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1. Introduction 

 

1.1. Application of oocyte cryopreservation 

 

Cryopreservation of embryos and gametes in animal species is considered an 

important tool in reproductive biotechnology to preserve selected lines from pathogens, 

to evaluate the genetic improvement, minimizing the impact of the genetic drift and to 

facilitate the diffusion of the lines to different countries avoiding animal transportation 

and its sanitary risks (García and Baselga 2002;  Lavara et al. 2011). Moreover, these 

techniques allow us to conserve and widespread animal genetics biodiversity and to 

preserve endangered species to maintain biodiversity (Woelders et al. 2006; Andrabi 

and Maxwell 2007; Pereira and Marques 2008; Prentice and Anzar 2011). Despite all 

the advantage however, gamete cryopreservation presents disadvantage that, only the 

haploid genotype is conserved. Nevertheless, oocyte banks allows female genetic 

material to be stored unfertilized until an appropriate male germplasm is selected, 

moreover it would also preserve the genetic material from unexpectedly dead animals 

and facilitate many assisted reproductive technologies (Ledda et al. 2001; Checura and 

Seidel 2007; Pereira and Marques 2008). In human, oocyte cryopreservation provides 

an alternative to embryo freezing without ethical and religious problems, and can also 

be used to preserve fertility in patients in danger of loosing ovarian function (Ledda et 

al. 2001; Nottola et al. 2008; Porcu et al. 2008).  

 

1.2 Methods for gamete and embryos cryopreservation: slow freezing and 

vitrification 

 

Currently, there are two methods for gamete and embryo cryopreservation 

according with presence or absence of ice formation: slow freezing and vitrification.  

 

 

1.2.1 Slow freezing 

 

Slow freezing uses low concentrations of permeating cryoprotectants, as 

propyleneglycol, ethyleneglycol, dimethylsulphoxide and glycerol (Otoi et al., 1993; 
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Lim et al. 1999). The final concentration of permeating cryoprotectants is from 10 to 

15%. This has the advantage of producing less chemical toxicity and osmotic shock, but 

their ability to prevent ice-crystal formation is limited. Non permeating cryoprotectants 

are used in combination with a permeating cryoprotectant, to increase the net 

concentration of the permeating cryoprotectant inside the cell and also preventing ice-

crystal formation. The most commonly used nonpermeating cryoprotectants are sucrose, 

galactose and threalose.  

 

In slow freezing method oocytes are mounted between two air bubbles in 0.25 

mL sterile French mini straws sealed by a sterile plug (Figure 1).  The straws are then 

placed into a programmable freezer where temperature is lowered from 20º C to about -

5ºC to -7º C where they are kept for several minutes to equilibrate.  After equilibration 

manual seeding is performed and temperature is then lowered to about -30ºC to -35ºC at 

a rate of  about 0.3ºC-0.5ºC/min.  Finally, straws are directly plunged into LN2 and 

stored for later use (Figure 2). 

 

                           

                            Cotton  PBS+BSA Air      Oocytes      Air   PBS+BSA        Plug 

 
Figure 1. Diagram of packed in straws 

 

 

 

 

Figure 2. Temperature curve of slow freezing method 
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The induction of seeding (ice formation in the external solution) by touching the 

wall of the container with an object cooled at -196 ºC, prevents supercooling and starts 

the dehydration process (Shaw 1993). The seeding induces the concentration of the 

solutes in the non-frozen fraction that gradually increases because water is incorporated 

into the extracellular ice crystals causing a progressive dehydration of the cell thanks to 

the osmotic gradient, that has been generated across the cell membrane. 

 

 

2.1.2. Vitrification 

 

 Vitrification is the process by which the solution containing sample is cooled so 

rapidly that the water molecules do not have time enough to form ice crystals and 

instantly solidify into a “glass-like” structure. The concept is based upon the idea that if 

the cell is dehydrated to a certain degree and then cooled fast enough, everything will 

“freeze” in place and damage will not have time to occur, crystals will not be able to 

organize themselves and a vitrified amorphous glass, like solid, will be formed instead 

of ice. 

 

To achieve vitrification state three factors should be considered: cooling rate, 

medium viscosity and volume. 

 

Cooling rate. High cooling rate is achieved plunging the sample into liquid 

nitrogen. The cooling rate depends on the container, the volume, the termal 

conductivity, the solution, etc.  

 

Viscosity. The viscosity of the medium depends on the concentration and 

behaviour of cryoprotectants and other additives in the vitrification solution. The 

combination of different cryoprotectants is used to increase the viscosity and to reduce 

the level of toxicity.  Cryoprotectants are additional chemicals used in cryopreservation 

to avoid ice formation and shocking effects. They are classified in two groups: 

permeating and non-permeating group.  

 

The permeating group includes small molecules that readily penetrate the membranes of 

cells, form hydrogen bonds with intracellular water molecules and lower the freezing 
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temperature of the resulting mixture, preventing ice crystallization. Some permeating 

cryoprotectants are Glycerol, Ethylene glycol (EG), propane-1,2-diol (Pr-OH), 

Dimethylsulphoxide… 

 

No permeating agents (glucose, sucrose, trehalose, Ficoll, etc.) are large molecules that 

do not permeate the cell membrane, but they increase the concentration of extracellular 

solutes and generating an osmotic gradient across the cell membrane, which draws 

water out of the cell causing the cell dehydratation before the freezing procedure. When 

they are combined with permeating cryoprotectants, they contribute to the overall 

vitrification properties. 

 

The concentration of cryoprotectants in the freezing solution (equilibration solution) is 

really very important as it determines the dehydration rate of the oocyte: the higher the 

concentration is, the quickies the oocyte dehydrates and the faster the water leaves 

cytoplasm to dilute the high concentration of extracellular solutes (Shaw 1993).  

 

Volume. The smaller the volume is, the higher probability of vitrification is. 

