

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/155405

Perea Rojas Marcos, F.; Puerto, J. (2019). A heuristic procedure for computing the
nucleolus. Computers & Operations Research. 112:1-9.
https://doi.org/10.1016/j.cor.2019.104764

https://doi.org/10.1016/j.cor.2019.104764

Elsevier

A heuristic procedure for computing the nucleolus

Federico Pereaa,∗, Justo Puertob

aGrupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática,
Ciudad Politécnica de la Innovación, Edifico 8G, Acc. B. Universitat Politècnica de

València, Camino de Vera s/n, 46021, València, Spain.
bInstituto de Matemáticas de la Universidad de Sevilla. Avda. Reina Mercedes, s/n, 41012

Sevilla , Spain.

Abstract
This paper introduces a row and column generation algorithm for finding
the nucleolus, based on a linear programming model proposed in an earlier
research. Since this approach cannot return an allocation for large games, we
also propose a heuristic approach, which is based on sampling the coalitions
space. Experiments over medium sized games show that the proposed heuristic
finds allocations which are close to the true nucleolus, in a reasonable amount
of time. Experiments over 100-player games show that the proposed heuristic
can be applied to games of large size.
Keywords: Nucleolus, Game Theory, Linear Programming, Heuristic.

1. Introduction1

A transferable utility (TU) game can be defined by means of:2

• A set of players N = {1, ..., n}. Players are allowed to cooperate, but3

their objective is to maximize their own individual benefit.4

• For each coalition S ⊂ N , the characteristic function v(S) represents5

the profit that the cooperation of the players in S yields, without the6

help of the other N \ S players. The set of all players N is referred to7

as the grand coalition.8

∗Corresponding author. Tel: +34 96 387 70 00. Ext: 74914. Fax: +34 96 387 74 99
Email addresses: perea@eio.upv.es (Federico Perea), puerto@us.es (Justo Puerto)

Preprint submitted to Computers and Operations Research June 27, 2019

TU-games can therefore be identified by means of their set of players and9

characteristic function: (N, v).10

One of the main challenges in TU-games consists of sharing the profit11

that the grand coalition can make, among the different players. There are12

two main ways to address that question:13

1. using solution sets.14

2. using allocation rules.15

The most well-known representative of the first type is the core (Owen, 1995).
The core of a TU-game is defined as

C(v) = {x ∈ Rn : x(S) ≥ v(S) ∀ S ⊂ N, x(N) = v(N)}.

Core allocations ensure that each coalition S gets a share of the profit obtained16

by the grand coalition which is, at least, as high as the profit that S can make17

on their own. Thus, core allocations are well accepted due to the fairness18

conditions they satisfy.19

However, there are games without core allocations. Even for some games20

which do have core allocations, it might be very difficult to find them or, choose21

one among them. Therefore, at times one is interested in the second type22

of solutions: Allocation rules. Allocation rules are procedures that allocate23

to each player a share of the benefit obtained by the grand coalition. Two24

important such rules are the Shapley value and the nucleolus, which are25

well accepted for the properties they satisfy, and are widely used in complex26

TU-games (e.g. see Yu et al. (2017), where the Shapley value is computed in a27

pickup and delivery cooperative game). The reader should note that the28

Shapley value belongs to the core when the game is convex, and29

the nucleolus belongs to the core whenever the core is non-empty.30

In this paper, we focus on the nucleolus (Kohlberg, 1972), which we now31

introduce for the sake of completeness.32

Given a TU-game (N, v), the set of pre-imputations Ṽ and imputations33

V of the game are:34

Ṽ = {x ∈ Rn :
n∑

j=1
xj = v(N)},

V = {x ∈ Rn :
n∑

j=1
xj = v(N), xj ≥ v({j}), ∀ j ∈ N}.

2

Note that V ⊂ Ṽ . Given a pre-imputation x ∈ Ṽ , the excess vector of x is
the vector θ(x) ∈ R2n−2

θ(x) = (e(S, x)), with e(S, x) = v(S)−
∑
i∈S

xi ∀ S ⊂ N, S 6= ∅, N.

After introducing these two concepts, the nucleolus can be defined.35

Definition 1.1. The (pre)nucleolus is the unique (pre)imputation that lexi-36

cographically minimizes (<L) the non-increasingly sorted excess vector.37

The nucleolus satisfies the following two properties:38

• If e(S, x) ≤ 0 ∀ S ∈ 2N , then x is a core allocation.39

• Provided the core is non-empty, the nucleolus is a core allocation.40

Despite the huge complexity of computing the nucleolus, several attempts41

have been made in order to compute this solution concept by means of a single42

linear programming (LP) model. Kohlberg (1972) computes the nucleolus43

from a LP problem with O(2n!) constraints. A bit later, Owen (1974) reduces44

the size of this problem to O(4n) constraints and O(2n) variables with large45

constraint coefficients. Puerto and Perea (2013) propose another single LP46

problem for computing the nucleolus, with coefficients in {−1, 0, 1}.47

The extreme complexity of the computation of the nucleolus has provoked48

that more attempts have been made in the area of iterative approaches. To49

cite a few, Maschler et al. (1979) propose an algorithm that solves O(4n) LP50

problems with O(2n) variables and constraints, whose coefficients are -1, 0, or51

1. Dragan (1981) finds the nucleolus by solving at most n− 1 LP problems52

with O(n) constraints and O(2n) variables. Sankaran (1991) proposes a new53

algorithm that needs O(2n) LP problems whose coefficients are -1, 0, or 1.54

Solymosi (1993) proves that the nucleolus can be found by solving at most55

n− 1 LP’s with O(n) constraints and O(2n) variables. Later on, Hallefjord56

et al. (1995) introduce a constraint generation approach. Potters et al. (1996)57

