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Abstract

Random Forests (RFs) and Gradient Boosting Machines (GBMs) are popular approaches for
habitat suitability modelling in environmental flow assessment. However, both present
some limitations theoretically solved by alternative tree-based ensemble techniques (e.g.
conditional RFs or oblique RFs). Among them, eXtreme Gradient Boosting machines
(XGBoost) has proven to be another promising technique that mixes subroutines developed
for RFs and GBMs. To inspect the capabilities of these alternative techniques, RFs and GBMs
were compared with: conditional RFs, oblique RFs and XGBoost by modelling, at the micro-
scale, the habitat suitability for the invasive bleak (Alburnus alburnus L.) and pumpkinseed

(Lepomis gibbosus L.). XGBoost outperformed the other approaches, particularly conditional
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and oblique RFs, although there were no statistical differences with standard RFs and
GBMs. The partial dependence plots highlighted the lacustrine origins of pumpkinseed and
the preference for lentic habitats of bleak. However, the latter depicted a larger tolerance
for rapid microhabitats found in run-type river segments, which is likely to hinder the
management of flow regimes to control its invasion. The difference in the computational
burden and, especially, the characteristics of datasets on microhabitat use (low data
prevalence and high overlapping between categories) led us to conclude that, in the short
term, XGBoost is not destined to replace properly optimised RFs and GBMs in the process of

habitat suitability modelling at the micro-scale.
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1 Introduction

Biological invasions have increased in recent decades due to globalization and human
activities, which is currently one of the main threats to freshwater biodiversity (Clusa et al.,
2018). Flow regimes are leading factors in controlling fish population dynamics (Poff et al.,
1997). Therefore, in several Mediterranean ecosystems, the alteration of the natural intra-
and inter-annual flow variations, together with the creation of lentic habitats related to
flow regulation infrastructures (e.g. reservoirs and weirs), have favoured the establishment
of non-native invasive species (Clavero et al., 2013; Mufioz-Mas et al., 2016a; Ribeiro and
Collares-Pereira, 2010). In Iberian rivers, two of the most prominent invasive fish species,
which have been favoured by the anthropic modification of flow regimes, are the bleak
(Alburnus alburnus L., 1758) and pumpkinseed (Lepomis gibbosus L., 1758) (llhéu et al.,

2014).

The bleak inhabits open waters of lakes and medium-to-large rivers conforming large
aggregations in backwaters and other still waters (Kottelat and Freyhof, 2007). In
accordance, bleak has been considered as a limnophilic fish (Harby et al., 2007), although in
others studies, performed in Mediterranean streams, the species has been categorized as
eurytopic because it dwelled preferably run-type habitats with appreciable flow velocity
(Maso et al., 2016; Muioz-Mas et al., 2016d). The same is applicable to the pumpkinseed,
which despite the lacustrine origins has been found to occur more often than expected in

lotic habitats (Vilizzi et al., 2012).
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Both species may have benefited from river regulation (Muinoz-Mas et al., 2016d; Vilizzi et
al., 2012). In accordance, environmental flows could be designed to counteract the
proliferation of these unwanted fish species (Acreman et al.,, 2014). However, effective
management strategies can only be developed with a good knowledge of how different
management alternatives affect invasive species (Thomsen et al., 2014). It is therefore
necessary to understand the critical habitat requirements to design better conservation and
management plans (Fukuda and De Baets, 2016). Ecological modelling has demonstrated to
be a supportive approach to develop spatial and temporal projections of the ecosystem
status under different flow regimes, resulting in more effective and less uncertain

management decisions (Stoffels et al., 2018).

In this regard, micro-scale habitat suitability models combining hydraulic variables such as
flow velocity or water depth are among the most popular for environmental flow
assessment (Nguyen et al., 2018). Although the univariate habitat suitability criteria is living
a sort of revival (see e.g. Gobeyn et al., 2017), the discipline has evolved significantly since
the initial concept developed by Waters (1976). In accordance, machine learning techniques
are currently used as tools for modelling the habitat suitability as well as for revealing
important environmental predictors and specific habitats required by the target species
(Fukuda and De Baets, 2016). However, modellers went one step beyond and, currently,
they advocate the use of machine learning techniques based on model ensembles instead

on single models (Clavero et al., 2017; Mufioz-Mas et al., 2016b). The main idea behind this
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approach is to aggregate diverse models to obtain combined predictions outperforming

that of any single component (Bourel et al., 2017; Marmion et al., 2008; Ren et al., 2016).

The use of model ensemble has been favoured by two independent issues. On the one
hand, the interaction between data and modelling approach — which can render different
results (Fukuda et al., 2014; Muiioz-Mas et al., 2016b) — make it difficult to select the most
appropriate methodology, especially nowadays when a vast number of techniques is
available (Thuiller et al., 2009). On the other hand, model ensembles have mathematical
characteristics that lead to superior performance (see e.g. Dietterich, 2000; Ren et al., 2016

for thorough descriptions).

In ensemble modelling, model diversity is paramount to improve accuracy but also to
prevent over-fitting (Ren et al., 2016). Diversity can be induced by training each single
model on different aspects of the training dataset (data diversity) (Brown et al., 2005) or by
employing different modelling techniques and/or hyper-parameter settings (Mufioz-Mas et
al., 2016b; Ren et al., 2016). A number of approaches exist to induce data diversity (Brown
et al., 2005). However, the most famous approaches are bagging (Breiman, 1996) and
boosting (Freund and Schapire, 1997), whose popularity has increased hand in hand with
the popularity of tree-based approaches (Ren et al., 2016) because decision trees provide

different results when the training dataset is varied (Breiman, 2001).

The most important technique resulting from the combination of bagging and decision

trees is Random Forests (RFs) (Breiman, 2001). It consists of ensembles of Classification And
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Regression Trees (CARTs) (Breiman et al., 1984) that are trained by resampling with
replacement the input samples (n) to develop each decision tree, and while developing each
decision tree the input predictor variables or features (p) are also resampled at every split,

data partition or node (Breiman, 2001).

Nevertheless, over the years a number of limitations of RFs arose, which triggered the
development of a myriad of alternative implementations. Among them, one of the most
popular approaches have been the conditional RFs (Hothorn et al., 2005; Strobl et al., 2008,
2007). This alternative approach solved the variable-selection bias of the original
implementation towards variables offering many potential cut-points, which artificially
increases the usefulness of variables that are continuous or with many categories (Strobl et

al., 2007).

