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General Abstract

This thesis presents the results of the research work carried out on the modelling
and design of controllers for micro-unmanned aerial vehicles by means of multi-
objective optimization techniques. Two main fields of study are present throughout
it. On one hand, the study of how to model and control small aerial platforms.
And, on the other, the study on the use of heuristic multi-objective optimization
techniques to apply in the process of models and controllers parameterization in
micro-unmanned aerial vehicles. The main result is a series of tools that make it
possible manage without wind tunnel experiments or high-cost air-data sensors,
going directly to the use of experimental flight data in the parametric identification
of dynamic models. In addition, a demonstration is given on how the use of multi-
objective optimization tools in different phases of controller development helps to
increase knowledge about the platform to be controlled and increases the reliability
and robustness of the controllers developed, reducing the risk of hoping from the
initial design phases to validation in real flight.

v





Resumen

Esta tesis presenta los resultados del trabajo de investigación llevado a cabo sobre
el modelado y el diseño de controladores para micro-aeronaves no tripuladas me-
diante técnicas de optimización multi-objetivo. Dos principales campos de estudio
están presentes a lo largo de ella. Por un lado, el estudio de cómo modelar y con-
trolar plataformas aéreas de pequeña envergadura. Y, por otro, el estudio sobre
el empleo de técnicas heurísticas de optimización multi-objetivo para aplicar en
el proceso de parametrización de modelos y controladores en micro-aeronaves no
tripuladas. Se obtienen como resultado principal una serie de herramientas que
permiten prescindir de experimentos en túneles de viento o de sensórica de alto
coste, pasando directamente a la utilización de datos de vuelo experimental en la
identificación paramétrica de modelos dinámicos. Además, se demuestra como la
utilización de herramientas de optimización multi-objetivo en diferentes fases del
desarrollo de controladores ayuda a aumentar el conocimiento sobre la plataforma
a controlar y aumenta la fiabilidad y robustez de los controladores desarrollados,
disminuyendo el riesgo de pasar de las fases previas del diseño a la validación en
vuelo real.
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Resum

Aquesta tesi presenta els resultats de la feina de recerca dut a terme sobre el mode-
latge i el disseny de controladors per a micro-aeronaus no tripulades mitjançant tèc-
niques d’optimització multi-objectiu. Dos principals camps d’estudi estan presents
al llarg d’ella. D’una banda, l’estudi de com modelar i controlar plataformes aèries
de petita envergadura. I, de l’altra, l’estudi sobre l’ús de tècniques heurístiques
d’optimització multi-objectiu per aplicar en el procés de parametrització de models
i controladors en micro-aeronaus no tripulades. S’obtenen com a resultat principal
una sèrie d’eines que permeten prescindir d’experiments en túnels de vent o de sen-
sòrica d’alt cost, passant directament a la utilització de dades de vol experimental
a la identificació paramètrica de models dinàmics. A més, es demostra com la util-
ització d’eines d’optimització multi-objectiu en diferents fases de desenvolupament
de controladors ajuda a augmentar el coneixement sobre la plataforma a controlar
i augmenta la fiabilitat i robustesa dels controladors desenvolupats, disminuint el
risc de passar de les fases prèvies de el disseny a la validació en vol real.
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Chapter 1

Introduction and General Overview

1.1 Motivation and Goals

Normally, when a new aircraft is designed, computational fluid dynamics (CFD)
software is used to study its aerodynamic behavior. Furthermore, before enter-
ing in production phase, scale models are constructed and wind tunnel experi-
ments are conducted to confirm that specifications are complied. In this sense,
although micro-unmanned aerial vehicles are very good choice in research appli-
cations (among others), they lack of the information given by both CFD software
and wind tunnel experiments. The reasons for this are mainly two: they are fre-
quently handmade and the price of wind tunnel experiments are prohibiting and
much more expensive than the aircraft itself. In addition, when doing research,
it is particularly difficult to implement new concepts and ideas in a real platform
to test them. There are too demanding computational burdens, equipment safety
risks, and others issues normally translated to economical limitations. In that
sense, the use of realistic simulation environments becomes especially important
for the successful study of those new concepts and ideas in the field of control
systems.

When this research first started, it was supposed to be focused on the study of
advanced control strategies applied to micro-unmanned aerial vehicles (MAVs).
Techniques such as linear-quadratic regulation (LQR) or model predictive control
(MPC) were intended to be applied. This type of controllers are highly based on
the dynamic model that is used to design on the former and even to control on
the latter.

Thus, a roadblock was found on the lack of a good dynamic model that could be
used, first, to design such control techniques on MAVs and, second, to perform

1



Chapter 1

realistic simulations before real flight validation. With the believe that the same
roadblock would be found by many others, the research focus was set on developing
dynamic models in the absence of CFD or wind tunnel experiments information.
The approach taken was to adopt first principles structures, where the physical
interactions are well known, but using the power of multi-objective optimization
to adjust them by means of real flights data.

When that task was partially fulfilled, the research was reoriented to the objective
of taking profit of those models for control design and also for realistic simulation in
platforms such us Hardware-In-the-Loop (HIL). This kind of simulation integrates
a computational unit solving the equations of a dynamic model in real-time. This
unit is integrated with the flight controller emulating a real situation in which
the aircraft is flying and the autopilot is controlling it. The use of HIL platforms
has become a standard practice in order to evaluate embedded controllers, with
the goal of getting a more reliable measure of their performance [18, 37]. Such
platforms are common in automotive [8] and aeronautic/aerospace sectors [15],
where it is required to enhance the quality, safety and verification testing of their
subsystems [28].

Presenting heuristic multi-objective optimization as the common denominator is
motivated by the revelation of an overwhelming reality: a person seldom confronts
a problem with a single objective, that has no restrictions and is convex at same
time. Besides, even if the problem is multi-objective, the person does not normally
have a deep understanding of how far each goal can be achieved and which is the
most preferable trade-off among his/her objectives. Therefore, heuristic multi-
objective optimization raises as a very powerful tool to address realistic problems,
and opens a wide variety of opportunities to pose and solve engineering problems
from a holistic perspective.

Therefore, two main fields of study are present on this thesis. On one hand, the
study of how to model and control an aircraft system. And, on the other hand,
the study of heuristic multi-objective optimization techniques to be applied on
parameterizing models and controllers in aircraft systems. A brief introduction on
those two fields of study is now given.

1.2 Unmanned Aerial Vehicles: brief introduction

Before entering in more details and with the aim of offering a brief background on
the field of unmanned aerial vehicles, an explanation on their definition, classifica-
tion, recent history and some of their already existing and potential applications
is given.

2



1.2 Unmanned Aerial Vehicles: brief introduction

1.2.1 Definition and classification

Unmanned aerial vehicle (UAV) or unmanned aeronautical system (UAS) means
an aircraft capable of carrying out a mission without the need of a crew on board.
It must be understood that this condition does not exclude the existence of a
pilot, mission controller or other operators, who can carry out their work from
the ground. The extension of the concept of vehicle to system reflects that the
UAS requires not only the aircraft with instrumented precision but also a ground
station that completes the instrumentation and embedded capabilities [3].

The above definition is perhaps too general, since it covers some systems that
might fall into it but are not considered UAV. In this way, and to complete the
definition, we can add that an unmanned aircraft is an unmanned vehicle, reusable,
capable of maintaining a controlled and sustained level of flight, and propelled by
an electrical motor or by a combustion engine.

It is clear from the latter that, for example, a missile, although it is often controlled
and unmanned, is not considered UAV because it is not reusable. Another example
could be found in hot air balloons which, although reusable and unmanned, they
are not controlled.

It should be taken into account then that these definitions do not specify that
the aircraft must be autonomous and, consequently, they could easily be con-
trolled from the ground and still be treated as UAV or UAS. It is therefore pos-
sible to define the concept of autonomous aircraft (AA: Autonomous Aircraft) or
Autonomous Air System (AAS: Autonomous Aerial System) as one capable of
carrying out the mission autonomously without the need of human intervention
[3].

Once the concept is defined, we can classify UAVs according to some of their most
important characteristics. We could make a first classification according to the
type of aircraft itself. Figure 1.1 shows this classification.
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Chapter 1

Figure 1.1. UAV classification according to the aircraft type [3]

From diagram on fig. 1.1 we can highlight the rotating wing vehicles, airships and
airplanes as those that cover the largest number of unmanned aircraft, relegating
the rest of them to more specific applications. According to this, table 1.1 shows
the most important characteristics of the UAVs mentioned.

Table 1.1. UAV characteristics according to aircraft type [3]

Thus, depending on the application, the design engineer should put the focus on
one or more of these characteristics, which will lead to the choice of one type of
aircraft over another.
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1.2 Unmanned Aerial Vehicles: brief introduction

We can also classify UAVs according to the flight capabilities they have, such as
range, flight altitude, endurance and maximum takeoff payload. Table 1.2 shows
indeed this classification in 15 categories and gives insights of the most suitable
type or types of aircraft for each category.

Table 1.2. UAV classification according to range, flying altitude, endurance and maxi-
mum takeoff payload [3]

1.2.2 Background

The history of UAVs dates back to the mid-19th century: a primitive UAV formed
by a balloon loaded with bombs was used on August 22, 1849 in an Austrian
attack on the city of Venice. Subsequently, the cruise missiles arrived, controlled
by a system of gyroscopes during World War I and radio-controlled aircraft used
to train British anti-aircraft shooters during World War II [2].

In 1950, the US Army realised of the importance and need of an aerial platform
that delivered truthful and timely information that allowed for correct and timely
decision making. In the wars of Korea and Vietnam, the United States army
found in the UAVs a way to divert enemy attacks from their bombers and manned
fighters and the first reconnaissance UAVs were also developed. Although the
United States used unmanned aerial platforms in the Vietnam War, it was Israel
who confirmed, during its operations in Lebanon in 1982, the importance of having
such systems, which increased international interest in UAVs [1].

In the Desert Storm operation in 1991, the US Navy used the Israeli Pioneer UAV
system to provide intelligence at the tactical level. In Afghanistan, during the
Enduring Peace operation, the UAV Predator system carried out armed recon-
naissance missions and in 2003 in Iraq it attacked objectives of great value for
the coalition. Predator also cooperated with the Special Forces in the search and
information of SCUD missile locations. Figure 1.2 shows both images of Pioner
and Predator UAVs.
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Figure 1.2. Pioneer and Predator UAVs[3]

1.2.3 Applications

The general usages given to the different type of UAVs similar to those of their
manned counterparts. However, UAVs have an advantage over conventional air-
planes in those applications in which the activity carried out involves an inherent
risk for the pilot, is too monotonous or is generally unwanted by the pilots.

As it has been seen, the first UAVs were designed for military applications and
there are a large number of applications oriented to this field. However, a growing
number of UAVs designed for endless civil applications can be found recently. Table
1.3 shows many of those applications and the type or types of aircraft mostly used.
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1.2 Unmanned Aerial Vehicles: brief introduction

Table 1.3. UAV Civil applications for UAVs and type of aircraft most used for each
application [3].

1.2.4 Research flight platforms

Attending to flying capabilities, this research is focused on the study of paramet-
ric identification and control design for MAVs. The reason behind that choice is
multiple. First, this type of platforms are considerably cheaper than any other
type, what makes them attractive not only for academic purposes but also for
companies and end users. Despite MAVs reduced range, endurance and maximum
takeoff payload, the miniaturisation and price reduction path of electronic compo-
nents within the last decade still qualify them for most of the UAVs applications in
Table 1.3. Hence, being the first choice in most end-user applications make them
also the best choice for a meaningful research. Second, when dynamics identifica-
tion and automatic control are the main core of the research, it is common that
flying envelope limits are reached and even exceeded. In this situation accidents
are likely to happen. Therefore, a reduced price that allows easy replacement
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and a small size helping to limit the consequences of an accident are very helpful
features. Finally, to keep them cost effective, MAVs are rarely tested by manufac-
turers in wind-tunnel experiments. There is, so, not much information about their
aerodynamic parameters and other constructive values. For this reason, there is a
need for developing parametric identification strategies that help to extract data
without performing expensive tests. This was also a need found to achieve the
objectives related to control design for MAVs of this thesis.

Two types of aircraft have been used along the research as flight platform. First,
a non-vertical takeoff and fixed wing aeroplane of around 5 kg mass, the Kadett
2400. It is presented on chapters 2, 3, 4 and 5 as the platform used in experimental
flights. Its very lightweight frame, wing surface and the available volume to house
control hardware made it suitable to be used in the research. On chapter 6 a tilt
rotor MAV is presented with the nickname of V-Skye. It possesses the capability
of behaving as a VTOL and as a fixed wing aircraft at the same time. This is
what is called a hybrid UAV. Such a platform presents an interesting modelling
and control challenge due to the special characteristics of its dynamic model and,
in consequence, it is a good test-bench for the techniques developed along this
thesis.

These two flight platforms and the equations of motion that describe their dynam-
ics are presented next.

Kadett 2400

The Kadett 2400 is an aircraft manufactured by Graupner. The aircraft has a very
lightweight frame and characteristics that make it suitable for the purposes of this
research. These characteristics include a 2.4 m wing span, 0.9 m2 of wing surface,
48.07 N/m2 wing loading, and 1.65×10−2 m3 of available volume to house control
hardware.
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1.2 Unmanned Aerial Vehicles: brief introduction

Figure 1.3. Interconnection between the UAV devices and the flight control system

Table 1.4. IG500N unit characteristics

Sensor Characteristic Value
Unit attitude

Static accuracy (Pitch) ±0.5 deg
Static accuracy (Roll) ±0.5 deg
Static accuracy (Heading) ±1.0 deg
Dynamic accuracy ±1.0 deg rms

Accelerometers
Non-linearity < 0.2 % of full scale
Bias stability ±5 mg

Gyroscopes
Non-linearity < 0.1 % of full scale
Bias stability ±0.5 deg/s

Magnetometers
Non-linearity < 0.2 % of full scale
Bias stability ±0.5 mG

GPS Receiver
Horizontal accuracy 2.0 m
Vertical accuracy 5.0 m
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Figure 1.3 illustrates interconnection between the UAV devices and the flight con-
trol system. The aircraft houses all the devices necessary for manual, as well as
automatic, control. During normal flight, the tail rudder, elevators, and ailerons
serve as the control surfaces. Propulsion is provided by a brushless alternating
current engine supplied by two lithium-ion polymer (LiPo) batteries through a fre-
quency variator. The variator and the servomotors are controlled by pulse width
modulated (PWM) command signals. The servo switch controller (SSC) switches
between manual and autonomous flight modes. It also enables data acquisition
and the application of control surface deflections and motor torque changes.