describe a fast algorithm to find the nucleolus of any game with non-empty58

imputation set, based on solving at most n− 1 LP’s with at most 2n + n− 159

constraints and 2n−1 variables. More recently, Nguyen and Thomas (2016) use60

nested linear programs in their approach to find the nucleolus of large games.61

The list of references including exact procedures for finding the nucleolus62

is very large. However, it must be noted that not all the articles published63

propose correct procedures to find the nucleolus, as can be derived from64

3

Guajardo and Jörnsten (2015). The authors of that paper show mistakes in65

some of the algorithms proposed in the literature.66

In general, finding the nucleolus is a problem of exponential complexity.67

However, for some classes of games this solution concept can be found ef-68

ficiently. We now review (non exhaustively) the literature dealing with the69

nucleolus for specific classes of games. Hamers et al. (2003) prove that the70

nucleolus of neighbor games can be computed by a cuadratic-order algorithm.71

Solymosi et al. (2005) study the nucleolus of permutation games, and prove72

its polynomial complexity under certain conditions. Brânzei et al. (2006)73

propose a cuadratic algorithm for computing the nucleolus of airport games.74

Deng et al. (2009) prove that the nucleolus of flow games can be computed in75

polynomial time, only when the game is defined on simple networks. Maschler76

et al. (2010) study the nucleolus of tree games. van den Brink et al. (2011)77

propose a polynomial time algorithm for computing the nucleolus of games in78

which some players need permission from other players, in order to enter the79

game. Martínez-De-Albéniz et al. (2013) compute the nucleolus of assignment80

games. Greco et al. (2014) characterize the complexity of the nucleolus on81

compact coalitional games. Kurz et al. (2014) study the nucleolus of majority82

games. Hou and Driessen (2015) use the indirect function of a cooperative83

game in characteristic function form in order to compute the nucleolus of com-84

promise stable games. Kamiyama (2015) studies the nucleolus of arborscence85

games, proving that it can be found polynomially when the graph is acyclic86

and directed. Aiche et al. (2015) examine the nucleolus of a class of market87

games, and compare it with the Shapley value. Fang et al. (2015) propose a88

polynomial time algorithm for the nucleolus of path cooperative games. Fang89

et al. (2016) compute the nucleolus for threshold cardinality matching games,90

which is done polynomially for some types of graphs. Sziklai et al. (2017)91

study the nucleolus of directed acyclic graph games. Baïou and Barahona92

(2017) propose a polynomial time algorithm for computing the nucleolus of93

shortest path games.94

Despite the vast literature proposing exact methods for computing the95

nucleolus, we have barely found three references that propose non-exact ap-96

proaches for this solution concept, or variations of it. Chin (1997) proposes97

a genetic algorithm for computing the nucleolus of the specific class of as-98

signment games. Kimms and Çetiner (2012) suggest a heuristic variation99

of an algorithm they propose for computing the nucleolus, which is based100

on constraint generation. However, the authors of that paper discard this101

heuristic approach because “there is no guarantee that using a heuristic would102

4

be more efficient” than the exact approach. Flisberg et al. (2015) propose cost103

allocation methods to solve cost sharing problems in a forest fuel transporta-104

tion problem. Among them, they adapt the nucleolus when the characteristic105

function is incomplete. Wang et al. (2017) propose several nucleolus-based106

allocations, and a genetic algorithm for finding them.107

As can be seen there is lack of good heuristic procedures that can provide108

reasonable approximations of the nucleolus for general purpose TU games,109

and this is one of the major motivations of this work.110

Arguably, the nucleolus is one of the most well-known allocation rules in111

cooperative game theory. At the same time, its huge computational complexity112

has prevented many practitioners from applying it. Consider for example a113

game in which the players are the n bank entities operating on a given region.114

The characteristic function of each coalition would be the cost for these banks115

to operate an ATM network needed to serve their clients. Whenever n is large116

enough (for example n = 50, which is a realistic number for this example),117

even getting and storing the characteristic function of the game would be118

a hard task, not to mention finding the excess vector, sorting it, etc. For119

this reason, in this paper we introduce a heuristic approach for finding the120

nucleolus of a game, which does not rely on the complete knowledge of the121

characteristic function. Heuristic algorithms are efficient procedures which122

find a solution to a problem in a reasonable amount of time, although the123

solution returned is not guaranteed to be optimal. In our case, the allocation124

returned by the heuristic proposed is not guaranteed to be the nucleolus.125

However, as we will see in the experiments section, the allocation returned by126

our heuristic is close to the true nucleolus.127

The rest of this paper is structured as follows. We begin by introducing a128

variable/constraint generation algorithm in Section 2, based on the LP model129

introduced in Puerto and Perea (2013). Because this approach does not seem130

very promising, especially for large games, we add a sampling phase to it in131

Section 3. In the same section, we propose a heuristic approach, which aims132

at finding an allocation close to the nucleolus, for large games in which exact133

procedures cannot be applied. All approaches proposed are computationally134

tested in Section 4, over a number of games randomly generated. The paper135

closes with some conclusions and the list of references.136

2. A column/row generation algorithm137

Puerto and Perea (2013) proved that the nucleolus can be found by means

5

of the following LP problem:

min
2n−2∑
k=1

(λk − λk+1)(ktk +
2n−2∑
i=1

dik) (1)

s.t. dik ≥ θi − tk, ∀ i, k = 1, ..., 2n − 2, (2)
θi = v(Si)−

∑
j∈Si

xj,∀ i = 1, ..., 2n − 2, (3)

n∑
j=1

xj = v(N), (4)

dik ≥ 0, ∀ i, k = 1, ..., 2n − 2,

with parameters λ satisfying that λk = δk−1, k = 1, ..., 2n− 2, for a convenient138

choice of δ, and λ2n−1 = 0. Note that finding a proper value of δ is key.139

Choosing a value too large might provoke numerical inaccuracy,140

whereas choosing a value too small might make that δk is considered141

as zero by computer precision, even for small values of k.142

In this LP problem, indexes i and k both refer to coalitions, whereas index143

j refers to players. Variable xj stands for the allocation assigned to player144

j, variable θi refers to the excess of coalition i, and variable tk is the k − th145

excess, lexicographycally sorted. There is no straightforward interpretation of146

dik.147

The enormous number of variables and constraints makes this model148

intractable for a relatively large number of players (the aforementioned paper149

only reports results over 18-player games or less). Note that there are O(4n)150

variables dik and constraints (2). We denote Cik the constraint (2) for a given151

i and a given k.152

One immediate question that comes to our mind is: how many constraints153

Cik are binding in the optimal solution to this LP model? In this paper, we154

say that a constraint is binding if it does not have any slack. Note that our155

concept of binding constraint does not require that all potentially multiple156

solutions are binding on this constraint. Therefore, in this case, Cik is157

binding if dik = θi − tk. Note that, if a constraint Cik is not binding, then the158

corresponding dik = 0. This is due to the fact that since we are minimizing,159

and λk−λk+1 > 0, if θi− tk ≥ 0, then dik attains this value and the constraint160

is binding. Otherwise, dik = 0 and the constraint is not binding. In the latter161

case, no need to define non-binding Cik constraints, nor their corresponding162

dik variables. In order to gain more insights into this matter, we solved the LP163

6

models for the games in Puerto and Perea (2013), and checked how many Cik164

constraints were binding, considering only the first kmax = 20 largest excesses,165

that is, k = 1, ..., kmax. The results of this experiment are shown in Table 1.166

n Percentage % Distribution
10 0.04 (1,4,3,1,0,...)
11 0.02 (0,7,1,1,1,0,...)
12 0.01 (0,5,1,1,1,0,...)
13 < 0.01 (0,7,1,2,2,0,0,0,1,0...)
14 < 0.01 (0,5,0,3,2,0,1,1,0,...)
15 < 0.01 (0,6,1,3,1,0,1,1,2,0,...)
16 < 0.01 (0,7,1,2,0,1,2,0,3,0,...)

Table 1: Percentage of binding Cik constraints in LP models.