Smaller volumes allow better heat transfer, which facilities higher cooling rates. 

Different carrier tools have been applied to minimise the volume, including surface and 

tubing techniques. Surface techniques include electron microscope grids (Martino et al. 

1996), cryoloops (Fuchinoue et al. 2004), cryotops (Kuwayama et al. 2005), Hemi-

straw (Vanderzwalmen et al. 2000), solid surface (Dinnyes et al. 2000), nylon mesh 

(Matsumoto et al. 2001), Cryoleaf (Chian et al. 2005), direct cover vitrification (Chen et 

al. 2006), fiber plug (Muthukumar et al. 2008), vitrification spatula (Tsang & Chow 

2009), Cryo-E (Petyim et al. 2009), plastic blade (Sugiyama et al. 2010), and Vitri-Inga 

(Almodin et al. 2010). Tubing techniques include the plastic straw (Rall & Fahy 1985),  

open pulled straw (OPS; Vajta et al. 1997, 1998), closed pulled straw(CPS; Chen et al. 

2001), flexipet-denuding pipette (Liebermann et al. 2002), superfine OPS (Isachenko et 

al. 2003), CryoTip (Kuwayama et al. 2005), pipette tip (Sun et al. 2008), high-security 

vitrification device (Camus et al. 2006), sealed pulled straw (Yavin et al. 2009), 

Cryopette (Portmann et al. 2010), Rapid-i (Larman & Gardner 2010), and JY Straw (R 

C Chian, personal communication). An examples of the different devices are shown in 

Figure 3 (adapted from Saragusty and Arav 2010). 
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Figure 3. Decivers for vitrification. Electron microscope grids (1), minim volume drop (2), Cryotop (3), 

Cryoloop (4), Hemi straw (5), CryoleafTM (6), Fibre plug (7), Direct cover vitrification (8), vitrification 

spatula (9), nylon maya (10), Cryotube (11), Vitri-Inga (12), Straw, open-pulled straw, super open-pulled 

straw (13), Cryotip® (14), flexipet-denuding pipette (15),  Pipette tip (16), Sealed pulled straw (17), 

Cryopette® (18), Rapid-iTM (19), JY Straw (20). (Adapted from Saragusty and Arav 2010). 

 
Decreasing the volume of vitrification and increasing the cooling rate allow a 

moderate decrease in cryoprotectants concentration to minimize its toxic and osmotic 

hazardous effects. Combination of these three factors can result in the following general 

equation for the probability of vitrification: 

 

                                       Cooling rate x Viscosity 
            Probability of vitrification=      ------------------------------ 

                                        Volume 

1 2 3 
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1.3. Slow freezing vs. vitrification 

 

 

Cryopreservation by slow freezing is a process where extracellular water 

crystallizes, resulting an osmotic gradient that draws water from the intracellular 

compartment till intracellular vitrification occurs. In cryopreservation by vitrification, 

both intra and extracellular compartments apparently vitrify after cellular dehydration 

has already occurred. Owing to these differences, the terms freezing and thawing are 

relevant to the slow freezing process while cooling and warming are relevant to 

vitrification. 

 

 

Unlike the controlled rate freezing method, which requires sophisticated 

equipment to manage the cooling rate, vitrification can be done relatively cheaply and 

even under field conditions with no need for special equipment, making it a good 

alternative for the its use in various settings often encountered with wildlife species, 

such as zoos, poorly equipped locations, and field work in remote sites. However, 

performing vitrification, and in particular loading the sample properly into or onto the 

container, does require much experience to be done properly. 

 

 

Despite slow freezing continues to be the most widely used technique of 

cryopreservation for in vivo and in vitro produced embryos, in the last decade 

vitrification has been tested in different species with good results (Berthelot et al. 2000; 

Vajta et al. 1998; Martinez et al. 2003; Lavara et al. 2011). Table 1 shows the 

differences between both methods. 
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Table 1. Differences between slow freezing and vitrification. (Adapted form Pereira and Marques 2008). 
 
 

Freezing procedures 

Slow-freezing Vitrification 

Standard 0.25 ml straws 

Several devices for loading embryos and 

oocytes 

(standard 0.25 ml straws, OPS, cryoloop, 

cryoleaf…) 

 

Sophisticated equipment No special equipment 

Low cryoprotectant concentrations 

High cryoprotectant concentrations /reduced 

volume and time with vitrification solution 

 

Seeding at -5 to -7ºC, controlled 

slow cooling (0.1 to 0.3ºC/min) 

 

Ultrarapid cooling rates (-2500ºC/min or 

20000ºC/min using OPS or cryoloop) 

 

Plunging at -30 to -70ºC and 

storage in liquid nitrogen (-196ºC) 

 

Plunging into liquid nitrogen (-196ºC) 

Extracellular water crystallizes and 

intracellular compartment vitrify 

Both intra and extracellular compartments 

vitrify 

 

 

 

1.4. Difficulties to oocyte cryopreservation 

 

Although many progresses have been done in oocytes cryopreservation, general 

protocol has not been established yet (Nottola et al. 2008; Pereira and Marques 2008; 

Noyes et al. 2010). Moreover, procedures developed for one specie are difficult to adapt 

to an other specie (Paynter et al. 1999:2001).  

 

Oocytes are particularly difficult to cryopreserved successfully resulting in low 

rates of blastocyst production after thawing, fertilization and culture. In general, the low 

efficiency might be due to the complex structure of the oocyte and to the differences in 
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membrane permeability and physiology between embryos and oocytes (Gardner et al., 

2007). Most of the components present in the oocyte are particularly sensitive to 

temperature and osmotic pressure (Figure 4). 