The flight control station (FCS), housed in a PC-104, hosts the control algorithms.
The control loop is closed by a IG500N unit from SBG Systems, that integrates
a wide range of sensors, including the accelerometers, gyroscopes, and magne-
tometers. A Kalman filter fuses the sensor information to estimate the position,
orientation, linear and angular speed, and acceleration. Table 1.4 provides manu-
facturer’s accuracy data for the IG500N unit. This same platform was presented
in [35, 34, 33, 32] together with the results of the first flight tests.

Now the aircraft model equations are stated as a compendium of dynamics, aero-
dynamics and kinematics equations:

Translational dynamics equations

u̇ = rv − qw +
qS

m
CX(δ[e,a,r])− g sin θ +

T

m

v̇ = pw − ru+
qS

m
CY (δ[e,a,r]) + g cos θ sinφ (1.1)

ẇ = qu− pv +
qS

m
CZ(δ[e,a,r]) + g cos θ cosφ

Rotational dynamics equations

ṗ− Ixz
Ix
ṙ =

qSb

Ix
Cl(δ[e,a,r])−

Iz − Iy
Ix

qr +
Ixz
Ix
qp

q̇ =
qSc

Iy
Cm(δ[e,a,r])−

Ix − Iz
Iy

pr − Ixz
Iy

(p2 − r2) + IpΩpr (1.2)

ṙ − Ixz
Iz
ṗ =

qSb

Iz
Cn(δ[e,a,r])−

Iy − Ix
Iz

pq − Ixz
Iz
qr − IpΩpq
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1.2 Unmanned Aerial Vehicles: brief introduction

Translational kinematic equations

u = ẋe cos θ cosψ + ẏe cos θ sinψ − że sin θ

v = ẋe (sinφ sin θ cosψ − cosφ sinψ)

+ẏe (sinφ sin θ sinψ + cosφ cosψ) + że sinφ cos θ (1.3)
w = ẋe (cosφ sin θ cosψ + sinφ sinψ)

+ẏe (cosφ sin θ sinψ − sinφ cosψ) + że cosφ cos θ

Rotational kinematic equations (Euler angles)

φ̇ = p+ tan θ(q sinφ+ r cosφ)

θ̇ = q cosφ− r sinφ (1.4)

ψ̇ =
q sinφ+ r cosφ

cos θ

In Eq. 1.1, Eq. 1.2, Eq. 1.3 and Eq. 1.4 g is the gravitational field intensity
near the Earth’s surface, and m is the total mass of the system. (xe, ye, ze) are
the components of the aircraft position on an Earth reference frame situated and
attached to a point of the Earth surface. Given the body reference frame XbYbZb
illustrated in Fig. 1.4, (u, v, w) are the components of the translational velocity,
(p, q, r) the components of the angular velocity, (Ix, Iy, Iz) are the moments of
inertia, and Ixz is a product of inertia. The products of inertia Ixy and Iyz,
related to the longitudinal plane (Yb = 0), are both null because of the aircraft’s
symmetry with respect to this plane. Ip is the rotating inertia of the tandem motor
and propeller, Ωp is its rotating speed, and T is the motor thrust. S, b and c are
the the Kadett 2400 aerodynamic surfaces, wingspan, and wing chord respectively,
and q is the dynamic pressure, which is a function of the air density and airspeed
relative to the local wind. The aerodynamic coefficients (AC) CX , CY , CZ , Cl,
Cm, and Cn, are functions of the system variables. In particular, the δ symbol in
brackets represents its dependency on the deflections of the control surfaces (δe,
δa and δr are the elevators, ailerons, and rudder deflections respectively). The
aerodynamic coefficients will be presented in further detail in chapters 2 and 3.
Finally, the aircraft orientation is represented by the Euler angles of roll φ, pitch
θ, and yaw ψ.

Aircraft Aerodynamic Model

In Klein and Morelli [16], detailed information on the aerodynamic coefficients
is provided. Firstly, if we assume a scenario in which the aircraft is in steady
flight, and only performs short manoeuvres that begin from this state, we can

11



Chapter 1

truncate the Taylor series expansion and retain only the first or second-order
terms. Furthermore, under the assumption of small perturbations, and based
on the symmetry of the vehicle, it can be assumed that: 1) the symmetrical
(longitudinal) variables u, w and q do not affect asymmetrical (lateral) force and
torques; and similarly, 2) asymmetric (lateral) variables v, p and r do not affect
the symmetrical (longitudinal) forces and torque. The aerodynamic coefficients
are given by the longitudinal aerodynamic models,

CD = CD0 + CDVair
1
V0

∆Vair + CDα∆α+ CDα2 ∆α2

+CDq
c

2V0
q + CDδe∆δe

CL = CL0 + CLVair
1
V0

∆Vair + CLα∆α+ CLα2 ∆α2 + CLα̇
c

2V0
α̇

+CLq
c

2V0
q + CLδe∆δe

(1.5)

Cm = Cm0
+ CmVair

1
V0

∆Vair + Cmα∆α+ Cmα2 ∆α2 + Cmα̇
c

2V0
α̇

+Cmq
c

2V0
q + Cmδe∆δe

and the lateral aerodynamic models,

CY =CY0
+ CYβ∆β + CYp

b

2V0
p+ CYr

b

2V0
r + CYδa∆δa + CYδr∆δr

Cl =Cl0 + Clβ∆β + Clp
b

2V0
p+ Clr

b

2V0
r + Clδa∆δa + Clδr∆δr (1.6)

Cn =Cn0
+ Cnβ∆β + Cnp

b

2V0
p+ Cnr

b

2V0
r + Cnδa∆δa + Cnδr∆δr

where α and β are the angle of attack and of sideslip, respectively, and Vair is the
airspeed (see Fig. 1.4). In particular, V0 is airspeed measured at the steady state
of flight, before a manoeuvre begins. These variables are velocity dependent and
calculated as:

α = arctan

(
wair
uair

)
; and β = arcsin

(
vair
Vair

)
; (1.7)

where Vair = |Vair|. As denoted in Fig. 1.4, uair, vair and wair are the three
components of the aircraft velocity with respect to air. Under zero-wind conditions
(uair, vair, wair) = (u, v, w). Finally, CL and CD are the lift and drag coefficients
and their relation to CX and CZ is:

CL = −CZ cosα+ CX sinα; and CD = −CX cosα− CZ sinα; (1.8)

Thus, the aerodynamic model identification is based on extracting the constants
of the polynomials of Eq. (1.5) and (1.6) from the flight data and by means of the
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1.2 Unmanned Aerial Vehicles: brief introduction

Figure 1.4. Aircraft body axes, aircraft wind axes, and wind relative velocity

dynamic model. Those constants are called non-dimensional stability and control
derivatives.

V-Skye

This hybrid UAV concept can be categorized as Tail-Sitter with the exceptions
that in this case the aircraft takes off and lands vertically on its nose (using an
external ground-station) and that this platform changes the sense of the rotors in
order to perform the transition phase between hovering and cruising. Figure 1.5
shows the maneuverability scheme of this unmanned aerial vehicle. In addition,
the prototype built based on this philosophy has been nicknamed V-Skye.
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Figure 1.5. Scheme of the transition maneuver between flight modes

The V-Skye is designed with two tilting-rotors moved by servo-mechanisms. The
result is a vehicle with two motors for which thrust ~TR and ~TL can be independently
modified, not only in magnitude, but also in one direction. The system is thus
provided with the amount of independent inputs needed for the hovering maneuver.

Figure 1.6 shows an outline drawing of the V-Skye. In order to simplify the dynam-
ics, all actuation parts (motors, motor frames, servomotors and their transmission
parts) are allocated as symmetrically as possible about the fixed coordinate axis
{X̂b, Ŷb, Ẑb} of the aircraft reference frame. In particular, all elements are placed
on the ŶbẐb plane and symmetrical to the X̂bẐb plane.

Le#	Rotor	
Right	Rotor	

Ẑb
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

X̂b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ŷb
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 1.6. Local axis in the 3D graphical model of the V-Skye UAV

The aircraft model as a fixed wing aircraft is similar to the one presented for the
Kadett 2400. The following sets of equations describe the dynamics of the V-Skye
as a VTOL:
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Translational dynamics equations

u̇ = rv − qw − g sin θ − kT
m

(δR sinλR + δL sinλL) (1.9)

v̇ = pw − ru+ g cos θ sinφ (1.10)

ẇ = qu− pv + g cos θ cosφ− kT
m

(δR cosλR + δL cosλL) (1.11)

where δR and δL are the right and left throttle rates respectively, kT is the motors
thrust constant and λR and λL are the right and left motors tilt angle respectively.

Rotational dynamics equations

ṗ− Ixz
Ixx

ṙ = +
Ixz
Ixx

pq +
Iyy − Izz
Ixx

qr

+
δR
Ixx

(kτ sinλR − kT ymR cosλR)

− δL
Ixx

(kτ sinλL + kT ymL cosλL) (1.12)

q̇ =
Ixz
Iyy

(
p2 − r2

)
+
Izz − Ixx
Iyy

pr

− 1

Iyy
δLkT zmL sinλL

− 1

Iyy
δRkT zmR sinλR (1.13)

ṙ − Ixz
Izz

ṗ = −Ixz
Izz

rq +
Ixx − Iyy

Izz
pq

+
δR
Izz

(kτ cosλR + kT ymR sinλR)

+
δL
Izz

(kT ymL sinλL − kτ cosλL) (1.14)

where {xmL , ymR , zmR} and {xmL , ymL , zmL} are the right and left rotor positions
withing the body axes and kτ is the motors torque constant.
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Translational kinematics equations

u = ẋe cos θ cosψ + ẏe cos θ sinψ − że sin θ (1.15)
v = ẋe (sinφ sin θ cosψ − cosφ sinψ)

+ẏe (sinφ sin θ sinψ + cosφ cosψ) + że sinφ cos θ (1.16)
w = ẋe (cosφ sin θ cosψ + sinφ sinψ)

+ẏe (cosφ sin θ sinψ − sinφ cosψ) + że cosφ cos θ (1.17)

Rotational kinematic equations (Euler angles)

p = φ̇− ψ̇ · sin θ (1.18)
q = θ̇ · cosφ+ ψ̇ · cos θ · sinφ (1.19)
r = ψ̇ · cos θ · cosφ− θ̇ · sinφ (1.20)

1.3 Multi-objective optimization brief introduction

In engineering problems, dealing with situations that require posing and solving
an optimization program is a common issue. As an example, this thesis is focused
on UAV’s model identification and controller tuning. Both types of problem are
aligned in the sense that they both require seeking several parameters values based
either on experimental data or on the data generated by a dynamic model. These
two tasks suit perfectly the optimization paradigm, since they pursue finding the
best parameters to fit the available data. Hence, they both should be tackled from
an optimization perspective.

Additionally, a single-objective optimization might fall short in real problems,
which generally require the optimization of multiple objectives that include, in
addition, physical constraints, operational constraints and non-convexity. Due to
this fact, addressing these problems from the standpoint of classical optimization
could be insufficient.

A schematic of the design methodology through optimization is presented in fig.
1.7. The column on the left shows the process followed when trying to achieve
a single objective. This would be the case of data fitting by least squares, for
example. On the contrary, the right column shows a way to address multi-objective
problems. As the main difference one can see that, in this case, a selection stage is
reached. As it will be presented later, this is because when trying to achieve several
objectives simultaneously, normally there is no optimal solution for all of them at
the same time. Hence the designer must choose the one that, in his opinion, fits
best with the final purpose of the design.
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Figure 1.7. Design methodology under the optimization perspective

As referred in [23], any Multi-Objective Optimization Problem (MOP) 1, can be
stated as follows:

min
x
J(x) = [J1(x), . . . , Jm(x)] (1.21)

subject to

K(x) ≤ 0 (1.22)
L(x) = 0 (1.23)

xi ≤ xi ≤ xi, ∀i = [1, . . . , n] (1.24)

where x = [x1, x2, . . . , xn] is defined as the decision vector; J(x) as the objective
vector and K(x), L(x) as the inequality and equality constraint vectors respec-
tively; xi, xi are the lower and upper bounds in the decision (or search) space
X.

As mentioned before, in general, there are not unique solutions to MOPs, because
the best solution for a single objective does not happen to be so good for the

1Any maximization problem can be converted to a minimization one. For each of the ob-
jectives that have to be maximized, the transformation: max Ji(x) = −min(−Ji(x)) could be
applied.
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rest of the objectives at the same time. A set of solutions which represent the
best performance combinations is more generally observed. That set is known as
the Pareto set ΘP . Each solution on the Pareto set generates a vector in the
objective space and all those vectors define the Pareto front JP . The solutions in
the Pareto set conform a group of Pareto optimal and non-dominated solutions.
These concepts are all represented on Fig. 1.8.

Figure 1.8. Pareto optimality and dominance concepts. A Pareto front (dotted line in
objective space J) is approximated with a set solutions (depicted with stars) selected from
the feasible decision space X. Dark solutions are non-dominated solutions in the set and
therefore, they are used to build a Pareto front approximation (solid line). Remainder
solutions are dominated solutions.

Definition 1. (Pareto optimality [23]): An objective vector J(x1) is Pareto op-
timal if there is not another objective vector J(x2) such that Ji(x2) ≤ Ji(x

1) for
all i ∈ [1, 2, . . . ,m] and Jj(x2) < Jj(x

1) for at least one j, j ∈ [1, 2, . . . ,m].

Definition 2. (Dominance [9]): An objective vector J(x1) is dominated by an-
other objective vector J(x2) iff Ji(x

2) ≤ Ji(x
1) for all i ∈ [1, 2, . . . ,m] and

Jj(x
2) < Jj(x

1) for at least one j, j ∈ [1, 2, . . . ,m]. This is denoted as J(x2) �
J(x1).

It is important to notice that the Pareto front is usually unknown, and the designer
can only rely on a Pareto front approximation J∗P and Pareto set approximation
Θ∗P .

In order to successfully embed the multi-objective optimization concept into a de-
sign process, three fundamental steps are required: the MOP statement (measure);
the multi-objective optimization (MOO) process (search); and the multi-criteria
decision making (MCDM) step (multicriteria analysis). This procedure will be
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named Multi-objective Optimization Design (MOOD) procedure (Fig. 1.9). The
technique must be viewed as a holistic process in which equal importance is as-
signed to each stage so that the design process is successfully driven [7].

• MOP statement. It is probably the most challenging phase. In an op-
timization problem, solutions, objectives, restrictions and preferences must
be expressed into mathematical terms that relate them, expressing the goal
of the design problem correctly. This is challenging because how to trans-
late qualitative objectives into quantitative terms is not always obvious. It
is crucial that the mathematical expressions posed on the MOP represent
adequately the actual objectives of the design, otherwise there will not be
match between what is mathematically solved and the expected solution to
the original design problem.