Column “Percentage” indicates the relative frequency of Cik constraints167

which are binding (all of them way below 1%). Column “Distribution” indicates168

the number of binding constraints Cik in terms of the size of the coalitions169

i that make these constraints binding. The j − th component of each such170

vector is the number of constraints of size j which are binding. For example,171

for the game with 10 players, one coalition with one player is binding, four172

coalitions with two players are binding, three coalitions with three players are173

binding, and one coalition with four players is binding (for larger coalitions,174

none of them is binding, which is indicated by “...”).175

These results show a promising conclusion: only very few Cik constraints are176

binding. Besides, we have an indication that most of these binding constraints177

correspond to coalitions i with a “small” size. However, how to find these178

pairs (i, k) such that Cik is binding?179

A first approach to try to answer such question consists of introducing180

variables dik and constraints Cik only when the corresponding Cik constraint181

is violated, a so called row-column generation algorithm (RCG). For this,182

define the set A ⊂ 2N × 2N . A pair (i, k) is in A if the corresponding variable183

dik and constraint Cik are in the model. The LP programs to be solved in the184

iterative method we present are:185

7

min
2n−2∑
k=1

(λk − λk+1)(ktk +
∑

i:(i,k)∈A

dik) (5)

LP (A) : s.t. dik ≥ θi − tk ∀ (i, k) ∈ A, (6)
(3) and (4)

dik ≥ 0 ∀ (i, k) ∈ A,

with λk = δk−1, k = 1, ..., 2n − 2 and λ2n−1 = 0. This problem is denoted as186

LP (A).187

Note that the previous model implies that dik = 0 for all (i, k) /∈ A, since188

λk − λk+1 > 0, and dik must be non-negative. The algorithm first sets A = ∅.189

Then it updates A to include those (i, k) /∈ A such that θi− tk > 0 (note that,190

for these pairs, dik < θi− tk and therefore this constraint would be violated in191

the original LP). The process is repeated until there are no more constraints192

violated. When such convergence is achieved, the solution returned is the193

nucleolus. This is true because the optimal solution to the relaxed problem194

(the one in which not all constraints are necessarily present) satisfies all the195

constraints (even those which are not imposed) of the full problem. Therefore,196

the optimal solution to the relaxed problem is also an optimal solution to the197

full problem. As proved in Puerto and Perea (2013), the optimal solution to198

the full problem is the nucleolus.199

Algorithm 1 shows a pseudocode of this method.200

201

2.1. Preliminary experiments202

Experiments over the games introduced in Puerto and Perea (2013), with203

number of players ranging from 10 to 16 and kmax = 20, are summarized204

in Table 2. Column “Card A” shows the number of coalitions added in the205

last iteration of the algorithm (typically 3 iterations were needed to find the206

nucleolus). Column “Percentage %” reports the percentage of coalitions added207

in the algorithm, over the total number of possible coalitions.208

We also noted that, for these instances, the total CPU time does not209

vary much between the single LP and the row/column algorithm. We also210

note that the percentage of variables dik and its corresponding constraints211

included in the final iteration is roughly 50% of the total. Therefore, because212

less variables and constraints than in the full LP model are needed, we expect213

8

Data: The characteristic function of a game
Feasible = 0, A = ∅;
while Feasible = 0 do

Feasible = 1;
solve LP (A)→ x∗, t∗, θ∗;
for i, k : (i, k) /∈ A do

if θ∗i − t∗k > 0 then
A = A ∪ {(i, k)}, Feasible = 0

end
end

end
Result: The nucleolus: x∗

Algorithm 1: Pseudo-code of the row/column generation algorithm for
computing the nucleolus.

n Card A Percentage %
10 10 626 51.98
11 20 915 51.11
12 41 623 50.83
13 83 012 50.67
14 165 200 50.42
15 329 455 50.27
16 657 958 50.19

Table 2: Number of Cik coalitions used in the last iteration.

that this sequential procedure will be able to compute the nucleolus for games214

with larger number of players, with respect to the size of the games that the215

full LP can address. Nevertheless, 50% of the total number of 2n constraints216

is still too much, if the games considered are large enough. This is why, in217

the next section we propose a more effective approach.218

3. Combining row/column generation with sampling.219

In this section we modify the previous row-column generation algorithm220

proposed before, by starting the algorithm with a set A = I × {1, ..., kmax},221

where I is a sample of randomly selected coalitions (index i) and kmax repre-222

9

sents the index k associated to the coalition with the kmax − th largest excess,223

instead of A = ∅. This came to our mind because in the first iteration of the224

algorithm in Section 2, lots of coalitions were added to A, and very few are225

added in the following iterations (very few constraints are violated). This226

might be explained by the fact that only (2n− 1) coalitions are needed for227

computing the nucleolus, as proved by Granot et al. (1998); Reijnierse and228

Potters (1998), and therefore only a few constraints are actually active in229

our LP model. Therefore, if we start the algorithm with a set of coalitions230

that will lead to an allocation close to the nucleolus, we expect that very few231

constraints will be violated.232

However, due to the different LP models (in the different iterations) that233

we have to solve, the total running times of this algorithm are quite similar234

to the running times of the original LP model. This fact will be tested235

more extensively in the experiments section, considering different sampling236

procedures.237

3.1. A heuristic procedure based on sampling238

In this section we propose a heuristic approach to compute an allocation239

that is expected to be close to the nucleolus, in a reasonable amount of time.240

Such approach consists of stopping the previous algorithm in the first iteration.241

This way, we do not need complete knowledge of the characteristic function,242

nor we need to check if all possible Cik constraints are satisfied. Note that243

the gain in CPU time is immense, as we do not have to compute nor store244

the exponentially increasing characteristic function. Besides, as we will see in245

the experiment section, the allocations obtained are fairly close to the true246

nucleolus. An added value of this method is that one can control the size of247

the sigle LP problem to be solved by means of the size of the sample taken248

(set I) and kmax. The only LP problem to be solved in this heuristic approach249

consists of:250

10

min
kmax∑
k=1

(λk − λk+1)(ktk +
∑
i∈I

dik) (7)

s.t. dik ≥ θi − tk ∀ i ∈ I, k = 1, ..., kmax, (8)
θi = v(Si)−

∑
j∈Si

xj,∀ i ∈ I, (9)

n∑
j=1

xj = v(N), (10)

dik ≥ 0, ∀ i ∈ I, k = 1, ..., kmax.