 

 
 

Figure 4. Diagram of an Oocyte. (Adpated from Ferreira et al. 2009) 

 

The large size of oocytes and the low surface to volume ratio, make it more 

difficult for water and cryoprotectants to move across the cell. Moreover, the plasma 

membrane of oocytes at the second metaphase stage has a low permeability coefficient, 

making the movement of cryoprotectants and water slower. They are also surrounded by 

zona pellucida, which acts as an additional barrier for the movement of water and 

cryoprotectants into and out of the oocyte.  Additionally, oocytes have less 

submembranous actin microtubules making their membrane less robust.  

 

 

1.5. Cellular components damaged during cryopreservation 

 

Cryopreservation can cause cytoskeleton disorganization and chromosome and 

DNA abnormalities. Oocytes cryopreserved after maturation present the second meiotic 

spindle, which is essential for completion of meiosis and to ensure the correct 

complement of genetic material of the oocyte. Cooling, cryoprotectants and 

cryopreservation have all been shown to induce microtubule depolymerisation. Oocytes 

also have high cytoplasmic lipid content that increases chilling sensitive. 
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Chilling and freezing are associated with an altered distribution of cortical 

granules and an increasing polispermy or, on the contrary, with zona pellucida 

hardening by premature cortical granule exocytosis impairing fertilization. Frequently 

oocytes present zona pellucida or cytoplasmic membrane fracture.  These problems and 

their effects are summarized in Table 2. 

 

Table 2. Problems and effects associated with chilling and freezing of oocytes. 

 

Alteration Effect 

Meiotic spindle depolymerisation 

Chromosome abnormality 

Increase polyploidy and aneploidy 

 

Disorganize cytoskeleton 
Premature cortical granule exocytosis 

inducing zona pellucida hardening 

Microtubule damage Abnormal mitochondria distribution 

Cytoplasmic membrane alteration Viability reduction 

Citoplasmic lipid content alteration Higher number of small lipid drops 

Cellular toxicity 
Increase of antioxidant compounds 

consumption (GSH) 

 

 

 

1.6. Current status of oocyte cryopreservation 

 

Up to now, oocytes have been cryopreserved by both methods in some species 

and although several breakthroughs have been made in oocyte cryopreservation since 

1971, live offspring have only been obtained in a few species, such as mouse 

(Withingham, 1977), human (Chen, 1986), rabbit (Al-Hasani et al., 1989), cattle (Fuku 

et al., 1992), rat (Nakagata 1992), horse (Hochi et al., 1994) and cat (Gómez et al., 

2008). 

  

Results remain low, and pregnancy rates remain higher using cryopreserved 

embryos.  The literature reports a great variability between both methods (Table 3) and 

the results obtained are different depending on the species.  In human, vitrification 
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shows better results than slow-freezing (Fadini et al. 2009) but in rabbit, slow-freezing 

shows higher results than vitrification (Salvetti et al. 2010).  

 

Table 3. Pregnancy rate per oocyte cryopreserved in some species. 

 

Specie Author Year Cryopreservation method 

Pregnancy 

rate/oocyte 

cryopreserved 

(%) 

 

 

Human 

Virant-Klun et al. 2011 Slow-freezing 2.41 

Kuwayama  2007 Vitrification 9.90 

Fadini 2009 
Slow freezing 0.89 

Vitrification 1.05 

Horse Maclellan 2002 Vitrification 7.69 

 

Bovine 

Suzuki et al. 1996 Slow-freezing 0.83 

Kubota et al. 1998 Slow-freezing 0.64-0.73 

Vieira et al. 2002 Vitrification 0.41 

Rabbit Al-Hasani et al. 1989 Slow-freezing 0.84 

Mouse 

Bos-Mikich et al. 1995 Vitification 0.83 

Aono et al. 2004 Vitification 2.89 

Lee et al. 2010 Vitrification 0.08 

 

 

Although many advances have been made, continued optimization of oocyte 

cryopreservation techniques is challenging due to the scarcity of material for 

experimentation. Rabbit has been used as a model organism for studying mammalian 

reproduction for decades (Heape 1891; Pincus 1939; Chang et al. 1970). Nevertheless, 

while numerous reports of studies designed to investigate oocyte cryopreservation in 

some species have been published (Mullen 2007) a few works have been done in rabbit 

(Diedrich et al. 1988; Al-Hasani et al. 1989; Vincent et al. 1989; Siebzehnruebl et al. 

1989; Cai et al. 2005; Salvetti et al. 2010; Wang et al. 2010) and only a recent work 

compare slow-freeze and vitrification methods (Salvetti et al. 2010), moreover, live 

offspring has been only obtained using slow-freezing method (Al-Hasani et al. 1989).  
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Rabbit embryos matured in vitro have no mucin coat. When cultured blastocysts 

are transferred to recipients, the lack of mucin coat might in part account for subsequent 

failure of pregnancy These embryos must be transferred to recipients after 24-48 h for 

mucin coat deposition during passage through the oviduct in order to obtain higher rates 

of implantation of the in vitro-cultured blastocysts (Joung et al. 2004). The thickness of 

the mucin layer appears to be an important factor for successful implantation of rabbit 

embryos (Murakami et al. 1996). 

 

Rabbit is a standard laboratory animal in biomedical research, and transgenic 

rabbits are used as animal models for a variety of human diseases both genetic and 

acquired. The rabbit (Oryctolagus cuniculus) is phylogenetically closer to primates than 

rodents (Graur et al. 1996) and is large enough to permit non-lethal monitoring of 

physiological changes. For these reasons, several research groups have chosen 

transgenic rabbits as animal models for the study of lipoprotein metabolism, 

atherosclerosis, cardiovascular research and hypertrophic cardiomyopathy (Bosze and 

Houdebine 2006). The rabbit may be a better model organism for experimental 

investigation of oocyte cryopreservation due to their smaller size, ease of handling, 

relatively short gestation time, and economy when it comes to applying embryo transfer 

procedures compared to cattle and pigs. Furhtermore, experimental evidences suggest 

that the extreme sensitivity of cattle and pig oocytes higher than human oocytes may 

make them relatively poor models (Hunter et al. 1991; Martino et al. 1996; Liu et al. 