• MOO process. This stage is where the MOP stated in the previous stage
is solved. Depending on its features (number of decision variables, num-
ber of objectives, convexity, complexity), one or other optimization algo-
rithm should be chosen. Particularly on the research differential evolution
algorithms have been used. Section 1.3.2 gives further details on how this
algorithms work.

• Multi-criteria decision making. This stage is what differentiates GFCL
MOOD from single objective design or AOF multi-objective design (see Fig.
1.7). Since there is not a single solution in MOPs a compromise solution
should chosen. The designer has to carefully analyze the outcome of the
MOO process and decide which solution its preferable for his/her goals.

Hence, objective and decision spaces and their constraints must be well defined in
the MOP definition stage so that the correct problem is optimized in the optimiza-
tion process. Finally, a deep analysis should be carried out (once an approximation
to the Pareto front is available) to detect the most convenient solution in the deci-
sion making stage. This same topology is followed in the wind estimation process.
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Figure 1.9. Multi-objective Optimization Design (MOOD) procedure. Stage 1, MOP
statement: a Pareto front exists but it is unknown by the designer; Stage 2, MOO process:
MOP solutions are pushed towards the real Pareto set, getting to the best Pareto front
approximation possible; Stage 3, MCDM: solutions on the Pareto set approximation from
previous stage are tested against some other selection criteria and the preferred solution
is chosen.

Multi-objective techniques applied to model identification have achieved great re-
sults in many cases, as shown in ([27], [13] and [38]). Also, MOOD procedures have
shown to be a valuable tool for controller tuning applications (see [25, 21], and ref-
erences therein). Such techniques have been used in different controller structures
[20]; for example PID controllers [36], fractional order controllers [29, 39] and state
space controllers [11]. They enable the designer or decision maker (DM) to have a
close embedment into the design process; since it is possible to take into account
each design objective individually, they also enable comparing design alternatives,
in order to select a controller fulfilling the expected trade-off among conflicting
objectives. Such procedures have been used with success when (1) it is difficult
to find a reasonable trade-off for parameter tuning problems fulfilling several re-
quirements; and (2) it is worthwhile analyzing design objectives exchange among
design alternatives.

1.3.1 Genetic Algorithms

When the optimization problem turns out to be non-convex, there exist solutions
in the Pareto set that remain unreachable for a more classic optimization methods.
Figure 1.10 shows a non-convex Pareto front and how the straight lines resulting
from the different combination of objectives weights are unable to reach part of
the Pareto front. Thus, optimizing objectives separately present a great advantage
when non-convex problems must be solved.
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Figure 1.10. Pareto front approximation by weighted-sum technique. w1 and w′1 are two
different weighting coefficients for index J1 and w2 is index J2 weighting factor.

Genetic algorithms (GAs) are a subset of evolutionary algorithms (EAs) based on
the rules of natural selection of species. In this type of routines, a set of possible
solutions is called population, where each member represents a solution candidate
for the function to be optimized. A population is nothing more than a set of
points in the search space and each individual a point in that space by means of
his chromosomes. Thus, the chances of survival of each individual are related to
their "physical fitness", which in turn has a direct relationship with the value of
the cost function for that point.

The evolution mechanism of individuals is achieved by genetic operators. The
usual operators are:

• Selection. Its main goal consists on selecting the chromosomes that will
integrate the next population by taking into account the cost function value
for each individual[14].

• Crossover. The generation and integration of a new individual by combin-
ing the chromosomes of two individuals[14].

• Mutation. Random variation of some parts of the chromosome of an indi-
vidual in the population to generate new individuals[14].

Figure 1.11 illustrates how the GAs work conceptually. An initial population
(initial set of solutions) is stated and the cost functions are evaluated with it
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(population fitness). If the end condition is not satisfied, then a new population is
generated from the previous one and by means of the genetic operators (evolution).
Again, the cost functions are evaluated. This process is repeated until the end
conditions is achieved. If the end condition is satisfied, the process ends and the
last populations is the solution to the MOP.

3.- New population.

Evolution by 

genetic operators

3.1.- Selection 

3.2.- Crossover

3.3.- Mutation

2.- Objective function 

evaluation for each

 individual 

1.- Initial Population

End

condition

False

True

End

Figure 1.11. Genetic algorithms flowchart.

The different possible variations of GAs can be distinguished by the chromosome
codification and the genetic operators used. One of this variations is the differential
evolution algorithms that will be explained in the following section. Due to their
nature, GAs are able to deal with non-convex and highly restrictive optimization
problems [24]. GAs have demonstrated very good performance as global optimizers
in many types of applications [22, 4, 6].

1.3.2 Differential Evolution Algorithms

Another type of evolutionary algorithm that has gained in popularity due to its
simplicity and its powerful capabilities when converging into global solutions is
the differential evolution (DE) algorithm [31]. It is an evolutionary floating-point
algorithm that mainly contains 3 adjustment parameters, as it will be seen below.

There are many versions for the differential evolution algorithm. The standard
version will be used to explain the algorithm itself. This version is known as
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the DE/rand/1/bin strategy [31]. The evolution process uses three operators:
Mutation, Crossing and Selection (see Fig. 1.12). Thus, the individuals of an
initial population (generation 1), cross each other and even mutate, to evolve in
new generations thanks to the selection operation.

Figure 1.12. Differential Evolution Algorithm

Where n is the number of decision variables, Np is the size of the initial population,
k is the generation (number of iteration) and θik a vector such that θi ∈ Rn and
i ∈ {1, 2, 3, ..., Np} in generation k.

The DE algorithm has obtained great results in a wide variety of numerical opti-
mization problems, many of them within the identification of systems. Within the
world of academic problems, the DE algorithms have positioned themselves in the
first places of the competitions organized by the Congress on Evolutionary Com-
puting (CEC) of the IEEE. Specifically, in [38] an identification of parameters of
a model in first principles for an Electro-Hydraulic Servo system [24] is presented.

sp-MODE algorithm

In chapters 2, 3 and 4, the spherical pruning Multi-objective Optimization Differ-
ential Evolutive Algorithm (sp-MODE) is the algorithm chosen to carry out the
optimization process. The main characteristics for which it has been chosen are
the ones shown below:
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• It uses a Differential Evolution algorithm, which is stochastic and has real
coding.

• It uses an initial population P (0) to explore the search space, avoiding con-
vergence in sub-optimal spaces.

• The best solutions are stored, to ensure that quality solutions will not be
lost during the evolution process.

• The best solutions participate in the evolution process to increase the speed
of convergence of the algorithm.

• Instead of using a concept of ε-dominance [17] or other related approach
to achieve a uniformly distributed solution set, it uses a spherical pruning
technique in the target space to reduce the cardinality of θ∗P .

• The Spherical Selection helps to overcome the problems related to ε-dominance,
where non-managed solutions could be lost in the evolutionary process [12].

In addition to all this, the algorithm has the great advantage of being available
in a free MATLAB toolbox. Thus, the user has access to the code, being able to
modify both a series of adjustable parameters that characterize the optimization
process, and, obviously, the cost functions to be minimized. A set of guidelines for
parameter adjustment in Differential Evolutionary algorithms are found in [31].

sp-MODEII algorithm

As an evolution to the sp-MODE, sp-MODEII2 algorithm [25] is used in chapter
5. Its main characteristics are useful in order to deal with many-objective opti-
mization statements, covering the basic properties of convergence, diversity and
pertinency of the Pareto front. Such characteristics are:

• It uses Differential Evolution [30] algorithm as optimization engine, which
has shown a good trade off between global search and convergence to the
Pareto front [10].

• The objective space is partitioned in spherical sectors [26], in order to im-
prove the spreading along the Pareto front.

• Preferences P can be coded a priori in the form of a preference matrix m
by the designer. For each design objective Ji(x), i ∈ [1, · · · ,m] six values
(J0
i , · · · , J5

i ) must be stated (in the original units for each design objective)
2Scripts and tutorials available at www.mathworks.com/matlabcentral/fileexchange/authors/

289050.
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in order to define 5 preference ranges: highly desirable (HD), desirable (D),
tolerable (T) undesirable (U) and highly undesirable (HU).

• Preferability function f(·) is computed using the above commented matrix
m. With such preference matrix, the algorithm computes a global physical
programming index (GPP) [5] to evaluate the preferability of one solution
over another solution, which is a modified form of the physical programming
methods [19]. Such index is used to prune the approximated Pareto front,
in order to get a compact and pertinent approximation, with the number of
desired solutions imposed by the designer.

• This approach enables to state a difference between design objectives for
decision making and for optimization. In the former case, they represent
the design objectives where the DM is willing to perform a decision making
and where the objective space is partitioned; the latter, are design objectives
that are used in the optimization stage, used to calculate the GPP index,
but are not used a priori in the design objective partitioning. This feature
of the algorithm is further explained in chapter 5.

1.4 Thesis content and structure

This document includes the literal transcripts of five publications that expose
results obtained as part of the PhD studies that culminate with the current dis-
sertation. They are structured in two blocks as follows.

The first block, Modelling and Parameters Identification, covers the first two pub-
lications. They compile the efforts on developing first principles models for MAVs.
In particular, chapter 3 provides insights on how to improve model parameteriza-
tion when there is no real airspeed data to be used.

The second block, Control, Simulation and Test, integrates the other three publi-
cations in three different chapters. It is focused on using models to design and test
control strategies before flight on unmanned aerial vehicles. Chapter 4 presents a
comparative study between classic PID control techniques, and other model based
structures where, the power of taking a multi-objective design approach will show
advantages on reducing uncertainties. With a typical control structure on this
type of systems, chapter 5 addresses the parameterization of controllers by means
of multi-objective optimization. The approach on the research treats the prob-
lematic of hoping from simulation to real experimentation, with the intention of
limiting the consequences of uncertainty when implementing a new control strat-
egy. The main concept behind this approach is that, while passing through the
Multi-Objective Optimization Design procedure, the new designs and the designer
enriches of a deeper knowledge of the problem and, hence, of the objectives that
should be posed to the optimization program. The final results is a set of con-
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trollers that can be safely implemented on the real system. Chapter 6 presents a
new UAV concept. It is an innovative configuration that confers a fix-wing aircraft
the capability of vertical take-off and landing. In this publication, modeling, con-
trol design and HIL simulation are integrated altogether to stabilize the platform
for the take-off maneuver. The success of the design is shown by experimentation
data gathered on a real flight test.

It must be remarked again that chapters 2 to 6 of this dissertation are literal
transcripts of 5 research publications. For this reason redundant information and
discrepancies on nomenclature will be found among the chapters. Those five pub-
lications are listed here:

• J. Velasco, S. García-Nieto. Unmanned Aerial Vehicles Model Identifica-
tion using Multi-Objective Optimization Techniques. 19th World Congress
of The International Federation of Automatic Control. Cape Town, South
Africa. August 24-29, 2014. IFAC Proceedings Volumes, vol. 47, n.o 3, pp.
8837-8842, 2014.
https://doi.org/10.3182/20140824-6-ZA-1003.02023

• J. Velasco-Carrau, S. García-Nieto, J. V. Salcedo, and R. H. Bishop. Multi-
Objective Optimization for Wind Estimation and Aircraft Model Identifi-
cation. Journal of Guidance, Control, and Dynamics, vol. 39, no 2, pp.
372-389, feb. 2016.
https://doi.org/10.2514/1.G001294

• J. Velasco, S. García-Nieto, R. Simarro, J. Sanchis. Control Strategies for
Unmanned Aerial Vehicles under Parametric Uncertainty and Disturbances:
a Comparative Study. IFAC Workshop on Advanced Control and Navigation
for Autonomous Aerospace Vehicles June 10-12, 2015. Seville, Spain. IFAC-
PapersOnLine, vol. 48, n.o 9, pp. 1-6, 2015.
https://doi.org/10.1016/j.ifacol.2015.08.050

• J. Velasco-Carrau, G. Reynoso-Meza, S. García-Nieto, X. Blasco Ferragud.
Enhancing controller’s tuning reliability with multi-objective optimisation:
from Model in the loop to Hardware in the loop. Engineering Applications
of Artificial Intelligence, vol. 64, pp. 52-66, sep. 2017.
https://doi.org/10.1016/j.engappai.2017.05.005

• Sergio García-Nieto, Jesús Velasco-Carrau, Federico Paredes-Valles, José Vi-
cente Salcedo and Raúl Simarro. Motion Equations and Attitude Control in
the Vertical Flight of a VTOL Bi-Rotor UAV. Electronics, vol. 8, n.o 2, p.
208, feb. 2019.
https://doi.org/10.3390/electronics8020208
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Chapter 2

Unmanned Aerial Vehicles Model
Identification using Multi-Objective
Optimization Techniques 1

Abstract

The total amount of UAVs civil applications is getting bigger and bigger. The
cost and the risks of the development phase of this systems has to be decreased
in order to make them affordable. It is required to minimize the number of hours
of real flight, making use of simulation tools and taking full advantage of the
acquired data. Thus, obtaining a dynamic model that tightly adjusts to the real
flight behaviour of the aircraft gains in importance, in the way that it will lead to
precise simulation results and, therefore, to correctly designed control algorithms.
A model identification technique based on experimental data and Multi-Objective
optimization evolution algorithm, is presented here. This methodology makes
profit of the possibility given by this type of algorithm of facing different objectives
at the same time, to take full advantage of the experimental data and to get better
adjusted models.

1J. Velasco, S. García-Nieto. Unmanned Aerial Vehicles Model Identification using Multi-
Objective Optimization Techniques. 19th World Congress of The International Federation of
Automatic Control. Cape Town, South Africa. August 24-29, 2014. IFAC Proceedings Volumes,
vol. 47, n.o 3, pp. 8837-8842, 2014. https://doi.org/10.3182/20140824-6-ZA-1003.02023
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2.1 Introduction

There exists an increasingly popular variety of applications that justify the devel-
opment of Unmanned Aerial Vehicles (UAVs) in the civil aviation field. Tasks such
as photography for coastline control and beaches erosion tracing, fire detection and
control [3], infrastructures inspection, or measurement for agriculture [9] are just
some of the possible applications. In this new aeronautics field, a sufficiently low
cost, which suits companies requirements is the main objective.

There are several fronts that have to be attended for the achievement of this aim.
First, it is necessary to reduce the cost of the aircraft itself. This brings therefore,
a completely new generation of tiny airplanes, which size is the minimum necessary
to house propulsion, sensorization and control equipments.

Second, the integrated systems (sensors, actuators and control units), have to be
powerful enough to control the fast dynamics of these vehicles and carry out, at
the same time, the mission for which they have been purchased. The cost of such
devices is becoming lower and lower, thanks to the fast evolution experienced by
the computer technology in the last few years.

