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DISTANCE FORMULAS ON WEIGHTED BANACH SPACES OF
ANALYTIC FUNCTIONS

JOSE BONET, WOLFGANG LUSKY, AND JARI TASKINEN

ABSTRACT. Let v be a radial weight function on the unit disc or on the complex
plane. It is shown that for each analytic function fy in the Banach space H° of all
analytic functions f such that v|f| is bounded, the distance of fy to the subspace
HY of H of all the functions g such that v|g| vanishes at infinity is attained at a
function gg € HY. Moreover a simple, direct proof of the formula of the distance of
f to HY due to Perfekt is presented. As a consequence the corresponding results
for weighted Bloch spaces are obtained.

1. INTRODUCTION AND NOTATION.

Let us introduce some notation and terminology. We set R = 1 (for the case
of holomorphic functions on the unit disc) and R = +oo (for the case of entire
functions). A weight v is a continuous function v : [0, R[—]0, 00|, which is non-
increasing on [0, R| and satisfies lim, g 7"v(r) = 0 for each n € N. We extend v to
Dif R =1 and to C if R = 400 by v(z) := v(|z]). For such a weight v, we define
the Banach space Hg® of analytic functions f on the disc D (if R = 1) or on the
whole complex plane C (if R = +o00) such that || f|[, := sup|, .z v(2)[f(2)] < oco.
For an analytic function f € H({z € C;|2| < R}) and r < R, we denote M (f,r) :=
max{|f(2)| ; |z| = r}. Using the notation O and o of Landau, f € H* if and only
it M(f,r)=0(1/v(r)),r— R.

It is known that the closure of the polynomials in H;° coincides with the Banach
space HY of all those analytic functions on {z € C;|z| < R} such that M(f,r) =
o(1/v(r)),r — R. see e.g. [2].

Spaces of type H.° appear in the study of growth conditions of analytic functions
and have been investigated in various articles since the work of Shields and Williams,
see e.g. [2],[3], [5], [6], [9] and the references therein.

We recall some examples of weights:

For R =1,

(1) v(r) = (1 — r)* with o > 0, which are the standard weights on the disc,
(ii) v(r) = exp(—(1 — 7)), and
(4ii) v(z) = (log %)™, a >0
For R = +o0,
(i) v(r) = exp(—rP) with p > 0,
(17) v(r) = exp(—expr), and
(i1i) v(r) = exp ( — (log* r)?), where p > 2 and log* r = max(logr, 0).

Given an analytic function f on D or C, we denote by o, f the n’th Cesaro mean
of f; i.e. the arithmetic mean of the first n Taylor polynomials of f. In this case,
one has M (o, f,r) < M(f,r) for each 0 < r < R.
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In this note we investigate the distance d(f, Hy) = infyepo || f — g||, of a function
[ € HX to the closed subspace H?. Perfekt in Example 4.4 of [7] proved that
d(f, HY) = limsup,_, 5 M(f,r)v(r) for each f € H°. This result follows from an
abstract result [7, Theorem 2.3] with an argument using duality and measures. It
implies Theorem 3.9 and Corollary 6.4 in Tjani [10] about the distance of a Bloch
function to the little Bloch space. The result of Tjani only gives an estimate, not
equality. There are some other recent papers dealing with distance formulas. See
[11] and the references therein.

Our main result is Theorem 2.2. Tt shows that H? is a proximinal subspace of
H?®; that is, it proves that for each f € H® the distance d(f, H?) is attained at a
point g € H?. Moreover, it gives an elementary, direct, but not trivial, proof of the
formula of the distance due to Perfekt [7]. The corresponding result for the case of
Bloch type functions is obtained as a consequence in Corollary 2.5.

