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Introduction

1. Introduction

1.1. Application of oocyte cryopreservation

Cryopreservation of embryos and gametes in anipeatiss is considered an
important tool in reproductive biotechnology to gee/e selected lines from pathogens,
to evaluate the genetic improvement, minimizing ithpact of the genetic drift and to
facilitate the diffusion of the lines to differeabuntries avoiding animal transportation
and its sanitary risks (Garcia and Baselga 200&yata et al. 2011). Moreover, these
techniques allow us to conserve and widespread armgenetics biodiversity and to
preserve endangered species to maintain biodiyef@ibelders et al. 2006; Andrabi
and Maxwell 2007; Pereira and Marques 2008; Prerditd Anzar 2011). Despite all
the advantage however, gamete cryopreservatioreqeslisadvantage that, only the
haploid genotype is conserved. Nevertheless, oobwieks allows female genetic
material to be stored unfertilized until an appraj@ male germplasm is selected,
moreover it would also preserve the genetic mdtéaan unexpectedly dead animals
and facilitate many assisted reproductive techneto{l edda et al. 2001; Checura and
Seidel 2007; Pereira and Marques 2008). In humaoyte cryopreservation provides
an alternative to embryo freezing without ethicadl aeligious problems, and can also
be used to preserve fertility in patients in dangfeloosing ovarian function (Ledda et
al. 2001; Nottola et al. 2008; Porcu et al. 2008).

1.2 Methods for gamete and embryos cryopreservation: slow freezing and

vitrification

Currently, there are two methods for gamete and rgmleryopreservation

according with presence or absence of ice formasitmw freezing and vitrification.

1.2.1 Slow freezing

Slow freezing uses low concentrations of permeatangoprotectants, as

propyleneglycol, ethyleneglycol, dimethylsulphoxidad glycerol (Otoi et al., 1993;
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Lim et al. 1999). The final concentration of permag cryoprotectants is from 10 to
15%. This has the advantage of producing less ad#&taxicity and osmotic shock, but
their ability to prevent ice-crystal formation imited. Non permeating cryoprotectants
are used in combination with a permeating cryoptaid, to increase the net
concentration of the permeating cryoprotectantdeghe cell and also preventing ice-
crystal formation. The most commonly used nonpetimgaryoprotectants are sucrose,

galactose and threalose.

In slow freezing method oocytes are mounted betvieenair bubbles in 0.25
mL sterile French mini straws sealed by a sterfilgy gFigure 1). The straws are then
placed into a programmable freezer where temperasuowered from 20° C to about -
5°C to -7° C where they are kept for several mmteequilibrate. After equilibration
manual seeding is performed and temperature islthvegred to about -30°C to -35°C at
a rate of about 0.3°C-0.5°C/min. Finally, streavs directly plunged into LN2 and

stored for later use (Figure 2).

Cotton PBS+BSA Air  Oocytes  Air PBS+BSA Plug

{ ] [T eee® [ | B

Figure 1. Diagram of packed in straws

20°C -1°C/mir | -0.2°C/mir -0.1°C/mir
-7°C
-28°C
-35°C
seeding
-19€°C

Figure 2. Temperature curve of slow freezing method
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The induction of seeding (ice formation in the ex# solution) by touching the
wall of the container with an object cooled at -P@5 prevents supercooling and starts
the dehydration process (Shaw 1993). The seedidigcés the concentration of the
solutes in the non-frozen fraction that graduatigreases because water is incorporated
into the extracellular ice crystals causing a pesgive dehydration of the cell thanks to
the osmotic gradient, that has been generatedsattrexell membrane.

2.1.2. Vitrification

Vitrification is the process by which the solutioontaining sample is cooled so
rapidly that the water molecules do not have timeugh to form ice crystals and
instantly solidify into a “glass-like” structureh& concept is based upon the idea that if
the cell is dehydrated to a certain degree and toeted fast enough, everything will
“freeze” in place and damage will not have timeotwur, crystals will not be able to
organize themselves and a vitrified amorphous gldss solid, will be formed instead

of ice.

To achieve vitrification state three factors shobkl considered: cooling rate,

medium viscosity and volume

Cooling rate.High cooling rate is achieved plunging the sampke liquid
nitrogen. The cooling rate depends on the contaitkee volume, the termal

conductivity, the solution, etc.

Viscosity. The viscosity of the medium depends on the comagoh and
behaviour of cryoprotectants and other additivestha vitrification solution. The
combination of different cryoprotectants is usednitrease the viscosity and to reduce
the level of toxicity. Cryoprotectants are addiabchemicals used in cryopreservation
to avoid ice formation and shocking effects. Theag a&lassified in two groups:

permeating and non-permeating group.

The permeating group includes small moleculesriédily penetrate the membranes of

cells, form hydrogen bonds with intracellular wateolecules and lower the freezing
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temperature of the resulting mixture, preventing ecystallization. Some permeating
cryoprotectants are Glycerol, Ethylene glycol (EG¥opane-1,2-diol (Pr-OH),
Dimethylsulphoxide...

No permeating agents (glucose, sucrose, trehdfosal], etc.) are large molecules that
do not permeate the cell membrane, but they inertfas concentration of extracellular
solutes and generating an osmotic gradient actosscell membrane, which draws
water out of the cell causing the cell dehydratatiefore the freezing procedure. When
they are combined with permeating cryoprotectatiiey contribute to the overall

vitrification properties.

The concentration of cryoprotectants in the fregzaolution (equilibration solution) is
really very important as it determines the dehydratate of the oocyte: the higher the
concentration is, the quickies the oocyte dehydrated the faster the water leaves

cytoplasm to dilute the high concentration of exéthular solutes (Shaw 1993).