2003). 
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2.1. Abstract 

 

 Although much progress has been made in oocyte cryopreservation since 1971, 

live offspring have only been obtained in a few species and in rabbits, only the slow-

freezing method has resulted in live offspring with a total of 0.8%.  The aim of our 

study was to evaluate the effect of vitrification and slow-freezing on the meiotic spindle, 

cortical granule distribution and their developmental competence.  Oocytes were 

vitrified with 16.84% EG, 12.86% formamide, 22.3% DMSO, 7% PVP, and 1% of 

synthetic ice blockers using cryotop as device or slow-freezing in 1.5 M PROH and 0.2 

M Sucrose in 0.25 mL sterile French mini straws.  Meiotic spindle and cortical granule 

distribution were assessed with a confocal laser-scanning microscope.  To determine 

oocyte developmental competence, the in vitro development of oocytes from each 

cryopreservation procedure was assessed with parthenogenesis activation. Our data 

showed that oocyte cryopreservation was significantly affected by both procedures.  In 

particular, meiotic spindle organisation was dramatically altered after cryopreservation. 

Oocytes with peripheral cortical granule migration after slow-freezing procedures were 

better preserved compared to vitrified oocytes.  In addition, slow-frozen oocytes led to 

higher cleavage and blastocyst rates compared to vitrified oocytes.  Our data showed 

that, in rabbits, structural alterations are more evident in vitrified oocytes than in slow-

frozen oocytes, probably as a consequence of sensitivity to high levels of 

cryoprotectants.  Moreover, the slow-freezing method is currently the recommended 

option for rabbit oocyte cryopreservation.  

 

 

 

 

 

 

 

 

 

 

Keywords: Vitrification; slow-freezing; cryotop; parthenogenesis; confocal microscopy 
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2.2. Introdution 

 

Cryopreservation of embryos and oocytes in animal species is considered an 

important tool in reproduction biotechnology.  Since Whittingham (1971) successfully 

froze mouse embryos, cryopreservation methodology and materials have progressed to 

increase the number of lines, breeds and species that can be embryo cryostored in order 

to preserve animal models or biodiversity or improve the reproductive rate.  Although 

several breakthroughs have been made in oocyte cryopreservation since 1971, live 

offspring have only been obtained in a few species, such as mouse (Withingham, 1977), 

human (Chen, 1986), rabbit (Al-Hasani et al. 1989), cattle (Fuku et al. 1992), rat 

(Nakagata 1192), horse (Hochi et al. 1994) and cat (Gómez et al. 2008).  Moreover, 

procedures developed for one species are difficult to adapt to another (Paynter et al. 

1999 and 2001; Nottola et al. 2008; Pereira and Marques 2008; Noyes et al. 2010).  

 

In general, the low efficiency might be due to the complex structure of the 

oocyte and differences in membrane permeability and physiology with respect to the 

embryos (Gardner et al. 2007).  Most of the components present in oocytes are 

particularly sensitive to temperature and osmotic pressure.  During cooling to ultralow 

temperatures, cells are exposed to a series of stresses, such as ice formation and 

dehydration, increasing solute and ionic concentration and viscosity, which contribute 

to cell damage, for example disassembly of the meiotic spindle apparatus (Rojas et al. 

2004; Succu et al. 2007), chromosome and DNA abnormalities (Luvoni 2000) or 

premature cortical granule exocytosis leading to zona pellucida hardening (Mavrides 

and Morrol 2005; Morato et al. 2008).  In consequence, the number of births per oocyte 

cryopreserved is very low. 

 

Recently, most studies have focused on freezing and vitrification (Loutradi et al. 

2008; Keskintepe et al. 2009; Vutyavanich et al. 2009; Martínez-Burgos et al. 2010) and 

the results are different depending on the species.  In human, vitrification shows better 

results than slow-freezing (Fadini et al. 2009) but in rabbit, slow-freezing shows higher 

results than vitrification (Salvetti et al. 2010).  In human, Fadini et al. (2009) drew a 

comparison of the outcomes obtained with both methods in several studies and the 

births per oocyte cryopreserved showed that this rate ranged between 0.9% to 1.4% for 

slow-freezing and vitrification, respectively.  In other species, such as bovine, the birth 
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rate ranged from 0.6% to 0.8% (Suzuki et al. 1996; Kubota et al. 1998; Vieira et al. 

2002); in mouse, it ranged between 0.8% and 7.6% (Bos-Mikich et al. 1995; Aono et al. 

2005; Lee et al. 2010) and in rabbits, using only slow-freezing method a total of 0.8% 

resulted in live offspring (Al-Hasani et al. 1989). 

 

The aim of this study was to evaluate the effects of vitrification and slow 

freezing for the cryopreservation of rabbit oocytes in terms of meiotic spindle 

configuration, cortical granule distribution and viability by their parthenogenetic 

activation. 

 

 

2.3. Materials and methods 

 

All chemicals in this study were purchased from Sigma-Aldrich Química S.A. 

(Madrid, Spain) unless stated otherwise.  VM3 medium and Ice blockers SuperCool X-

1000 and SuperCool Z-1000 were purchased from 21st Century Medicine Inc. (Fontana, 

CA, USA). 

 

Oocyte recovery 

 

New Zealand White females were induced to ovulate by intramuscular dose of 1 

µg of Busereline acetate.  Oocytes were collected from the oviducts 14-15 hours after 

induction by flushing each oviduct with Dulbecco’s Phosphate Buffered Saline without 

calcium chloride (DPBS) and supplemented with 0.1% of bovine serum albumin (BSA).  

Finally, oocytes were treated for 15 min at room temperature with 0.1% hyaluronidase 

in DPBS and cumulus cells were removed by mechanical pipetting. 