Another relevant aspect of the individual trees of the forest is the orientation of the splits,
which are typically carried out with axis-parallel planes that may be sub-optimal (Mufoz-
Mas et al., 2016a) and ecologically unreliable because they render stair-like decision
surfaces (Menze et al., 2011). Breiman (1984) proposed the use of multivariate or oblique
splits, which drove the development of oblique RFs (Menze et al., 2011). The existence of
oblique RFs has been acknowledged in a number of studies (e.g. Fukuda et al., 2014;
Muinoz-Mas et al., 2016a). However, to the best of our knowledge they have not been used

to develop habitat suitability models so far.
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Within the boosting-based group of ensembles, AdaBoost (Freund and Schapire, 1997) and
particularly the superseding Gradient Boosting Machines (GBMs) (Friedman, 2002, 2001)
enjoy great popularity, especially after the working guide published by Elith et al. (2008).
However, while bagging-based ensembles reduce the variance of the aggregated
predictions, boosting-based approaches reduce the bias and only subsidiarily, the variance
(Ren et al., 2016). This difference is caused by the differences in the resampling strategy:
bagging performs resampling (with replacement) and is based on constant resampling
probabilities (i.e. each sample is used to train similar number of trees) whereas boosting
iteratively varies the resampling probabilities (see Fig. 3 in methods for a graphical
depiction). This implies that boosting-based ensembles are built in a sequential manner
gradually increasing the emphasis on the observations poorly modelled by adding trees
until the data are completely over-fitted (Elith et al., 2008; Gémez-Rios et al., 2017).
Developers were soon aware of this phenomenon. Therefore, the different boosting-based
approaches included subroutines to prevent over-fitting (e.g. the shrinkage parameter of

GBMs) (Gomez-Rios et al., 2017).

This process of refinement has not discontinued and it triggered the development of
additional subroutines to reduce over-fitting — some of them based on the RFs approach -
which ended up in the development of the eXtreme Gradient Boosting machines (XGBoost)
(Chen and Guestrin, 2016). XGBoost has turned out to be one the most promising
algorithms to classify both binary and multi-class datasets, especially in the former case

(Gémez-Rios et al., 2017).
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To the best of our knowledge XGBoost has never been tested with ecological datasets.
Therefore, to increase the knowledge about the environmental limitations for bleak
(Alburnus alburnus L.) and pumpkinseed (Lepomis gibbosus L.), the habitat suitability for
these invasive species has been modelled with five state-of-the-art tree-based ensemble
approaches. The tree-based approaches compared were: standard RFs (Breiman, 2001),
GBMs (Friedman, 2002, 2001), conditional RFs (Hothorn et al., 2005; Strobl et al., 2008,
2007), obliqgue RFs (Menze et al.,, 2011) and XGBoost (Chen and Guestrin, 2016). The
remainder of the paper is structured as follows: section 2 describes the training datasets,
the approach followed to optimise each tree-based ensemble and the particularities of the
compared techniques. This section also describes how the models were compared. In
section 3, the accuracy of the five different tree-based approaches and the reliability of the
modelled habitat suitability are presented. In section 4, the results are discussed, and
integrated with current literature; finally, the conclusions and caveats are provided in the

section 5.

2 Methods

2.1 Data collection

The survey was performed in a segment of the Jucar River located downstream of the Tous
Dam where both species co-occur (Fig. 1). The data collection was performed in 2017 at the

microhabitat scale by systematically sampling areas of few m? with homogeneous depth,

9
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velocity, substrate and cover. Each of these small areas was a sampling unit where
presence/absence and the environmental variables were recorded. The survey was
performed during high water temperature and low flows (Q = 8.74 m3/s) to mimic
summertime conditions (i.e. the period of lower flows in non-flow-regulated Mediterranean
rivers) that, given the irrigation purpose of the upstream reservoir and latitude of the study
site, occur in September. The data collection was performed in a river segment that
encompasses areas of deep pools and relatively shallow rapids and runs, all of them with
optimum visibility. Therefore, the microhabitat study was conducted by underwater
observation (snorkelling) and the sampling balanced the areas of deep-slow and shallow-
fast flow types (Mufoz-Mas et al., 2016c, 2012). Microhabitat characteristics for the
presence data were measured at fish locations (i.e. where bleak and pumpkinseed
individuals of body length > 5 cm were observed). On the contrary, the absence data were
collected following a systematic sampling approach (Bovee, 1986), which consists of

measuring the microhabitat characteristics over a regular grid.

10
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Fig. 1. Location of the river segment (in red) in the Jucar River Basin (in yellow) where the
microhabitat preferences of the invasive bleak (A. alburnus, L.) and pumpkinseed (L.
gibbosus L.) were studied.

Three hydraulic variables (depth, mean flow velocity and substrate composition) were used
to characterise each sampling unit or sampled microhabitat (Mufioz-Mas et al., 2012). In
addition, the presence and dimensions of five cover types were scored. They encompassed
the concept of structural (e.g. boulders, log jams) and escape (e.g. aquatic vegetation) cover
and corresponded to reeds, aquatic vegetation, shade, rocks and log jams and small woody
debris (Mufioz-Mas et al., 2016c). The scale used was that described by Mufioz-Mas et al.
(2016c), which ranges from 0 (absent) to 3 (massive). Depth (m) was measured with a
wading rod (to the nearest cm). Mean flow velocity (m/s) was measured with an
electromagnetic current meter (Valeport®, United Kingdom). The percentage of each

11



193 substrate class was visually estimated following a simplification of the American

194  Geophysical Union size scale, which corresponds to, silt (@ < 62 um), sand (62 um > @ < 2

195 mm), fine gravel (2 > @ < 8 mm), gravel (8 > @ < 64 mm), cobble (64 > @ < 256 mm), boulder

196 (@ > 256 mm) and bedrock (Mufioz-Mas et al., 2012); these percentages were aggregated
197 into the dimensionless substrate index (Mouton et al., 2011), which ranges between 0 (silt)
198 and 8 (bedrock). In the end, bleak was observed in 98 microhabitat and pumpkinseed in 42
199 whereas the available/unoccupied conditions (sampling units where none of the target
200 species was observed) were measured in 1258 microhabitats. In accordance, the data

201 prevalence (i.e. the proportion of presences in the dataset) for each species corresponded

202  to 0.07 and 0.03 respectively for bleak and pumpkinseed (Fig. 2).