Volume. The smaller the volume is, the higher probabibfyvitrification is.
Smaller volumes allow better heat transfer, whidgilities higher cooling rates.
Different carrier tools have been applied to migienihe volume, including surface and
tubing techniques. Surface techniques include relrghicroscope grids (Martino et al.
1996), cryoloops (Fuchinoue et al. 2004), cryot@hawayama et al. 2005), Hemi-
straw (Vanderzwalmen et al. 2000), solid surfacenifiges et al. 2000), nylon mesh
(Matsumoto et al. 2001), Cryoleaf (Chian et al. 20@irect cover vitrification (Chen et
al. 2006), fiber plug (Muthukumar et al. 2008),ri¥itation spatula (Tsang & Chow
2009), Cryo-E (Petyim et al. 2009), plastic blaBediyama et al. 2010), and Vitri-Inga
(Almodin et al. 2010). Tubing techniques include tHastic straw (Rall & Fahy 1985),
open pulled straw (OPS; Vajta et al. 1997, 1998®ksead pulled straw(CPS; Chen et al.
2001), flexipet-denuding pipette (Liebermann e2802), superfine OPS (Isachenko et
al. 2003), CryoTip (Kuwayama et al. 2005), pipeipe(Sun et al. 2008), high-security
vitrification device (Camus et al. 2006), sealedlqul straw (Yavin et al. 2009),
Cryopette (Portmann et al. 2010), Rapid-i (LarmaG&dner 2010), and JY Straw (R
C Chian, personal communication). An examples efdiiferent devices are shown in

Figure 3 (adapted from Saragusty and Arav 2010).
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Figure 3. Decivers for vitrification. Electron microscope dgi(1), minim volume drop (2), Cryotop (3),
Cryoloop (4), Hemi straw (5), CryoleafTM (6), Fibpéug (7), Direct cover vitrification (8), vitrifition
spatula (9), nylon maya (10), Cryotube (11), Vitrja (12), Straw, open-pulled straw, super opetedul
straw (13), Cryotip® (14), flexipet-denuding pipettl5), Pipette tip (16), Sealed pulled straw (17)
Cryopette® (18), Rapid-iTM (19), JY Straw (20). @uted from Saragusty and Arav 2010).

Decreasing the volume of vitrification and incre@sthe cooling rate allow a
moderate decrease in cryoprotectants concentr&ioninimize its toxic and osmotic
hazardous effects. Combination of these three faci@n result in the following general
equation for the probability of vitrification:

Cooling rat&/iscosity
Probability of vitrification= S
Volume
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1.3. Slow freezing vs. vitrification

Cryopreservation by slow freezing is a process whektracellular water
crystallizes, resulting an osmotic gradient thaawdy water from the intracellular
compartment till intracellular vitrification occurén cryopreservation by vitrification,
both intra and extracellular compartments appayerittify after cellular dehydration
has already occurred. Owing to these differendes,térms freezing and thawing are
relevant to the slow freezing process while coolamgd warming are relevant to

vitrification.

Unlike the controlled rate freezing method, whiclquires sophisticated
equipment to manage the cooling rate, vitrificatc@m be done relatively cheaply and
even under field conditions with no need for speei@uipment, making it a good
alternative for the its use in various settingsewfencountered with wildlife species,
such as zoos, poorly equipped locations, and fietdk in remote sites. However,
performing vitrification, and in particular loadirtge sample properly into or onto the

container, does require much experience to be daoperly.

Despite slow freezing continues to be the most lyidesed technique of
cryopreservation forin vivo and in vitro produced embryos, in the last decade
vitrification has been tested in different speaigth good results (Berthelot et al. 2000;
Vajta et al. 1998; Martinez et al. 2003; Lavaraakt 2011). Table 1 shows the

differences between both methods.
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Table 1. Differences between slow freezing and vitrificatighdapted form Pereira and Marques 2008).

Freezing procedures

Slow-freezing Vitrification

Several devices for loading embryos and

oocytes

Standard 0.25 ml straws (standard 0.25 ml straws, OPS, cryoloop,
cryoleaf...)

Sophisticated equipment No special equipment

High cryoprotectant concentrations /reduced

Low cryoprotectant concentrations volume and time with vitrification solution
Seeding at -5 to -7°C, controlled Ultrarapid cooling rates (-2500°C/min or
slow cooling (0.1 to 0.3°C/min) 20000°C/min using OPS or cryoloop)

Plunging at -30 to -70°C and

storage in liquid nitrogen (-196°C) Plunging into liquid nitrogen (-196°C)
Extracellular water crystallizes and Both intra and extracellular compartments
intracellular compartment vitrify vitrify

1.4. Difficulties to oocyte cryopreservation

Although many progresses have been done in oocyyepreservation, general
protocol has not been established yet (Nottold.e2G08; Pereira and Marques 2008;
Noyes et al. 2010). Moreover, procedures develdpedne specie are difficult to adapt

to an other specie (Paynter et al. 1999:2001).

Oocytes are particularly difficult to cryopreserveatccessfully resulting in low
rates of blastocyst production after thawing, fiedtion and culture. In general, the low

efficiency might be due to the complex structuréhef oocyte and to the differences in
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membrane permeability and physiology between ensbeyal oocytes (Gardner al.,
2007). Most of the components present in the ooeyte particularly sensitive to

temperature and osmotic pressure (Figure 4).