 

Cryopreservation procedures 

 

Vitrification was performed following the Minimum Essential Volume (MEV) 

method, using cryotop as device (Kuwayama et al. 2005) and VM3 as vitrification 

solution (Fahy et al. 2004).  Oocytes were first exposed for 3 min to equilibration 

solution containing 1.7% w/v ethylene glycol (EG), 1.3% w/v formamide, 2.2% w/v 

dimethyl sulphoxide (DMSO), 0.7% w/v PVP K12 (polyvinylpyrrolidone of Mr  5000 
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Da) and 0.1% w/v final concentrations of commercially available SuperCool X-1000 

and SuperCool Z-1000 (ice blockers) in base medium (BM: DPBS + 20% foetal bovine 

serum, FBS).  Later, the oocytes were transferred and exposed for 1 min to solution 

containing 4.7% w/v EG, 3.6% w/v formamide, 6.2% w/v DMSO, 1.9% w/v PVP K12, 

and 0.3% w/v final concentrations of ice blockers in BM.  Finally, the oocytes were 

then transferred to vitrification solution consisting of 16.8% w/v EG, 12.9% w/v 

formamide, 22.3% w/v DMSO, 7% w/v PVP K12, and 1% w/v final concentrations of 

ice blockers in BM before being loaded into cryotop devices and directly plunged into 

liquid nitrogen (LN2) within 1 min.  For warming, oocytes were placed in a solution 

composed of 1.25 M sucrose in BM for 1 min and later transferred stepwise into 200 µL 

drops of decreasing sucrose solutions (0.6, 0.3 and 0.15 M sucrose in BM) for 30 sec 

before being equilibrated for 10 min in TCM-199 containing 20% FBS at 38 °C.  After 

warming, the oocytes were incubated for 2 hours in medium TCM-199 containing 20% 

FBS at 38.5ºC, 5% CO2 in humidified atmosphere. 

 

The slow-freezing procedure was adapted from previously described methods 

(Siebzehnruebl et al. 1989).  Briefly, oocytes were incubated for 15 min in a solution 

containing 1.5 M 1,2-propanediol (PROH) in BM. Oocytes were then placed for 10 min 

in the freezing solution composed of 1.5 M PROH and 0.2 M Sucrose in BM and 

mounted between two air bubbles in 0.25 mL sterile French mini straws (IMV 

Technologies) sealed by a sterile plug.  The straws were then placed into a 

programmable freezer (Cryologic, CL-8800) for the freezing process.  Temperature was 

lowered from 20º C to -7º C at rate of -2ºC/min.  Manual seeding was performed at -

7ºC.  Temperature was then lowered to -30ºC at a rate of -0.3ºC/min.  Finally, straws 

were directly plunged into LN2 and stored for later use.  For thawing, the straws were 

taken out from the LN2 into ambient temperature for 10-15 sec and plunged into a 20ºC 

water bath.  Oocytes were transferred stepwise into decreasing sucrose solutions (0.5, 

0.3 and 0.1 M sucrose in BM) for 5 min before being equilibrated for 10 min in TCM-

199 containing 20% FBS.  As with the vitrification group, after warming the oocytes 

were incubated 2 hours in medium TCM-199 containing 20% FBS at 38.5ºC, 5% CO2 in 

humidified atmosphere. 
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Meiotic spindle status 

 

Structural evaluation was performed in the three experimental groups: fresh, 

vitrified and slow-frozen oocytes.  Oocytes were fixed in 4% w/v paraformaldehyde in 

DPBS for 45 min at 4º C and permeabilised 30 min at 37º C using 0.1% Triton X-100 in 

DPBS.  Mouse anti-α-tubulin monoclonal antibody was incubated with fixed oocytes 

overnight at 4ºC.  Samples were then washed three times in a blocking solution (DPBS 

supplemented with 0.1% BSA).  Then, oocytes were labelled with fluorescein 

isothiocyanate-conjugated Donkey anti-mouse antibody (Jackson ImmunoResearch) 

diluted by a ratio of 1:200 for 45 min at 37ºC in darkness.  After extensive washing, 

DNA of samples was counterstained with propidium iodide (PI).  Finally, samples were 

mounted between a coverslip and a glass slide and stored at 4 ºC and protected from the 

light until they were examined.  The localisations of meiotic spindle and chromosomes 

were assessed with a confocal microscope (TCS SL, Leica) provided with an argon-

krypton laser.  When FICT fluorescence was monitored, the excitation light wavelength 

was 488 nm and emission light wavelength was 515-535nm.  When PI fluorescence was 

monitored, the excitation light wavelength was 543 nm and emission light wavelength 

was 590-630nm. 

 

The meiotic spindle was classified as normal when the classic symmetrical 

barrel shape was observed, with organised microtubules traversing from one pole to 

another and the chromosomes were arranged on a compact metaphase plate along the 

equatorial plane, whereas abnormal spindles showed disorganised, clumped, dispersed, 

or unidentifiable spindle elements with aberration of chromatin arrangement, clumping 

or dispersal from the spindle centre. Details of normal and abnormal spindle 

morphology are shown in Figure 5.  



                Effects of cryopreservation on the meiotic spindle, cortical granule distribution and development of rabbit oocytes 

 

 27 

 
Figure 5. (A) Normal meiotic spindle of rabbit oocyte with chromosomes arrayed at the metaphase plate, 
evaluated using confocal microscope. (B-E) Abnormal meiotic spindle configuration.  (F) Absence of 
meiotic spindle. 