1.2 O 3
@ 10 i ) A a
E o8 E 22 e 8 / 2 2
Z 06 , 5 13 o 4 2
o 04 l!a g 1.0 | B r o
2 02 0O o5 i 7] I S
l ) @ |
~ 00 20 —— & 0 4 O
= g 8 5 8 38 s 8 g s 8 8
8 E 3 3 E 3 s E 2 5 E &
s o =2 ¢ o = s a = s B2 2
= © o  © ©  © © = © o
< < < 4 _ <
<~ 3 3 3 = 3
o o - =
@ = ot o
= B T 2 o 2 &
£ E 8 &
5 a1 1 : 3
< (&) A & =
20 0 0 5 .L - o J 00 A J
o 1 T f O
2 g 3 g 8 g 8 2 g g 8
8 E 2 3 E 2 8 E 2 3 E &
s & =2 ¢ o =2 s o =2 g 3 =2
O = 2 O = = O = =2 ke = =]
< © © < © © < ®© © < © ©°
< < < <

203
204  Fig. 2. Violin plots of the absence data (Abs.) and the microhabitats occupied (presence
205 data) by the invasive bleak (A. alburnus, L.) and pumpkinseed (L. gibbosus L.).
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2.2 Data preparation for cross-validation - Synthetic Minority Over-sampling

TEchnique (SMOTE)

The parameters that maximise tree-based ensembles performance (i.e. hyper-parameters)
were sought performing repeated k-fold, a type of cross-validation that implies partitioning
several times the dataset into k equal-sized parts. For each of these repetitions, the tree-
based ensemble is trained k times using k-1 parts and, each time, the performance is
evaluated using the k part held out. However, even after cross-validation, low data
prevalence (i.e. imbalance between the presence and absence classes) may impact model
performance and reliability (Fukuda and De Baets, 2016). Several solutions to deal with this
problem have been proposed and implemented, both for individual models and for
ensemble approaches. These can be summarised into: i) data resampling (i.e. over-sampling
and/or under-sampling), ii) algorithm modification or iii) cost-sensitive learning (Lopez et al.,
2013). Lamentably, the implementation of these approaches is uneven. For instance, the
current implementation of RFs in the R package randomForest (Liaw and Wiener, 2002)
allows data resampling and class weighting, whereas that to develop oblique RFs (i.e.
obliqueRF - Menze et al., 2012) does not allow any of those solutions. In accordance, for
each dataset involved in the ensemble training (i.e. each part of the complete dataset used
for model training), we applied the Synthetic Minority Oversampling TEchnique (SMOTE)
(Chawla et al., 2002) whereas the datasets used for ensemble validation (i.e. each part of

the complete dataset held out and used to test model performance) remained unaltered.
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This technique is one of the most renowned resampling approaches to deal with low
prevalence datasets (Lopez et al., 2013) and it is independent to the software package
involved in the development of each kind of tree-based ensemble. SMOTE simultaneously
over-samples the minority class (i.e. presence data) and under-samples the majority class
(absence data) to get the desired prevalence — in this case 0.5 — (Chawla et al., 2002).
However, SMOTE instead of simply resampling with replacement the presence data creates
synthetic data. Therefore, the presence data is over-sampled by taking each presence data
and introducing synthetic additional data along the line segments joining any/all of the k

nearest neighbours (Lopez et al., 2013).

The implementation of SMOTE was that included within the R package DMwR (Torgo,
2010). In order to accelerate model training within the 3 X 3 cross — validation (nine
models), we selected parameters that ended up with balanced datasets of inferior
dimensions (i.e. Nsvote < Noriginal, @and Npresence = Nabsence). Therefore, the number of new
instances generated for each presence (i.e. the parameter named perc.over) corresponded
to 20 by the ratio between the number of absence data and that of presence data (i.e.
255+2 for bleak and 596 for pumpkinseed); the parameter k corresponded to 10% of the
number of presence data; and the number of absence data randomly selected for each
smoted observation (i.e. the parameter named perc.under) was 1.25. These parameter
settings rendered balanced training datasets with 359+3 and 343 data (presence and

absence) respectively for bleak and pumpkinseed. Violin plots depicting the similarity

14
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between the distributions of the original datasets and those generated by SMOTE can be

found in Appendix A.

2.3 Tree-based ensembles optimisation

In the context of tree-based ensembles optimisation, two elements are recommended to be
adjusted to maximise model performance and to prevent over-fitting: the hyper-parameter
settings and the set of feature variables involved in the ensemble training (Martinez-de-
Pison et al., 2017). The hyper-parameters drive the tree-based ensemble growth (e.g. by
controlling the maximum number of terminal nodes in each decision tree or the number
trees in the forest) and they interact with the feature variables. In accordance, the optimal
hyper-parameters and feature variable set was simultaneously sought following a wrapper
approach involving cross-validation and the Genetic Algorithm (GA) (Holland, 1992)
implemented within the R package rgenoud (Mebane Jr and Sekhon, 2011). This approach
has proved markedly proficient to concomitantly search the optimal hyper-parameters and

feature variable set (see e.g. Martinez-de-Pison et al., 2017).

Optimisations based on GAs consist of initially generating a population of feasible solutions
(i.e. random combinations of variable sets and parameters within the feasible range). Then,
the performance criteria for each combination (chromosome/phenotype) is calculated, and
the search of the better solution (evolution) takes place by more frequently crossing

(reproducing) those individuals with better performance, but regularly altering (mutating)
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the remaining individuals to enhance the sampling of the potential combinations of

parameters and variables (Mufioz-Mas et al., 2016a).

Following previous experiences (Mufioz-Mas et al., 2018, 2016a), the optimisation was
performed following a repeated k-fold scheme — described in section 2.2 — but the
performance criterion maximised exclusively the mean True Skill Statistic (TSS) (Allouche et
al., 2006) because the training datasets presented optimal data prevalence (i.e. 0.5). The
TSS proved good behaviour on low prevalence datasets (Somodi et al., 2017) and it consists
of the sum of Sensitivity (Sn) and Specificity (Sp) minus one (i.e. TSS = Sn + Sp — 1). The
Sn corresponds to the ratio of presences correctly classified and Sp corresponds to the ratio
of absences correctly classified (see Mouton et al.,, 2010 for additional details about

performance criteria).