Finally, because of the characteristics of the product, the cost of the development
phase has become an important percentage of the final price. It is required in this
point to minimize the number of hours of real flight, making use of simulation
tools and squeezing, as much as possible, already acquired data. Besides, it is in
this phase in which the hardware integrity is in bigger danger. Thus, obtaining
a dynamic model that tightly adjusts to the real flight behaviour of the aircraft
seems vital, in the way that it will lead to precise simulation results and, therefore,
to correctly designed control algorithms.

In this article, a methodology based on Multi-Objective (MO) optimization is pre-
sented and applied to a real system. To present this methodology, flight data are
used instead of wind tunnel experiments, to identify the non-dimensional deriva-
tives of stability and control of an UAV. Nevertheless, the technique exposed is
not limited by the data source, but the other way around, it is enhanced with the
quality and diversity of the performed experiments. As an example of this, de-
spite experiments in this article are lacking measures relative to air, once available,
they could be added in a straightforward manner to the identification process, with
the obvious improvement of the obtained results, but without any change on the
methodology itself. Thus, the presented identification technique allows the de-
signer to test flight data from different types of experiment and, thereby, to obtain
models with acceptable performances in several kinds of situation.

The article is divided in 5 sections. Section 2.2 introduces the aircraft and the hard-
ware used in the experiments, along with the dynamic and aerodynamic models
willing to be identified. In section 2.3 the methodology used in the identification
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will be shown and explained. Flight tests are presented in section 2.4. Every ex-
periment has been performed twice so that a second set of values could be obtained
for validating results. Results from the identification and the validation processes
are also given in section 2.4. Finally, some conclusions are commented in section
2.5.

2.2 UAV testbench

2.2.1 Platform and Hardware

As the main component of the flight platform, a Kadett 2400 aircraft, manufac-
tured by Graupner, may be found. It houses all necessary devices for its control,
not only manually, but also in autonomous mode. During normal flight, 3 control
surfaces are provided: tail rudder, elevators and ailerons. As the unit of propulsion
a brushless engine of altern current is integrated, which is fed by two LIPO batter-
ies through a frequency variator. Alike the servomotors, the variator is controlled
by sending PWM signals as commanding signals.

There exists a device bridge between the manual and the autonomous states. The
SSC (Servo Switch Controller) is able to perform the commutation between dif-
ferent sources of entrance. However, its principle property is allowing a computer
to measure and also to introduce deflections in control surfaces (δ) and changes in
the motor thrust (T ).

As already stated, control actions are sent from the Flight Control Station (FCS),
constituted by a PC-104. Is this unit the one housing the control algorithms,
performing, therefore, all necessary tasks at each phase of the flight. The loop is
closed by the IG500N unit. This all-in-one device, joins the efforts of a wide range
of sensors, such as accelerometers, gyroscopes and magnetometers. Its Kalman
filter is capable of mixing the information coming from those sensors in order to
offer precise measurements of position, orientation, linear and angular speed, and
acceleration, in the 3 aircraft body-axes. This same platform was presented in ([8],
[7] and [6]) together with the results of the first flight tests. The figure 2.1 shows
the hardware elements described here.
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Figure 2.1. Interconnection between UAV devices and FCS

2.2.2 Aircraft Dynamic Model

Once the hardware platform has been introduced, a model that approximately
explains the behaviour of the real process is going to be derived. In this case, the
final model will be used for simulation and design of control algorithms for a UAV.
This means obtaining the expressions that relate the input variables: deflection
in the control surfaces and motor load; to a series of output signals: linear and
angular velocities, accelerations and position in 3D space.

As expressed in [2], the seeking of these expressions normally begins from the
linear and the angular momentum conservation principles, that can be expressed
as: ∑

ext

−→
F =

d

dt
(m
−→
V ) (2.1)

∑
ext

−→
M =

d

dt
(I−→ω ) (2.2)

Where
∑
ext

−→
F and

∑
ext

−→
M are the summ of external forces and moments re-

spectively, m and I are the mass and the inertia tensor of the aircraft, and
−→
V

and −→ω are linear and angular velocity vectors. In particular 3 are the types of
external forces that affect to the behaviour of the vehicle. They are: aerodynamic
force (FA), force applied by the motor (FT ) and the gravitational force (FG). At
the same time, only the aerodynamic force generates aerodynamic torque (MA).
Thereby, the equations 2.1 and 2.2 remain:
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−→
FA +

−→
FT +

−→
FG = m

−→̇
V +−→ω ×

−→
V (2.3)

−−→
MA = I

−→̇
ω +−→ω × I−→ω (2.4)

The two previous equations are actually vectorial equations, so that, there is a
total of 6 equations that correspond to the 6 degrees of freedom of a rigid body in
the space. Deriving 2.3 and 2.4 the following expressions are obtained:
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Where u, v, and w are the components of the linear velocity of the aircraft in
its body axes (xb, yb, zb). In the same way, p, q, and r are the 3 components of
the angular velocity. It is important to highlight the apparition in the equations
2.5 and 2.6 of the variables Ci, that represent the aerodynamic coefficients of each
component of the resultant aerodynamic force (X, Y, and Z) and torque (L, N, and
M). Such coefficients, are functions that relate those components to some of the
system variables. The expressions that those coefficients adopt is of great interest
in this work and therefore, they will be studied in further detail in section 2.2.3.
Finally S, b, c are constructive constants of the airplane and q is the dynamic
pressure of the air.

The aircraft orientation is usually denoted with the well known Euler angles of roll
φ, pitch θ, and yaw ψ, wich express the rotation of a body from a global reference
system to the body-axes. The kinematic equations that relate angular velocities
of the aircraft to the Euler angles are:
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 p

q

r

 =

 1 0 − sin θ

0 cos θ sinφ cos θ

0 − sinφ cosφ cos θ


 φ̇

θ̇

ψ̇

 (2.7)

Finally, equations 2.8 to 2.16 are the result of reordering equations 2.5, 2.6, and
2.7, so that they can be directly used on the calculation of the simulation output
values. Such values will be the same as those coming from the unit IG500N in real
flights.

Force equations:
u̇ = rv − qw +

qS

m
CX(δ)− g sin θ +

T

m
(2.8)

v̇ = pw − ru+
qS

m
CY (δ) + g cos θ sinφ (2.9)

ẇ = qu− pv +
qS

m
CZ(δ) + g cos θ cosφ (2.10)

Torque equations:
ṗ− Ixz

Ix
ṙ =

qSb

Ix
Cl(δ)−

Iz − Iy
Ix

qr +
Ixz
Ix
qp (2.11)

q̇ =
qSc

Iy
Cm(δ)− Ix − Iz

Iy
pr − Ixz

Iy
(p2 − r2) (2.12)

ṙ − Ixz
Iz
ṗ =

qSb

Iz
Cn(δ)− Iy − Ix

Iz
pq − Ixz

Iz
qr (2.13)

Kinematic equations:
φ̇ = p+ tan θ(q sinφ+ r cosφ) (2.14)

θ̇ = q cosφ− r sinφ (2.15)

ψ̇ =
q sinφ+ r cosφ

cos θ
(2.16)

2.2.3 Aircraft Aerodynamic Model

It was said in 2.2.2 that aerodynamic forces and torques were related to some of
the system variables through a series of functions that were called aerodynamic
coefficients. In this section the structure used in the present article for those
functions will be stated and, likewise, the parameters to be identified will be
highlighted.

In [2] detailed information on how to proceed to obtain the dependencies of aero-
dynamic coefficients with other system variables is provided. First, if we assume
a scenario in which the aircraft is generally in steady flight conditions, and it only
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performs short maneuvers that take it off from this state, we can truncate the
Taylor series expansion to keep only the first or second order terms. Furthermore,
under this assumption of small perturbations, and based on the symmetry of the
vehicle, it can be assumed that 1) the symmetrical (longitudinal) variables u, w
and q do not affect asymmetrical (lateral) force and torques Y, L and N; and sim-
ilarly, 2) asymmetric (lateral) variables v, p and r do not affect the symmetrical
(longitudinal) forces and torque X, Z and M.

Equations from (2.17) to (2.22) show the approximation of the aerodynamic equa-
tions that have been adopted for this article.

Longitudinal aerodynamic models:
CD(t) =CD0 + CDV

1

V0
∆V (t) + CDα

∆α(t)

+CDα2 ∆α(t)2 + CDq

c

2V0
q(t) + CDδe

∆δe(t)

(2.17)

CL(t) =CL0 + CLV

1

V0
∆V (t) + CLα∆α(t)

+CLα2 ∆α(t)2 + CLα̇

c

2V0
α̇(t) + CLq

c

2V0
q(t)

+CLδe
∆δe(t)

(2.18)

Cm(t) =Cm0 + CmV

1

V0
∆V (t) + Cmα

∆α(t)

+Cmα2 ∆α(t)2 + Cmα̇

c

2V0
α̇(t)

+Cmq

c

2V0
q(t) + Cmδe

∆δe(t)

(2.19)

Lateral aerodynamic models:
CY (t) =CY0 + CYβ

∆β(t) + CYp

b

2V0
p(t)

+CYr

b

2V0
r(t) + CYδal

∆δal(t) + CYδr
∆δr(t)

(2.20)

Cl(t) =Cl0 + Clβ∆β(t) + Clp

b

2V0
p(t)

+Clr

b

2V0
r(t) + Clδal

∆δal(t) + Clδr
∆δr(t)

(2.21)

Cn(t) =Cn0 + Cnβ∆β(t) + Cnp

b

2V0
p(t)

+Cnr

b

2V0
r(t) + Cnδal

∆δal(t) + Cnδr
∆δr(t)

(2.22)
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Where α and β are the angle of attack and of sideslip respectively and V is the
airspeed. In particular, V0 is the airspeed measured at the steady state of flight,
before a maneuver begins. Theese variables are velocity dependent and they can
be calculated as follows:

α = arctan
(w
u

)
; β = arcsin

( v
V

)
(2.23)

V = |
−→
V | =

√
u2 + v2 + w2 (2.24)

Besides, CL and CD are the Lift and Drag coefficients and their relation with CX
and CZ is:

CL(t) =− CZ(t) cos (α(t)) + CX(t) sin (α(t)) (2.25)
CD(t) =− CX(t) cos (α(t))− CZ(t) sin (α(t)) (2.26)

Thus, the aerodynamic model identification is based on extracting the polynomial
constants of the equations 2.17 to 2.22 (marked in bold) from the flight data
and by means of the dynamic model. Those constants are called non-dimensional
derivatives of stability and control.

2.3 Aerodynamic Model Identification

2.3.1 Previous calculations

It is easy to understand that there is no sensor capable of measuring aerodynamic
coefficients directly. Thus, before performing the optimization it is necessary to
calculate the actual value of the aerodynamic coefficients during the flight. The
dynamic model equations will be used for that purpose.

Equations 2.27 to 2.32 describe the methodology used to obtain the values taken
by the aerodynamic coefficients at the time instants in which measurements are
available. These equations are easily deduced from the first principles model pre-
sented in 2.2.2 [2].
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CX(t) =
1

q(t)S
(max(t)− T (t)) (2.27)

CY (t) =
may(t)

q(t)S
(2.28)

CZ(t) =
maz(t)

q(t)S
(2.29)

Cl(t) =
1

q(t)Sb
[Ixṗ(t)− Ixz (p(t)q(t) + ṙ(t))

+ (Iz − Iy) q(t)r(t)] (2.30)

Cm(t) =
1

q(t)Sc
[Iy q̇(t) + (Ix − Iz) p(t)r(t)

+ Ixz
(
p(t)2 − r(t)2

)
] (2.31)

Cn(t) =
1

q(t)Sb
[Iz ṙ(t)− Ixz (ṗ(t)− q(t)r(t))

+ (Iy − Ix) p(t)q(t)] (2.32)

Refer to equations 2.25 and 2.26 for the calculation of CL(t) and CD(t) respectively.

2.3.2 Multi-Objective Optimization

In engineering problems, it is a common issue to deal with situations that require
the optimization of multiple objectives that include, in addition, physical con-
straints, operational constraints and nonlinearities. Due to this fact, addressing
these problems from the standpoint of classical optimization could be insufficient.

Any multi-objective optimization problem (MOP) can be stated as:

min
θ∈R

J(θ) = [J1(θ), J2(θ), . . . , Jm(θ)] (2.33)

Where θ is the solution that minimizes the m cost functions Ji at the same time.
Generally, it will not be possible to find a solution that satisfies all requirements at
the same time, so the optimizer will have to provide the amount of solutions which
are not improved by any other in all the objectives at the same time. That set
of solutions is the Pareto set and their value in the objectives space is the Pareto
front.

Multi-objective techniques applied to model identification have achieved great re-
sults in many cases, as shown in ([5], [1] and [10]).
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In our case, elevators deflection and motor thrust variations, generate changes in
longitudinal variables and, in the same way, ailerons and rudder deflections do
likewise in lateral ones. Therefore, longitudinal and lateral coefficient models can
be identified from different kind of experiments. As an example, if a CD modeled
is obtained by optimizing an elevators test, the model performance on a motor
experiment data will be decreased, and vice versa. Therefore, an identification
that takes both experiments in account at the same time, may be stated as a
bi-objective optimization problem.

If the Mean Square Error (MSE) is used as performance index of the identifica-
tion process, two cost functions can be defined for each aerodynamic coefficient.
Equations 2.34 and 2.35 are the two cost functions to minimize for obtaining any
of the longitudinal models.

J1 =
1

Nelevator

Nelevator∑
i=1

(
Cj(ti)− Ĉj(ti)

)2

∀j ∈ {D,L,m} (2.34)

J2 =
1

Nmotor

Nmotor∑
i=1

(
Cj(ti)− Ĉj(ti)

)2

∀j ∈ {D,L,m} (2.35)

where Ĉj(ti) is the model approximation of the Cj value at the instant ti and
Nelevator andNmotor are the number of samples of each kind of experiment. Similar
cost functions can be defined for the three lateral models.

Then, if, Cl(t) is to be modeled by using one ailerons experiment and one rudder
experiment, the identification problem from this MO point of view should be stated
as:

minθ∈R6

[
1

Nailerons

∑Nailerons
i=1

(
Cl(ti)− Ĉl(ti, θ)

)2

,

1
Nrudder

∑Nrudder
i=1

(
Cl(ti)− Ĉl(ti, θ)

)2
]

: θ =
[
Cl0 , Clβ , Clp , Clr , Clδal , Clδr

] (2.36)

To solve the MOP stated above, any Multi-Objective optimizer can be used. In
this work, the sp-MODE2 algorithm has been chosen [4].

2Available in http://www.mathworks.es/matlabcentral/ fileexchange/39215-multi-objective-
differential-evolution-algorithm-with-spherical-pruning
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2.4 Results

2.4.1 Flight Tests

In section 2.2.3 short maneuvers from a steady state flight are mentioned. In
aeronautics, an airplane in steady flight is an aircraft which is maintaining constant
heading and altitude, at a constant speed also and with leveled wings orientation
(zero roll angle). At that point, the pilot does not need to make any correction on
control surfaces or motor to maintain this steady flight.