 

 

Cortical granule distribution 

 

Fresh, vitrified and slow-frozen oocytes were treated with 0.5% w/v pronase to 

digest the zona pellucida.  Samples were fixed in DPBS containing 4% w/v buffered 

neutral paraformaldehyde solution for 45 min at 4 ºC.  Then, oocytes were incubated 30 

min at 37 ºC with permeabilisation solution (0.02 % vol/vol Triton X-100).  Next, 

samples were incubated 15 min at 37 ºC in the dark with 100 µg/mL lens culinaris 

fluorescein isothiocyanate (FITC-LCA) for cortical granule (CG) staining.  The oocytes 

were then washed with blocking solution (7.5% w/v BSA), mounted between a 

coverslip and a glass slide and examined under a confocal laser-scanning microscope 

(TCS SL, Leica). Cortical granule distribution was classified as (A) peripheral: CGs 

were adjacent to the plasma membrane, showing they were cytoplasmically matured; 

(B) abnormal: this group included samples where most of the CGs were spread 

throughout the cortical area in a non-homogeneous, anomalous distribution of CGs 

compatible with a poor quality or degenerated oocytes (Figure 6).  
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Figure 6. (A) Normal cortical granule distribution of rabbit oocyte evaluated using confocal microscope. 
(B) Abnormal cortical granule distribution with CGs spread through the cortical area (C) Loose of part of 
CGs. 

 
 

Parthenogenetic activation 

 

Oocytes from each experimental group were induced to parthenogenesis with 

two sets 1 h apart of two DC electrical pulses of 3.2 kv/cm for 20 µs at 1 sec apart in an 

activation medium (0.3 M mannitol supplemented with 100 µM MgSO4 and 100 µM 

CaCl2), followed by 1h exposure in TCM-199 medium supplemented with 5 µg/µL of 

cycloheximide and 2 mM of 6-DMAP.  Parthenotes were cultured in 500 µL of TMC-

199 supplemented with 20% FBS and layered under paraffin oil at 38.5ºC in 5% CO2 

and saturated humidity.  Activation rate was recorded at 24 hours after in vitro 

activation and the blastocyst development rate was assessed at 102 hours after oocyte 

activation (Figure 7). 

 

 
 
 
Figure 7. (A) Blastocyst at 102 hours after oocyte activation. (B) Blastocyst at 102 hours after in vivo 
fertilization. 
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Statistical Analysis 

 

The Chi-square test was used to determine the differences between 

cryopreservation procedure on oocyte meiotic spindle status, cortical granule 

distribution and parthenogenetic activation.  Statistical analysis were performed using 

the statistical software program Statgraphics Plus (Version 5.1, STSC Inc., Rockville, 

MD, USA) and a probability of P ≤ 0.05 was considered to be the minimum level of 

significance.  

 

2.4. Results 

 

Effect of cryopreservation method on the meiotic spindle 

 

The spindle morphology was assessed in a total of 258 oocytes.  The proportion 

of meiotic spindle with a normal shape decreased from 89.7% for fresh oocytes to 

21.8% after slow freezing and 18.2% after vitrification (Table 4).  Differences between 

the two cryopreservation methods were not significant. 

 
 
Table 4. Proportion of fresh, vitrified and frozen rabbit metaphase II oocytes with normal 
meiotic spindle organization. 
 

Procedure n Meiotic spindle (%) 

Fresh 29 89.7a 

Frozen 119 21.8 b 

Vitrified 110 18.2 b 

 
n: Number of oocytes. Different superscripts represent significant difference (P < 0.05) 

 

Effect of cryopreservation method on cortical granule distribution 

 

The cortical granule distribution analysis was assessed in a total of 149 oocytes.  

Table 5 shows the peripheral cortical granule migration rates of fresh, slow-frozen and 

vitrified oocytes.  Some 95.2% of fresh oocytes presented normal peripheral cortical 

granule migration.  Cryopreservation had a major influence on the normal cortical 
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granule distribution decreasing to 34.9% after slow-freezing and 14.5% after 

vitrification.  The difference between both cryopreservation methods was significant. 

 

 
Table 5. Percentage of fresh, vitrified and frozen metaphase II rabbit oocytes with peripheral 
cortical granules migration. 
 

Procedure n Peripheral CG migration (%) 

Fresh 21 95.2a 

Frozen 66 34.9b 

Vitrified 62 14.5c 

n: Number of oocytes CG: Cortical granules. Different superscripts represent a significant 
difference (P < 0.05).  

 

 
Effect of cryopreservation method on parthenogenetic oocyte activation  

 

Parthenogenetic activation was assessed in a total of 346 oocytes.  Table 6 

shows the developmental rates of fresh, slow-frozen and vitrified oocytes at 24 h and 

102 h after parthenogenetic activation.  Twenty four hours after parthenogenetic 

activation, 79.3% of fresh oocytes cleaved. Cryopreservation had influence on the 

cleavage rates decreasing to 32.1% after slow-freezing and 18.7% after vitrification.  

Statistical difference was observed between the cryopreservation methods.  One 

hundred and two hours after parthenogenetic activation, the proportion of fresh oocytes 

that developed until blastocyst stage was 26.9%.  Once again, the cryopreservation 

process had a substantial influence on the developmental ability of slow-frozen oocytes, 

with 4.2% of activated ova developing into blastocysts, while no vitrified oocyte 

reached this stage. 

 

Table 6.Parthenogenetic development rate at 24 hours and 102 hours after activation of fresh, vitrified 
and frozen oocytes. 
 

Procedure n Cleavage rate (%) Blastocyst rate (%) 

Fresh 121 79.3 a 26.9 a 

Frozen 118 32.1 b 4.2 b 

Vitrified 107 18.7 c - 

n: Number of oocytes. Different superscripts represent a significant difference (P < 0.05).  
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2.5. Discussion 

 

Many studies of oocyte cryopreservation have been carried out in recent years, 

but the methods are still inefficient (Gardner et al. 2007; Nottola et al. 2008) and to 

date, live offspring has been obtained only in a few species, such as mouse 

(Withingham, 1977), human (Chen, 1986), cattle (Fuku et al., 1992), rat (Nakagata 

1992), horse (Hochi et al. 1994) and cat (Gómez et al. 2008).  In rabbit, slow-freezing 

and vitrification has been used for oocyte cryopreservation, but only using slow-

freezing method has obtained live offspring (Al-Hasani et al. 1989).  Until now, few 

studies have been performed and, to our knowledge, only a recent report compared both 

cryopreservation methods (Salvetti et al., 2010).  