The nine different operators that govern the optimisation performed with genoud (Mebane
Jr & Sekhon, 2011) were selected to avoid premature convergence, as previously indicated
in Mufioz-Mas et al. (2017). The population size and number of generations varied in
accordance with the number of parameters and variables involved in the optimization,

after:

Npopulation = Ngenerations = 10 X (# Parametes + 8)

where # Parametes varied for each tree-based ensemble approach (Piotrowski, 2017) and
the 8 corresponded with the eight environmental variables used as predictor variables in

the models: velocity, depth, substrate and the five different cover types (reeds, aquatic
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vegetation, shade, rocks and woody debris). Finally, the optimisation halted after
# Parametes + 8 generations without improvement. The chromosomes were composed
of integers; the first part, which varied in length, encompassed the tree-based ensemble
parameters whereas the second part was composed of an 8-bit string equalling the number
of variables within the training dataset (see Mufioz-Mas et al., 2016a for additional details
on chromosome structure). In order to properly sample the searching space a Latin
hypercube, as implemented in the R package /hs (Carnell, 2016), was used to initialise the
population instead of using the random generator because it reduces the computational
burden and facilitates the algorithm convergence to satisfactory solutions (Knowles and
Hughes, 2005). Once the best hyper-parameters and input variables were determined, a
single tree-based ensemble was trained employing the entire dataset (i.e. without cross-

validation) to perform additional analyses (Mufioz-Mas et al., 2016a).

2.3.1 Random Forests — RFs

Random Forests (RFs) (Breiman, 2001) is the first exponent of the bagging group of tree-
based ensemble approaches (Fig. 3). The RFs model was developed employing the R
package randomForest (Liaw and Wiener, 2002). In accordance, in addition to the ultimate
variable set (Munoz-Mas et al.,, 2016a), four elements required optimisation to prevent
over-fitting, namely the parameters constraining the tree growth (nodesize and maxnodes)

(Munoz-Mas et al., 2016a), the percentage of random samples used to train each individual

17
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tree of the forest (sampsize) and the randomness introduced in every recursive binary split
(mtry) (Strobl et al., 2009). The range tested for each parameter were based on the
dimensions (i.e.n X p) of the training datasets (Table 1). Finally, the number of trees was
set to 250, although the stabilization of the error in the out-of-bag (i.e. the dataset held out

of each decision tree) was inspected to ascertain the adequacy of this number.

X
//
\ Y/
Generation
x(") x(z) s X(M)
/"1 7] 7 Decision tree
/ A4 // components
/ &
T(1) T(2) .. T(M) Sequential
out-of-bag
\ predictions
Y/
Teng Ensemble
predictor

Fig. 3. Framework for bagging and boosting based decision tree ensemble construction, X is
the original dataset, X® i e {1, ..., M} are the generated datasets with M equal to the
number of decision trees in the ensemble, T0) are the individual decision trees of the
ensemble (trained by resampling the original dataset X) and Tens is the final ensemble
predictor (i.e. that combining every decision tree). The dashed arrows in the generation of
the T0) denote boosting related ensemble framework, whose predictions are sequentially
used to update the resampling probabilities of the data used to train the subsequent
decision trees (adapted from Ren et al., 2016).

2.3.2 Gradient Boosting Machines — GBMs

Gradient Boosting Machines (GMBs) are included within the boosting group of techniques
(Friedman, 2002, 2001) that is built in a sequential manner by increasingly focusing on the

observations more difficult to predict (Elith et al., 2008; Ren et al., 2016) (Fig. 3). The GBMs
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were developed employing the R package gbm (Greenwell et al., 2019). In accordance, five

parameters were optimised (Table 1), namely:

=

n.trees: number of boosting rounds or trees in the model.

2. shrinkage: learning rate or step-size reduction. It ranges between 0 and 1 and higher
values preclude over-fitting. It is closely linked to the optimal value of n.trees
(Ridgeway, 2007). Therefore, lower values of shrinkage may require larger values of
n.trees in order to get adequate performance.

3. interaction.depth: maximum depth of variable interactions.

4. n.minobsinnode: minimum number of observations in the terminal nodes of the
trees.

5. bag.fraction: the fraction of the training dataset randomly selected to propose the

next tree in the expansion (i.e. resampling in n). This introduces randomness into the

model.

The selected distribution for the outputs was adaboost and the ultimate number of trees
involved in further predictions, which is usually inferior to the total number of trained trees
(i.e. n.trees), was that minimising the out-of-bag estimate of the improvement in predictive

performance because external cross-validation was performed (Ridgeway, 2007).

2.3.3 Conditional Random Forests — Conditional RFs

Conditional RFs (Hothorn et al., 2006; Strobl et al.,, 2007) are a member of the bagging

group of tree-based ensemble approaches that solved the bias of the original RFs towards
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variables continuous or with a large number of categories (Strobl et al., 2007). To prevent
this behaviour conditional RFs perform a permutation test (Strasser and Weber, 1999) —
under the null hypothesis of independence — to selected variables for additional splits and
to determine when the tree growth must stop (Hothorn et al., 2006). The Conditional RFs
model was developed employing the R package party (Hothorn et al., 2010). The default
hyper-parameter settings controlling the unbiased tree growth are based on previous
experiences (Strobl et al., 2007) and, in the package vignette, its modification is discouraged
(Hothorn et al., 2015). Therefore, in addition to the ultimate variable set, only the
parameter controlling the randomness introduced in every recursive binary split (mtry) was
optimised. The tested values ranged between 1 and 8 in accordance with the maximum
number of variables potentially included in the model (Table 1) and the number of

individual trees of the forest was also set to 250.

2.3.4 Oblique Random Forests — Oblique RFs

Oblique RFs are a member of the bagging group of tree-based ensemble approaches, which
instead of orthogonal trees with thresholds on individual features at every split, use oblique
trees separating the feature space by unrestrictedly oriented hyperplanes (Menze et al.,
2011). In accordance, they do not render the typical stair-like decision surfaces of other RFs
approaches, which permits inferring smoother decision surfaces (Menze et al., 2011) (Fig.

4). The oblique RFs model was developed employing the R package obliqueRF (Menze et al.,
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2012). Therefore, in addition to the ultimate variable set, only two parameters can be
adjusted to prevent over-fitting namely, mtry, which controls the randomness introduced in
every recursive binary split, and training_method, which indicate the multivariate models
for binary splits used in each node. The tested values for mtry also ranged between 1 and 8
but the parameter training_method was set to log (i.e. logistic regression) in order to rank
the variable importance (Table 1). Finally, the number of individual trees of the forest was

set to 250.

Random forests Oblique RF

o Class A data

> >
0 + Class B data
SRR Area classified as A
1 R B Area classified as B
0.
2 — 2 = -
1T 1 11711 | N I I R B |
21 0 1 2 3 4 2 1 0 1 2 3 4
X X

Fig. 4. Visualization of the typical stair-like decision border obtained with an axis-parallel
tree-based ensemble approach (i.e. Random Forests - RFs) and smooth decision border
obtained with oblique RFs (adapted from Menze et al., 2011).