Germinal vesicle

GvBD

Golgi complex

Mitcchondria

Micratubutes

MERES

Actin filamants
‘ Meigtic spindle in Metaphase

.\ WMeiotic soindie in Talochase

h Centricle or centrosome

® Chromosome

Telophasze 1 Metaphasa 11

Figure 4. Diagram of an Oocyte. (Adpated from Ferreira e280D9)

The large size of oocytes and the low surface fomme ratio, make it more
difficult for water and cryoprotectants to move @83 the cell. Moreover, the plasma
membrane of oocytes at the second metaphase stagelbw permeability coefficient,
making the movement of cryoprotectants and watevesl. They are also surrounded by
zona pellucida, which acts as an additional barieerthe movement of water and
cryoprotectants into and out of the oocyte. Adddlly, oocytes have less

submembranous actin microtubules making their mambless robust.

1.5. Céllular components damaged during cryopreservation

Cryopreservation can cause cytoskeleton disorgamizand chromosome and
DNA abnormalities. Oocytes cryopreserved after maditon present the second meiotic
spindle, which is essential for completion of me&osnd to ensure the correct
complement of genetic material of the oocyte. Gupli cryoprotectants and
cryopreservation have all been shown to induceatubule depolymerisation. Oocytes

also have high cytoplasmic lipid content that iases chilling sensitive.
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Chilling and freezing are associated with an attedstribution of cortical
granules and an increasing polispermy or, on thetrag/, with zona pellucida
hardening by premature cortical granule exocytosigairing fertilization. Frequently
oocytes present zona pellucida or cytoplasmic man#bfracture. These problems and
their effects are summarized in Table 2.

Table 2. Problemsand effects associated with chilling and freezihgaxytes.

Alteration Effect

Meiotic spindle depolymerisation Increase polyploidy and aneploidy

Chromosome abnormality

, ) Premature cortical granule exocytosis
Disorganize cytoskeleton _ _ _ _
inducing zona pellucida hardening

Microtubule damage Abnormal mitochondria distribati
Cytoplasmic membrane alteration Viability reduction
Citoplasmic lipid content alteration Higher numloésmall lipid drops

o Increase of antioxidant compounds
Cellular toxicity consumption (GSH)

1.6. Current status of oocyte cryopreservation

Up to now, oocytes have been cryopreserved by im&thods in some species
and although several breakthroughs have been nmadeciyte cryopreservation since
1971, live offspring have only been obtained in ev fspecies, such as mouse
(Withingham, 1977), human (Chen, 1986), rabbit fdsani et al., 1989), cattle (Fuku
et al., 1992), rat (Nakagata 1992), horse (Hochalet1994) and cat (Gomez et al.,
2008).

Results remain low, and pregnancy rates remainehigising cryopreserved
embryos. The literature reports a great varigbbgtween both methods (Table 3) and
the results obtained are different depending onsihecies. In human, vitrification
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shows better results than slow-freezing (Fadirale2009) but in rabbit, slow-freezing
shows higher results than vitrification (Salvettaé 2010).

Table 3. Pregnancy rate per oocyte cryopreserved in sonmaespe

Pregnancy
Specie Author Y ear Cryopreservation method ratefoocyte
cryopreserved
(%)
Virant-Klun etal. 2011 Slow-freezing 2.41
Kuwayama 2007 Vitrification 9.90
Human Slow freezing 0.89
Fadini 2009
Vitrification 1.05
Horse Maclellan 2002 Vitrification 7.69
Suzuki et al. 1996 Slow-freezing 0.83
Bovine Kubota et al. 1998 Slow-freezing 0.64-0.73
Vieira et al. 2002 Vitrification 0.41
Rabbit Al-Hasani et al. 1989 Slow-freezing 0.84
Bos-Mikich etal. 1995 Vitification 0.83
Mouse Aono et al. 2004 Vitification 2.89
Lee et al. 2010 Vitrification 0.08

Although many advances have been made, continugthingtion of oocyte
cryopreservation techniques is challenging due he scarcity of material for
experimentation. Rabbit has been used as a modahiem for studying mammalian
reproduction for decades (Heape 1891; Pincus 108ang et al. 1970). Nevertheless,
while numerous reports of studies designed to inya&® oocyte cryopreservation in
some species have been published (Mullen 2004y avimks have been done in rabbit
(Diedrich et al. 1988; Al-Hasani et al. 1989; Vintet al. 1989; Siebzehnruebl et al.
1989; Cai et al. 2005; Salvetti et al. 2010; Wah@le2010) and only a recent work
compare slow-freeze and vitrification methods (8tivet al. 2010), moreover, live

offspring has been only obtained using slow-fregzimethod (Al-Hasani et al. 1989).

10
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Rabbit embryos maturad vitro have no mucin coat. When cultured blastocysts
are transferred to recipients, the lack of muciatcoight in part account for subsequent
failure of pregnancy These embryos must be traresfeio recipients after 24-48 h for
mucin coat deposition during passage through tiduct/in order to obtain higher rates
of implantation of the in vitro-cultured blastocygfoung et al. 2004). The thickness of
the mucin layer appears to be an important faaopséiccessful implantation of rabbit

embryos (Murakami et al. 1996).