 

The impaired meiotic spindle and peripheral cortical granule competence 

observed in our study for both cryopreserved methods could result from the exposure of 

oocytes to low temperatures and high concentrations of cryoprotectants, as well as from 

a drastic reduction in the development up to the blastocyst stage.  The spindle is very 

sensitive to cryoprotectants and low temperatures (Johnson and Pickering 1987; 

Pickering and Johnson 1987, Mandelbaum et al. 2004; Ciotti et al. 2009).  Rabbit 

oocytes are not very sensitive to low temperatures, but present particularly sensitivity to 

high levels of cryoprotectants and it has been shown to have a dramatic effect on the 

meiotic spindle configuration (Diedrich et al. 1988; Vincent et al. 1989; Cai et al. 2005; 

Salvetti et al. 2010).  So, the high concentration of cryoprotectants (from 5 to 7 M of 

cryoprotectants) required to achieve vitreous state should produce a higher detrimental 

effect on spindle configuration.  However, our results did not confirm this hypothesis, 

as we observed that structural alterations were similar between slow-freezing and 

vitrification procedures.  These discrepancies may be related to differences in our 

vitrification protocol. In our study, the VM3 solution previously designed to present low 

toxicity (Fahy et al. 2004) was used, following the minimum essential volume method, 

using cryotop as device, which allowed high cooling rate, minimising the toxic and 

osmotic effects (Vatja and Kuwayama 2006; Yavin et al. 2009). However, inappropriate 

condition of exposure to cryoprotectants and cooling induced exocytosis and disorder of 

cortical granules after vitrification of the oocytes (Bernard and Fuller 1996).  In our 
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study, the cortical granule distribution generally appeared to be altered after 

cryopreservation, especially after vitrification.  To our knowledge, no previous studies 

of cortical granule distribution after cryopreservation have been reported in rabbit.  In 

other species, it has been reported that cryopreservation has an effect on cortical granule 

exocytosis as a consequence of disruption of the cytoskeleton that might lead to 

premature release of cortical granules and zona hardening (Vicent et al. 1990; Ghetler et 

al. 2006; Morató et al. 2008; Notolla et al. 2009; Tan et al. 2009; Coticchio et al. 2010).  

This hardening decrease in sperm permeability has been observed in several species 

(Mavrides and Morrol 2005; Tian et al. 2007) and in vitro fertilisation can be 

compromised (Coticchio et al. 2001).  Therefore, our vitrification protocol seems to 

induce damage on cytoskeleton filaments involved in exocytosis of cortical granules but 

not leading to meiotic spindle alteration.  Although ICSI can overcome that problem, 

survival rate in rabbit ICSI is low (Deng and Yang 2001).  Parthenogenesis activation 

therefore seems to be an appropriate tool to assess in vitro developmental rates into 

blastocysts of cryopreserved rabbit oocytes.  

 

Thus, the cryoprotectants and low temperatures lead to depolymerisation of 

microtubules and disrupt the network of the meiotic spindle and cortical granules in 

rabbit oocytes regardless of the cryopreservation procedure.  Abnormal spindle and 

dispersed chromosomes have been related with poor rates of fertilisation and 

development (Chen et al. 2003; Magli et al. 2010).  The cleaved and blastocyst rates of 

fresh oocytes were higher than for cryopreserved oocytes.  Nevertheless, the 

development rate of vitrified oocytes was lower than in slow-freezing procedure.  This 

latter result could confirm that rabbit oocytes are very sensitive to high concentration of 

cryoprotectants (Diedrich et al. 1988; Vincent et al. 1989; Cai et al. 2005; Salvetti et al. 

2010).  However, the developmental rate to blastocyst stage was only obtained using 

slow-freezing method after parthenogenesis activation.  Parthenogenesis appears to be 

an interesting, quick and efficient tool to assess in vitro the developmental rates into 

blastocysts of rabbit oocytes in preliminary studies, when pregnancy rates are not 

needed (Salvetti et al. 2010).  Our developmental rate to blastocyst status was similar to 

those previously described (Salvetti et al. 2010) and similar to those obtained after IVF 

(Al-Hasani et al. 1989) ICSI (Cai et al. 2005; Wang et al. 2010) or in vivo fertilisation 

(Vincent et al. 1989). 
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Our data showed that structural alterations are more evident in vitrified than in 

slow-frozen rabbit oocytes, probably as a consequence of sensitivity to high levels of 

cryoprotectants.  Considering our results, slow-freezing method seems to be a valuable 

option for rabbit oocyte cryopreservation, althought both methods need more studies to 

clarify cellular mechanisms associated with cryoinjury and assure better outcomes.  
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3. Future perspectives 

 

In most cases, modifying cryopreservation methods to fit the cells to be 

cryopreserved is likely to be preferable to modifying cells to fit procedures for 

cryopreservation (Seidel, 2006). Various studies with reproductive and non-

reproductive cells provide numerous ideas for further studies. Stabilizing the 

cytoskeleton system during vitrification could be beneficial for improving the post-thaw 

survival and subsequent development of vitrified oocytes (Morató et al. 2008). Adding 

more cholesterol via cyclodextrin may be worth pursuing. Horvath and Seidel (2006) 

showed that the zona pellucida of oocytes did not prevent transfer of cholesterol from 

occurring withing this procedure. Another area worth investigated is stabilizing cell 

membranes with trehalose, a compound that plants use naturally to increase 

cryotolerance ("Ice blockers"). One issue is how to transfer the compound to the 

cytoplasm of the cell, where it normally functions. Satpathy et al. (2004) developed a 

method for loading red blood cells with trehalose for freeze-drying, and a variation of 

this one might work to move trehalose into oocytes and embryonic cells, or trehalose 

might be injected into individual oocytes (Eroglu et al. 2002). It is unclear whether 

trehalose would be harmful after thawing, and if so whether the molecule could be 

removed from cells readily. Kim et al. (2005) used another approach by modifying red 

blood cells with phosphoenolpyruvate to decrease membrane fragility. Following, this 

one, have been described some possible modifications or alternatives to improve oocyte 

vitrification and the necessary tools to asses in vivo viability of embryos. The 

complexity of these techniques is combined with the low output obtained.   

