIES THE SHIPPING OF THE GOODS
| Precedence

L Precedence

| Precedence
O or

Precedence

[=1=F SuperStationery-Example
[Supsrstationery.camstamodel

s

L Precedence
L Precedence
¢ Sticky Fiqure Primary CLIENT
Primary CLIENT INFO
¢ Sticky Figure Primary COMPANY DIRECTOR
Primary CATALOGUE
$- Sticky Figure Primary CLIENT
Primary GORDER
ﬁ’v Sticky Figure Recsiver SALES MANAGER
4= Receiver ORDER.
ﬁ’ Sticky Figure Primary SUPPLIER
Primary SUPPLIER INFC
ffo Sticky Figure Receiver SUPPLIER.
4 Rsceiver ASSIGNED ORDER
7 Sticky Figure Primary SALES MANAGER
Primary A35IGMEMT
5§ Sticky Figure Primary SUPPLIER
Prirmary RESPONSE
fF» Sticky Figure Receiver SALES MANAGER
4 Receiver RESPONSE
7 Sticky Figure Primary INSUR DEPT, CLERK
Primary INSUR POLICY
- Sticky Figure Primary TRUCK DRIVER
Primary TRUCK DRIVER INFO
S+ Sticky Fiqure Receiver CLIENT
4= Receiver LOGISTICS INFO
Sticky Figure Receiver SUPPLIER
Receiver LOGISTICS INFO
Sticky Figure Receiver CLIEMT
A= Receiver INSURANCE INFO
ﬁ’ Sticky Figure Primary TRANSPORT MANAGER
Primary LOGISTICS IMFC
ﬁ’ Sticky Figure Primary INSURANCE DEPARTMENT CLERK
Prirnary INSURANCE TNFO
fF» Sticky Figure Receiver SALES MANAGER
= Receiver DELIVERY NOTIFY
5§ sticky Figure Primary SUPPLIER
Primary SHIFPING MOTIF,
| Precedence -
Selection | Parent | List | Tree | Table | Tree with Columns

5 || [Problems | @ Javadoc | &) Dedaration | = Properties 52 =a

- Selected Object: Mads!

Figure 139. SuperStationery example in a text editor

Append 1 239

Phase 2: Definition of diagram models

The phase 2 consists of the definition of diagram models. This means
that the CED metamodel built previously will be represented in a
graphical editor.

For the definition of a graphical editor, it is necessary to follow
three steps: Create a gmfgraph model, a gmftool model and a
gmfmap model.

In the gmfgraph model we have specified the figures, nodes, links
and all kind of elements that we want to display in the CED editor.

Then, to specify a gmfgraph model, select the Ecore model (see Fig-
ure 140), right-click the ecore file and select New -> Other -> Graphical
Modelling Framework -> Simple Graphical Definition Model. This action
opens a wizard where is specified the kind of figure for each element
of the metamodel.

A graphical figure is designed for each element. The gmfgraph model
for CED looks like the Figure 140.

240

r
= Plug-in Dy pment - diag ::ﬁ!;
| File | Edit Source Refactor Navigate Search Project Bun
w2 HB-O- Q-
v El vt ow Do

- B JRE System Library [JavaSE-1
> B Plug-in Dependencies
b (= images
b = META-INF
4 [= model
#] cametamodel.ecore
% cametamodel ecorediag
[cametamodel.genmodel
&l cametamodel.gmfgraph
|=| cametamodel trace
@, build.properties
plugin.properties
it pluginxml
> 1% dizgramador.edit
L b" diagramador.editor

Sample Reflective Editor Window Help

BEE- OO0 5 = 4 Plugein Deve..]

a’ Java

[# Packag &3 . 2 Plug-in | = B || 2 cametarmodel.gmftool & cametamodel.gmfgraph 52 =
=] <*"==(>| ~ T [4 platform:/resource/diagramador/model/cametamodel. gmfgraph
| b = camm < Canvas cametamodel
a :’7-1 diagramador < Figure Gallery D.efau.llt o .
b o s <+ Mode CommunicationalChannel [CommunicationalChannelFi

<+ Mode End (EndFigure)

<+ Mode Start (StartFigure)

<4 Mode And (AndFigure)

< Mode Or (OrFigure)

< Mode CommunicativeEvent (CommunicativeEventFigure)

<+ Mode CommunicativeSubevent (CommunicativeSubeventFigL
<4 Mode StickyFigurePrimary (StickyPrimaryFigure)

< Mode StickyFigureReceiver (StickyReceiverFigure)

<= Connection Precedence

<+ Connection Primary

4= Connection Receiver

< Compartment ThreadCompartmentCommunicativeEventSubE
<4 Compartment ThreadCempartmentCommunicativeEventSupg|
<+ Diagram Label CommunicativeEventName

< Diagram Label CommunicativeEventNumber

< Diagram Label CommunicativeSubeventFigureMame

< Diagram Label CommunicativeSubeventMumber

<+ Diagram Label PrimaryDescription

< Diagram Label ReceiverDescription

< Diagram Label CommunicationalChannelDescription

< Diagram Label SupportMame

<+ Diagram Label ReceiverMessageDescription

< Diagram Label PrimaryMessageDescription

Ll

4| m | P

QT Errer Log] Tasks |21 Problems | = Properties &2

(]] r
=" [m]

o

E*

e

cametamodel.gmfgraph - diagramador/model

8.1 Development of the modelling tool: step by step

0=

Figure 140. gmfgraph for CED

In the gmftool model we have specified the palette, creation tools, ac-

tions, etc for the graphical elements.

Then, to specify a gmftool model, select the Ecore model (see Figure
141), right-click the ecore file and select New -> Other -> Graphical
Modelling Framework -> Simple Tooling Definition Model. In fact, the
steps are identical as the graphical definition model. This action
opens a wizard where is specified the kind of figure for each element.
The name label for the palette is selected. The gmftool model for CED

looks like Figure 141.