2. RESuULTS.

Given f € H2° we clearly have

limsup v(2)|f(2)| = limsup M (f, r)v(r) = lim supv(s)M(f,s).
r—R

|z| >R T=R s>r

Remark 2.1. It is easy to see that, for each f € H;°,
limsup M (f,r)v(r) = inf limsup M(f — g,r)v(r)
r—R geH) rR

v

Indeed, this follows from the fact that
limsup M (g,7)v(r) =0 for every g€ HP.

r—R

Theorem 2.2. For every f € H® there is g € HY with
A(f.HE) = 11 = gll, = limsup M(S. rye(r).
r—

To prove the theorem we begin with the following
Lemma 2.3. Let f € H® and assume that there is 7 < 1 with
7| fllo < limsup M (f,r)v(r).
r—R

Then, for each € > 0 and m € N there is n € N,n > m, such that with p =
(1—=7)/(147) we have

1
STV 1 = ponfl < Timsup M(f,r)o(r) = limsup M(f = po f, r)o(r).
2(1 + 5) r—R r—R
Proof. The last equality follows from the facts that o,f € H° and that for each
element g € H? we have limsup,_, z M(g,7)v(r) = 0.
Fix ¢ > 0 and m € N. By the definition of lim sup there is ry < R such that
(1) sup M(f,r)o(r) < (1+e) inf sup M(f,r)v(r)

ro<r<R 0<s<R g<yr<R

= (1 +¢) limsup M (f,r)v(r).

r—R
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Since [ is continuous on roD, the n’'th Cesaro means of f satisfy o,f — f as
n — oo uniformly on roID. Put

o 1—71
A =
and fix 0 < ¢ such that
2T 2
2 ) < (1 )
(2) <+1+T>_(+€)1+T

For 0 < r < ry we obtain M(f — o,f,r)v(r) < 0||f||, if n > m is large enough.
Hence
(3) M(f = ponf,r)o(r) < (1= p)M(f,r)o(r) + pM(f — onf,r)v(r)

< ((1=p) + )|/

If rp < s < R then we have, in view of (1),

(4) M(f—=ponf,s)v(s) < (14+p)M(f, s)o(s) < (1+4€)(1+p) limsup M (f, r)v(r)

r—R

From the definition of p we get

2(1+¢)
1 1 =
(1+2)(1+p) = T
and )
.
1—p= )
P 147

Hence (1), (2), (3), (4) and the assumption of the lemma yield
f = ponflle = sup M(f — ponf,r)v(r)

0<r<R

< max (((5 + (L= ) fllo, (L 4+€)(1 + p) limsup M(f, ?”)U(T’))

r—R

27 2(14+¢)\ ..
< 1 M
< max ((6—1— 1—1—7’) I f1lo, ( 7 ) H:l_}S}lzlp (f,r)v(r))
2(1
< (255 timsup (£, 0000),
The proof is complete. O

Proof. (of Theorem 2.2) Let f € H. If limsup,_,, M(f,r)v(r) =0 then f € H?
and d(f, HY) = 0.
Now assume that limsup,_, M (f,7)v(r) > 0 and find 75 < 1 with

1 .
I flle < —limsup M (f,r)v(r).
T0 r—R

Put py = (1 —7)/(1+ 1) and fo = f.

We proceed by induction and suppose that we have already selected 79 < 7,,,-1 <
T < 1, pm > 0 and f,, == f — > 7", pron, fr—1 for some n,, > ngy,—q with || finllo <
(1/7m) limsup,_, g M (fo, 7)0(r).

A simple calculation shows

L= 7 _ (2\ 1= 7
3+ T 3) 147
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Find ¢,, > 0 such that

1 1+ 7,

(5) em < —, Sy >
and
(6) 1—2(113?;) _ 1+ 2¢, — Tm _ (2) 1_Tm.