Rabbit is a standard laboratory animal in biomddieaearch, and transgenic
rabbits are used as animal models for a variethurhan diseases both genetic and
acquired. The rabbit (Oryctolagus cuniculus) islpggnetically closer to primates than
rodents (Graur et al. 1996) and is large enouglpetonit non-lethal monitoring of
physiological changes. For these reasons, sevesdarch groups have chosen
transgenic rabbits as animal models for the studlylipoprotein metabolism,
atherosclerosis, cardiovascular research and hgpeit cardiomyopathy (Bosze and
Houdebine 2006). The rabbit may be a better modghrosm for experimental
investigation of oocyte cryopreservation due toirtlsenaller size, ease of handling,
relatively short gestation time, and economy wharomes to applying embryo transfer
procedures compared to cattle and pigs. Furhternexgerimental evidences suggest
that the extreme sensitivity of cattle and pig desyhigher than human oocytes may
make them relatively poor models (Hunter et al. t99artino et al. 1996; Liu et al.
2003).
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2.1. Abstract

Although much progress has been made in oocytapoegervation since 1971,
live offspring have only been obtained in a fewcge and in rabbits, only the slow-
freezing method has resulted in live offspring wathtotal of 0.8%. The aim of our
study was to evaluate the effect of vitrificatiordaslow-freezing on the meiotic spindle,
cortical granule distribution and their developnaéntompetence. Oocytes were
vitrified with 16.84% EG, 12.86% formamide, 22.3%MBO, 7% PVP, and 1% of
synthetic ice blockers using cryotop as devicelavdreezing in 1.5 M PROH and 0.2
M Sucrose in 0.25 mL sterile French mini strawseidfic spindle and cortical granule
distribution were assessed with a confocal lasamsiog microscope. To determine
oocyte developmental competence, the in vitro dgrakent of oocytes from each
cryopreservation procedure was assessed with pagkeesis activation. Our data
showed that oocyte cryopreservation was signifigaaffected by both procedures. In
particular, meiotic spindle organisation was dracadly altered after cryopreservation.
Oocytes with peripheral cortical granule migratadter slow-freezing procedures were
better preserved compared to vitrified oocytes.addition, slow-frozen oocytes led to
higher cleavage and blastocyst rates comparedtrified oocytes. Our data showed
that, in rabbits, structural alterations are marglent in vitrified oocytes than in slow-
frozen oocytes, probably as a consequence of satysitto high levels of
cryoprotectants. Moreover, the slow-freezing mdtl® currently the recommended
option for rabbit oocyte cryopreservation.

Keywords: Vitrification; slow-freezing; cryotop; gaenogenesis; confocal microscopy
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2.2. Introdution

Cryopreservation of embryos and oocytes in anirpakcies is considered an
important tool in reproduction biotechnology. Siné/hittingham (1971) successfully
froze mouse embryos, cryopreservation methodologlyraaterials have progressed to
increase the number of lines, breeds and spea¢sdn be embryo cryostored in order
to preserve animal models or biodiversity or imgrdkie reproductive rate. Although
several breakthroughs have been made in oocyteprayervation since 1971, live
offspring have only been obtained in a few spedash as mouse (Withingham, 1977),
human (Chen, 1986), rabbit (Al-Hasani et al. 1989ttle (Fuku et al. 1992), rat
(Nakagata 1192), horse (Hochi et al. 1994) and(@éimez et al. 2008). Moreover,
procedures developed for one species are difftculidapt to another (Paynter et al.
1999 and 2001; Nottola et al. 2008; Pereira andjMes 2008; Noyes et al. 2010).

In general, the low efficiency might be due to ttmmplex structure of the
oocyte and differences in membrane permeability @imgsiology with respect to the
embryos (Gardner et al. 2007). Most of the comptmeresent in oocytes are
particularly sensitive to temperature and osmot&sgure. During cooling to ultralow
temperatures, cells are exposed to a series afseBe such as ice formation and
dehydration, increasing solute and ionic conceiomaand viscosity, which contribute
to cell damage, for example disassembly of the ticegpindle apparatus (Rojas et al.
2004; Succu et al. 2007), chromosome and DNA abaliies (Luvoni 2000) or
premature cortical granule exocytosis leading tnazpellucida hardening (Mavrides
and Morrol 2005; Morato et al. 2008). In conseqéerthe number of births per oocyte

cryopreserved is very low.

Recently, most studies have focused on freezingvdnfication (Loutradi et al.
2008; Keskintepe et al. 2009; Vutyavanich et a02Martinez-Burgos et al. 2010) and
the results are different depending on the spediesiuman, vitrification shows better
results than slow-freezing (Fadini et al. 2009) inutabbit, slow-freezing shows higher
results than vitrification (Salvetti et al. 2010)n human, Fadini et al. (2009) drew a
comparison of the outcomes obtained with both nithio several studies and the
births per oocyte cryopreserved showed that thes nanged between 0.9% to 1.4% for

slow-freezing and vitrification, respectively. @nher species, such as bovine, the birth
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rate ranged from 0.6% to 0.8% (Suzuki et al. 199@hota et al. 1998; Vieira et al.
2002); in mouse, it ranged between 0.8% and 7.686-{Bikich et al. 1995; Aono et al.
2005; Lee et al. 2010) and in rabbits, using otdysreezing method a total of 0.8%
resulted in live offspring (Al-Hasani et al. 1989).

The aim of this study was to evaluate the effedtitification and slow
freezing for the cryopreservation of rabbit oocyties terms of meiotic spindle
configuration, cortical granule distribution andability by their parthenogenetic

activation.

2.3. Materials and methods

All chemicals in this study were purchased fromn&gAldrich Quimica S.A.
(Madrid, Spain) unless stated otherwise. VM3 medand Ice blockers SuperCool X-
1000 and SuperCool Z-1000 were purchased from@dstury Medicine Inc. (Fontana,
CA, USA).

Oocyterecovery

New Zealand White females were induced to ovulgtentsamuscular dose of 1
ung of Busereline acetate. Oocytes were colleateh the oviducts 14-15 hours after
induction by flushing each oviduct with Dulbecc®bosphate Buffered Saline without
calcium chloride (DPBS) and supplemented with Odf%ovine serum albumin (BSA).
Finally, oocytes were treated for 15 min at roommpgerature with 0.1% hyaluronidase

in DPBS and cumulus cells were removed by mechhpipatting.