 

3.1. Alternatives 

 

3.1.1. Cytoskeleton stabilizing agents 

 

 The main damage observed during vitrification is an abnormal spindle 

configuration mainly due to the disorganization or disassembly of meiotic microtubules. 

One possible way to improve the cryotolerance of oocytes and improve the postthaw 

survival and subsequent development of vitrified oocytes or embryos may be the use of 

cytoskeleton stabilizing agents such as cytochalasin B or taxol. 
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Cytochalasin B  is a cytoskeletal relaxant considered to make the cytoskeletal 

elements less rigid (Fujihira et al. 2004). The Cytochalasin B effects in oocyte 

vitrification are controversial and may depend on the species and procedures used. In 

mature oocyte, CCB reduced damage to microtubules and may enhance stabilization of 

spindle microtubules during vitrification. In the case of GV oocytes, where no organised 

meiotic spindle is present, this relaxant effect may preserve the functionality of the gap 

junctions between oocyte and granulosa cells, permitting a faster and more uniform 

penetration of the cryoprotectants. Studies on the effect of pre-treatment with CCB on 

the vitrification of pig (Fujihira et al. 2004) and sheep (Silvestre et al. 2006) oocytes 

have been reported, but more studies are needed in order to increase oocyte or embryos 

survival after vitrification with these additives.  

 

Taxol TM (paclitaxel) is a diterpenoid taxane used as an antineoplastic agent in 

patients diagnosed with ovarian cancer, metastatic breast carcinoma and nonsmall cell 

lung carcinoma. Taxol interacts with microtubules and increases the rate of 

polymerization by reducing the critical concentration of tubulin needed for 

polymerization. The addition of Taxol to the vitrification solution improves the post-

warming development of immature human (Fuchinoue et al. 2004) and mature porcine 

(Shi et al. 2006) and bovine (Morato et al. 2008) oocytes. 

 

3.1.2. Lipid content 

 

Lipid content and membrane lipid composition affects oocytes and embryo’s 

ability to resist chilling injuries during cryopreservation because their lipids undergo 

phase transition (Ghetler et al. 2005). The lipid composition of the membrane strongly 

influences its properties and its resistance to thermal stress (Arav et al. 2000a; Zeron et 

al. 2001, 2002).  

 

Some factors as oocyte and embryo origin (in vivo or in vitro), specie, breed, 

physiologic state, and nutrition affect lipid content (McEvoy et al. 2000; Zeron et al. 

2001, 2002; Genicot et al. 2005). For example, bovine oocytes are more resistant to 

cryopreservation than porcine ones, probably because porcine oocytes have 2.4 times 
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more lipid drops than bovine and their structure and composition are different (McEvoy 

et al. 2000; Isachenko et al. 2001; Genicot et al. 2005)  

 

Recently, new strategies have been used to reduce intracellular lipid content in 

porcine and bovine embryos and therefore increase their tolerance to cryopreservation. 

Mechanical delipidation has been applied to earlier stages of porcine embryo 

development (Nagashima et al. 1999) and to in vitro produced and cloned bovine 

embryos (Ushijima et al. 1999; Tominaga et al. 2000; Diez et al. 2001), through 

polarization of the cytoplasmic lipid droplets by centrifugation and physical removal of 

excess lipid. In both cases embryo sensitivity to chilling was reduced, increasing their 

cryopreservation. However, besides being an invasive and extremely laborintensive 

method, mechanical delipidation alters the developmental potential of the delipidated 

blastocysts after transfer to recipient heifers (Diez et al. 2001). Chemical delipidation 

has also been studied. Forskolin, a lipolytic agent capable of stimulating lipolysis of 

triacylglycerols was used by Men et al. (2006). This agent promoted the cryosurvival of 

porcine IVP embryos after partial delipidation through chemical stimulation of 

intracellular lipolysis. Besides reducing lipid content, Pereira et al. (2008) proposed the 

possibility of a direct incorporation of the conjugated isomer of linoleic acid, the trans-

10, cis-12 octadecadienoic acid (t10, c12 CLA) into the embryo membranes during in 

vitro culture contributing to an increased membrane fluidity (unsaturation level) and so 

improving embryo resistance to cryopreservation. 

 

3.2. Offspring production 

 

The main objective is to develop a method for oocyte cryopreservation that 

allow generate offspring. In rabbit, only two studies have shown results of embryo 

implantation (Vincent et al. 1989; Wang et al. 2010) and only one obtained live 

offspring using slow-freezing method (Al-Hasani et al. 1989). 

 

It is necessary to asses the results of cryopreservation in vivo, because although 

it seems possible, in vitro fertilization (IVF) is not well established in rabbit species, 

partly because problems are encountered with the capacitation of semen (Brackett et al. 

1982) linked to the poor permeability of sperm plasma membrane (Curry et al. 1995, 

2000). Best results are obtained today when semen is capacitated in vivo. 



               Future perspectives 

 44

 

On the other hand, ICSI of rabbit oocytes is difficult because they have rough, 

dark granules in the plasma, and they easily lyse and die after the ICSI process. Only 

two studies of ICSI success in fresh rabbit oocytes have been reported (Deng and Yang, 

2001; Li et al. 2001), and two in vitrified oocytes (Cai et al. 2005; Wang et al. 2009). 

 

 An alternative to avoid IVF and ICSI variability is necessary to asses the success 

of oocyte cryopreservation, for example using in vivo fertilization. 
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