Note how the size of the LP problem has decreased to from O(4n) to O(|I|kmax)251

variables and constraints. The reader may note that choosing an appropriate252

set I is a key aspect of this algorithm. Therefore, in the experiments section,253

several sampling techniques will be applied, for selecting set I. Besides,254

different sample sizes will also be tested and compared.255

Other stopping criteria, like for example the number of constraints violated,256

or the proportion of such unsatisfied constraints, etc. are indeed interesting.257

Unfortunately, they require the knowledge of the complete characteristic258

function for all coalitions. Therefore, we do not apply these stopping criteria259

in our heuristic approach (which intends to find an allocation with excess260

vector close to that of the nucleolus, for very large games).261

As a summary of this section, we have proposed one exact algorithm262

(which stops when the solution returned does not violate any of the Cik263

constraints of the original LP problem) and a heuristic algorithm (which stops264

after the first iteration).265

4. Experiments266

In this section we summarize the computational experience we conducted267

in order to assess the algorithms proposed. All experiments are carried out268

on a desktop PC, with an Intel i7 processor at 4.2 GHz, 16 GBytes of RAM,269

running Windows 10 Enterprise 64 bits OS. Coding is done in GAMS 25.0.2,270

and the solver used is CPLEX 12.8. The analysis of results is done with the271

help of RStudio.272

11

4.1. Instance generation273

In order to test the algorithms proposed, we have built the following sets274

of instances:275

• Random 12-player instances: a set of one hundred 12-player TU games276

have been randomly generated, in such a way that:277

– v(S) ∈ {1, 2, ..., 9}, ∀ S ⊂ N, S 6= ∅, N .278

– v(∅) = 0, v(N) = 15.279

• Balanced 12-player instances: a set of one hundred 12-player games,280

such that they have non-empty core, built in the following way:281

– A random allocation xc ∈ Z12 is built, in such a way that for every282

player j, xc
j ∈ {0, 5}, following a uniform distribution.283

– The characteristic function is built in such a way that xc is a core284

allocation, as follows: v(S) ∈ {0, ...,∑j∈S x
c
j}, for all S ∈ 2N , S 6=285

N , and v(N) = xc(N).286

Note that xc(S) ≥ v(S), ∀ S, and therefore the game has a non-empty287

core.288

• The 18-player game defined in Puerto and Perea (2013) has been ana-289

lyzed as well.290

• Random 100-player instances: a set of ten 100-player TU games, where291

the characteristic function is built in the same way as the 12-player292

random instances.293

4.2. Algorithm parameters294

The algorithms proposed mainly depend on two factors: the type of295

sampling used to generate the set I, and the size of that set. We now detail296

these two factors and specify their levels considered.297

• Factor 1: type of sampling. We have tested three types of sampling:298

1. Totally random: each coalition has the same probability of be-299

ing chosen. This is denoted as “Random” sampling, or “Type 1”300

sampling.301

12

2. Sampling per size, only small: We select the same number of302

coalitions of each size, only if the size is less than or equal to n/2.303

Coalitions of size greater than n/2 are not chosen. This is denoted304

as “Size_Small” sampling, or “Type 2” sampling. This is justified305

by Table 1, since only “small” coalitions are binding in constraints306

Cik.307

3. Sampling per size, all: We select the same number of coalitions of308

each size, and all sizes are eligible. This is denoted as “Size_All”309

sampling, or “Type 3 sampling”.310

4. Semicore sampling: All semicore coalitions (those of size 1 and311

those of size n− 1) are always chosen. The other coalitions until312

completing the sample are chosen randomly, like in Type 1 sampling.313

This is denoted as “Semicore” sampling, or “Type 4” sampling.314

• Factor 2: sample size. Regarding the sample size, we have tested the315

following values:316

– for the 12-player instances, |I| ∈ {100, 200, ..., 1000} (ranging from317

2.4% to 24.4% of all coalitions).318

– for the 18-player instance, |I| ∈ {500, 1000, ..., 5000} (ranging from319

0.19% to 1.91% of all coalitions).320

– for the 100-player instances, |I| ∈ {1000, 2000, ..., 10000} (ranging321

from 7.8 · 10−26% to 7.8 · 10−25% of all coalitions)322

We emphasize here that coalitions are re-sampled from one size to the323

next, meaning that (for example) the 200 coalitions sampled for size324

200 do not necessarily contain the 100 coalitions sampled for size 100.325

Combining the three types of sampling with the 10 different sample sizes,326

we have in total 40 different versions of our RCG algorithm and 40 versions327

of our heuristic.328

4.3. Experiments over 12-player random instances329

For each of the 100 games in the 12-player random set, the true nucleolus330

has been computed by the RCG algorithm combined with sampling (for each331

sample size and type of sampling), as well as the allocation given by each332

of the 30 versions of our heuristic, using for kmax = 20 as in Puerto and333

Perea (2013). Besides, in order to check if the number of iterations of the334

13

row-column algorithm depends on kmax, different values of this parameter335

have been tested for the exact approach.336

4.3.1. RCG results337

We first analyze the results obtained for the row-column generation algo-338

rithm, for which we run the 100 instances for all sample sizes and all sampling339

types described before. In order to check if the value of kmax affects the340

number of iterations and/or the CPU time of this algorithm, we also tested341

three different values of kmax ∈ {10, 20, 30}. The results are shown in tables 3342

and 4. For each value of kmax tested, columns “Size” and “Type” refer to the343

levels of these factors which define the sampling used in the first iteration of344

the RCG algorithm. Column “Iter” refers to the average number of iterations345

needed by the exact algorithm, and column “Timee” refers to the CPU time346

used by the exact algorithm.347

From our computational experience, we cannot conclude any clear link348

between the value of kmax and the number of iterations needed by the exact349

approach. It seems that the RCG algorithm starting with Type 2 sampling350

yields the best average results in terms of CPU time, for kmax ∈ {10, 30}.351

Starting with Type 4 sampling seems to be best for the other value of kmax.352

In terms of the number of iterations, the best average results are obtained353

when using Type 4 sampling, regardless the value of kmax employed.354

4.3.2. Heuristics results355

For each instance, and each version of our heuristic, different outputs will356

be analyzed, which include the needed CPU time by each algorithm, and the357

quality of the allocation x returned by the heuristics. In order to test the358

quality of the solution returned by the heuristic, we compared such allocations359

with the true nucleolus in two different ways: The first one is a measure of the360

relative deviation (RD) between the two allocations, the second is a measure361

of the RD between the excess vectors lexicographycally sorted. In other words,362

if x̃ and x are the nucleolus and a given allocation, and e(x) is the vector of363

the kmax largest excesses produced by the allocation x, two measures we use364

to assess the quality of the allocations returned by the heuristics are:365

• RDa =

√∑
j∈N

(x̃j−xj)2√∑
j∈N

x̃2
j

. This measure values how far allocation x is from366

the nucleolus x̃, in terms of Euclidean distance.367

14

Sampling Kmax = 10 Kmax = 20 Kmax = 30
Size Type Timee Iter Timee Iter Timee Iter
100 1 5.39 6.59 5.98 6.59 7.36 6.92
200 1 3.61 5.18 3.81 5.18 4.02 4.55
300 1 1.76 2.05 1.83 2.05 2.23 2.31
400 1 1.81 2.09 1.86 2.09 2.64 2.79
500 1 2.18 2.63 2.25 2.63 2.63 2.63
600 1 2.12 2.49 2.23 2.49 2.73 2.62
700 1 2.30 2.56 2.36 2.56 2.63 2.40
800 1 2.48 2.78 2.56 2.78 3.10 2.80
900 1 2.72 3.03 2.82 3.03 3.58 2.93
1000 1 2.82 2.98 2.92 2.98 3.30 2.81
Avg. Type 1 2.72 3.24 2.86 3.24 3.42 3.28
100 2 1.59 1.46 2.24 1.95 1.59 1.46
200 2 1.75 3.88 2.21 3.80 1.75 3.88
300 2 1.88 3.57 2.88 4.10 1.88 3.57
400 2 2.02 3.76 3.00 4.05 2.02 3.76
500 2 2.12 3.98 2.86 3.52 2.12 3.98
600 2 2.02 3.18 3.10 3.64 2.02 3.18
700 2 2.15 3.34 3.04 3.42 2.15 3.34
800 2 2.21 3.19 3.50 3.50 2.21 3.19
900 2 2.18 2.75 3.17 3.23 2.18 2.75
1000 2 2.20 3.00 3.74 3.87 2.20 3.00
Avg. Type 2 2.01 3.21 2.97 3.51 2.01 3.21

Table 3: Average results for the exact approach, for sampling types 1 and 2, each sample
size, and different values of kmax.