In order to obtain data that can be employed in adjusting the aerodynamic pa-
rameters, the designed experiments simulate such short maneuvers. Thus, starting
always at a steady state flight, each system input has been excited separately and,
after that excitation, the aircraft has been left to evolve naturally, until the pilot
deemed it appropriate and safe to recover the aircraft. Each experiment has been
performed twice, in order to count with different data sets for the adjustment
and the validation. It should be noted finally, that in the absence of any sensor
capable of measuring airspeed, all maneuvers described below have been carried
out against the wind. This restriction was imposed to the pilot in order to reduce
variability between tests.

The flight plan provided to the pilot before beginning the experiments was:

1. Stable flight:

(a) Adjust ailerons and rudder. Leveled wings.

(b) Set the motor load around 50%.

(c) Adjust elevators until the altitude gets constant without touching the
control stick.

2. Elevators up and down trying to copy a positive plus negative step sequence.

3. Repeat step 1.

4. Ailerons side to side in the appropriate frequency to avoid extreme rotations.
First in one direction and then in the opposite one.

5. Repeat step 1.

6. Tail rudder side to side. First in one direction and then in the oposite one.

7. Repeat step 1.
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8. Positive and negative steps in motor load. Sequence: 50%-100%-50%-0%-
50%

9. Repeat the whole process a second time.

Figures 2.2 and 2.3 show the evolution of the so called longitudinal and lateral
variables during an elevators and ailerons excitation test respectively. As it can
be seen, when a longitudinal input is excited, the rest of the longitudinal variables
are excited too, which finally produces variations in the symmetrical aerodynamic
coefficients. This same behaviour can be observed for the asymmetrical variables.
All these variations can be collected and used to calculate the aerodynamic deriva-
tives of stability and control.

2.4.2 Optimization Results

Figure 2.4 shows the lateral models Pareto front found by the algorithm after the
programmed optimization. As supposed, the better an experiment is fitted by a
model, the greater error it gets for a second test. That is why the person in charge
of identifying the aircraft model cannot be satisfied by using just one test, but
should face the model to different experiments data.

Besides, confronting experiments in a multi-objective optimization, instead of us-
ing all of them as one in a mono-objective minimization, gives the main following
advantages:

• Using multi-objective optimization involves the selection of a solution among
others, which gives the designer the power of defining the importance of each
experiment basing that definition on his requirements.

• The resultant Pareto front shows how good the different models are for each
experiment. Thanks to that, the designer may get an idea of how good the
collected data is and thereby, decide which are the requirements that he
should ask for to the final model.

• It is possible to add as many objectives as wanted in the identification pro-
cess. This means that confronting tests of the same kind is also possible,
what could be a good practice for variability reducing.

For example, if the Cl coefficient is taken into account, it can be observed that the
ailerons test gets a much better approximation than the rudder one. This fact,
which can be deduced from the values that the square error takes, is also logical,
since the ailerons are precisely thought to introduce a moment in the X axis. In
this case, the designer should probably prefer models which fit better this type of
experiments over the ones that do a better job with rudder tests.
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Figure 2.2. Flight Test: longitudinal variables evolution in an elevators test
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Figure 2.3. Flight Test: lateral variables evolution in an ailerons test
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2.5 Conclusion

The green point on figure 2.4 is the elected model for each of the lateral aerody-
namic coefficients. It represents a solution of compromise between a situation in
which the ailerons deflection is modified and a situation in which that modifica-
tion is suffered by the tail rudder. This fact can be checked in figure 2.5. That
graph shows the approximation to Cl (calculated with (2.30)) given by the chosen
model for validation data. Two more models, identified by using the classical least
squares technique, are also included in figure 2.5. Those two models represent the
best approximation, in terms of MSE, for the ailerons and the elevators experi-
ments separately (see [6]). As can be deduced from the figure, the MO solution
(green curve) represents a good intermediate approximation in both situations.

2.5 Conclusion

A methodology for the identification of UAVs aerodynamic models has been pre-
sented. Besides a demonstration of its application in a real system has been carried
out with satisfying results. The technique presented gives the already stated ad-
vantages in the data analysis and the identification process, since it involves a
phase of decision by the designer. This phase allows then, the study of several
models and the election of the one that fits better with the designer needs. In ad-
dition, confronting experiments offers information about the difficulties of finding
a model that fits different flight conditions at the same time, which improves the
understanding of the system. This technique may also give information about the
importance of a particular kind of experiment in the identification of the model.
All these advantages lead to better models that may save time and money when
designing autonomous aircraft control algorithms.
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Chapter 3

Multi-Objective Optimization for
Wind Estimation and Aircraft
Model Identification 1

Abstract

In this paper, a novel method for aerodynamic model identification of a micro-air
vehicle is proposed. The principal contribution is a technique of wind estimation
that provides information about the existing wind during flight when no air-data
sensors are available. The estimation technique employs multi-objective optimiza-
tion algorithms that utilize identification errors to propose the wind-speed com-
ponents that best fit the dynamic behavior observed. Once the wind speed is
estimated, the flight experimentation data are corrected and utilized to perform
an identification of the aircraft model parameters. A multi-objective optimiza-
tion algorithm is also used, but with the objective of estimating the aerodynamic
stability and control derivatives. Employing data from different flights offers the
possibility of obtaining sets of models that form the Pareto fronts. Deciding which
model best adjusts to the experiments performed (compromise model) will be the
ultimate task of the control engineer.

1J. Velasco-Carrau, S. García-Nieto, J. V. Salcedo, and R. H. Bishop. Multi-Objective Opti-
mization for Wind Estimation and Aircraft Model Identification. Journal of Guidance, Control,
and Dynamics, vol. 39, no 2, pp. 372-389, feb. 2016. https://doi.org/10.2514/1.G001294
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Nomenclature

b = aircraft wingspan [m]
CD = drag force coefficient
CDi = polynomial parameters of the drag coefficient model with i =

{0, V, α, α2, q, δe}
C l = torque coefficient in the X direction
Cli = polynomial parameters of the X aerodynamic moment coefficient

model with i = {0, β, p, r, δa, δr}
CL = lift force coefficient
CLi = polynomial parameters of the lift coefficient model with i =

{0, V, α, α2, α̇, q, δe}
Cm = torque coefficient in the Y direction
Cmi = polynomial parameters of the Y aerodynamic moment coefficient

model with i = {0, V, α, α2, α̇, q, δe}
Cn = torque coefficient in the Z direction
Cni = polynomial parameters of the Z aerodynamic moment coefficient

model with i = {0, β, p, r, δa, δr}
CX = force coefficient in the X direction
C Y = force coefficient in the Y direction
CYi = polynomial parameters of the Y aerodynamic force coefficient

model with i = {0, β, p, r, δa, δr}
CZ = force coefficient in the Z direction
c = aircraft wing chord [m]
F = resulting force vector acting on aircraft body [N]
FA = aerodynamic force vector [N]
FG = gravity force vector [N]
FT = motor force vector [N]
F{x,y,z} = {X,Y, Z} components of the resultant force acting on the vehicle

and expressed in the body system of reference {xb, yb, zb} [N]
g = gravitational field intensity [m/s2]
I = aircraft tensor of inertia [kg/m2]
Ip = propeller and rotor set inertia about their rotation axis [kg/m2]
I{x,y,z} = moments of inertia on {xb, yb, zb} axes [kg/m2]
I{xy,xz,yz} = products of inertia on xb, yb, zb axes [kg/m2]
J i = Cost index for the ith objective
m = aircraft total mass [kg]
M = resulting moment vector acting on aircraft body [N·m]
MA = aerodynamic moment vector [N·m]
MT = motor moment vector [N·m]
M{x,y,z} = {X,Y, Z} components of the resultant moment acting on the ve-

hicle and expressed in the body system of reference {xb, yb, zb}
[N·m]

N = number of samples in a data set
52



p = aircraft angular X velocity component respect to ground and ex-
pressed in body axes [rad/s]

q = aircraft Y angular velocity component respect to ground and ex-
pressed in body axes [rad/s]

q = dynamic pressure [Pa]
r = aircraft Z angular velocity component respect to ground and ex-

pressed in body axes [rad/s]
S = aircraft aerodynamic surface [m2]
ti = ith time instant. i = 1, 2, ..., N
T = propeller thrust acting in the direction of its rotation axis [N]
u = aircraft X velocity component respect to ground and expressed in

body axes [m/s]
uair = aircraft X velocity component respect to air and expressed in body

axes [m/s]
V = aircraft velocity vector [m/s]
v = aircraft Y velocity component respect to ground and expressed in

body axes [m/s]
vair = aircraft Y velocity component respect to air and expressed in body

axes [m/s]
V air = aircraft airspeed [m/s]
V0 = steady state airspeed [m/s]
w = aircraft Z velocity component respect to ground and expressed in

body axes [m/s]
wair = aircraft Z velocity component respect to air and expressed in body

axes [m/s]
W = wind velocity vector [m/s]
X∗ = unitary scaled value of a variable X
(xb, yb, zb) = aircraft body axes
α = angle of attack [rad]
β = sideslip angle [rad]
δa = ailerons deflection [rad]
δe = elevators deflection [rad]
δr = rudder deflection [rad]
ζ = wind elevation when expressed in spherical coordinates [rad]
θ = aircraft pitch angle [rad]
µ = multi-objective optimization solution
σ = standard deviation of a data set
φ = aircraft roll angle [rad]
ξ = wind azimuth when expressed in spherical coordinates [rad]
ψ = aircraft yaw angle [rad]
Ωp = propeller and rotor rotating speed [rad/s]
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3.1 Introduction

There is an increasingly popular variety of applications that justify the devel-
opment of unmanned aerial vehicles (UAVs) in the civil aviation field. Possible
applications include photography for coastline control and beach erosion tracing,
fire detection and control [23], infrastructure inspection, and measurements for
agriculture [56]. In this new aeronautics field, high performance at the lowest cost
is the main objective.

Several steps towards the achievement of this aim have already been taken. Firstly,
it was necessary to reduce the cost and complexity of the aircraft itself. The result
was a completely new generation of small airplanes whose size is the minimum
necessary to house propulsion, sensorization, and control equipment. Secondly,
the integrated systems (sensors, actuators, and control units) had to be powerful
enough to control the fast dynamics of these vehicles when completing challenging
missions. The cost of such devices is falling thanks to evolution in computer
technology. The cost of the development phase has now become an important
percentage of the total cost. In addition, hardware integrity is in greater danger
during this phase. Therefore, a minimization of the total number of test hours
is desired. Making use of simulation tools and utilizing acquired data as much
as possible can lower development costs and risks. Thus, obtaining a dynamic
model that tightly adjusts to the real flight behavior of the aircraft is essential
for obtaining precise simulation results and correctly designing control algorithms.
The process of going from observed data to a mathematical model is fundamental
in science and engineering. In system theory, this process is known as system
identification and the objective is to obtain dynamic models from observed input
and output signals [35]. In particular, system identification methods have been
used for flight-test evaluations [14, 13, 53, 17, 33, 16, 32], control analysis and
design [11, 43] and advanced simulation [34, 4, 55].

Identifying the aerodynamic model of a low-cost micro-air vehicle (MAV) is a ma-
jor challenge. Generally, wind tunnel tests are too expensive to be driven, and
experimental flight data has to be used instead. In addition, this type of aircraft
usually has a light body and flies slowly, meaning that the slightest breeze con-
tributes significantly to overall airspeed. Hence, the information available from
the inertial sensors is insufficient [54, 31, 30] for the identification of their aerody-
namic model. In [41, 24, 5], different wind estimation techniques are presented.
Those works make use of an extended Kalman filter to fuse inertial information
with external sensors, such as pitot tubes or optical flow sensors. However, due to
lack of space and resources air-data sensors may be unavailable or highly inaccu-
rate in some occasions. Designing control strategies in these cases becomes a hard
process, since there is no trustworthy model.
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To improve a situation in which no air-data sensor is available, a two step iden-
tification methodology based on multi-objective optimization (MO) is presented
in this paper. The methodology makes use of flight data instead of wind tunnel
experiments to identify the non-dimensional stability and control derivatives of a
micro-air vehicle. As the main contribution, our methodology starts with a wind
estimation technique that complements the information collected by the inertial
sensors. This technique takes information from the inertial unit, the global posi-
tioning system (GPS) sensor, and the control inputs to estimate the wind that best
fits a given model structure. The quality of the identified models is consequently
improved and no additional air-data sensor is used for that purpose. Model iden-
tification is performed in a second step. The identification technique also relies
on the advantages offered by an MO perspective, enabling the designer to test
flight data from different types of experiments. Thereby, models with acceptable
performance in various realistic flight regimes are obtained.

The paper is organized as follows. Section 3.2 introduces the aircraft and the hard-
ware used in the experiments along with the dynamic and aerodynamic models.
In Section 3.3, the estimation procedure is presented and developed. Section 3.4
provides a step-by-step explanation of how to obtain the final parameters of the
aerodynamic models once the data has been corrected. The results are divided in
two sections. Section 3.5 presents simulation results that verify the validity of the
wind estimation technique. Section 3.6 presents results for both the estimation
and identification tasks. Section 3.7 presents the final conclusions.

3.2 UAV Testbench

3.2.1 Flight System

The main component of the UAV flight system is a Kadett 2400 aircraft manufac-
tured by Graupner. The aircraft has a very lightweight frame and characteristics
that make it suitable for the purposes of this research. These characteristics in-
clude a 2.4 m wing span, 0.9 m2 of wing surface, 48.07 N/m2 wing loading, and
1.65× 10−2 m3 of available volume to house control hardware.

Figure 3.1 illustrates interconnection between the UAV devices and the flight con-
trol system. The aircraft houses all the devices necessary for manual, as well as
automatic, control. During normal flight, the tail rudder, elevators, and ailerons
serve as the control surfaces. Propulsion is provided by a brushless alternating
current engine supplied by two lithium-ion polymer (LiPo) batteries through a fre-
quency variator. The variator and the servomotors are controlled by pulse width
modulated (PWM) command signals. The servo switch controller (SSC) switches
between manual and autonomous flight modes. It also enables data acquisition
and the application of control surface deflections and motor torque changes.
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Figure 3.1. Interconnection between the UAV devices and the flight control system

The flight control station (FCS), housed in a PC-104, hosts the control algorithms.
The control loop is closed by a IG500N unit from SBG Systems, that integrates
a wide range of sensors, including the accelerometers, gyroscopes, and magne-
tometers. A Kalman filter fuses the sensor information to estimate the position,
orientation, linear and angular speed, and acceleration. Table 3.1 provides manu-
facturer’s accuracy data for the IG500N unit. This same platform was presented
in [52, 51, 50, 49] together with the results of the first flight tests.