Cryopreservation procedures

Vitrification was performed following the MinimumsSential Volume (MEV)
method, using cryotop as device (Kuwayama et ab5P@nd VM3 as vitrification
solution (Fahy et al. 2004). Oocytes were firspased for 3 min to equilibration
solution containing 1.7% wi/v ethylene glycol (EG)3% w/v formamide, 2.2% w/v
dimethyl sulphoxide (DMSO), 0.7% w/v PVP K12 (palyylpyrrolidone of Mr 5000
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Da) and 0.1% w/v final concentrations of commelgialvailable SuperCool X-1000
and SuperCool Z-1000 (ice blockers) in base medBih: DPBS + 20% foetal bovine
serum, FBS). Later, the oocytes were transferretl exposed for 1 min to solution
containing 4.7% w/v EG, 3.6% wi/v formamide, 6.2% \WMSO, 1.9% w/v PVP K12,
and 0.3% wi/v final concentrations of ice blockersBM. Finally, the oocytes were
then transferred to vitrification solution congigfi of 16.8% w/v EG, 12.9% w/v
formamide, 22.3% w/v DMSO, 7% w/v PVP K12, and 1% #inal concentrations of
ice blockers in BM before being loaded into cryotgvices and directly plunged into
liquid nitrogen (LN2) within 1 min. For warming,0oytes were placed in a solution
composed of 1.25 M sucrose in BM for 1 min andrlatnsferred stepwise into 2QQ
drops of decreasing sucrose solutions (0.6, 0.30ab%l M sucrose in BM) for 30 sec
before being equilibrated for 10 min in TCM-199 taining 20% FBS at 38 °C. After
warming, the oocytes were incubated for 2 hounm@dium TCM-199 containing 20%
FBS at 38.5°C, 5% COn humidified atmosphere.

The slow-freezing procedure was adapted from pusiyodescribed methods
(Siebzehnruebl et al. 1989). Briefly, oocytes wieirabated for 15 min in a solution
containing 1.5 M 1,2-propanediol (PROH) in BM. Oteywere then placed for 10 min
in the freezing solution composed of 1.5 M PROH @2 M Sucrose in BM and
mounted between two air bubbles in 0.25 mL steklench mini straws (IMV
Technologies) sealed by a sterile plug. The strawese then placed into a
programmable freezer (Cryologic, CL-8800) for theekzing process. Temperature was
lowered from 20° C to -7° C at rate of -2°C/min.arMal seeding was performed at -
7°C. Temperature was then lowered to -30°C ateaafa-0.3°C/min. Finally, straws
were directly plunged into LN2 and stored for latse. For thawing, the straws were
taken out from the LN2 into ambient temperaturelf@+l5 sec and plunged into a 20°C
water bath. Oocytes were transferred stepwise detyeasing sucrose solutions (0.5,
0.3 and 0.1 M sucrose in BM) for 5 min before begugilibrated for 10 min in TCM-
199 containing 20% FBS. As with the vitrificatigmoup, after warming the oocytes
were incubated 2 hours in medium TCM-199 contair2@% FBS at 38.5°C, 5% G

humidified atmosphere.
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Meiotic spindle status

Structural evaluation was performed in the threpeexnental groups: fresh,
vitrified and slow-frozen oocytes. Oocytes wepeell in 4% w/v paraformaldehyde in
DPBS for 45 min at 4° C and permeabilised 30 miB7atC using 0.1% Triton X-100 in
DPBS. Mouse anti-tubulin monoclonal antibody was incubated withefixoocytes
overnight at 4°C. Samples were then washed thmastin a blocking solution (DPBS
supplemented with 0.1% BSA). Then, oocytes wereellad with fluorescein
isothiocyanate-conjugated Donkey anti-mouse angib@thckson ImmunoResearch)
diluted by a ratio of 1:200 for 45 min at 37°C iarkhess. After extensive washing,
DNA of samples was counterstained with propidiutide (PI). Finally, samples were
mounted between a coverslip and a glass slide taneldsat 4 °C and protected from the
light until they were examined. The localisatimfsmeiotic spindle and chromosomes
were assessed with a confocal microscope (TCS 8ica) provided with an argon-
krypton laser. When FICT fluorescence was monitotiee excitation light wavelength
was 488 nm and emission light wavelength was 5EnB8 When PI fluorescence was
monitored, the excitation light wavelength was 348 and emission light wavelength
was 590-630nm.

The meiotic spindle was classified as normal whea ¢lassic symmetrical
barrel shape was observed, with organised micrégésbwaversing from one pole to
another and the chromosomes were arranged on aacommetaphase plate along the
equatorial plane, whereas abnormal spindles shaligeniganised, clumped, dispersed,
or unidentifiable spindle elements with aberratofrchromatin arrangement, clumping
or dispersal from the spindle centre. Details ofrnml and abnormal spindle
morphology are shown in Figure 5.
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Figure 5. (A) Normal meiotic spindle of rabbit oocyte withromosomes arrayed at the metaphase plate,
evaluated using confocal microscope. (B-E) Abnormalotic spindle configuration. (F) Absence of
meiotic spindle