2.3.5 eXtreme Gradient Boosting machines - XGBoost

EXtreme Gradient Boosting machines (XGBoost) are a kind of boosting-based ensemble
machine leaning technique (Chen and Guestrin, 2016). To prevent over-fitting, XGBoost and

its implementation within the homonymous R package (Chen et al., 2017) include a number
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of specific routines; some of them formerly envisaged for random forests and other
modelling techniques. XGBoost is a new tree-based ensemble technique; thus, the nine
parameters finally optimised and the ranges employed slightly varied compared to previous
studies (Gomez-Rios et al., 2017; Martinez-de-Pison et al., 2017; Xiao et al., 2017). Table 1
includes a summary of the nine parameters optimised, whose impact is described in the

XGBoost manual (Chen et al., 2017), and they are:

(©)]

. nrounds: number of boosting rounds or trees in the model.

7. eta: step size shrinkage used in each update to prevents over-fitting. It is analogous
to the shrinkage parameter described for GBMs. It typically lies between 0.01 - 0.3.

8. gamma: a pseudo-regularization parameter determining the minimum loss reduction

required to make further partitions on each individual tree of the forest. It ranges

from O to «. Larger values (up to 20) may prevent over-fitting, although when too

large it may impede an adequate performance. The parameter gamma brings
improvement when shallow trees are desired (small values of max_depth).

9. min_child_weight: minimum sum of weighted data needed in child nodes to perform
a further partition. It is usually one. Larger values may prevent over-fitting.

10. max_depth: maximum depth/partitions allowed in each individual tree of the forest;
0 indicates unlimited number of partitions.

11.subsample: percentage of random samples used to train each individual tree of the
forest. It is analogous to the bag.fraction parameter described for GBMs. It typically
lies between 0.5 - 0.8.

12.colsample_bytree: parameter controlling the randomness introduced in every
recursive binary split (i.e. resampling in p). It is equivalent to random forests mtry,

although it is specified as a percentage. It typically lies between 0.5 - 0.9.
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408 13.alpha: L1 regularization term on weights (analogous to Lasso regression). It ranges

409 from 0 to «. Larger values prevent over-fitting. In addition to shrinkage, enabling
410 alpha also results in feature selection. In accordance, it is more useful on high
411 dimensional datasets.

412 14.lambda: L2 regularization term on weights (analogous to Ridge regression). It ranges
413 from 1 to «. Larger values prevent over-fitting.

414
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Table 1. Name, range, accuracy and description of the optimised parameters for the five alternative tree-based ensemble
approaches. Additional parameters and the R packages employed are indicated in the corresponding sections.

Method Parameter Range Accuracy Description
mtry [1, 8] 1 Number of variables randomly sampled as candidates at each split
Random nodesize [1, 50] 1 Minimum number of samples at each terminal node/leaf
Forests (RFs) maxnodes {2,...,100, ==} 1 Maximum number of terminal nodes/leaves
sampsize [0.5, 1] 0.01 Number of samples randomly sampled to train each tree
n.trees [10, 5000] 1 Number of trees
. . shrinkage [0.01, 0.4] 0.01 Shrinkage parameter/learning rate
Gradient Boosting . . . . . .
Machines interaction.depth [1, 8] 1 Maximum depth of variable interactions
n.minobsinnode [1, 50] 1 Minimum number of samples at each terminal node/leaf
bag.fraction [0.5, 0.99] 0.01 Number of samples randomly sampled to train each tree
Conditional RFs mtry [1, 8] 1 Number of variables randomly sampled as candidates at each split
Oblique RFs mtry [1, 8] 1 Number of variables randomly sampled as candidates at each split
nrounds [10, 5000] 1 Number of trees
eta [0.01, 1] 0.01 Shrinkage parameter/learning rate
gamma [0, 50] 0.05 Minimum loss reduction to permit additional partitions
min_child_weight [1, 50] 1 Minimum number of samples at each terminal node/leaf
XGBoost max_depth {1,...,100, o=} 1 Maximum number of terminal nodes/leaves
subsample [0.5, 1] 0.01 Number of samples randomly sampled to train each tree
colsample_bytree [0.5,1] 0.01 Number of variables randomly sampled as candidates at each split
alpha [0.0, 50] 0.05 L1 regularization term on weights
lambda [1.0, 50] 0.05 L2 regularization term on weights
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2.4 Tree-based ensemble comparison and ecological significance

To determine statistical differences between the performance criteria obtained with the
five tree-based ensemble approaches, the non-parametric Friedman aligned ranks test
(Friedman, 1940) was calculated employing the values of the TSS calculated for the nine
validation datasets obtained during the cross-validation (Garcia et al., 2010; Garcia and
Herrera, 2008). The p-values of the test were adjusted applying the Bergmann and Hommel
correction (Bergmann and Hommel, 1988), as previously indicated in Garcia and Herrera
(2008), and the results were graphically characterised employing the function
drawAlgorithmGraph, implemented in the R package scmamp (Calvo and Santafé, 2016).
This function plots a graph where the tree-based ensemble approaches are the nodes and
they appear linked when the null hypothesis of being equal cannot be rejected. Finally, the
component performance criteria (i.e. Sn and Sp) and the accuracy or Correctly Classified

Instances (CCl) were also inspected.

The variable importance was examined employing the R functions implemented in the
corresponding packages (i.e. importance, varimp, importance and xgb.importance). These
packages render the variable importance in different scales. Therefore, in order to facilitate
an adequate comparison, the resulting importance was standardised dividing the values by
the value of the largest importance. Then, mean variable importance and confidence

intervals were compared.
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Finally, the modelled relationship between the selected variables and the habitat suitability
for bleak and pumpkinseed was graphically characterised with partial dependence plots
(Friedman, 2001). Partial dependence plots depict the average of the response variable
versus the inspected variable and account for the effects of the remaining variables within
the model by averaging their effects (Mufioz-Mas et al., 2018). The partial dependence plots
were calculated adapting the code appearing in the R package randomForests (Liaw and

Wiener, 2002).

3 Results

3.1 Best hyper-parameter settings

The best tree-based ensembles for each species were obtained with different input
variables and hyper-parameters (Table 2). The Random Forests (RFs) mtry was generally low
but different for each species, although the optimal number of samples per terminal node
(nodesize) coincided. Conversely, the tree depth (maxnodes) and per cent of the training
dataset resampled (sampsize) markedly differed. The values of shrinkage (learning rate) for
the Gradient Boosting Machines (GBMs) were similar, but those of n.trees were not; the
one for the pumpkinseed was markedly smaller. The interaction.depth and, particularly, the
n.minobsinnode were significantly different for both species. Conversely, the values of
bag.fraction were of intermediate magnitude in both cases. The mtry for conditional and

oblique RFs presented similar value for each species, although those of oblique RFs were
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456 smaller. Regarding the eXtreme Gradient Boosting machines (XGBoost), intermediate values

457  of nrounds (number of trees) and eta (learning rate) were obtained for both species. The

458 loss reduction to permit additional partitions (gamma) and minimum number of samples

459  per terminal node (min_child_weight) differed. Conversely, the maximum depth of the trees

460 (max_depth) and the parameters governing

resampling

in nXp (subsample and

461 colsample_bytree) were similar. The regularization parameters (alpha and lambda) were

462 twofold higher for bleak than they were for pumpkinseed.