Append 1

241

= Plug-in Development - diagramador/r

File Edit Source Refactor MNavigate Search Project Run GMFTool Editor Window Help

> 122 diagramador.edit
s b‘J diagramador.editor

Selection :‘Parent: List | Tree% Table| Tree with Co\umns_

cametamodel.gmftool - diagramador/model

Figure 141. gmftool for CED

3~ -0 Q- BEO- ®c 7+ @)

- v e o e & Java
[# Packag 53 $ Plug-in | = O ﬂ cametamodel.gmftool 2 " &
= G===’> | o f[‘:, Resource Set
v B camm (| ﬁ p.iatform:_ﬁesource.fdiagramaCII-Dr_f;moa.el_.-'.cametamol.ie.l-.gm%ton-l
4 L?‘J diagramador 4 Tool Registry
> [src Palette cametamodelPalette
> = JRE System Library [JavaSE-1) 4 Tool Group cametamodel
» =i Plug-in Dependencies < Creation Tool Start
> (= images <+ Creation Tool End
s = META-INF 4 Creation Tool And
4 = model 4 Creation Tool Or
#] cametamodel.ecore < Creation Tool Primary actor
% cametamodel.ecorediag < Creation Tool Receiver actor
cametamodel.genmodel) < Creation Tool Support actor
@ cametamodel.gmfgraph <4 Creation Tool Communicative event
42 cametamodel.gmftool < Creation Tool Communicative subevent
5 cametamodel.trace < Creation Tool Precedence relationship
@ build.properties < Creation Tool Ingoing interaction
plugin.properties < Creation Tool Outgoing interaction
Ik pluginxml < Creation Tool Communication channel

| @ Error Log Z Tasks '[3_\ Problems:’ﬁ Properties £2 - = {m
BRI
Property =
Info [
derived -
< I (K1 i _ .

| =

=

| =%

E

In the gmfmap model we have specified the union between the three
models, the domain, the graphical and the tooling model (Ecore
model, gmfgraph model and gmftool model). This is the principal ac-
tivity. The gmfmap model will be used as input to a transformation

step which will produce the generation model (Phase 3).

Then, to specify a gmfmap model, select the Ecore model (see Figure
142), right-click the ecore file and select New -> Other -> Graphical
Modelling Framework -> Guide Mapping Model Creation Wizard .This ac-
tion opens a wizard. The Ecore model, gmfgraph and gmftool models

242

8.1 Development of the modelling tool: step by step

are selected. Later, is necessary to relate each element of each model
and to assign the properties. The gmfmap model for CED looks like

Figure 142.

= Plug-in Development

File Edit Mavigate Search Project Run GMFMap Editor Window Help

:L-?J diagramador
55 src
= JRE System Library [JavaSE-1
=), Plug-in Dependencies
[= images
(= META-INF
= model
&) cametamodel.ecore
% cametamodel.ecorediag

4 < Mapping
4 K1 Top Mode Reference <element:And/And>
1T Node Mapping <And/And:>
= ¥ Top Node Reference < element:0r/Or>
B 3]
B 3]

Top Mode Reference <element:CommunicativeEvent/Com
Top Mode Reference <element:CommunicationalChannel/
Top Mode Reference < element:Start/Start>

Top Mode Reference <element:End/End>

Top Mode Reference < element:StickyFigurePrimary/StickyF

i~ %‘""0'%' @E‘?@' = ﬁ-@kP\ug-inDe\re...
[~ 5] ~%0 SO~ o v aJJava
[# Packag 2 %PIug-in] = O || cametamodel.gmfmap 2 ™2 =
= <.’:(> | % ™ || [f5 Resource Set
= camm 4 @@ platform:/resource/diagramador/model/cametamodel. gmfrmap

| »

cametamodel.genmodel i K Top Node Reference <element:StickyFigureReceiver/Stickyl |
& cametamodel.gmfgraph > « Link Mapping <Precedence{Precedence.sourceiMode->Pre
¥ cametamodel.gmfmap > % Link Mapping <Primary{Primary.stickyFigurePrimary:Sticky
42 cametamodel.gmftool [£ Link Mapping <Receiver{Receiver.encapsulation:Encapsulal
|=| cametamodel.trace Canvas Mapping 2
@} build.properties LA L} | 5
plugin.properties Selection] Parent| List| Tree|Tab\e‘ Tree with Columnsl
=l ﬁgﬁl:ril::::ledit @] Error Log (Z. Tasks f& Problems (ﬁ Properties i = [ml
B diagramador.editor = :".=:5> B ¥

Property Value

| a Domain meta information
Element
1> Misc

H And -» LogicalNode

a Visual representation
Appearance Style
Context Menu
Diagram Mode 4+ Node And (AndFigure)

Tool < Creation Tool And

< [T D

u Domain meta information

Figure 142. gmfmap for CED

Phase 3: Generation of graphical editor

P

e
F

The phase 3 consists in generate the last model where is possible to
specify editors characteristics and generate the graphical editor code.

Append 1

The generator model (gmfgen) sets the properties for code genera-
tion. For generate this model, right-click the mapping file and select
Create generator model. Then a file named cametamodel.gmfgen is

created.

The generator model includes the default values for all of its prop-

erties (see Figure 143).