15

Sampling Kmax = 10 Kmax = 20 Kmax = 30
Size Type Timee Iter Timee Iter Timee Iter
100 3 1.53 1.38 2.00 1.77 2.25 1.98
200 3 2.29 3.70 2.54 3.96 2.97 4.44
300 3 2.17 4.03 2.88 4.24 3.46 4.69
400 3 1.95 3.11 2.55 3.41 3.90 5.01
500 3 2.04 3.13 5.02 6.42 5.46 5.59
600 3 2.07 3.13 2.80 3.42 3.65 3.53
700 3 2.18 3.34 2.96 3.55 3.76 3.59
800 3 2.23 3.18 3.01 3.50 3.56 3.50
900 3 2.21 3.10 3.18 3.53 3.68 3.47
1000 3 2.24 3.01 3.06 3.19 3.46 3.05
Avg. Type 3 2.07 3.13 2.99 3.73 3.47 3.90
100 4 1.74 1.27 2.20 2.11 2.66 2.00
200 4 2.32 3.81 3.11 4.65 3.93 4.53
300 4 2.13 3.18 3.10 3.72 3.80 4.08
400 4 1.99 2.85 2.38 3.07 3.46 3.78
500 4 2.06 2.68 2.26 2.72 2.92 2.86
600 4 2.04 2.42 2.39 2.75 3.06 2.86
700 4 2.09 2.46 2.57 2.85 3.42 3.11
800 4 2.23 2.64 2.81 3.15 3.40 2.96
900 4 2.27 2.67 2.67 2.74 3.62 2.99
1000 4 2.40 2.88 2.85 2.88 3.59 2.81
Avg. Type 4 2.13 2.69 2.63 3.06 3.39 3.20

Table 4: Average results for the exact approach, for sampling types 3 and 4, each sample
size, and different values of kmax.

16

• RDe =

√∑kmax
k=1 (e(x̃)k−e(x)k)2√∑kmax

k=1 e(x̃)2
k

. This measure values how far the vector x368

is from the nucleolus x̃, in terms of their excess vectors lexicographically369

sorted.370

The metrics RDa and RDe should not be interpreted as percentages. Actually,371

they measure the distance between x and x̃ (RDa) and between the excess372

vector of the nucleolus e(x̃) and the excess vector of the given allocation373

e(x)(RDe). They are normalized in such a way that, if they take value one,374

then x (or e(x)) is as far from x̃ (e(x̃)) as the norm of x̃ (e(x̃)). One could375

see these two metrics as the GAP of mathematical programs, which can take376

any non-negative value.377

Besides, we also checked how many Cik constraints are violated by the378

allocation given by the heuristic, and the absolute componentwise deviations379

between the true nucleolus and the allocations given by our heuristic.380

The average results obtained by our heuristic approach, over the 100381

random 12-player instances, for each sample size and each type of sampling,382

applying kmax = 20, are summarized in tables 5 and 6. Besides the columns383

already defined for the previous table, columns “RDa”, “RDe” and “Timeh”384

show the average values of the two relative deviations computed, as well as the385

average time needed (in seconds) by the heuristic. Column “C %” shows the386

average percentage of constraints Cik violated, whereas columns “max_a” and387

“min_a” show the maximum and minimum deviation between the heuristic388

allocation and the nucleolus, respectively.389

In tables 5 and 6 we obviously observe how the quality of the solutions390

found increases with the sample size, for each type of sampling tested, as391

both RDa and RDe decrease with the sample size. We also observe how the392

computational effort to find such allocations increases smoothly.393

Our algorithms aim at finding allocations that are close to the “concept394

of nucleolus” (lexicographical minimization of the excess vector) and not395

close to the “nucleolus as an allocation”. Since RDa measures the distance396

between allocations, and RDe measures the distance between excess vectors,397

it is logical that RDa does not show as good results as RDe does.398

4.4. Experiments over 12-player balanced instances399

Another metric that could assess the quality of the allocation returned by400

the heuristic is, for balanced games, the proportion of rationality constraints401

violated. The average results of these experiments are shown in table 7 and402

17

Sampling Heuristic Exact
Size Type RDa RDe C % maxa mina Timeh Timee Iter
100 1 0.88 0.18 10.36 2.34 0.14 1.23 5.98 6.59
200 1 0.77 0.14 10.86 2.07 0.12 1.22 3.81 5.18
300 1 0.73 0.13 3.08 1.98 0.11 1.25 1.83 2.05
400 1 0.69 0.12 4.00 1.85 0.11 1.28 1.86 2.09
500 1 0.68 0.11 6.56 1.78 0.10 1.30 2.25 2.63
600 1 0.62 0.11 8.02 1.67 0.09 1.34 2.23 2.49
700 1 0.64 0.10 8.99 1.72 0.09 1.41 2.36 2.56
800 1 0.63 0.10 10.99 1.67 0.11 1.41 2.56 2.78
900 1 0.63 0.10 11.65 1.68 0.09 1.47 2.82 3.03
1000 1 0.58 0.09 13.01 1.61 0.07 1.52 2.92 2.98
Avg. Type 1 0.68 0.12 8.75 1.84 0.10 1.34 2.86 3.24
100 2 0.62 0.15 2.15 1.58 0.09 1.22 2.24 1.95
200 2 0.45 0.09 2.10 1.21 0.08 1.21 2.21 3.80
300 2 0.35 0.06 4.53 0.96 0.04 1.24 2.88 4.10
400 2 0.27 0.04 5.81 0.74 0.03 1.27 3.00 4.05
500 2 0.24 0.04 7.44 0.63 0.02 1.31 2.86 3.52
600 2 0.23 0.03 9.23 0.61 0.02 1.36 3.10 3.64
700 2 0.21 0.02 9.95 0.57 0.01 1.38 3.04 3.42
800 2 0.17 0.02 10.90 0.47 0.01 1.49 3.50 3.50
900 2 0.17 0.02 11.25 0.46 0.00 1.56 3.17 3.23
1000 2 0.16 0.01 11.96 0.43 0.00 1.60 3.74 3.87
Avg. Type 2 0.29 0.05 7.53 0.77 0.03 1.36 2.97 3.51

Table 5: Average results over the random 12-player instances for sampling types 1 and 2,
each sample size, and kmax = 20.