463

464 Table 2. Best parameters obtained for the five different tree-based ensemble approaches
465 obtained after 3 X 3 cross — validation.

Method Parameter Bleak (A. alburnus L) Pumpkinseed (L. gibbosus L.)
mtry 1 2
Random nodesize 9 9
Forests (RFs) maxnodes 23 5
sampsize 273 (=76%) 186 (=54%)
n.trees 3076 815
Gradient Boosting shrinkage 0.16 0.13
Machines/Boosted interaction.depth 4 1
Regression Trees  n.minobsinnode 4 46
bag.fraction 0.87 0.73
Conditional RFs mtry 6 3
Oblique RFs mtry 4 2
nrounds 2499 3781
eta 0.34 0.55
gamma 0.25 13.45
min_child_weight 1 12
XGBoost max_depth 35 39
subsample 0.83 0.80
colsample_bytree 0.90 0.78
alpha 7.10 3.65
lambda 30.60 16.65

466
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3.2 Performance of the tree-based ensembles

XGBoost outperformed the other approaches (i.e. achieved statistically higher values of the
True Skill Statistic — TSS), particularly the conditional and oblique RFs (Fig. 5 & Table 3).
However, the corrected Friedman aligned ranks test indicated no statistical difference
between XGBoost, RFs and GBMs because the mean TSS obtained with RFs for bleak was
higher than that obtained with XGBoost while GBMs achieved high values for both species
(Table 3). The statistical test indicated no significant difference between the conditional and

oblique RFs. Consequently, these two are connected in Fig. 5.

The five tree based approaches were over-predictive (specificity < sensitivity) both for the

training and validation datasets (Table 3). Oblique RFs presented the highest performance
in the four criteria during the training phase. However, this was not the general case in the
validation phase. Conditional random forests presented intermediate performance in both

cases; training and validation.
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Random forests Conditional RFs
2.33 4.19
Gradient boosting machines Oblique RFs
25 4.03
XGBoost
1.94

Fig. 5. Results of the corrected non-parametric Friedman aligned ranks test comparing the
performance (nine values of TSS per species obtained during the cross-validation) of the five
tree-based ensemble approaches. Green background highlights the tree-based ensemble
approach with the best performance. The approaches appear linked when the null
hypothesis of being equal was not rejected (no statistical difference).
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488

489 Table 3. Performance criteria and confidence intervals to evaluate the five tree-based ensemble techniques: accuracy or Correctly
490 Classified Instances (CCl), True Skill Statistics (TSS), Sensitivity (Sn) and Specificity (Sp), obtained during the 3 X 3 cross-validation
491 (nine models). The best results for the objective criterion (i.e. mean TSS) appear in bold.

Bleak (A. alburnus L.) Pumpkinseed (L. gibbosus L.)

ccl TSS Sn Sp cal TSS Sn Sp
Random forests (RFs) 0.83+0.01 0.65+0.02 0.87+0.01 0.78+0.01 0.86+0.01 0.71+0.02 0.91+#0.01 0.80+0.01
Gradient Boosting Machines  0.82+0.01 0.63+0.01 0.86+0.01 0.77+0.01 0.86+0.01 0.73+0.02 0.91+0.01 0.81+0.01
Training Conditional RFs 0.83+0.01 0.65+0.01 0.87+0.01 0.77+0.02 0.86+0.01 0.73+0.02 0.91+#0.01 0.82+0.01
Oblique RFs 0.98+0.00 0.96%0.00 1.00+£0.00 0.96+0.01 0.98+0.00 0.96+0.00 1.00+0.00 0.96%0.01
XGBoost 0.80+0.01 0.58+0.01 0.86+0.01 0.72+0.01 0.85+0.01 0.70+0.02 0.90+0.01 0.80%0.01
Random forests (RFs) 0.7240.01 0.51+0.02 0.80+0.02 0.71+0.01 0.7940.01 0.66+0.03 0.87+0.03 0.79%0.01
Gradient Boosting Machines 0.71+0.01 0.48+0.03 0.78+0.04 0.71+0.01 0.81+0.01 0.65+0.03 0.84+0.04 0.81+0.01
Validation Conditional RFs 0.70+0.01 0.44+0.02 0.75+0.01 0.69+0.01 0.80+0.01 0.61+0.03 0.81+0.04 0.80+0.01
Oblique RFs 0.7210.01 0.45+0.02 0.73+0.02 0.72+0.01 0.72+0.01 0.45+0.02 0.73%0.02 0.72%0.01
XGBoost 0.69+0.01 0.49+0.02 0.82+0.03 0.68+0.01 0.80+0.01 0.67+0.03 0.87+0.04 0.79+0.01
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3.3 Ecological significance — variable importance

In addition to the different variable set selected, each tree-based ensemble approach
rendered different variable ranking (Fig. 6). The continuous variables selected for XGBoost
(i.e. depth and velocity) presented higher importance compared to these of cover. A similar
pattern was found in RFs and GBMs. Conversely, oblique RFs, as well as the conditional RFs,
indicated higher importance for the variables related with cover. Based on the selected
variables, cover was more important for bleak than it was for pumpkinseed; especially
reeds, aquatic vegetation and rocks, which were selected in the five approaches.
Pumpkinseed selected microhabitats with reeds and shade. Substrate composition was

considered of minor importance and only conditional and oblique RFs selected it for bleak.
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Fig. 6. Mean variable importance computed with the nine tree-based model ensembles (3x3
cross validation) per technique. Error bars show the 0.99 confidence interval.

3.4 Ecological significance — partial dependence plots

Unlike the variable importance rankings, the partial dependence plots were largely
consistent among the five approaches (Fig. 7 and Fig. 8). The highest suitability for bleak
was obtained for deep (> 1 m) microhabitats with low flow velocity (flow velocity below 0.4
m/s), reeds, aquatic vegetation and, especially, rocks (Fig. 7). Shade and woody debris
presented very small or no effect. For GBMs and oblique RFs, the plot for woody debris
indicated positive effects, unlike for XGBoost. Finally, conditional and oblique RFs indicated

higher suitability over coarse substrates (from fine gravel to boulders).
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Fig. 7. Partial dependence plots for bleak (Alburnus alburnus L.), obtained with the five tree-
based ensemble approaches, depicting the marginal relationship between the suitability
(i.e. probability of class Presence) and the selected microhabitat variables.