—
| = Plug-in Development - diagra

v e R - -

File Edit MNavigate Search Project Run GMFGen Editor Window Help

-0~

-

S-S

[8 Packag 2 % Plug-in | T O

Q- BEE- d0 s ©EREwe)
aJJava

& cametamodel.gmfgen 52 = [m]

[T Resource Set

= camm
:Lﬁj; diagramador

B src

=i, Plug-in Dependencies

= images

(= META-INF

= model
#] cametamodel.ecore
% cametamodel.ecorediag

e cametamodel.gmfgen
& cametamodel.gmfgraph
B cametamodel.gmfmap
2 cametamodel.gmftool
|=| cametamodel.trace
|n:j build.properties
plugin.properties
It pluginzml
= diagramador.edit
=4 diagramador.editor

= JRE System Library [JavaSE-1

cametamodel.genmodel

a4 e platform:/resource/diagramador/model/cametamodel.gmfgen
a |4 Gen Editor Generator cametamodel.diagram |

> < Gen Diagram ModelEditPart
4 Gen Plugin Cametamodel Plugin

4 Gen Editor View cametamodel.diagram.part

<= Gen Navigator CametamodelMavigatorContentProvider
< Gen Diagram Updater CametamodelDiagramUpdater
< Property Sheet cametamodel.diagram.sheet

< Gen Parsers CametamodelParserProvider

4 Context Menu

[platform:/resource/diagramador/model/cametamodel.genmodel
[|2 platferm:/resource/diagramador/model/cametamodel.ecore

4| i

< Gen Expression Provider Container cametamodel.diagram.expr

SelecticmjI Parent| Listi Tree| Table| Tree with Columnsl

@ Error Log [Z; Tasks ﬂ—_z_\ Problems ﬂj Properties &2 =

B = &

Property Value

Copyright Text =

Diagram File Extension
Domain File Extension
Domain Gen Model
Dynamic Templates

= cametamodel_diagram
= cametamodel

B Cametamodel

% false

»

m

Figure 143. gmfgen for CED

Now, right-click the cametamodel.gmfgen file and select Generate
diagram code. Later, a message dialog appears with the message

Model ID = Cametamodel
Package Mame Prefix = cametamodel.diagram P
Same File For Diagram Ani % false 2
4 1 | vl 1] 1] »
M Selected Object: Gen Edit...rator cametamodel.diagram

244 8.1 Development of the modelling tool: step by step

“Code generation completed successfully”. New files ware been cre-
ated with the diagram code. This code could be customized for par-
ticularly proposes. We have customized this code to offer more
graphical facilities and services.

Now, we can to launch the graphical editor for CED. So, right-click
the diagram file and select Run As -> Eclipse Application (see Figure
144). This action opens a new instance of Eclipse. This Eclipse in-
stance has incorporated the plug-in to model CED.

& Plug-in Development - Eclipse

File Edit Source Refactor Mavigate Search Project Run “Window Help

Ci= F-0- Q- EHEE ®O - [|40 Plug-in Devel... |
31Java
[Z pack 2 Lpwg-| = 8 =l
BE% &7 .
= camm o=

l'pJ diagramador

f,';J diagramador . disgram
= diagramadar . edit Mew 4
R diagramador. editor @0 Into

Open in Mew Window
©Open Type Hierarchy 3
Shows In Alk+5hift+ 4

|{=| Copy Chrl+C
= Copy Qualified Narme

(5 Paste Chrl+y
¥ Delete Delete

Ewild Path 4
Source Alt+5hift+5 »
Refactor Alt+S5hift+T 4

23 Import,.
£ Export...

o Refresh FS
lose Project
Zlose Unrelated Projects
Assign Working Sets, ..

B 1 scceo spplcten
Debug As h pse Application Alt-+Shift+%, E
ol] 3 Java Applet Alb+Shift+5, &
et 7] 4 Java Application Ale+shife+x, 1
Campare With 2
4 505G Framework Alb+Shift+x, O

Restore from Local Hiskary. ..
Hhexk
opendrchiteckuretiiare

< | POE Tools

Run Configurations...

e diagramador . diz Configure

Alt+Enter

= q‘l "é‘. [EA = E Properties

Figure 144. Launch of the Eclipse application with the plug-in to model
CED

Append 1 245

After the Eclipse application is launched, we can to see the graphical
interface of the modelling tool for CED. It looks like Figure 145.

& Java - SuperStationery-Example/SuperStartionery.cametamodel_diagram - Eclipse Platform |ZHE|E|

File Edit Diagram Mavigate Search Project Run Window Help

] wij @ F-0-Q- EHFG- OB F Y o |8 3avs | (2 Resource
[+ Package Expl I3 f: Hierarchy = SuperStartionery, cametamode)_diagram £3 = (]
& | e~ A F Palette
== SuperStationery-Example h ® e
Superstartionery cametamadel_diag . Skart:
_I—o] SuperStationery.cametamodel @ End
@And
@Or

ﬁ. Primary actor

ﬁ. Receiver actor

4§ Support actar

E Communicative event
[Commmunicative subevent
L Precedence relationship

b Ingoing interaction

= Dubgoing inkerackion

E Communication channe!

< | 3

B [Problems | @ Javadac | [, Derlaration | = Praperties &3 =| El}P =]

e

Figure 145. Interface of CED Modelling tool

9 Append 2

9.1 ATL rules to transform Communication Analysis
requirements models to OO-Method class diagram

—— Module: transformation rules

—— Communication Analysis requirements models to OO-
Method conceptual model

—— Authors: Sergio Espaha Cubillo

—— Arturo Gonzalez

- Oscar Pastor Lépez

- Marcela Ruiz

—— Corresponding authors:

Sergio Espafia —> sergio.espanal@pros.upv.es
Marcela Ruiz -> lruiz@pros.upv.es

—-— Version: 2.0

—— Final Version: No

—-— Release date: Aug 2011

module cazuml;
create OUT: uml, trace: tracer from IN: cametamodel;