Cortical granuledistribution

Fresh, vitrified and slow-frozen oocytes were teeatvith 0.5% w/v pronase to
digest the zona pellucida. Samples were fixed RBB containing 4% w/v buffered
neutral paraformaldehyde solution for 45 min a€4 Then, oocytes were incubated 30
min at 37 °C with permeabilisation solution (0.02\8/vol Triton X-100). Next,
samples were incubated 15 min at 37 °C in the datk 100 pg/mL lens culinaris
fluorescein isothiocyanate (FITC-LCA) for cortigaianule (CG) staining. The oocytes
were then washed with blocking solution (7.5% w/6A}, mounted between a
coverslip and a glass slide and examined undeméocal laser-scanning microscope
(TCS SL, Leica). Cortical granule distribution welassified as (A) peripheral: CGs
were adjacent to the plasma membrane, showing wesg cytoplasmically matured,;
(B) abnormal: this group included samples where tnaisthe CGs were spread
throughout the cortical area in a non-homogeneansmalous distribution of CGs

compatible with a poor quality or degenerated cesyFigure 6).
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Figure 6. (A) Normal cortical granule distribution of rablmbcyte evaluated using confocal microscope.
(B) Abnormal cortical granule distribution with CGpread through the cortical area (C) Loose of gfart
CGs.

Par thenogenetic activation

Oocytes from each experimental group were inducegdarthenogenesis with
two sets 1 h apart of two DC electrical pulses.gfk//cm for 20 us at 1 sec apart in an
activation medium (0.3 M mannitol supplemented wi0 uM MgSQ and 100 uM
CaCl), followed by 1h exposure in TCM-199 medium supptated with 5 pg/uL of
cycloheximide and 2 mM of 6-DMAP. Parthenotes weuttured in 500 puL of TMC-
199 supplemented with 20% FBS and layered undexffpanil at 38.5°C in 5% C®
and saturated humidity. Activation rate was reedrcht 24 hours after in vitro
activation and the blastocyst development rate agsessed at 102 hours after oocyte

activation (Figure 7).

A

Figure 7. (A) Blastocyst at 102 hours after oocyte activati(B) Blastocyst at 102 hours aftier vivo
fertilization.
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Statistical Analysis

The Chi-square test was used to determine the reifées between
cryopreservation procedure on oocyte meiotic spindtatus, cortical granule
distribution and parthenogenetic activation. Statal analysis were performed using
the statistical software program Statgraphics PUession 5.1, STSC Inc., Rockville,
MD, USA) and a probability of B 0.05 was considered to be the minimum level of

significance.
2.4. Results
Effect of cryopreservation method on the meiotic spindle
The spindle morphology was assessed in a totab®fadcytes. The proportion
of meiotic spindle with a normal shape decreasedhfB89.7% for fresh oocytes to

21.8% after slow freezing and 18.2% after vitrifioa (Table 4). Differences between

the two cryopreservation methods were not significa

Table 4. Proportion of fresh, vitrified and frozen rabbit taghase Il oocytes with normal
meiotic spindle organization.

Procedure n Meiotic spindle (%)
Fresh 29 897
Frozen 119 21.8

Vitrified 110 18.2

n: Number of oocytes. Different superscripts repnésignificant difference (P < 0.05)

Effect of cryopreservation method on cortical granuledistribution

The cortical granule distribution analysis was ased in a total of 149 oocytes.
Table 5 shows the peripheral cortical granule ntignarates of fresh, slow-frozen and
vitrified oocytes. Some 95.2% of fresh oocytesspreed normal peripheral cortical

granule migration. Cryopreservation had a majdluemce on the normal cortical
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granule distribution decreasing to 34.9% after stmezing and 14.5% after

vitrification. The difference between both cryoggevation methods was significant.

Table 5. Percentage of fresh, vitrified and frozen metapHasabbit oocytes with peripheral
cortical granules migration.

Procedure n Peripheral CG migration (%)
Fresh 21 952
Frozen 66 349
Vitrified 62 14.5

n: Number of oocytes CG: Cortical granules. Différsuperscripts represent a significant
difference (P < 0.05).

Effect of cryopreservation method on parthenogenetic oocyte activation

Parthenogenetic activation was assessed in a @dt846 oocytes. Table 6
shows the developmental rates of fresh, slow-frceneah vitrified oocytes at 24 h and
102 h after parthenogenetic activation. Twentyrfdwwurs after parthenogenetic
activation, 79.3% of fresh oocytes cleaved. Crysgreation had influence on the
cleavage rates decreasing to 32.1% after slowifrgeand 18.7% after vitrification.
Statistical difference was observed between theoprgservation methods. One
hundred and two hours after parthenogenetic aaivathe proportion of fresh oocytes
that developed until blastocyst stage was 26.9%nceCagain, the cryopreservation
process had a substantial influence on the devetofhability of slow-frozen oocytes,
with 4.2% of activated ova developing into blas&isy while no vitrified oocyte

reached this stage.

Table 6.Parthenogenetic development rate at 24 hours @8dhurs after activation of fresh, vitrified
and frozen oocytes.

Procedure n Cleavagerate (%) Blastocyst rate (%)
Fresh 121 79.3 26.9°
Frozen 118 324 4.2°
Vitrified 107 18.7 -

n: Number of oocytes. Different superscripts repnés significant difference (P < 0.05).
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2.5. Discussion

Many studies of oocyte cryopreservation have begned out in recent years,
but the methods are still inefficient (Gardner t2907; Nottola et al. 2008) and to
date, live offspring has been obtained only in a fepecies, such as mouse
(Withingham, 1977), human (Chen, 1986), cattle (Fek al., 1992), rat (Nakagata
1992), horse (Hochi et al. 1994) and cat (Gémeal.€2008). In rabbit, slow-freezing
and vitrification has been used for oocyte cryoprestion, but only using slow-
freezing method has obtained live offspring (Al-Biaiset al. 1989). Until now, few
studies have been performed and, to our knowleatyg,a recent report compared both

cryopreservation methods (Salvetti et al., 2010).