The highest suitability for pumpkinseed was obtained for stagnated (i.e. null flow velocity)
and deep (> 1m) microhabitats with presence of reeds and/or shade (Fig. 8). Rocks and
woody debris presented very small or no effect. Substrate and aquatic vegetation were not

selected by any tree-based ensemble approach.
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Fig. 8. Partial dependence plots for pumpkinseed (Lepomis gibbosus L.), obtained with the
five tree-based ensemble approaches, depicting the marginal relationship between the
suitability (i.e. probability of class Presence) and the selected microhabitat variables.

4 Discussion

4.1 Tree-based ensembles comparison

This study demonstrated that eXtreme Gradient Boosting machines (XGBoost) can
outperform other approaches, particularly the conditional and oblique Random Forests
(RFs). However, the corrected non-parametric Friedman aligned ranks test — comparing the
values of TSS obtained during the cross-validation — indicated no statistical difference with
RFs or Gradient Boosting Machines (GBMs). These results, contrast with a former
comparison (Xiao et al., 2017) concluding that XGBoost significantly outperforms any other
tree-based ensemble approach. Nevertheless, in that study none of the hyper-parameters
were optimised, which may have hindered RFs or GBMs to find a competent solution.
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Conversely, for XGBoost a sequential scheme to determine both the best hyper-parameters

and most relevant variable subset was followed in that study (Xiao et al., 2017).

The conditional RFs and oblique RFs presented lower performance and the non-parametric
Friedman aligned ranks test indicated no statistical difference between them. In both cases,
in addition to the variable set, only the parameter controlling the number of variables
randomly sampled as candidates at each split (i.e. mtry) was optimised, which led to smaller
searching spaces. In accordance, the parameters settings of the Genetic Algorithm (GA)
should not be considered the cause of the lower performance because, compared to
previous studies (e.g. Fukuda et al., 2013), with these settings the GA was able to find
proficient solutions for the other three approaches with a proportionally lower searching

intensity per parameter.

The reasons for such under-performance may be diverse. Conditional RFs is not intended to
be particularly accurate because it was conceived to render statistically-grounded variable
importance rankings, which may lead to less accurate models. In accordance, our results
were to some extent expected and in line with some experiences carried out by the
conceivers of conditional RFs (A. Zeileis 2018 — personal communication). On the contrary,
oblique random forests were conceived to adjust better to non-axis-parallel discriminant
surfaces. In accordance, it has been claimed to outperform RFs on nearly all datasets but
those with discrete features (Menze et al., 2011), which can be one of the main causes of
the results obtained because the cover variables were discrete. Regarding the training

datasets, the highest performance was achieved, in every criterion, with oblique RFs (Table
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3). However, tuning the parameter mtry and selecting the input variables proved
insufficient to achieve a generalization comparable with the other approaches; i.e. the TSS

values were lower for the validation datasets.

In theory, testing other multivariate models for the binary splits by modifying the
parameter training_method (e.g. to support vector machines — svm), could improve the
performance of the ultimate model. This option was considered interesting. However, it
would impede the direct calculation of the variable importance. In accordance, we
disregarded this option because it was considered that potential users are likely to prefer

functions already implemented in the software packages.

In terms of performance, the results obtained for the five tree-based ensemble techniques
were not surprising because usually those techniques with greater flexibility and allowing
regularization (e.g. XGBoost), and linked to a proficient parameter optimisation approach
are able to find better solutions. This is the case of generalized additive models compared
to generalized linear models (Fukuda et al., 2013) or heteroscedastic probabilistic neural
networks compared to the homoscedastic variant (Mufioz-Mas et al., 2018). In this regard,
the approaches to optimise the parameters of XGBoost are only incipient. Therefore,
compared with the results obtained in several competition challenges (Chen and Guestrin,
2016), the inexperience may have favoured discrepant results where XGBoost under-
performed compared to support vector machines (Fan et al., 2018). Regarding the approach
used to optimise the hyper-parameters, the results obtained with Bayesian optimization

indicated that it is a satisfactory approach, although, in terms of accuracy, either the results
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are not comparable with ours (Xia et al., 2017) or they were statistically-similar to those

obtained employing GAs (Martinez-de-Pison et al., 2017).

Concerning the parameters of the optimisation performed with the GA (e.g. population size
— Npopuiation), they have been related to the characteristics of the problem at hand (e.g.
Gibbs et al., 2011). In accordance, in the optimisation with the GA, we were tempted to
simply increase the searching intensity by enlarging Npopuiation @and/or Nyenerations -
However, compared to the time spent for the standard RFs, the optimisation lapse spent for
XGBoost shift from minutes (RFs) to hours (XGBoost), which dissuaded us from increasing
these two parameters. The reasons for that increment in time were two. The formula used
to determine the GA-parameters led, in the case of XGBoost, to a larger population, higher
maximum number of iterations and higher number of iterations without change before
early stopping, because the number of parameters is larger in XGBoost. On the other hand,
the value of nrounds ranged between 10 and 5000, which led to a computation time
manifold higher than that of the standard RFs, for which only 250 trees were trained to

inspect the performance of every potential solution or chromosome.

Furthermore, previous experiences indicated that class overlapping and prevalence are
prominent causes of the moderate performance obtained during microhabitat suitability
modelling (Mufioz-Mas et al., 2016d, 2016b). The eighth variables sampled only encompass
part of the drivers of the microhabitat selection by fish, which we model in terms of fish
presence. In such a situation, over-prediction (specificity < sensitivity) has been affirmed to

be more reliable — from an ecological viewpoint — than under-prediction (Mouton et al.,
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2010) because it is assumed that there are not enough fish to occupy every suitable
microhabitat due to, for instance, low reproduction success or predation. Proper habitat
assessment has to evaluate a large percentage of the unoccupied microhabitats positively
(i.e. largely as suitable) because the reasons of the absence are not related to the quality
(i.e. hydraulics) of the microhabitat. This assumption may lead to a situation where the
eight variables do not allow better discrimination without incurring under-prediction
(specificity > sensitivity). There could simply be no room for improvement of an ecologically-
reliable data discrimination. Overall, the difference in computational burden and the usual
characteristics of microhabitat datasets (low prevalence and overlapping between
categories) led us to conclude that, in the short term, XGBoost cannot be assumed to
replace the other tree-based techniques in studies involving microhabitat suitability
modelling, particularly standard RFs or GBMs,. Still, XGBoost should stand out over
problems involving larger datasets (samples and variables) and/or smaller overlapping

between classes.