—--HELPERS
—— This helper Returns true if a substructure is a Field
type

248 9.1 ATL rules to transform Communication Analysis requirements models to

00-Method class diagram

helper def: is_of_ type_field(sub: cameta-
model ! Substructure): Boolean=

if (sub.oclIsKindOf (cametamodel!Field))then

true

else

false

endif;
—— This helper Returns true if a substructure is a Data-
Field type
helper def: is_of_type_data_field(sub: cameta-
model ! Substructure) : Boolean=

if (sub.oclIsKindOf (cametamodel!DataField))then

true

else

false

endif;
—— This helper Returns true if a substructure is a Ref-
erenceField type
helper def: is_of_ type_reference_field(sub: cameta-
model ! Substructure): Boolean=

if (sub.oclIsKindOf (cametamodel!ReferenceField))then

true
else
false
endif;
—— This helper Returns true if a substructure is a Com-
plexSubstructure type
helper def: is_of_type_complex_substructure(sub: cameta-
model ! Substructure): Boolean=
if (sub.oclIsKindOf (cametamodel!ComplexSubstructure)
)then
true
else
false
endif;
—— This helper returns true if a substructure is a ini-
tial substrucutre
helper def: is_initial_substructure(sub: cameta-
model!ComplexSubstructure): Boolean=
if (sub.parent = OclUndefined)then
true
else
false
endif;

Append 2 249

—-This helper returns true if the substructure is of
AGGREGATION type
helper def: is_of_ type_aggregation(sub: cameta-
model!ComplexSubstructure): Boolean=

if (sub.oclIsKindOf (cametamodel !Aggregation))then

true
else
false
endif;
—-This helper returns true if the substructure is of
ITERATION type
helper def: is_of_type_iteration(sub: cameta-
model!ComplexSubstructure): Boolean=
if (sub.oclIsKindOf (cametamodel!Iteration))then
true
else
false
endif;
—-This helper returns true if the substructure is of
type SPECIALIZATION
helper def: is_of type_specialization(sub: cameta-
model!ComplexSubstructure): Boolean=
if (sub.oclIsKindOf (cametamodel!Specialisation))then

true
else
false
endif;
—-This helper returns the precedent substructure of an
enter substructure
helper def: get_precedent_substructure(sub: cameta-
model!ComplexSubstructure): cameta-
model!ComplexSubstructure =
if(self.is_of_type_aggregation(sub.parent))then
sub.parent
else if(self.is_of_type_iteration(sub.parent))then
sub.parent .parent
else OclUndefined
endif
endif;

—— This helper returns the plural of any word
helper def: plural (word: String): String = word + 's';

250 9.1 ATL rules to transform Communication Analysis requirements models to
00-Method class diagram

—— This helper returns the lower case and replace blank
space by underscore

helper def: format_to_lower_underscore (word: String)
String = (word.toLower ()) .replaceAll (" ', '_");

—-—-Tuple of Substructure and class
helper def: set_tuple_subZclass(sub: cameta-

model!Substructure, class : uml!Class) :TupleType

(sub: cametamodel!Substructure, class : uml!Class)
= Tuple{sub: cametamodel!Substructure = sub, class
uml!Class = class};

——-Tuple of DataField and Attribute
helper def: set_tuple_datf2attr (datField: cameta-
model !DataField, attribute : uml!Property) :TupleType
(datField: cametamodel!DataField, attribute
uml!Property) = Tuple{datField: cametamodel!DataField =
datField, attribute : uml!Property = attribute};
——-Tuple of DataField and Association
helper def: set_tuple_datf2rel (datField: cameta-
model!DataField, relationship
uml!Association) :TupleType
(datField: cametamodel!DataField, relationship

uml!Association) = Tuple{datField: cametamodel!DataField
= datField, relationship : uml!Association = relation-
ship};

-— Sets of tuples
helper def: subs_classes_set : Sequence (TupleType (sub:
cametamodel ! Substructure, class : uml!Class)) =
Sequence {Tu-
ple {sub: cametamodel!Substructure = cameta-
model! Substructure, class : uml!Class = uml!Class}};
helper def: datF_attr_set : Sequence (Tuple-
Type (datField: cametamodel!DataField, attribute
uml !Property)) =
Sequence {Tu-
ple {datField: cametamodel!DataField = cameta-
model!DataField, attribute : uml!Property =
uml !Property}};
helper def: datF_rel_set : Sequence (TupleType(datField:
cametamodel !DataField, relationship : uml!Association))

Sequence {Tu-
ple {datField: cametamodel!DataField = cameta-
model!DataField, relationship : uml!Association =
uml!Association}};

Append 2 251

—— These helpers are like global variables

helper def: conceptual_model: uml!Model = OclUndefined;
helper def: class_case : String = '';

helper def: active_class : uml!Class = OclUndefined;
helper def: active_attribute : uml!Property = OclUn-
defined;

helper def: attribute_count : Integer = 0;

helper def: active_aggregation: uml!Association = OclUn-
defined;

helper def: argument_count : Integer = 0;
helper def: active_event: uml!Operation =
—-Data Types

helper def: data_type_string : uml!PrimitiveType =
OclUndefined;

helper def: data_ type_integer : uml!PrimitiveType =
OclUndefined;

helper def: data_type_boolean : uml!PrimitiveType
OclUndefined;

helper def: data_type_date : uml!PrimitiveType = OclUn-—
defined;

helper def: data_ type_real : uml!PrimitiveType = OclUn-—
defined;

OclUndefined;

entrypoint rule mainRule () {

using{

——Parameters

active_substructures : cameta-
model!ComplexSubstructure = cameta-

model!ComplexSubstructure.allInstances();
requirements_model: cametamodel!Model= cametamo-
del!Model.allInstances();
}

to
model: uml!Model

do{
self.conceptual_model <- model;
for(p in requirements_model) {

self.conceptual_model.name<- p.name;

}

252 9.1 ATL rules to transform Communication Analysis requirements models to
00-Method class diagram