1+2(1+T€’;) 3+ 2, + T 3) 1+,
Put
(7) e AT g kT L 2e T

2(1+¢€nm) L+7, 342, +7, 1

Observe that 7, < 7,41 < 1. Then Lemma 2.3 yields n,,.1 > n,, such that, with

m+1

(8) fm+1 = fm_pm+1anm+1fm - f_z pk’gnkfk—la
k=1

we have

(9) [ fmsllo < limsup M (fini1,7)v(r)

Tm+1 r—R

1
= limsup M (f,r)v(r).
Tm+1 r—R

(5) and (7) yield lim,, o 7, = 1 since (7,,,) is an increasing bounded sequence. On
account of (6) we obtain

2
Pm+1 < <§) pm  for all m,

2 m
Pm < 3/ Po

This implies that Y p- | prom, fr—1 converges to an element g € HY, since ||oy, fr—1]lo
feoille < 7250 lle < 76| fl]o for all k, as it follows from (9). Therefore, we can
apply (8) and (9) to get

hence,

IN

1 = gllo < [ fmallo +11 D prom fealls <

k=m+2
1 = /2\F
< lim sup M (f, r)v(r) + potp Z -] .
Tm+1 r—R JR— 3
Thus
I1f = glle < limsup M(f,r)v(r) = inf limsup M(f — h,r)v(r) < d(f, H).
r—R heH) roR
We conclude d(f, H®) = ||f — gl|, = limsup,_, x M(f,r)v(r). O

One of the referees pointed out that our construction reminded her/him of a
construction in [1], where the authors prove a proximinality result for bounded
operators.
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Remark 2.4. The following simple examples show that the distance d(f, H?) can
be attained at many points of HY for a given function f € HZ°.

(1) Consider the weight v(r) = e ",r € [0,00[, on the complex plane and the
analytic function f(z) = e*,z € C. Clearly f € H and ||f||, = 1. Set P,(z) =
Y reo %’T for each n € N. We have, for each n, P, € H? and

<k
. r
1f = Pallo = supe D g = L=d(f H).
k=n-+1
(2) Now define the weight v(r) = 1 —r,7 € [0,1], on the unit disc. The function
f(2) = = = Y00, 2" belongs to H® and || f]|, = 1. Set P,(2) = Y_;_, 2" for each

n € N. We have, for each n, P, € H? and

o0 . TnJrl
M(f_P”’T):Zrzl_r
k=n+1

Therefore
If = Palls = i%pu(l —r)M(f = P,,r) = 1=d(f, H)).

(3) The proximinality in Theorem 2.2, i.e. the existence of the minimizer g, also
appears in Perfekt [8] as an abstract consequence of the fact that HY is an M-ideal
of H*. Moreover, by further abstract M-ideal theory, the minimizer for a given
f € H\ HY is never unique; see [4]. This was pointed out to us by one of the
referees, who also emphasized that we give a very explicit construction, which these
references do not.

Let v be a weight on the unit disc D; i.e. R = 1. The weighted Bloch space is
defined by

B, ={feHD): f(0)=0, ||
and the little Bloch space
Bo=1{f€B: ‘li|mlv(z)|f/(z)| = 0}.

B, = sggv(Z)lf’(ZH < oo},

They are Banach spaces endowed with the norm || - ||z, .
The classical Bloch space B and little Bloch space By correspond to the weight
v(2) := 1 — |2|>. Among the many references on these spaces, we mention Zhu [12],

for example.
Define the bounded operators S : B, — H®, S(h) = I/ and S7' : H® —

By, (S7'h)(z) = [y h(€)dE. Then SS™ = idpe, S™'S = idg, and S, S~ are iso-
metric onto maps. These operators induce isometries between H? and B, 0.
The following result is a direct consequence of Theorem 2.2. It should be compared

with Example 4.1 in [7]. It improves [10, Corollary 6.4].
Corollary 2.5. For each f € B, there is g € B, such that

d(f, Buo) = IIf — glls, = lirlrflj}lp M(f',r)o(r).

Finally we mention the weighted spaces of harmonic functions for a given weight
von {z € C;|z| < R}. Let hZ° consist of all harmonic functions on {z € C;|z| < R}
with || f[|, = sup,<g [f(2)|v(2) < 0o and let hy) be the closure of all trigonometric
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polynomials in h3°. Using the arguments of the proof of Theorem 2.2. word by word
yields

Theorem 2.6. For every f € h° there is g € h? with
d(f, ) =If —gll. = lim sup M(f,r)o(r).
r—
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