The impaired meiotic spindle and peripheral cottigganule competence
observed in our study for both cryopreserved metlomilild result from the exposure of
oocytes to low temperatures and high concentratibesyoprotectants, as well as from
a drastic reduction in the development up to tlastbyst stage. The spindle is very
sensitive to cryoprotectants and low temperaturdshr(son and Pickering 1987,
Pickering and Johnson 1987, Mandelbaum et al. 2@dtti et al. 2009). Rabbit
oocytes are not very sensitive to low temperaturespresent particularly sensitivity to
high levels of cryoprotectants and it has been shttwhave a dramatic effect on the
meiotic spindle configuration (Diedrich et al. 1988ncent et al. 1989; Cai et al. 2005;
Salvetti et al. 2010). So, the high concentratbrtryoprotectants (from 5 to 7 M of
cryoprotectants) required to achieve vitreous ssatauld produce a higher detrimental
effect on spindle configuration. However, our tesdid not confirm this hypothesis,
as we observed that structural alterations werdlasinbetween slow-freezing and
vitrification procedures. These discrepancies rhayrelated to differences in our
vitrification protocol. In our study, the VM3 solah previously designed to present low
toxicity (Fahy et al. 2004) was used, following théimum essential volume method,
using cryotop as device, which allowed high coolmage, minimising the toxic and
osmotic effects (Vatja and Kuwayama 2006; YavialeR009). However, inappropriate
condition of exposure to cryoprotectants and cgpiimduced exocytosis and disorder of

cortical granules after vitrification of the oocgtéBernard and Fuller 1996). In our
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study, the cortical granule distribution generalyppeared to be altered after
cryopreservation, especially after vitrificatiod.o our knowledge, no previous studies
of cortical granule distribution after cryopresdiwa have been reported in rabbit. In
other species, it has been reported that cryoprasen has an effect on cortical granule
exocytosis as a consequence of disruption of theskgleton that might lead to
premature release of cortical granules and zordeharg (Vicent et al. 1990; Ghetler et
al. 2006; Morato et al. 2008; Notolla et al. 200an et al. 2009; Coticchio et al. 2010).
This hardening decrease in sperm permeability e lobserved in several species
(Mavrides and Morrol 2005; Tian et al. 2007) and vitro fertilisation can be
compromised (Coticchio et al. 2001). Thereforer;, witrification protocol seems to
induce damage on cytoskeleton filaments involveeliocytosis of cortical granules but
not leading to meiotic spindle alteration. AlthbulCSI can overcome that problem,
survival rate in rabbit ICSI is low (Deng and YaP@01). Parthenogenesis activation
therefore seems to be an appropriate tool to asseasro developmental rates into

blastocysts of cryopreserved rabbit oocytes.

Thus, the cryoprotectants and low temperatures teadepolymerisation of
microtubules and disrupt the network of the meisfendle and cortical granules in
rabbit oocytes regardless of the cryopreservatimtguure. Abnormal spindle and
dispersed chromosomes have been related with patas rof fertilisation and
development (Chen et al. 2003; Magli et al. 2010he cleaved and blastocyst rates of
fresh oocytes were higher than for cryopreserveadytes. Nevertheless, the
development rate of vitrified oocytes was lowemtlia slow-freezing procedure. This
latter result could confirm that rabbit oocytes aeey sensitive to high concentration of
cryoprotectants (Diedrich et al. 1988; Vincentletl@89; Cai et al. 2005; Salvetti et al.
2010). However, the developmental rate to blastibsjage was only obtained using
slow-freezing method after parthenogenesis actimatiParthenogenesis appears to be
an interesting, quick and efficient tool to assessitro the developmental rates into
blastocysts of rabbit oocytes in preliminary stsdigghen pregnancy rates are not
needed (Salvetti et al. 2010). Our developmemt®l to blastocyst status was similar to
those previously described (Salvetti et al. 201@) similar to those obtained after IVF
(Al-Hasani et al. 1989) ICSI (Cai et al. 2005; Wagtgal. 2010) or in vivo fertilisation
(Vincent et al. 1989).
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Our data showed that structural alterations areemeordent in vitrified than in
slow-frozen rabbit oocytes, probably as a consecpi@f sensitivity to high levels of
cryoprotectants. Considering our results, slovefneg method seems to be a valuable
option for rabbit oocyte cryopreservation, althaulgbth methods need more studies to

clarify cellular mechanisms associated with cryaipjand assure better outcomes.
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3. Future per spectives

In most cases, modifying cryopreservation methaalsfitt the cells to be
cryopreserved is likely to be preferable to modifyicells to fit procedures for
cryopreservation (Seidel, 2006). Various studiesthwreproductive and non-
reproductive cells provide numerous ideas for frthstudies. Stabilizing the
cytoskeleton system during vitrification could bedfcial for improving the post-thaw
survival and subsequent development of vitrifiedytex (Moratd et al. 2008). Adding
more cholesterol via cyclodextrin may be worth purg. Horvath and Seidel (2006)
showed that the zona pellucida of oocytes did mevent transfer of cholesterol from
occurring withing this procedure. Another area Wwairtvestigated is stabilizing cell
membranes with trehalose, a compound that plants nmaturally to increase
cryotolerance ("lce blockers"). One issue is howtransfer the compound to the
cytoplasm of the cell, where it normally functior&atpathy et al. (2004) developed a
method for loading red blood cells with trehaloee ffeeze-drying, and a variation of
this one might work to move trehalose into oocydad embryonic cells, or trehalose
might be injected into individual oocytes (Eroglua. 2002). It is unclear whether
trehalose would be harmful after thawing, and ifveloether the molecule could be
removed from cells readily. Kim et al. (2005) usewther approach by modifying red
blood cells with phosphoenolpyruvate to decreasmipnane fragility. Following, this
one, have been described some possible modificatipalternatives to improve oocyte
vitrification and the necessary tools to assesvivo viability of embryos. The
complexity of these techniques is combined withltive output obtained.