The comparison of the variable importance rankings did not render similar patterns.
Standard RFs and GBMs presented the higher importance for the two selected continuous
variables (i.e. velocity and depth), which is most likely reflecting the bias of these
approaches towards variables of this nature (Strobl et al., 2007), and this ranking resembles
that obtained with XGBoost. To the best of our knowledge, there are no specific studies on
the potential variable importance bias of XGBoost, although some users raised concerns in

several fora, which indicate that it should be the subject of specific research. Oblique
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random forests rendered the opposite pattern because the variables of cover presented
higher importance for both species. In light of these results, and in accordance with other
authors (Giam and Olden, 2015), we consider that variable importance rankings obtained
with conditional RFs may be the most credible as statistically-grounded (Strobl et al., 2007).
Nevertheless, based on the discrepant results obtained here, it is indubitable that care
should be taken when using the variable importance ranking obtained with the other tree-
based ensemble approaches either to develop tree-based ensemble models using the most
important variables (e.g. with VSURF - Genuer et al., 2015) or to infer the most relevant

factors conditioning species presence.

4.2 Ecological significance and management implications

Compared to former studies performed at the mesohabitat scale, the variable importance
and partial dependence plots rendered new insights at the micro-scale on the habitat
suitability for these invasive species. These studies classified bleak as an eurytopic species
(Fladung et al., 2003; Muioz-Mas et al., 2016d) whereas others, specifically addressed to
environmental flow assessment, considered it as a limnophilic species (Harby et al., 2007).
At the microhabitat scale bleak partial dependence plots highlighted the acknowledge
preference for open waters of lakes and medium-to-large rivers observed in its native range

(Amat-Trigo et al., 2019; Muioz-Mas et al., 2016a). However, flow velocity depicted higher
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suitability up to 0.4 m/s, which corroborates the great versatility of bleak (Latorre et al.,

2018).

Abundance has been neglected in this study in favour of presence-absence, because it tends
to render better accuracy (Fukuda et al., 2011) and scale the habitat suitability between
zero and one, which is easy to interpret, and fits well the requirements of physical habitat
simulation studies (Munoz-Mas et al., 2016a). Nevertheless, the partial dependence plots
render hints about the species abundance in the sampled microhabitats. In the surveyed
river segment the deeper areas affected by artificial impoundment hosted large schools
with hundreds of individuals, and the models indicated larger suitability, whereas, in the
microhabitats sampled in run-type segments, they occurred in tens, and our models
indicated inferior but non-null suitability. In the latter case, bleak was observed in lower
number in microhabitats located in fast-flow river segments provided that structural cover
(i.e. rocks) was present, which is corroborated by the relevance of this type of cover
depicted in the partial dependence plots. Consequently, reservoirs and impounded river
segment can be considered the bridgehead of their invasions thought the river segments,
which may be assisted by their ability to stand relatively high flow velocities (Mufioz-Mas et
al., 2016d). In the meanwhile, reservoirs would be used as the bases for the establishment

and rearing of this invasive species (Almeida et al., 2014).

The partial dependence plots for pumpkinseed did not pose any doubt about the
limnophilic preferences of the species. Therefore, although its invasion success outside their

native range is often explained by its ecological plasticity (Ribeiro and Collares-Pereira,
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2010; Vila-Gispert et al., 2005; Vila-Gispert et al., 2007), its habitat preferences observed in
our study can be considered similar to that indicated in numerous studies (e.g. Top et al.,
2016; Vilizzi et al., 2012). In addition to the cover provided by plants and macrophytes, in
those studies pumpkinseed presented the highest suitability in near-bank microhabitats
with low flow velocity. However, although the maximum sampled depth was not reported,
they indicated that pumpkinseed did not select the largest depth. Conversely, our partial
dependence plots indicated higher suitability above 1 m deep. We hypothesize that it could
be caused by an interaction between flow velocity, depth and plant auto-ecology. Low flow
velocity and intermediate depth can favour aquatic vegetation and reeds proliferation
(Strayer and Findlay, 2010). In accordance, in the river sampled in the aforementioned
studies, the flow velocity could have simply disfavoured the establishment of aquatic plants
and reeds in the deeper part of the sampled habitats causing the discrepancy with our

results.

Mediterranean flow variability have been considered to be a leading factor controlling fish
invasions, and the loss of its natural variability a facilitating element for their the
establishment (Clavero et al.,, 2013; Ribeiro and Collares-Pereira, 2010). There are no
studies on the microhabitat preferences of bleak and pumpkinseed in rivers with natural
flow regime, and very little about the impact of altered flow regimes in their populations
(e.g. Lamouroux et al., 2006). Nevertheless, our results have implications in the
development of alternative environmental flows addressed to counteract the presence of

these unwanted invasive species. Some experiences demonstrated that re-naturalizing the
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flow regime displaces alien species in favour of that native (Kiernan et al., 2012), although,
in the light of our results, it may be very difficult or impossible to completely eliminate our
target species, particularly bleak. In accordance, we conclude that most probably once
these invasive species colonise a river segment, alternative water management protocols

could be inefficient to eliminate them.

5 Conclusions

According to the mean values obtained for the True Skill Statistic (TSS), eXtreme Gradient
Boosting machines (XGBoost) outperformed the other approaches, particularly conditional
and obliqgue random forests (RFs), although there were no statistical differences with
standard RFs and Gradient Boosting Machines (GBMs). Therefore, based on the difference
in the computational burden and, especially, the characteristics of the datasets on
microhabitat use, it has been conclude that, in the short term, XGBoost is not destined to
replace properly optimised RFs or GBMs for microhabitat suitability modelling.
Furthermore, the differences in the best hyper-parameter settings obtained for each
technique and species indicated that default values may be suboptimal. The variable
importance rankings differed significantly among techniques. In accordance, we consider
that the variable importance ranking obtained with conditional RFs, which is statistically-
grounded, may be a better option to induce parsimonious models. Nevertheless, the partial

dependence plots for each species were very consistent, reflecting the lacustrine origins of
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pumpkinseed and the preference for lentic habitats of bleak. The latter species depicted a
larger tolerance for fast-flow microhabitats found in run-type river segments, which is likely
to hinder the development of counteracting environmental flow regimes. We expect that
the inferred habitat suitability may help ecosystem managers to develop management plans

addressed to impede the proliferation of these two broadly spread invasive species.
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