—-—Create Data Types
self.create_data_types();

——Process active_substructure
for (active_substructure in ac-—
tive_substructures) {
self.process_structure (active_substructure);

——Creation of Data Types Attributes
rule create_data_types () {

to
dataTypeString: uml!PrimitiveType,
dataTypelInteger: uml!PrimitiveType,
dataTypeBoolean: uml!PrimitiveType,
dataTypeDate: uml!PrimitiveType,
dataTypeReal: uml!PrimitiveType

do{

self.data_type_string<-dataTypeString;
self.data_type_string.name<-'String';

self.conceptual_model.packagedElement.add(self.data
_type_string);
self.data_type_integer<-dataTypelnteger;
self.data_type_integer.name<-"'Integer';

self.conceptual_model.packagedElement.add(self.data
_type_integer);
self.data_type_boolean<-dataTypeBoolean;
self.data_type_boolean.name<-'Boolean';

self.conceptual_model.packagedElement.add(self.data
_type_boolean);
self.data_type_date<-dataTypeDate;
self.data_type_date.name<-'Date';

self.conceptual_model.packagedElement.add(self.data
_type_date);
self.data_type_real<-dataTypeReal;
self.data_type_real.name<-'Real';

self.conceptual_model.packagedElement.add(self.data
_type_real);

Append 2 253

}

——-Process transformation: Process Structure
rule process_structure (active_substructure: cameta-
model!ComplexSubstructure) {

do{

——Class creation

self.class_case <- '';

——if(self.is_of_type_aggregation (ac-
tive_substructure)) {

for(rf in ac-
tive_substructure.directItems) {
——Checking the existence of a refer-

ence field that extends business object

if(self.is_of_type_reference_field(rf)) {

-—1if the attribute extends_bo is
equal to True, then a class previously created needs to
be selected.

if(rf.extendsBo = true) {

for (substructure in
self.subs_classes_set) {

if(rf.domain = sub-
structure.sub) {-—- if the corresponding substructure was
processed
if (substructure.class <> OclUndefined) {—-- if the

class was defined
self.class_case <- 'pre_existing';

self.active_class <- substructure.class;
—--Add an event
to the active_class

self.process_add_editing_event (active_substructure,
rf);-——Add editing events (prefix set_)
}
}

254 9.1 ATL rules to transform Communication Analysis requirements models to
00-Method class diagram

—-— If the active substructure do not con-
tain reference field that extends business object, then
a new class 1is created.

if(self.class_case <> 'pre_existing') {

if(self.is_of_type_aggregation (ac-
tive_substructure)) {
self.class_case <-
'newly_created';

self.process_create_class (active_substructure); ——
Creation of a new class
—-—Add an event to the ac-
tive_class

self.process_add_creation_event (active_substructure
) ;——Creation event

}
—-—End of class creation
——Iterate and process all substructure items
(Creation of attributes and relationships)
for (active_item in ac-
tive_substructure.directItems) {
——If the substructure item is a data
field then create a new attribute

if(self.is_of_type_data_field(active_item)) {

self.process_create_atrribute(active_item);

}

——If the substructure item is a ref-
erence field and its attribute extendsBo = false, then
create a relationship between its corresponding class
and the complex substructure that is contained

else
if(self.is_of_type_reference_field(active_item)) {

if (active_item.extendsBo =
false) {

self.process_create_relationship_casel (active_item)

Append 2 255

——If the substructure is not an initial
substrucutre then create a relationship between the ac-
tive class and the "precedent" class

if (not
self.is_initial_ substructure (active_substructure)) {

if(self.is_of_type_aggregation (ac-
tive_substructure)) {
if(self.is_of_type_iteration (ac-
tive_substructure.parent)){-—-If the active substructure
is contained into an iteration substructure
if (not
self.is_initial_substructure (active_substructure.parent)

) {

self.process_create_relationship_case2 (active_subst
ructure) ;
}
}else{——-The active substruture
does not contained into an iteration substructure

self.process_create_relationship_case2 (active_subst
ructure) ;

}

—-—Create Agents

rule process_create_class (active_substructure: cameta-
model ! Substructure) {
to
class: uml!Class (name<-—
active_substructure.name),
elementSrc: tracer!Element (elementName<- ac-—
tive_substructure.name, elementType <- 'Aggregation sub-
structure'),
elementTrg: tracer!Element (elementName<-
class.name,elementType <—- 'Class',targetTrace<-
Sequence{elementTrg}),
trace: tracer!Trace(
traceName<-"'Create
Class',
targetElement <- ele-
mentTrqg)
do {

256 9.1 ATL rules to transform Communication Analysis requirements models to

00-Method class diagram

——Stablish active_class
self.active_class <- class;

——Traceability

elementSrc.refSetValue ('sourceTrace', Se-—
quence{elementSrc});

trace.refSetValue ('sourceElement', elementSrc);

—-—Set of tuples of substructure and class
self.subs_classes_set.add(self.set_tuple_sub2class(activ
e_substructure, self.active_class));

self.subs_classes_set.add(self.set_tuple_sub2class(
active_substructure, self.active_class));

——Add the new class to the Model

self.conceptual_model.packagedElement.add(self.acti
ve_class);
}
}
rule process_create_atrribute(active_item: cameta-
model!DataField) {
to
property: uml!Property(name <-
self.format_to_lower_underscore(active_item.name)),
elementSrc: tracer!Element (elementName<- ac-—
tive_item.name, elementType <- 'DataField'),
elementTrg: tracer!Element (elementName<- ac-
tive_item.name,elementType <- 'Attribute',6 targetTrace<-
Sequence{elementTrg}),
trace: tracer!Trace

traceName<—- 'Create At-
tribute',
targetElement<- ele-
mentTrqg)
do{

——Stablish active_attribute
self.active_attribute <- property;