18

Sampling Heuristic Exact
Size Type RDa RDe C % maxa mina Timeh Timee Iter
100 3 0.71 0.19 1.63 1.74 0.13 1.22 2.00 1.77
200 3 0.58 0.14 1.84 1.50 0.09 1.20 2.54 3.96
300 3 0.50 0.11 3.31 1.36 0.07 1.23 2.88 4.24
400 3 0.45 0.09 4.82 1.24 0.08 1.26 2.55 3.41
500 3 0.35 0.06 8.59 0.99 0.04 1.30 5.02 6.42
600 3 0.30 0.05 6.43 0.83 0.04 1.33 2.80 3.42
700 3 0.27 0.04 7.85 0.73 0.03 1.35 2.96 3.55
800 3 0.27 0.04 8.54 0.76 0.03 1.40 3.01 3.50
900 3 0.25 0.04 10.44 0.66 0.03 1.42 3.18 3.53
1000 3 0.22 0.03 10.71 0.61 0.02 1.50 3.06 3.19
Avg. Type 3 0.39 0.08 6.42 1.04 0.05 1.32 3.00 3.70
100 4 0.76 0.21 1.08 1.79 0.16 1.38 2.20 2.11
200 4 0.66 0.17 2.43 1.61 0.11 1.39 3.11 4.65
300 4 0.60 0.14 2.56 1.48 0.11 1.43 3.10 3.72
400 4 0.61 0.14 5.05 1.51 0.10 1.47 2.38 3.07
500 4 0.58 0.13 6.33 1.48 0.10 1.51 2.26 2.72
600 4 0.55 0.11 7.53 1.41 0.10 1.55 2.39 2.75
700 4 0.54 0.12 9.21 1.43 0.09 1.67 2.57 2.85
800 4 0.50 0.10 11.16 1.33 0.08 1.71 2.81 3.15
900 4 0.48 0.10 12.34 1.31 0.09 1.70 2.67 2.74
1000 4 0.45 0.09 12.89 1.25 0.07 1.79 2.85 2.88
Avg. Type 4 0.57 0.13 7.06 1.46 0.10 1.56 2.63 3.06

Table 6: Average results over the random 12-player instances for sampling types 3 and 4,
each sample size, and kmax = 20.

19

8, where column “R %” shows the average number of rationality constraints403

violated by the allocation returned.404

Sampling Heuristic
Size Type RDa RDe C % R % Timeh

100 1 0.31 13.21 38.33 5.96 1.38
200 1 0.14 6.12 32.17 3.32 1.40
300 1 0.07 3.13 20.39 1.83 1.44
400 1 0.02 0.87 9.38 0.54 1.47
500 1 0.01 0.26 2.44 0.12 1.50
600 1 0.00 0.16 1.62 0.08 1.54
700 1 0.00 0.00 0.91 0.00 1.60
800 1 0.00 0.00 0.57 0.00 1.62
900 1 0.00 0.00 0.80 0.00 1.68
1000 1 0.00 0.00 0.58 0.00 1.72
Avg. Type 1 0.06 2.38 10.72 1.18 1.53
100 2 0.21 8.93 29.62 4.18 1.41
200 2 0.06 2.51 13.23 1.30 1.42
300 2 0.02 0.72 3.76 0.32 1.45
400 2 0.00 0.10 2.81 0.04 1.48
500 2 0.00 0.12 2.76 0.05 1.54
600 2 0.00 0.04 0.14 0.01 1.55
700 2 0.00 0.00 0.07 0.00 1.63
800 2 0.00 0.00 0.18 0.00 1.65
900 2 0.00 0.00 0.42 0.00 1.70
1000 2 0.00 0.00 1.81 0.00 1.80
Avg. Type 2 0.03 1.24 5.48 0.59 1.56

Table 7: Average results over 100 12-player balanced instances for sampling types 1 and 2,
and each sample size.

A first conclusion after these results is that the nucleolus is found if the405

sample size is greater than 700 or 800, depending on the sampling type. This406

minimum sample size required is between 700 and 800, depending on the407

sampling type. These results are extremely good, and suggest that, whenever408

the core is non-empty, our heuristic procedure finds the nucleolus quite easily.409

20

Sampling Heuristic
Size Type RDa RDe C % R % Timeh

100 3 0.28 11.81 28.69 5.10 1.35
200 3 0.12 5.05 16.71 2.50 1.34
300 3 0.05 2.24 10.32 1.16 1.37
400 3 0.02 0.86 3.94 0.43 1.39
500 3 0.00 0.12 1.04 0.05 1.41
600 3 0.00 0.04 0.44 0.03 1.44
700 3 0.00 0.00 0.03 0.00 1.48
800 3 0.00 0.00 0.29 0.00 1.52
900 3 0.00 0.00 0.65 0.00 1.55
1000 3 0.00 0.00 2.09 0.00 1.62
Avg. Type 3 0.05 2.01 6.42 0.93 1.45
100 4 0.31 12.99 32.69 5.58 1.48
200 4 0.14 5.97 23.87 3.01 1.49
300 4 0.06 2.35 11.14 1.33 1.52
400 4 0.02 0.85 5.63 0.49 1.55
500 4 0.01 0.33 4.26 0.18 1.59
600 4 0.00 0.10 0.67 0.05 1.61
700 4 0.00 0.03 0.34 0.02 1.67
800 4 0.00 0.00 0.09 0.00 1.69
900 4 0.00 0.00 0.51 0.00 1.73
1000 4 0.00 0.00 0.86 0.00 1.81
Avg. Type 4 0.05 2.26 8.01 1.07 1.61

Table 8: Average results over 100 12-player balanced instances for sampling types 3 and 4,
and each sample size.

21

4.5. Experiments over medium instances410

In this section we analyze our heuristic procedure over the 18-player411

instance as presented and solved in Puerto and Perea (2013), for which we412

know the true nucleolus. Tables 9 and 10 show the results of our heuristic413

procedure, using the four sampling strategies suggested, and ten different414

sample sizes ranging from 500 to 5000. Parameter kmax is set to 30, as in415

Puerto and Perea (2013).416

In this table we have added a new column “RD∗e”, to correct the fact that417

since the norm of the excess vector yielded by the nucleolus is too small (really418

close to zero), the numbers given in column “RDe” are somehow affected by419

this small denominator. Therefore, RD∗e = RD∗e(
√∑kmax

k=1 e(x̃)2
k). In this game,420 √∑kmax

k=1 e(x̃)2
k = 0.03338436.421

The results confirm that our heuristic procedures can find allocations close422

to the nucleolus in a reasonable amount of time also for this larger game. The423