3.2.2 Aircraft Dynamic Model

As stated in [20], the aircraft dynamic model is given by the force equations,

u̇ = rv − qw +
qS

m
CX(δ[e,a,r])− g sin θ +

T

m

v̇ = pw − ru+
qS

m
CY (δ[e,a,r]) + g cos θ sinφ (3.1)

ẇ = qu− pv +
qS

m
CZ(δ[e,a,r]) + g cos θ cosφ

, torque equations,
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Table 3.1. IG500N unit characteristics

Sensor Characteristic Value
Unit attitude

Static accuracy (Pitch) ±0.5 deg
Static accuracy (Roll) ±0.5 deg
Static accuracy (Heading) ±1.0 deg
Dynamic accuracy ±1.0 deg rms

Accelerometers
Non-linearity < 0.2 % of full scale
Bias stability ±5 mg

Gyroscopes
Non-linearity < 0.1 % of full scale
Bias stability ±0.5 deg/s

Magnetometers
Non-linearity < 0.2 % of full scale
Bias stability ±0.5 mG

GPS Receiver
Horizontal accuracy 2.0 m
Vertical accuracy 5.0 m

ṗ− Ixz
Ix
ṙ =

qSb

Ix
Cl(δ[e,a,r])−

Iz − Iy
Ix

qr +
Ixz
Ix
qp

q̇ =
qSc

Iy
Cm(δ[e,a,r])−

Ix − Iz
Iy

pr − Ixz
Iy

(p2 − r2) + IpΩpr (3.2)

ṙ − Ixz
Iz
ṗ =

qSb

Iz
Cn(δ[e,a,r])−

Iy − Ix
Iz

pq − Ixz
Iz
qr − IpΩpq

and kinematic equations,

φ̇ = p+ tan θ(q sinφ+ r cosφ)

θ̇ = q cosφ− r sinφ (3.3)

ψ̇ =
q sinφ+ r cosφ

cos θ

In Eq. 3.1, Eq. 3.2 and Eq. 3.3 g is the gravitational field intensity near the
Earth’s surface, and m is the total mass of the system. Given the body reference
frame XbYbZb illustrated in Fig. 3.2, (u, v, w) are the components of the transla-
tional velocity, (p, q, r) the components of the angular velocity, (Ix, Iy, Iz) are the
moments of inertia, and Ixz is a product of inertia. The products of inertia Ixy
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and Iyz, related to the longitudinal plane (Yb = 0), are both null because of the
aircraft’s symmetry with respect to this plane. Ip is the rotating inertia of the
tandem motor and propeller, Ωp is its rotating speed, and T is the motor thrust.
S, b and c are the the Kadett 2400 aerodynamic surfaces, wingspan, and wing
chord respectively, and q is the dynamic pressure, which is a function of the air
density and airspeed relative to the local wind. The aerodynamic coefficients (AC)
CX , CY , CZ , Cl, Cm, and Cn, are functions of the system variables. In particu-
lar, the δ symbol in brackets represents its dependency on the deflections of the
control surfaces (δe, δa and δr are the elevators, ailerons, and rudder deflections
respectively). The aerodynamic coefficients will be presented in further detail in
Section 3.2.3. Finally, the aircraft orientation is represented by the Euler angles
of roll φ, pitch θ, and yaw ψ.

3.2.3 Aircraft Aerodynamic Model

In Klein and Morelli [20], detailed information on the aerodynamic coefficients
is provided. Firstly, if we assume a scenario in which the aircraft is in steady
flight, and only performs short maneuvers that begin from this state, we can
truncate the Taylor series expansion and retain only the first or second-order
terms. Furthermore, under the assumption of small perturbations, and based
on the symmetry of the vehicle, it can be assumed that: 1) the symmetrical
(longitudinal) variables u, w and q do not affect asymmetrical (lateral) force and
torques; and similarly, 2) asymmetric (lateral) variables v, p and r do not affect
the symmetrical (longitudinal) forces and torque. The aerodynamic coefficients
are given by the longitudinal aerodynamic models,

CD = CD0
+ CDVair

1
V0

∆Vair + CDα∆α+ CDα2 ∆α2

+CDq
c

2V0
q + CDδe∆δe

CL = CL0 + CLVair
1
V0

∆Vair + CLα∆α+ CLα2 ∆α2 + CLα̇
c

2V0
α̇

+CLq
c

2V0
q + CLδe∆δe

(3.4)

Cm = Cm0 + CmVair
1
V0

∆Vair + Cmα∆α+ Cmα2 ∆α2 + Cmα̇
c

2V0
α̇

+Cmq
c

2V0
q + Cmδe∆δe

and the lateral aerodynamic models,

CY =CY0
+ CYβ∆β + CYp

b

2V0
p+ CYr

b

2V0
r + CYδa∆δa + CYδr∆δr

Cl =Cl0 + Clβ∆β + Clp
b

2V0
p+ Clr

b

2V0
r + Clδa∆δa + Clδr∆δr (3.5)

Cn =Cn0 + Cnβ∆β + Cnp
b

2V0
p+ Cnr

b

2V0
r + Cnδa∆δa + Cnδr∆δr
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3.2 UAV Testbench

Figure 3.2. Aircraft body axes, aircraft wind axes, and wind relative velocity

where α and β are the angle of attack and of sideslip, respectively, and Vair is the
airspeed (see Fig. 3.2). In particular, V0 is airspeed measured at the steady state
of flight, before a maneuver begins. These variables are velocity dependent and
calculated as:

α = arctan

(
wair
uair

)
; and β = arcsin

(
vair
Vair

)
; (3.6)

where Vair = |Vair|. As denoted in Fig. 3.2, uair, vair and wair are the three
components of the aircraft velocity with respect to air. Under zero-wind conditions
(uair, vair, wair) = (u, v, w). Finally, CL and CD are the lift and drag coefficients
and their relation to CX and CZ is:

CL = −CZ cosα+ CX sinα; and CD = −CX cosα− CZ sinα; (3.7)

Thus, the aerodynamic model identification is based on extracting the constants
of the polynomials of Eq. (3.4) and (3.5) from the flight data and by means of the
dynamic model. Those constants are called non-dimensional stability and control
derivatives.
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3.3 Wind Estimation Technique

3.3.1 Methodology Outline

MAVs are generally unable to carry precise airspeed sensors that provide three-
dimensional data needed for correct identification of the aerodynamic model. In
the case of the platform presented in this paper, a GPS and an inertial-magnetic
unit (IMU) supply a reasonably good estimate of the velocities relative to the
Earth’s surface, but do not provide information about the velocities relative to
air. To improve the identified stability and control derivatives, a wind estimation
methodology is incorporated into the procedure of parameter identification. The
estimation methodology is based on the fact that, for small airplanes, which fly at
relatively low airspeeds, the smallest breeze may be a large percentage of the total
airspeed value, thus introducing a large error if not taken into account. Hence,
assuming the model structure is well defined, an optimization problem can be
posed in which a three-component solution (wind) is searched to minimize the
error of a particular aerodynamic coefficient model.

It will be shown in the following sections that longitudinal or lateral experiments
can be used to obtain all the coefficient models. This means that a total number
of three models per experiment can be derived. Therefore, the aforementioned
optimization becomes a particular multi-objective optimization problem in which
a unique solution should be obtained if the actual wind is found. In practice, a
cloud of solutions close to the real wind will be obtained by the optimizer.

3.3.2 Multi-objective Optimization

In engineering problems, it is a common issue to deal with situations that re-
quire the optimization of multiple objectives that include physical constraints,
operational constraints, and non-linearities. Due to this fact, addressing these
problems from the standpoint of classical optimization is insufficient [38]. The
multi-objective optimization problem (MOP) can be stated as:

min
µ∈R

J(µ) = [J1(µ), J2(µ), . . . , Jm(µ)] (3.8)

where µ is the solution that minimizes the m cost functions Ji at the same time.
Generally, it will not be possible to find a solution that satisfies all requirements at
once, so the optimizer will have to provide the set of solutions that are not improved
by any other set in all the objectives simultaneously. That set of solutions is known
as the Pareto set Θ∗, and their values in the objective space create the Pareto front
J∗p .
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Figure 3.3. Multi-objective Optimization Design (MOOD) [45]

Definition 3. (Pareto Optimality [29]): An objective vector J(µ1) is Pareto op-
timal if there is no other objective vector J(µ2) such that Ji(µ2) ≤ Ji(µ1) for all
i ∈ [1, 2, . . . ,m] and Jj(µ2) < Jj(µ1) for at least one j, j ∈ [1, 2, . . . ,m].

Definition 4. (Strict Dominance [29]): An objective vector J(µ1) is dominated
by another objective vector J(µ2) if Ji(µ2) < Ji(µ1) for all i ∈ [1, 2, . . . ,m].

Definition 5. (Dominance [29]): An objective vector J(µ1) dominates another
vector J(µ2) if J(µ1) is not worse than J(µ2) in all objectives and is better in at
least one objective; that is J(µ1) ≺ J(µ2).

Figure 3.3 illustrates how MO is employed as a design methodology. Three stages
comprise the procedure: MOP definition; a multi-objective optimization process;
and decision making [1]. The technique must be viewed as a holistic process in
which equal importance is assigned to each stage so that the design process is
successfully driven [3]. Hence, objective and decision spaces and their constraints
must be well defined in the MOP definition stage so that the correct problem is
optimized in the optimization process. Finally, a deep analysis should be carried
out (once an approximation to the Pareto front is available) to detect the most
convenient solution in the decision making stage. This same topology is followed
in the wind estimation process.
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MOP Definition

An aircraft is a complex system with multiple control inputs that simultaneously
excite multiple state variables. As already mentioned, the aerodynamic coefficients
depend on the inputs and state variables. If an experiment is performed in which
a longitudinal input is altered by collecting the longitudinal variable values then
any coefficient of this type can be modeled. Thus, elevator deflection and motor
thrust variations (which generate changes in the longitudinal variables) can be
used to model any longitudinal coefficient and, in the same way, ailerons and
rudder deflections can be used to model lateral coefficients. Experiments in which
elevators or motors are moved from their setpoints will be denoted as longitudinal
experiments, and similarly, experiments in which the tail rudder or ailerons are
moved from their setpoints will be denoted as lateral experiments.

For the purpose of the wind estimation problem as proposed here, the methodology
is reinforced by the fact that at least three models can be extracted from the
same data set. Indeed, if the correct wind is estimated, estimation errors for all
coefficient models will decrease simultaneously. From a different standpoint, if a
solution in the wind components that minimizes the error of the three coefficient
models at the same time is found, it is probable that this solution is the actual
wind experienced during the flight experiment.

Short time experiments are performed and utilized in the wind estimation and
identification process. Test duration is an important question because it directly
affects the wind estimation process. Bidirectional input-step experiments were
made with the minimum time required so that the assumption of constant wind
remains reasonable. Three constant wind components are then used as an approx-
imation of the wind along each experiment. Three objectives are defined, one per
aerodynamic coefficient model. If the MSE is used as the performance index of
the identification process, three cost functions can be defined for each experiment.
The three longitudinal cost functions are:

J1(W) =
1

N

N∑
h=1

[
CD(th,W, · · · )− ĈD(th,W, · · · )

]2
J2(W) =

1

N

N∑
h=1

[
CL(th,W, · · · )− ĈL(th,W, · · · )

]2
(3.9)

J3(W) =
1

N

N∑
h=1

[
Cm(th,W, · · · )− Ĉm(th,W, · · · )

]2
Similarly, the lateral cost functions are:
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J1(W) =
1

N

N∑
h=1

[
CY (th,W, · · · )− ĈY (th,W, · · · )

]2
J2(W) =

1

N

N∑
h=1

[
Cl(th,W, · · · )− Ĉl(th,W, · · · )

]2
(3.10)

J3(W) =
1

N

N∑
h=1

[
Cn(th,W, · · · )− Ĉn(th,W, · · · )

]2
In Eq. 3.9 and Eq. 3.10 ĈD, ĈL, Ĉm, ĈY , Ĉl, and Ĉn are the values that the
identified coefficient models provide for CD, CL, Cm, CY , Cl, and Cn, respectively.
These cost functions constitute the objective space while the three possible wind
components define the decision space. In this paper, the wind speed is expressed
in spherical coordinates with the vector magnitude |W| as the radius, and the two
rotation angles, elevation, denoted by ζ, and azimuth, denoted by ξ; giving the
triple W = (|W|, ζ, ξ). With the aim of unequivocally defining the decision space,
the radius, the elevation, and the azimuth should be enclosed into three intervals
consistent with the cost functions domain. The space definition of this interval in
this paper is:

D(J) = {(|W|, ζ, ξ) : |W| ∈ [0,+∞[ , ζ ∈ [−π/2, π/2] , ξ ∈ [0, 2π[} (3.11)

Finally, constraints may be included in the objectives, as well as in the decision
variables. In this work, constraints have been introduced only in the decision
space in order to narrow the space of possible solutions. Such a narrowing has
been performed based on knowledge about the maximum magnitude of the wind
speed during the day of the flight experiments.

Multi-objective Optimization Process

Extensive literature exists about how multi-objective optimization problems can be
solved. Some of the classical strategies to approximate the Pareto set include: nor-
mal constraint method [26, 44], normal boundary intersection (NBI) method [9],
epsilon constraint techniques [29] and physical programming [27]. Multi-objective
evolutionary algorithms (MOEA) have been used to approximate a Pareto set [58],
due to their flexibility when evolving an entire population towards the Pareto front.
A comprehensive review of the early stages of MOEAs is contained in [6]. There are
several popular evolutionary and nature-inspired techniques used by MOEAs. The
most popular techniques include genetic algorithms (GA) [47, 22], particle swarm
optimization (PSO) [19, 7], and differential evolution (DE) [48, 28, 10]. Neverthe-
less, evolutionary techniques such as artificial bee colony (ABC) [18] or ant colony
optimization (ACO) [12] algorithms are becoming popular. No evolutionary tech-
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nique is better than the others, since all have drawbacks and advantages. These
evolutionary/nature-inspired techniques require mechanisms to deal with evolu-
tionary multi-objective optimization (EMO) since they were originally used for
single-objective optimization. While the dominance criterion (definition 5) could
be used to evolve the population towards a Pareto front, it could be insufficient
to achieve a minimum degree of satisfaction in other desirable characteristics for
a MOEA (diversity, for instance)[36].

The authors of this paper have taken part in the development of a MOEA called
the spMODE algorithm [40, 39]. It is a heuristic algorithm that makes use of
the convergence properties of evolution to approximate the Pareto front. It uses
physical programming to incorporate the designer’s preferences, size control of
the approximated Pareto front, as well as spherical pruning to improve spread-
ing. Hence it is a MOEA with mechanisms to improve and deal with diversity,
pertinency, many-objective optimization instances, and constrained optimization
instances. Although spMODE has been chosen to solve this MOP, any other
multi-objective optimizer could be used for this purpose.