——Body

self.active_class.ownedAttribute.add(self.active_at
tribute);-- ownedAttribute is a set of properties

Append 2 257

self.attribute_count <- self.attribute_count +

——Attributes data type
if (active_item.domain = #text) {
self.active_attribute.type<-
self.data_type_string;
}else({
if (active_item.domain = #date) {
self.active_attribute.type<-
self.data_type_date;
}else({
if (active_item.domain = #money) {
self.active_attribute.type<-
self.data_type_real;
}else{
self.active_attribute.type<-
self.data_type_integer;
}
}

——Traceability

trace.refSetValue ('sourceElement', elementSrc);

elementSrc.refSetValue ('sourceTrace', Se-—
quence{elementSrc});

—--Tuple of DataField and Attribute

self.datF_attr_set.add(self.set_tuple_datfl2attr (act
ive_item, self.active_attribute));

}

——Create Association

—-—Casel: ReferenceField to Association

rule process_create_relationship_casel(active_item:

cametamodel !ReferenceField) {

to

association: uml!Association,
attributeComponent: uml!Property,
attributeCompound: uml!Property,
minCardinalityComponent: uml!LiteralInteger,
maxCardinalityComponent:

uml!LiteralUnlimitedNatural,
minCardinalityCompound: uml!LiteralInteger,

258 9.1 ATL rules to transform Communication Analysis requirements models to
00-Method class diagram

maxCardinalityCompound:
uml!LiteralUnlimitedNatural,
elementSrc: tracer!Element (elementName<—- ac-—
tive_item.name, elementType <- 'Reference field'),
elementTrg: tracer!Element (elementName<- ac-
tive_item.name,elementType <- 'Associa-
tion',targetTrace<-Sequence{elementTrg}),
trace: tracer!Trace
traceName<—- 'Create As-—
sociation',
targetElement<- ele-
mentTrqg)
do{
—--Stablish active_aggregation
self.active_aggregation<-association;

—-—Body

——Attribute of Component Class

attributeComponent.association <-
self.active_aggregation;

attributeComponent.owningAssociation<-
self.active_aggregation;

attributeComponent.type <- self.active_class;

——-The compound class is created before the com-
ponent class, thus, the minimun cardinality in the com-
ponent class 1is necesarily 0

minCardinalityComponent.value<-0;

attributeComponent.lowerValue<— minCardinality-
Component;

——The maximum cardinality in the component
class depends on the user requirements or on the Analyst
criterion

maxCardinalityComponent.value<- -1;

attributeComponent .upperValue<— maxCardinality-
Component;-- (-1 = M in 0OO-Method metamodel)

—-—Set the role name

if (maxCardinalityComponent.value = -1) {

attributeComponent .name<—
self.plural(self.active_class.name);
lelse(
attributeComponent .name<—
self.active_class.name;

}

—-—Attribute of Compound Class

Append 2 259

for (p in self.subs_classes_set){ —-—
Traceability
if(p.sub = active_item.domain) {
-—-Set the name of the association
self.active_aggregation.name <-
p.class.name + '_'+ self.active_class.name;
—-—-Set the role name
attributeCompound.name<—
p.class.name;
attributeCompound.association <-—
self.active_aggregation;
attributeCompound.owningAssociation<-
self.active_aggregation;
attributeCompound.type <- p.class;
——The minimunm cardinality in the
compound class depends on the user requirements or the
Analyst criterion
if (self.class_case =
'newly_created') {
minCardinalityCompound.value<-0;
attributeCompound.lowerValue<—
minCardinalityCompound; —-Less restrictive
}else if(self.class_case =
'pre_existing') {
minCardinalityCompound.value<-0;
attributeCompound.lowerValue<—
minCardinalityCompound; ——The mininum cardinality in the
compound class 1s necesarily O
}
——The maximum cardinality is necesar-—
ily 1
maxCardinalityCompound.value<- 1;
attributeCompound.upperValue<—- max-
CardinalityCompound;

self.active_aggregation.memberEnd.add (attributeComp
onent) ;

self.active_aggregation.ownedEnd.add (attributeCompo
nent) ;

——Traceability
trace.refSetValue ('sourceElement', elementSrc);

260 9.1 ATL rules to transform Communication Analysis requirements models to

00-Method class diagram

elementSrc.refSetValue ('sourceTrace', Se-—
quence{elementSrc});

——Tuple of DataField and Relationship

self.datF_rel_ set.add(self.set_tuple_datfl2rel (activ
e_item, self.active_aggregation));

——Add the new Relationship to the Model

self.conceptual_model.packagedElement.add(self.acti
ve_aggregation);
}
}
——Create Association
——Case2: Nested ComplexSubstructure to Association
rule proc-
ess_create_relationship_case2 (active_substructure:
cametamodel !ComplexSubstructure) {
to
association: uml!Association,
attributeComponent: uml!Property,
attributeCompound: uml!Property,
minCardinalityComponent: uml!LiteralInteger,
maxCardinalityComponent:
uml!LiteralUnlimitedNatural,
minCardinalityCompound: uml!LiteralInteger,
maxCardinalityCompound:
uml!LiteralUnlimitedNatural,
elementSrc: tracer!Element (elementName<—- ac-—
tive_substructure.name, elementType<- 'Nesting substruc-—
ture'),
elementTrg: tracer!Element (elementName<- ac-
tive_substructure.name,elementType <- 'Associa-
tion',targetTrace<-Sequence{elementTrg}),
trace: tracer!Trace(
traceName<—- 'Create As-—
sociation',
targetElement<- ele-
mentTrqg)
do{
—-—-Stablish active_aggregation
self.active_aggregation<-association;
——Body
——Attribute of Compound Class
for(p in self.subs_classes_set) {