CPU time needed increases linearly with the sample size. The best results in424

terms of relative deviations are obtained with sampling type 2, in which only425

small coalitions are sampled.426

4.6. Experiments over 100-player instances427

These instances are randomly generated in such a way that only the data428

for the sampled coalitions (applying Type 1) is stored. The reader may note429

that storing the characteristic function and the coalition membership for430

2100 = 1.267651e + 30 coalitions would be a real challenge, and therefore431

applying the exact approach seems impossible. The only purpose of this432

section is to show how one can obtain an allocation based on the proposed433

methodology for large games. Table 11 shows the average CPU time needed434

for our heuristic procedure to find an allocation (in seconds) for the different435

values of sample size tested. We observe in Figure 1 how the increase in436

running times with respect to the size of the sample taken seems linear. In437

order to test the latter claim, we built a simple linear regression model to438

explain the average CPU time of the heuristic as a function of the sample439

size, which yielded significant parameters and a coefficient of determination440

of 0.9639 (96.39% of the variability in CPU time is explained by the sample441

size). Such large coefficient of determination supports that the CPU time442

increases only linearly with the sample size.443

22

Sampling Heuristic
Size Type RDa RDe RD∗e C % maxa mina Timeh

500 1 0.31 10.74 0.36 33.27 0.04 0.00 4.40
1000 1 0.20 4.79 0.16 23.09 0.03 0.00 8.24
1500 1 0.24 4.76 0.16 22.73 0.02 0.00 12.16
2000 1 0.20 4.18 0.14 31.75 0.03 0.00 16.63
2500 1 0.17 2.71 0.09 21.60 0.03 0.00 19.23
3000 1 0.16 3.13 0.10 29.78 0.02 0.00 24.28
3500 1 0.23 4.06 0.14 20.00 0.03 0.00 30.38
4000 1 0.15 2.65 0.09 19.02 0.02 0.00 32.26
4500 1 0.20 3.50 0.12 20.60 0.02 0.00 37.06
5000 1 0.18 3.15 0.11 16.97 0.03 0.00 44.04
Avg. Type 1 0.20 4.37 0.15 23.88 0.03 0.00 22.87
500 2 0.12 2.32 0.08 23.24 0.02 0.00 2.71
1000 2 0.22 5.84 0.19 32.86 0.02 0.00 4.70
1500 2 0.14 3.63 0.12 22.59 0.02 0.00 6.83
2000 2 0.13 2.05 0.07 31.52 0.02 0.00 9.33
2500 2 0.13 2.34 0.08 30.57 0.02 0.00 10.83
3000 2 0.15 3.44 0.11 20.62 0.03 0.00 12.72
3500 2 0.10 2.23 0.07 28.22 0.02 0.00 25.06
4000 2 0.08 1.08 0.04 26.87 0.01 0.00 18.58
4500 2 0.12 2.14 0.07 22.88 0.02 0.00 30.27
5000 2 0.08 1.57 0.05 23.89 0.01 0.00 23.65
Avg. Type 2 0.13 2.66 0.09 26.33 0.02 0.00 14.47

Table 9: Results over the 18-player instance for sampling types 1 and 2, each sample size,
kmax = 30.

23

Sampling Heuristic
Size Type RDa RDe RD∗e C % maxa mina Timeh

500 3 0.25 6.88 0.23 23.20 0.03 0.00 2.70
1000 3 0.15 2.44 0.08 22.92 0.02 0.00 5.87
1500 3 0.09 2.36 0.08 22.49 0.02 0.00 6.75
2000 3 0.12 1.38 0.05 31.33 0.01 0.00 9.54
2500 3 0.15 4.78 0.16 21.24 0.02 0.00 10.52
3000 3 0.08 2.28 0.08 29.21 0.01 0.00 12.77
3500 3 0.09 2.31 0.08 27.95 0.01 0.00 17.30
4000 3 0.10 1.73 0.06 21.25 0.02 0.00 17.92
4500 3 0.11 2.80 0.09 22.60 0.01 0.00 23.43
5000 3 0.11 2.06 0.07 16.51 0.02 0.00 23.06
Avg. Type 3 0.13 2.90 0.10 23.87 0.02 0.00 12.99
500 4 0.44 14.79 0.49 33.11 0.06 0.00 5.31
1000 4 0.28 7.53 0.25 22.85 0.03 0.00 8.82
1500 4 0.24 5.61 0.19 31.99 0.03 0.00 12.81
2000 4 0.23 5.13 0.17 21.78 0.02 0.00 16.88
2500 4 0.24 4.74 0.16 21.07 0.04 0.00 20.42
3000 4 0.21 4.07 0.14 28.95 0.02 0.00 26.30
3500 4 0.18 2.89 0.10 27.65 0.02 0.00 30.48
4000 4 0.19 3.48 0.12 18.34 0.02 0.00 33.57
4500 4 0.22 4.05 0.14 17.30 0.03 0.00 40.45
5000 4 0.17 3.13 0.10 16.21 0.02 0.00 42.49
Avg. Type 4 0.24 5.54 0.19 23.93 0.03 0.00 23.75

Table 10: Results over the 18-player instance for sampling types 3 and 4, each sample size,
kmax = 30.

24

sample size CPU time
1000 2.16
2000 4.44
3000 8.80
4000 13.54
5000 26.26
6000 27.24
7000 36.03
8000 52.31
9000 57.52
10000 69.27

Table 11: Average CPU-times in seconds over the 100-player instances, for each sample size
tested.

2000 4000 6000 8000 10000

0
10

20
30

40
50

60
70

Heuristic over 100−player instances

Sample size

S
ec

on
ds

Figure 1: Evolution of average CPU time used as a function of sample size, for each type
of sampling, in the heuristic approach for the 100-player instances.

25

Conclusions444

In this paper, we have introduced a row/column generation approach445

combined with sampling in order to find the nucleolus of any TU game.446

However, since the CPU time of this algorithm is only acceptable for relatively447

small instances, we have also proposed a heuristic approach for finding the448

nucleolus. Although both the literature on the nucleolus and the literature449

on heuristic and metaheuristic algorithms are vast, the combination of both450

disciplines is rather limited and does not include any serious analysis. We451

believe that, in order to compute the nucleolus for large games (which is more452

and more common in the current competing world) algorithms that are fast453

will be needed, even if the allocation returned is not guaranteed to be the true454

nucleolus. Therefore, we consider this piece of research as a first avenue for455

the interaction between heuristics and the nucleolus, which will surely gain456

more and more attention from the scientific community in the near future.457

The heuristics proposed consist of sampling the set of coalitions, and458

solving a LP-model previously introduced in the literature for the nucleolus,459

considering only the coalitions chosen. The results obtained with this approach460

are quite satisfactory, as the allocations returned are close to the true nucleolus,461

as we tested over 12-player instances. Besides, our heuristics are capable of462

obtaining an allocation, which is also expected to be close to the nucleolus,463

in a reasonable amount of time for large games (we tested 100-player games).464

Specially good results are obtained when the corresponding game has non-465

empty core. In such balanced games with 12 players, the true nucleolus was466

always found by our heuristic procedure using relatively small sample sizes.467

Further research on the nucleolus will necessarily focus on the search for468

fast algorithms for finding this allocation, or allocations close to it (as is the469