Since an evolution algorithm is used, multiple wind candidates are proposed in each
generation by the optimizer and all are then evaluated. Figure 3.4 illustrates the
routine followed by the optimizer. Starting from a given wind-speed, the airspeed
denoted by Vair is calculated as:

Vair = VGPS −W (3.12)

where VGPS denotes the aircraft velocity relative to the Earth’s surface. Note that
q is dependent on Vair. Once the aircraft velocity relative to air is available, the
airspeed dependent variables on the right side of the aircraft aerodynamic model
(in Eqs. (3.4) and (3.5)) can be obtained. Furthermore, as the aerodynamic
coefficients cannot be measured directly, dynamic expressions must be used for
the purpose of estimating their values. These relationships are given by [20]:

CX =
1

qS
(max − T )

CY =
may
qS

CZ =
maz
qS

Cl =
1

qSb
[Ixṗ− Ixz (pq + ṙ) + (Iz − Iy) qr] (3.13)

Cm =
1

qSc

[
Iy q̇ + (Ix − Iz) pr + Ixz

(
p2 − r2

)
− IpΩpr

]
Cn =

1

qSb
[Iz ṙ − Ixz (ṗ− qr) + (Iy − Ix) pq + IpΩpq]
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Note that q is present in each relationship of Eq.(3.13). This means that the
aerodynamic coefficients are directly dependent on airspeed and thus, on the wind
during data recollection. Due to this fact, recalculation of the aerodynamic coef-
ficients is carried out in each evaluation performed by the MOEA.

The next step is the cost calculation. After calculating the airspeed dependent
variables, the aerodynamic coefficients and the regressors are scaled according to
their standard deviations. The scaling expression is:

X∗ =
X −X0√
N∆σ(X)

(3.14)

where X represents any of those airspeed dependent variables, X∗ is its value
after being scaled by applying Eq. (3.14), and N and σ(X) are the number of
samples and the standard deviation of X during the experiment, respectively.
This strategy is often followed in regression analysis of a multivariate distribution
to overcome the problem of variances of the residuals changing at different input
variable values [8]. Since we are recalculating the estimated variables Ci at each
iteration and they are directly proportional to V −2

air (given that q = 1/2ρV 2
air), this

scaling makes the estimation error independent of the velocity’s magnitude. After
scaling, the least-squares method is applied to obtain three longitudinal auxiliary
models,

C∗D =CDV ∗V
∗ + CDα∗α

∗ + CD(α2)∗
(α2)∗ + CDq∗ q

∗ + CDδ∗e δ
∗
e

C∗L =CLV ∗V
∗ + CLα∗α

∗ + CL(α2)∗
(α2)∗ + CLα̇∗ α̇

∗ + CLq∗ q
∗ + CLδ∗e δ

∗
e (3.15)

C∗m =CmV ∗V
∗ + Cmα∗α

∗ + Cm(α2)∗
(α2)∗ + Cmα̇∗ α̇

∗ + Cmq∗ q
∗ + Cmδ∗e δ

∗
e

or three lateral auxiliary models

C∗Y =CYβ∗β
∗ + CYp∗p

∗ + CYr∗ r
∗ + CYδ∗a δ

∗
a + CYδ∗r δ

∗
r

C∗l =Clβ∗β
∗ + Clp∗p

∗ + Clr∗ r
∗ + Clδ∗a δ

∗
a + Clδ∗r δ

∗
r (3.16)

C∗n =Cnβ∗β
∗ + Cnp∗p

∗ + Cnr∗ r
∗ + Cnδ∗a δ

∗
a + Cnδ∗r δ

∗
r

Note that these models are utilized to acquire a value of the fitting goodness and
do not represent the actual behavior of the aerodynamic coefficients. Identify-
ing the real models is accomplished after estimating the wind and correcting the
experimental data.

Once these auxiliary models are available, the MSE is computed and with it,
the value of three cost functions. Finally, if the currently evaluated wind is a
non-dominated solution, it is added as part of the Pareto front approximation.
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Otherwise, it is discarded as a solution, though used as valuable information in
the evolution process (see Fig. 3.4).

Decision Making Stage

A unique wind must be chosen. Acknowledging that this technique is not being
used for design but for estimating, a best solution does exist that is factually
and independent of the designer’s preferences. The question is, does the estimate
accurately represent the wind? To address that key question, the following two-
step validation process is proposed:

1. Firstly, a 3D representation of the whole set of wind vectors (set of solutions
given by the optimizer) is obtained. If that set is concentrated around a
given point, then this is likely a good estimation of the wind speed. On the
contrary, if the set of solutions is scattered or concentrated at multiple points,
then there is not a unique global minimum and, therefore, the estimation
process was unsuccessful.

2. Secondly, if the first step led to the conclusion of a successful estimation,
this fact may still be refuted or confirmed with a set of validation data. The
way to proceed is:

(a) Perform a least-squares identification with two sets of data. This will
result in two models for each of the aerodynamic coefficients. Note that
the estimated wind is not yet used.

(b) Perform a cross validation for each of the models obtained in 2a. This
is, taking a model identified with set 1, compute its MSE for set 2 and
vice versa.

(c) Correct each set of data with the estimated wind, recalculating airspeed
and all airspeed dependent variables accordingly.

(d) As in 2a, use the least-squares method to identify the aerodynamic
coefficient models that best fit each set of treated data. Note that
unlike step 2a, this time the estimated wind has been used to correct
the data.

(e) Perform a cross validation of the models identified in 2d, to obtain
their fitting errors. If validation errors are now smaller than the ones
obtained in step 2b, then the wind speeds were successfully estimated.
Otherwise, the minimums found by the algorithm are not the wind
speeds acting during the experiments.
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Figure 3.4. Wind estimation process
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3.4 Aerodynamic Model Identification

Amethodology based on least-squares is commonly used for modeling aerodynamic
coefficients. When multiple inputs excite the variables of one model, considera-
tions such as coordination, correlation, and relative effectiveness appear. In [21]
the authors give detailed information about how to design experiments for aero-
dynamic model identification with multiple inputs involved. Optimally designed
time-skewed doublet inputs seem to be a good option in these cases. However,
conducting optimal experiments becomes impossible for a pilot controlling the air-
craft from earth, as in the case of MAVs. A problem of experiment effectiveness
appears because when time-skewed doublet inputs are used, the duration of each
experiment determines its weight in the optimization process. For this reason,
a multi-objective optimization is proposed here for the aerodynamic model iden-
tification of an MAV. Multi-objective techniques applied to model identification
have achieved very good results in many cases, as shown in [42, 46, 57]. When
the optimization problem turns out to be non-convex, there exist solutions in the
Pareto set that remain unreachable for a weighted-sum method. Figure 3.5 shows
a non-convex Pareto front and how the straight lines resulting from the differ-
ent combination of objectives weights are unable to reach part of the Pareto front.
Thus, optimizing objectives separately present a great advantage when non-convex
problems must be solved. Several additional advantages derive from an MO per-
spective applied to this particular problem. Firstly, the weights of each type of
experiment can be determined a posteriori. Secondly, flight conditions do not
depend on the previous experiment. Thirdly, metrics other than mean squared
error (MSE) can be used in the optimization. And lastly, the duration of the ex-
periments is reduced. The latter favors our wind estimation process because the
constant wind assumption weakens as the duration of the experiments increase.

Thus, the second part of this work is the estimation of the aerodynamic model
that describes how the MAV reacts to changes in control inputs. As mentioned,
an accurate MAV model cannot be obtained without taking wind disturbances
into account. For that purpose a process of wind estimation was detailed in the
previous section and now an aerodynamic model identification that makes use
of the wind information is needed. Once information about the estimated wind
acting during tests is available, variables affected by the relative airspeed may be
corrected. The relative velocity vector is computed in first place, and then the
angle of attack α and the side-slip angle β are estimated by means of Eq. (3.6).

As stated, longitudinal and lateral experiments, independently excite different
sets of aerodynamic coefficients. Four different experiments can be performed to
excite the longitudinal and lateral aerodynamic coefficients. Elevator deflections
and motor thrust variations, generate changes in the longitudinal variables and,
aileron and rudder deflections generate changes in the lateral variables. Therefore,
longitudinal and lateral coefficient models can be identified from different type of
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3.4 Aerodynamic Model Identification

Figure 3.5. Pareto front approximation by weighted-sum technique

experiments. As an example, if a CD model is obtained by optimizing an elevator
deflection test, the model performance on motor experiment data will decrease,
and vice versa. So, an identification process that takes both experiments into
account simultaneously is a bi-objective optimization problem.

Figure 3.6 has been included to illustrate the bi-objective optimization concept.
If the MSE is again used as the performance index of the identification process,
two cost functions can be defined for each aerodynamic coefficient. The two cost
functions used for obtaining any of the longitudinal models are:

J1 =
1

Nelevator

Nelevator∑
i=1

[
Cj(ti)− Ĉj(ti)

]2
∀j ∈ {D,L,m} (3.17)

J2 =
1

Nmotor

Nmotor∑
i=1

[
Cj(ti)− Ĉj(ti)

]2
∀j ∈ {D,L,m} (3.18)

where Ĉj(ti) is the model approximation of the Cj value at the instant ti and
Nelevator andNmotor are the number of samples of each type of experiment. Similar
cost functions can be defined for the three lateral models.

Then, if Cl is to be modeled using aileron and rudder experiments, the identifica-
tion problem from this MO point of view should be stated as
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Figure 3.6. Bi-objective optimization identification concept
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3.5 Simulation Results

min
µ∈R6

(
1

Nailerons

Nailerons∑
i=1

[
Cl(ti)− Ĉl(ti, µ)

]2
,

1

Nrudder

Nrudder∑
i=1

[
Cl(ti)− Ĉl(ti, µ)

]2)
(3.19)

where µ =
[
Cl0 , Clβ , Clp , Clr , Clδa , Clδr

]
. A total of six full optimization processes

are required to obtain the complete set of solutions for the aerodynamic model. A
decision making stage will complete the methodology. In that stage, exhaustive
analysis of the aircraft behavior in the different tests must be made to determine
the best approximation for each coefficient model.

3.5 Simulation Results

In [49] an initial approach on the identification of the Kadett 2400 aircraft model
was performed. A MOOD strategy was also employed to achieve the aerodynamic
stability and control derivatives. However, no wind estimation was made for com-
pensating the sampled data. That work represents our starting point for this
paper. Particularly, the models obtained in [49] are employed here to perform the
simulations.

A simulation environment has been created as a validation tool in which the air-
craft model can be subjected to different winds. Those winds are always known
by the user, but the measured variables are GPS-like, in the sense that they refer
to the Earth’s surface and not to the air. In this way, if the estimated wind is
similar to the one subjected to the model, it may be concluded that the technique
successfully reached its objective. The spMODE algorithm is being employed. The
decision space has been set as indicated in Eq. (3.11) but with the particularity
of a maximum wind magnitude of 20 m/s. Different wind directions have been
tested with similar results.

3.5.1 Constant Wind Simulations

In this first simulation, longitudinal and lateral experiments were conducted in
which actuators were used independently to excite the system. A constant wind
of 5 m/s with an elevation of −20 ◦ and a direction from North to South (i.e.
180 ◦) was incorporated as the true wind. After the optimizer has completed the
maximum number of generations it provides a set of solutions in approximation
to the Pareto set (Θ∗). Table 3.2 shows some values extracted from the set of
solutions. First column in Table 3.2 gives the mean average of the set of solutions
obtained for each experiment. It is a three-component vector that represents the
wind vector W = (|W|, ζ, ξ) where |W| is expressed in m/s and ζ and ξ are
expressed in rad. Values in the second column express the standard deviations of
the whole set. The third and fourth columns give the absolute and relative errors
of each component of the wind estimate.
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Table 3.2. Simulation results for constant wind

Test type W mean
W standard
deviation

W absolute
error

W relative
error m/s

rad
rad

  m/s
rad
rad

  m/s
rad
rad

  %
%
%


Elevators test

 4.998988

−0.353133

3.141773


 0.004948

0.000690

0.002964


 0.001012

0.004067

0.000181


 0.020242

1.165153

0.005754


Motor test

 4.947027

−0.358709

3.140767


 0.031492

0.024524

0.012347


 0.052973

0.009643

0.000826


 1.059466

2.762445

0.026283


Ailerons test

 4.997899

−0.349612

3.140767


 0.007045

0.002230

0.000613


 0.002101

0.000546

0.000826


 0.042013

0.156511

0.026277


Rudder test

 5.005375

−0.351246

3.142247


 0.001417

0.000841

0.000307


 0.005375

0.002181

0.000654


 0.107498

0.624692

0.020826



It can be seen that the estimation process converges to the actual wind with little
error. It is interesting to see how, even for a constant wind and a known structure
of the model, that estimated winds are not unique but a cloud of points very close
to the real one. Two reasons may lead to this situation. First, the optimization
problem has not been fully converged to the optimum value. Second, there are
other (very similar) winds that explain discrepancies in the identification process
as well as the real one. An observability issue can explain these discrepancies. This
issue is fully dependent on the type of experiment used for the estimation. As an
example, in an elevator test in which the aircraft does not change yaw orientation,
the optimizer does not observe how the wind azimuth affects the identification
errors. As a result, there will be a whole set of winds with different azimuth angles
explaining, as well as the real one, those identification errors in the aerodynamic
coefficients. As will be later seen, this situation leads to a poor estimation of the
wind in more realistic simulations in the case of longitudinal models.

3.5.2 Variable Wind Simulations

A second set of simulations were conducted in which the wind was modeled as
a sinusoidal signal of

[
5 + sin( 2π

10 t)
]
m/s, with a band limited white noise added

to the azimuth and elevation angles. The nominal elevation ζ was again −20 ◦

while two different azimuth angles ξ were simulated: 180 ◦ and 270 ◦. In this case,
a cloud of solutions around the nominal wind was expected, since there was no
constant wind during the experiments.
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3.5 Simulation Results

Table 3.3 shows results for the north wind direction and Table 3.4 shows results
for the east wind. Both tables include the same type of values shown in Table 3.2
but with different results. First, although the estimation errors were higher, the
procedure is capable of estimating the simulated wind when lateral experiments
were carried out. It is interesting to see how the error in the rudder test is higher
than that observed in the ailerons test. This can also be explained by the variance
in observability depending on the type of experiment. When a deflection in the
ailerons is applied, the aircraft orientation relative to the wind vector covers a
sufficiently wide range of values. On the contrary, when deflections are applied
to the tail rudder, it is mostly the heading angle that changes, leading to a less
observable experiment in terms of wind. Following the same reasoning, the first
two rows of Table 3.3 and Table 3.4 represent the set of solutions proposed by the
algorithm when the longitudinal tests are used in the procedure. The longitudinal
experiments do not lead to a good estimation of the wind for any of the tested wind
directions. Not only were the errors in the estimation higher, but the standard
deviation of each set of solutions was also wider. To support this statement Fig.
3.7 has been included. As the graph shows, the real wind is among the cloud
of solutions obtained by the MOEA: however, the cloud is so spread out that a
reliable wind estimation cannot be extracted. Again, this means that there is a
whole set of winds with explaining, as well as the real one, those identification
errors in the aerodynamic coefficients. By comparing Table 3.3 and Table 3.4
we can see that similar results were obtained for different wind azimuth angles.
Hence, we can conclude that the longitudinal models suffer an observability issue
in terms of wind estimation. This issue is also present in the rudder experiments
but to a lesser degree. Therefore, the longitudinal experiments carried out here
are inadequate for wind estimation purposes.