3.1. Alternatives
3.1.1. Cytoskeleton stabilizing agents

The main damage observed during vitrification is abnormal spindle
configuration mainly due to the disorganizatiord@assembly of meiotic microtubules.
One possible way to improve the cryotolerance afytes and improve the postthaw

survival and subsequent development of vitrifiedydes or embryos may be the use of

cytoskeleton stabilizing agents such as cytocha&sir taxol.
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Cytochalasin B is a cytoskeletal relaxant congideio make the cytoskeletal
elements less rigid (Fujihira et al. 2004). The dépalasin B effects in oocyte
vitrification are controversial and may depend be species and procedures used. In
mature oocyte, CCB reduced damage to microtubuldsvaay enhance stabilization of
spindle microtubules during vitrification. In thase of GV oocytes, where no organised
meiotic spindle is present, this relaxant effecympeeserve the functionality of the gap
junctions between oocyte and granulosa cells, ggngia faster and more uniform
penetration of the cryoprotectants. Studies oneffect of pre-treatment with CCB on
the vitrification of pig (Fujihira et al. 2004) argheep (Silvestre et al. 2006) oocytes
have been reported, but more studies are needadén to increase oocyte or embryos

survival after vitrification with these additives.

Taxol TM (paclitaxel) is a diterpenoid taxane usesdan antineoplastic agent in
patients diagnosed with ovarian cancer, metastaéiast carcinoma and nonsmall cell
lung carcinoma. Taxol interacts with microtubulesdaincreases the rate of
polymerization by reducing the critical concenwati of tubulin needed for
polymerization. The addition of Taxol to the vitcédtion solution improves the post-
warming development of immature human (Fuchinoual.e2004) and mature porcine
(Shi et al. 2006) and bovine (Morato et al. 2008)ydes.

3.1.2. Lipid content

Lipid content and membrane lipid composition affeobcytes and embryo’s
ability to resist chilling injuries during cryopr@wyation because their lipids undergo
phase transition (Ghetler et al. 2005). The lippehposition of the membrane strongly
influences its properties and its resistance tonhéstress (Arav et al. 2000a; Zeron et
al. 2001, 2002).

Some factors as oocyte and embryo origmv{vo or in vitro), specie, breed,
physiologic state, and nutrition affect lipid comtéMcEvoy et al. 2000; Zeron et al.
2001, 2002; Genicot et al. 2005). For example, m®wocytes are more resistant to

cryopreservation than porcine ones, probably becaoscine oocytes have 2.4 times
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more lipid drops than bovine and their structurd eamposition are different (McEvoy
et al. 2000; Isachenko et al. 2001; Genicot 2@05)

Recently, new strategies have been used to redtraeellular lipid content in
porcine and bovine embryos and therefore incrdasie tolerance to cryopreservation.
Mechanical delipidation has been applied to earktages of porcine embryo
development (Nagashima et al. 1999) and to in viroduced and cloned bovine
embryos (Ushijima et al. 1999; Tominaga et al. 20Dz et al. 2001), through
polarization of the cytoplasmic lipid droplets bgntrifugation and physical removal of
excess lipid. In both cases embryo sensitivity lidling was reduced, increasing their
cryopreservation. However, besides being an ineasind extremely laborintensive
method, mechanical delipidation alters the develamadl potential of the delipidated
blastocysts after transfer to recipient heiferse@et al. 2001). Chemical delipidation
has also been studied. Forskolin, a lipolytic ageagable of stimulating lipolysis of
triacylglycerols was used by Men et al. (2006).sTagent promoted the cryosurvival of
porcine IVP embryos after partial delipidation thgh chemical stimulation of
intracellular lipolysis. Besides reducing lipid ¢ent, Pereira et al. (2008) proposed the
possibility of a direct incorporation of the congitgd isomer of linoleic acid, the trans-
10, cis-12 octadecadienoic acid (t10, c12 CLA) itite embryo membranes during in
vitro culture contributing to an increased membrauiglity (unsaturation level) and so

improving embryo resistance to cryopreservation.

3.2. Offspring production

The main objective is to develop a method for oecgtyopreservation that
allow generate offspring. In rabbit, only two steslihave shown results of embryo
implantation (Vincent et al. 1989; Wang et al. 20Ehd only one obtained live
offspring using slow-freezing method (Al-Hasanagt1989).

It is necessary to asses the results of cryopragsenin vivo, because although
it seems possible, in vitro fertilization (IVF) ot well established in rabbit species,
partly because problems are encountered with thactation of semerBfackett et al.
1982) linked to the poor permeability of sperm plasma rmeme (Curry et al. 1995,
2000).Best results are obtained today when semen is itafeatn vivo.
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On the other hand, ICSI of rabbit oocytes is diffidoecause they have rough,
dark granules in the plasma, and they easily lygkdie after the ICSI process. Only
two studies of ICSI success in fresh rabbit oociiese been reported (Deng and Yang,
2001; Li et al. 2001), and two in vitrified oocytg3ai et al. 2005; Wang et al. 2009).

An alternative to avoid IVF and ICSI variability hecessary to asses the success

of oocyte cryopreservation, for example usingivo fertilization.
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