case of this paper).470

Both quality measures used to assess the quality of the solutions471

returned by the heuristic are computed with respect to the origin.472

A different approach, in which the denominator considers some473

problem-specific point (e.g. the “centre” of the imputation set) is474

worth being explored. As mentioned in the experiments section, a475

disadvantage of using the distance relative to the origin is that the476

denominator is very close to zero. In fact, there are games with477

arbitrarily small or large denominator, which makes the measures478

considering the origin less meaningful. Therefore, further research479

will also focus on the search for new measures for assessing the480

26

quality of the solutions returned.481

Acknowledgments482

The authors would like to acknowledge the support from Spanish “Ministe-483

rio de Economia y competitividad” throughout grant number MTM2016-74983484

and grant “SCHEYARD – Optimization of Scheduling Problems in Container485

Yards” (No. DPI2015-65895-R) financed by FEDER funds. Special thanks486

are due to two anonymous referees for their valuable comments.487

References488

Aiche, A., Rubinchik, A., and Shitovitz, B. (2015). The asymptotic core, nucle-489

olus and shapley value of smooth market games with symmetric large players.490

International Journal of Game Theory, 44(1):135–151.491

Baïou, M. and Barahona, F. (2017). On the nucleolus of shortest path games.492

Lecture Notes on Computer Science, 10504:55–66.493

Brânzei, R., Iñarra, E., Tijs, S., and Zarzuelo, J. (2006). A simple algorithm for494

the nucleolus of airport profit games. International Journal of Game Theory,495

34(2):259–272.496

Chin, H. H. (1997). Game Theoretical Applications to Economics and Operations497

Research, chapter Genetic Algorithm for Finding the Nucleolus of Assignment498

Games. Springer, Boston, MA.499

Deng, X., Fang, Q., and Sun, X. (2009). Finding nucleolus of flow game. Journal500

of Combinatorial Optimization, 18(1):64–86.501

Dragan, I. (1981). A procedure for finding the nucleolus of a cooperative n person502

game. Zeitschrift für Operations Research, 25:119–131.503

Fang, Q., Li, B., Shan, X., and Sun, X. (2015). The least-core and nucleolus of504

path cooperative games. Lecture Notes in Computer Science, 9198:70–82.505

Fang, Q., Li, B., Sun, X., Zhang, J., and Zhang, J. (2016). Computing the least-506

core and nucleolus for threshold cardinality matching games. Theoretical Com-507

puter Science, 609:500–510.508

Flisberg, P., Frisk, M., Rönnqvist, M., and Guajardo, M. (2015). Potential savings509

and cost allocations for forest fuel transportation in Sweden: A country-wide510

study. Energy, 85:353–365.511

27

Granot, D., Granot, F., and Zhu, W. R. (1998). Characterization sets for the512

nucleolus. International Journal of Game Theory, 27(3):359–374.513

Greco, G., Malizia, E., Palopoli, L., and Scarcello, F. (2014). The complexity of514

the nucleolus in compact games. ACM Transactions on Computation Theory,515

7(1):52 pages.516

Guajardo, M. and Jörnsten, K. (2015). Common mistakes in computing the nu-517

cleolus. European Journal of Operational Research, 241:931–935.518

Hallefjord, A., Helming, R., and Jörnsten., K. (1995). Computing the nucleolus519

when the characteristic function is given implicitly: A constraint generation520

approach. International Journal of Game Theory, 24:357–372.521

Hamers, H., Klijn, F., Solymosi, T., Tijs, S., and Vermeulen, D. (2003). On522

the nucleolus of neighbor games. European Journal of Operational Research,523

146(1):1–18.524

Hou, D. and Driessen, T. (2015). Determining the nucleolus of compromise stable525

games. Bulletin of the Australian Mathematical Society, 92(3):488–495.526

Kamiyama, N. (2015). The nucleolus of arborescence games in directed acyclic527

graphs. Operations Research Letters, 43(1):89–92.528

Kimms, A. and Çetiner, D. (2012). Approximate nucleolus-based revenue sharing529

in airline alliances. European Journal of Operational Research, 220:510–521.530

Kohlberg, E. (1972). The nucleolus as a solution of a minimization problem. SIAM531

JAM, 23:34–39.532

Kurz, S., Napel, S., and Nohnc, A. (2014). The nucleolus of large majority games.533

Economics Letters, 123:139–143.534

Martínez-De-Albéniz, F., Rafels, C., and Ybern, N. (2013). A procedure to535

compute the nucleolus of the assignment game. Operations Research Letters,536

41(6):675–678.537

Maschler, M., Peleg, B., and Shapley, L. (1979). Geometric properties of the kernel,538

nucleolus and related solution concepts. Mathematics of Operations Research,539

4(4):303–338.540

Maschler, M., Potters, J., and Reijnierse, H. (2010). The nucleolus of a standard541

tree game revisited: A study of its monotonicity and computational properties.542

International Journal of Game Theory, 39(1):89–104.543

Nguyen, T.-D. and Thomas, L. (2016). Finding the nucleoli of large cooperative544

games. European Journal of Operational Research, 248:1078–1092.545

28

Owen, G. (1974). A note on the nucleolus. International Journal of Game Theory,546

3:101–103.547

Owen, G. (1995). Game Theory. Academic Press, Inc. London.548

Potters, J. A. M., Reijnierse, J., and Ansing, M. (1996). Computing the nucleolus549

by solving a prolonged simplex algorithm. Mathematics of Operations Research,550

21:757–768.551

Puerto, J. and Perea, F. (2013). Finding the nucleolus of any n-person cooperative552

game by a single linear program. Computers and Operations Research, 40:2308–553

2313.554

Reijnierse, H. and Potters, J. (1998). The b-nucleolus of tu-games. Games and555

Economic Behavior, 24(1-2):77–96.556

Sankaran, J. (1991). On finding the nucleolus of an n-person cooperative game.557

International Journal of Game Theory, 19:329–338.558

Solymosi, T. (1993). On computing the nucleolus of cooperative games. PhD thesis,559

University of Illinois at Chicago.560

Solymosi, T., Raghavan, T., and Tijs, S. (2005). Computing the nucleolus of cyclic561

permutation games. European Journal of Operational Research, 162(1):270–280.562

Sziklai, B., Fleiner, T., and Solymosi, T. (2017). On the core and nucleolus of563

directed acyclic graph games. Mathematical Programming Series A, 163:243–564

271.565

van den Brink, R., Katsev, I., and van der Laan, G. (2011). A polynomial time566

algorithm for computing the nucleolus for a class of disjunctive games with a567

permission structure. International Journal of Game Theory, 40(3):591–616.568

Wang, Y., Yin, Z., and Li, Y. (2017). The application of data-process interac-569

tion model in cost allocation. Academic Journal of Manufacturing Engineering,570

15(3):129–138.571

Yu, Y., Lou, Q., Tang, J., Wang, J., and Yue, X. (2017). An exact decomposition572

method to save trips in cooperative pickup and delivery based on scheduled573

trips and profit distribution. Computers and Operations Research, 87:245–257.574

29