Append 2 261

if(p.sub =

self.get_precedent_substructure (active_substructure)) {

self.active_aggregation.name <-
p.class.name+ '_'+ self.active_class.name;

attributeCompound.association <-—
self.active_aggregation;

attributeCompound.owningAssociation<-
self.active_aggregation;

attributeCompound.type <- p.class;

——The minimunm cardinality in the
compound class depends on the user requirements or the
Analyst criterion

minCardinalityCompound.value<-0;

attributeCompound.lowerValue<— min-
CardinalityCompound; —--Less restrictive

——The minimunm cardinality in the
compound class depends on the user requirements or the
Analyst criterion

maxCardinalityCompound.value<— 1;——
For the moment

attributeCompound.upperValue<—- max-
CardinalityCompound;

if (maxCardinalityCompound.value = -
1){

attributeCompound.name<—

self.plural(p.class.name);

}else({

attributeCompound.name<—

p.class.name;

——Attribute of Component Class created before
to the component class

attributeComponent.association <-
self.active_aggregation;

attributeComponent.owningAssociation<—
self.active_aggregation;

attributeComponent.type <-
self.active_class;

——-The compound class is created before the com-
ponent class, thus, the minimun cardinality in the com-
ponent class is necesarily O

minCardinalityComponent.value<-0;

262 9.1 ATL rules to transform Communication Analysis requirements models to
00-Method class diagram

attributeComponent.lowerValue<— minCardi-
nalityComponent;

——It could happent that more components
are added in the future (in later event)

if(self.is_of_type_aggregation(active_substructure.
parent)) {
maxCardinalityComponent.value<- 1;-—-
For the moment
attributeComponent .upperValue<—- max-
CardinalityComponent;
}else({

if(self.is_of_type_iteration(active_substructure.pa

rent)) {

maxCardinalityComponent.value<—- -
1;

attributeComponent .upperValue<—
maxCardinalityComponent;

}
}

if (maxCardinalityComponent.value = -1) {
attributeComponent .name<—
self.plural(self.active_class.name);
}else(
attributeComponent .name<—
self.active_class.name;

}
——Traceability
trace.refSetValue ('sourceElement', elementSrc);
elementSrc.refSetValue ('sourceTrace', Se-—
quence{elementSrc});

——Tuple of DataField and Relationship

self.datF_rel_ set.add(self.set_tuple_datfl2rel (activ
e_substructure, self.active_aggregation));

——Add the new Relationship to the Model

self.conceptual_model.packagedElement.add(self.acti
ve_aggregation);

}

Append 2 263

rule process_add_creation_event (active_substructure:
cametamodel!ComplexSubstructure) {
to

operation: uml!Operation,

elementSrc: tracer!Element (elementName<- ac-
tive_substructure.name, elementType<-'Aggregation sub-
structure'),

elementTrg: tracer!Element (elementName<- ac-
tive_substructure, elementType <- 'Event',6 targetTrace<-
Sequence{elementTrg}),

trace: tracer!Trace(

traceName<—- 'Create Op-
eration',
targetElement<- ele-
mentTrqg)
do{

——Stablish active_event
self.active_event<-operation;

—-—Body
self.active_event.class<-self.active_class;
if(self.class_case = 'newly_created') {
self.active_event.name<-"'new_ ' +
self.active_class.name;
—--Adding data value inbound arguments and
object value inbound arguments
for(p in active_substructure.directItems) {
if(self.is_of_type_data_field (p)){

self.process_add_data_value_inbound(p,
self.active_event);
}else(

if(self.is_of_type_reference_field(p)) {

self.process_add_object_value_inbound (p,
self.active_event);

——Traceability
trace.refSetValue ('sourceElement', elementSrc);

264 9.1 ATL rules to transform Communication Analysis requirements models to
00-Method class diagram

elementSrc.refSetValue ('sourceTrace', Se-—
quence{elementSrc});

}
rule process_add_editing_event (active_substructure:
cametamodel!ComplexSubstructure, refer-—
ence_field:cametamodel !ReferenceField) {
to
operation: uml!Operation,
elementSrc: tracer!Element (elementName<- ac-
tive_substructure.name, elementType<-'Aggregation sub-
structure'),
elementTrg: tracer!Element (elementName<- ac-
tive_substructure, elementType <- 'Event',6 targetTrace<-
Sequence{elementTrg}),
trace: tracer!Trace(
traceName<—- 'Create Op-
eration',
targetElement<- ele-
mentTrqg)
do{
——Stablish active_event
self.active_event<-operation;
——body
self.active_event.class<-self.active_class;
for(p in active_substructure.directItems) {
if(self.is_of_type_data_field (p)){
self.argument_count <-
self.argument_count + 1;
}
}
if(self.argument_count = 1) {
for(p in active_substructure.directItems) {
if(self.is_of_type_data_field (p)){
self.active_event.name<-"'set_ '
+self.format_to_lower_underscore (p.name) ;

self.process_add_data_value_inbound(p,
self.active_event);
}
}
self.argument_count <- 0;
}else(
if(self.argument_count > 1) {

Append 2

265

for(p in ac-
tive_substructure.directItems) {
if(self.is_of_type_data_field
(p))A{
self.active_event.name<-—
'set_' + active_substructure.name;

self.process_add_data_value_inbound(p,
self.active_event);

}

self.argument_count <- 0;

self.process_add_object_value_inbound(reference_fie

1d, self.active_event);
——Traceability

trace.refSetValue ('sourceElement', elementSrc);

elementSrc.refSetValue ('sourceTrace', Se-—
guence{elementSrc});
}
}
rule process_add_shared_event_change (ac-—
tive_substructure: cametamodel!ComplexSubstructure) {
to
operation: uml!Operation,
elementSrc: tracer!Element (elementName<- ac-—
tive_substructure.name, elementType<-'Aggregation sub-
structure'),
elementTrg: tracer!Element (elementName<- ac-
tive_substructure, elementType <- 'Event',6 targetTrace<-
Sequence{elementTrg}),
trace: tracer!Trace
traceName<—- 'Create
shared Operation',
targetElement<- ele-
mentTrqg)
do{
——Stablish active_event
self.active_event<-operation;

——Body
self.active_event.class<-self.active_class;
if(self.class_case = 'newly_created') {

266 9.1 ATL rules to transform Communication Analysis requirements models to
00-Method class diagram

self.active_event.name<-'new_' +
self.active_class.name;
—--Adding data value inbound arguments and
object value inbound arguments
for(p in active_substructure.directItems) {
if(self.is_of_type_data_field (p)){

self.process_add_data_value_inbound(p,
self.active_event);
}else{

if(self.is_of_type_reference_field(p)) {

self.process_add_object_value_inbound (p,
self.active_event);

——Traceability

trace.refSetValue ('sourceElement', elementSrc);

elementSrc.refSetValue ('sourceTrace', Se-—
quence{elementSrc});

rule process_add_shared_event_ins_del (ac-—
tive_substructure: cametamodel!ComplexSubstructure) {
to
operation: uml!Operation,
elementSrc: tracer!Element (elementName<—- ac-—
tive_substructure.name, elementType<-'Aggregation sub-
structure'),
elementTrg: tracer!Element (elementName<- ac-
tive_substructure, elementType <- 'Event',6 targetTrace<-
Sequence{elementTrg}),
trace: tracer!Trace
traceName<—- 'Create
shared Operation',
targetElement<- ele-
mentTrqg)
do{
——Stablish active_event
self.active_event<-operation;

Append 2 267

—-—Body

self.active_event.class<-self.active_class;

if(self.class_case = 'newly_created') {
self.active_event.name<-"'new_ ' +

self.active_class.name;
—--Adding data value inbound arguments and
object value inbound arguments
for(p in active_substructure.directItems) {
if(self.is_of_type_data_field (p)){

self.process_add_data_value_inbound(p,
self.active_event);
}else(

if(self.is_of_type_reference_field(p)) {

self.process_add_object_value_inbound (p,
self.active_event);

}

——Traceability

trace.refSetValue ('sourceElement', elementSrc);

elementSrc.refSetValue ('sourceTrace', Se-—
quence{elementSrc});

}
}

rule process_add_data_value_inbound(dataField: cameta-
model!DataField, operation: uml!Operation) {
to
parameter: uml!Parameter,
elementSrc: tracer!Element (elementName<- data-
Field.name, elementType<-'Data Field'),
elementTrg: tracer!Element (elementName<- data-
Field,elementType <- 'Data value inbound', targetTrace<-
Sequence{elementTrg}),
trace: tracer!Trace(
traceName<—- 'Create
Data value inbound',
targetElement<- ele-
mentTrqg)

268 9.1 ATL rules to transform Communication Analysis requirements models to

00-Method class diagram

do{
—-—Body
if(self.class_case = 'newly_created') {
parameter.name <-
'p_atr'+self.format_to_lower_underscore(dataField.name) ;
parameter.operation<-operation;
——-Paramter inbound data type
if (dataField.domain = #text) {
parameter.type<-
self.data_type_string;
}else({
if (dataField.domain = #date) {
parameter.type<-
self.data_type_date;
}else(
if (dataField.domain = #money) {
parameter.type<-—
self.data_type_real;
}else{
parameter.type<-—
self.data_type_integer;
}
}
}
}else{
if (self.class_case = 'pre_existing') {
parameter.name <-—
'pt_'"+self.format_to_lower_underscore(dataField.name) ;
parameter.operation<-operation;
——Paramter inbound data type
if (dataField.domain = #text) {
parameter.type<-
self.data_type_string;
}else(
if (dataField.domain = #date) {
parameter.type<-—
self.data_type_date;
}else(
if (dataField.domain =
#money) {
parameter.type<-—
self.data_type_real;
lelse(
parameter.type<-—
self.data_type_integer;

Append 2 269

——Traceability
trace.refSetValue ('sourceElement', elementSrc);

elementSrc.refSetValue ('sourceTrace', Se-—
quence{elementSrc});

}
}

rule process_add_object_value_inbound(referenceField:
cametamodel !ReferenceField, operation: uml!Operation) {
to

parameter: uml!Parameter,

elementSrc: tracer!Element (elementName<- refer-
enceField.name, elementType<-'Reference Field'),

elementTrg: tracer!Element (elementName<- refer-
enceField,elementType <- 'Object value in-
bound', targetTrace<-Sequence{elementTrg}),

trace: tracer!Trace(

traceName<— 'Create Ob-

ject value inbound',
targetElement<- ele-
mentTrqg)
do{
—-—Body
if(self.class_case = 'newly_created') {
for(p in self.subs_classes_set) {
if(p.sub = referenceField.domain) {—-
Check the existence of the class
parameter.name <-—
'p_agr'+self.format_to_lower_underscore (referenceField.d
omain.name) ;
parameter.operation<-operation;
——Paramter inbound object type
parameter.type<-p.class;

}
}else{
if (self.class_case = 'pre_existing') {
for(p in self.subs_classes_set) {
if(p.sub = referenceField.domain) {—-
Check the existence of the class
parameter.name <-

'p_this'+p.class.name;

270 9.1 ATL rules to transform Communication Analysis requirements models to
00-Method class diagram

parameter.operation<-operation;
——Paramter inbound object type

parameter.type<-p.class;

}
}

——Traceability
trace.refSetValue ('sourceElement',
elementSrc.refSetValue ('sourceTrace',

elementSrc) ;
Se—

quence{elementSrc});

}