The implementation of experiments in which different actuators are excited simul-
taneously is proposed as a possible solution. Such a test could be used for wind
estimation as well as for the adjustment of all the stability and control derivatives.
As a proof of concept, this type of test has been performed in simulation.

Figure 3.8 illustrates how the elevators, ailerons, and rudder are used during the
experiment. Although this approach for applying input steps is not common, it
is necessary due to time requirements. Time-skewed doublets could also be used
here, but the authors want to highlight that the assumption of constant wind
weakens as the duration of the experiments increase. In both cases, if the wind
estimation is successful, it will be possible to use this information to correct the
aerodynamic variables from the data and then accomplish an identification of both
lateral and longitudinal models. The last row in Table 3.3 and Table 3.4 shows
the wind estimation obtained for the same wind conditions as the previous cases.
As can be observed, the wind estimation is accurately achieved this time.

Finally, Fig. 3.9 and Fig. 3.10 show the model identification results after the wind
correction. When performing a simulation, models were already being used for
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3.5 Simulation Results

Figure 3.9. Estimated lateral aerodynamic coefficients with simulation of multiple actu-
ators
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Figure 3.10. Estimated longitudinal aerodynamic coefficients with simulation of multiple
actuators
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Table 3.3. Simulation results for variable wind

Test type W mean
W standard
deviation

W absolute
error

W relative
error m/s

rad
rad

  m/s
rad
rad

  m/s
rad
rad

  %
%
%


Elevators test

 7.966485

−0.06888

3.406746


 2.96925

0.300134

1.105017


 2.966485

0.280186

0.265153


 59.329696

80.267362

8.440095


Motor test

 17.247653

−0.554826

2.807634


 3.462794

0.663819

2.150964


 12.247653

0.20576

0.333959


 244.953066

58.945868

10.630239


Ailerons test

 5.268963

−0.347613

3.038388


 0.011684

0.002634

0.022588


 0.268963

0.001453

0.103204


 5.379259

0.416195

3.285098


Rudder test

 5.521515

−0.296587

2.720627


 0.033722

0.008135

0.021629


 0.521515

0.052479

0.420966


 10.430297

15.034222

13.399754


Multiple

actuators test

 5.106339

−0.393798

2.973994


 0.025308

0.00435

0.010241


 0.106339

0.044732

0.167599


 2.126776

12.814694

5.334845



each aerodynamic coefficient. Therefore, a distinction can be made between the
actual value of the aerodynamic coefficient measured during simulation (contin-
uous line) and the value obtained for each aerodynamic coefficient by taking the
corrected regressors and using the simulation model to make a calculation (dashed
line). The reader should note that these two values are only equal if the wind is
correctly estimated and hence the regressors are perfectly corrected. The third
variable depicted in Fig. 3.9 and Fig. 3.10 is the value of the coefficient that the
newly identified model proposes with the corrected regressors (dotted line). It can
be seen that all three are nearly superimposed, meaning a successful wind estima-
tion and adjustment of the model parameters. Results show that both objectives
can be accomplished simultaneously with this type of experiment.

3.6 Experimental Results

3.6.1 Flight Tests

An aircraft which is maintaining constant heading and altitude, at a constant
speed and with level wings (zero roll angle), is considered to be in steady flight.
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Table 3.4. Simulation results for variable wind

Test type W mean
W standard
deviation

W absolute
error

W relative
error m/s

rad
rad

  m/s
rad
rad

  m/s
rad
rad

  %
%
%


Elevators test

 4.344096

−0.521659

4.314185


 1.408924

0.395895

1.187131


 0.655904

0.172594

0.398204


 13.118077

49.444434

8.450145


Motor test

 11.157674

−0.07673

3.53739


 4.040244

0.350458

2.706765


 6.157674

0.272336

1.174999


 123.153488

78.018598

24.934243


Ailerons test

 5.129344

−0.446838

4.461761


 0.030426

0.005952

0.002271


 0.129344

0.097773

0.250628


 2.586887

28.009761

5.318495


Rudder test

 4.74749

−0.304223

3.917106


 0.83811

0.075543

0.110649


 0.25251

0.044843

0.795283


 5.050198

12.846522

16.87643


Multiple

actuators test

 5.08521

−0.275279

4.438785


 0.065749

0.007701

0.005862


 0.08521

0.073787

0.273604


 1.704192

21.138398

5.806064



In the absence of disturbances, the pilot does not need to make any corrections to
maintain this steady state.

To obtain data that can be employed in adjusting the aerodynamic parameters,
step-input experiments have been performed. Thus, starting always from a steady-
state flight such as the one described in the previous paragraph, each system
input was manipulated separately and, after manipulation, the aircraft was left to
evolve naturally, until the pilot deemed it appropriate to recover the aircraft. Each
experiment was performed twice to obtain different data sets for identification and
validation. It should be noted that, in the absence of a sensor capable of measuring
airspeed, all maneuvers described below were carried out against the wind. This
restriction was imposed on the pilot because of two reasons. First, to reduce
variability between the flight tests. And second, due to the better wind estimation
results obtained during the simulation phase.

The flight plan provided to the pilot before beginning the experiments was:

1. Stable flight:

(a) Adjust ailerons and rudder and level wings.

(b) Set the motor load around 50%.
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(c) Adjust elevators until the altitude remained constant without touching
the control stick.

2. Elevators up and down to create a positive plus negative step sequence.

3. Repeat step 1.

4. Ailerons side to side in the appropriate frequency to avoid extreme rotations.
First in one direction and then in the opposite direction.

5. Repeat step 1.

6. Tail rudder side to side. First in one direction and then in the opposite
direction.

7. Repeat step 1.

8. Positive and negative steps in motor load. Sequence: 50%-100%-50%-0%-
50%

9. Repeat the entire flight plan a second time.

Figure 3.11 and Fig. 3.12 show the evolution of the longitudinal and lateral vari-
ables during the elevator and aileron excitation tests, respectively. As shown,
when a longitudinal input is activated, the remaining longitudinal variables are
also activated, which finally produces variations in the symmetrical aerodynamic
coefficients. This same behavior can be observed for the asymmetrical variables.
All these variations can be collected and used to estimate the aerodynamic stability
and control derivatives. As a final remark, Fig. 3.11 and Fig. 3.12 show the values
p̂ = b

2V0
p, q̂ = c̄

2V0
p, r̂ = b

2V0
r, V̂ = 1

V0
∆Vair, and ˆ̇α = c̄

2V0
α̇. These are the values

that multiply the stability and control derivatives in the aerodynamic coefficient
models and, therefore, the regressors used in the identification procedure.

3.6.2 Wind Estimation Results

Separate step-input flight tests were performed to estimate the aerodynamic coef-
ficient models. No experiment was carried out in which multiple control surfaces
were employed at the same time. Thus, only lateral experiments were used in the
wind estimation. For this reason, the information obtained from those tests is
used to correct the longitudinal experiments as well.

Table 3.5 shows the set of solutions that the multi-objective optimizer converges
to during the ailerons and rudder tests, respectively. Although wind direction and
elevation vary slightly among sets, similar winds are obtained for every experiment.
A population density criterion has been used in the final selection of one of the
winds among all the solutions set. A sphere of radius R = max {dij}/20 m/s
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Figure 3.11. Flight Test. Longitudinal variables evolution in an elevators test
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Figure 3.12. Flight Test. Lateral variables evolution in an ailerons test
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around each solution has been placed for that purpose. The solution whose sphere
contained the largest number of enclosed points was selected. That solution has
been included in the third column of Table 3.5.

Table 3.5. Wind estimation experimental results

Test type W mean
W standard
deviation Chosen W[ m/s

rad
rad

] [ m/s
rad
rad

] [ m/s
rad
rad

]

Ailerons test 1

 8.490372

−0.216576

5.437922


 0.906376

0.211093

0.027067


 8.283345

−0.056781

5.449877


Rudder test 1

 9.811319

−1.041670

5.352327


 1.789285

0.182896

0.105825


 10.133260

−1.390814

5.992735


Ailerons test 2

 8.133613

−1.071944

5.567295


 0.443366

0.200113

0.033953


 8.133613

−1.071944

5.567295


Rudder test 2

 10.299536

−0.869243

5.465950


 1.801400

0.168777

0.122687


 11.454439

−1.249881

5.894774



After selection, the MSE was computed in a cross validation analysis. Fewer
quadratic errors were found for such validations than before correcting data. As
an example, Fig. 3.13 shows the identification and validation mean squared errors
found for the coefficient Cn with two different sets of data. Four groups of two
bars are shown in Fig. 3.13. Given that there are two sets of data, each bar in a
group represents the model identified using one of those two sets. In particular,
the striped bar always represents the error for the model identified with Set 1, and
the dotted bar the error for the model obtained with Set 2. Hence, the two groups
on the right show the quadratic error found in the identification and the cross
validation before the data was corrected with wind information. The two groups
on the left give quadratic errors for identification and cross validation, once wind
information was incorporated. It can be observed that quadratic errors have been
reduced significantly (at least three times lower).
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Figure 3.13. Cn model mean squared errors: cross validation before and after wind
correction

3.6.3 Identification Results

Once information about the wind acting during the flight tests is available, any
airspeed-dependent variable may be corrected. With all the experimental data
corrected, the process of finding the stability and control derivatives for each
aerodynamic model began. Figure 3.14 and Fig. 3.15 show the Pareto fronts
constituted by the possible models found by the algorithm for each aerodynamic
coefficient (hexagonal stars front). As can be seen, the better an experiment is
fitted by a model, the more errors it obtains for a second test. This is why the
person in charge of identifying the aircraft model cannot be satisfied after just one
test, but should use the model with data from various experiments.

Moreover, testing experiments in a multi-objective optimization, instead of com-
bining them in a mono-objective minimization, gives the main following advan-
tages:

• Optimizing objectives separately results in solutions that could not be reach-
able if other optimization techniques are used (see Fig. 3.5).

• Using multi-objective optimization involves the selection of a solution among
others, which gives the designer the power to define the importance of each
experiment a posteriori, basing that definition on the requirements and the
observed performance.

• The resultant Pareto front shows how good the different models are for each
experiment. Thus, the designer may obtain an idea of how good the collected
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data is and so decide which are the requirements that should be satisfied in
the final model.

• Flight conditions do not depend on the previous experiment.

• Duration of the experiments is the minimum required. This improves relia-
bility on the wind estimation procedure.

• Metrics other than MSE can be used in the optimization.

• It is possible to add as many objectives as desired in the identification pro-
cess. This means that comparing tests of the same type (e.g. two aileron
tests and two rudder tests) is also possible, and this may prove to be a good
practice for reducing variability.

For example, if the Cl coefficient is considered, it can be observed that the aileron
tests produce a much better approximation than the rudder tests (see Fig. 3.14).
This fact, which can be deduced from the mean squared error values, is also logical,
since the ailerons introduce a moment about the roll axis. In this case, the designer
should probably prefer models that fit better this type of experiment over models
that do a better job with rudder tests.

With the intention of comparing solutions before and after wind correction, a sec-
ond Pareto front was added to Fig. 3.14 and Fig. 3.15(triangles front). This front
is the result of evaluating the Pareto set of solutions found by the MO algorithm
when non-corrected flight data is used in the identification. As an interesting ob-
servation, Fig. 3.14 and Fig.3.15 illustrate that each Pareto front obtained with
non-corrected flight data (dots front) is dominated by the corresponding Pareto
front obtained with corrected flight data (hexagonal stars front). This means that
the MSE of every model becomes smaller after correcting the flight data with the
estimated wind.

The MOP ends with a multi-criteria decision making (MCDM) stage. In this
case, a solution among the Pareto set will give us the final model parameters for
each aerodynamic coefficient. Decision making is commonly a difficult task when
many objectives and decision variables are involved. It is widely accepted that
visualization tools are valuable and provide a meaningful method to analyze the
Pareto front and take decisions [25]. Possibly the most common choices for Pareto
front visualization and analysis are: scatter diagrams, parallel coordinates [15],
and level diagrams [2, 37]. In this work a level diagrams tool has been used to
analyze Pareto fronts and Pareto sets and to decide a particular model for each
coefficient. The final decision was made by taking into account the distance to
the ideal solution, generated from the minimum values for each objective in the
calculated Pareto front. This distance is a widely used metric in MCDM because
it correctly represents the existing trade off among objectives. The squares on
Fig. 3.14 are the selected models for each of the lateral aerodynamic coefficients.
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Those models represent a compromise between a situation in which the ailerons
deflection is modified and a situation in which that modification is suffered by the
tail rudder. This fact can be checked in Fig. 3.16. The graph shows the approx-
imation given by the chosen model with validation data. Two more models from
the Pareto set (circles on Fig. 3.14) have also been included in Fig. 3.16 (edge
model 1 and edge model 2). Those two models have been named edge models
here, and represent the best approximation in terms of MSE for the ailerons and
rudder experiments separately (see [50]). The chosen MO solution (dotted curve)
represents a good intermediate approximation in both situations. Finally, Table
3.6 presents validation results of every identified aerodynamic coefficient. Longitu-
dinal coefficients have been subjected to validation data obtained in longitudinal
experiments and, equally, lateral coefficients have been evaluated with validation
sets obtained in lateral experiments. MSE presents similar values in identification
and validation and so the identification may be taken as a success.

Table 3.6. Validation MSE

Aerodynamic
coefficient

Elevators
experiment

Motor
experiment

Ailerons
experiment

Rudder
experiment

CD 0.000507759 0.000663917 - -
CL 0.0058858 0.00145734 - -
CY - - 0.00166596 0.00122309

Cl - - 1.65789e− 05 3.40064e− 06

Cm 0.000326971 0.000167846 - -
Cn - - 3.21581e− 05 2.70232e− 05

3.7 Conclusions

A two-step identification technique for aerodynamic models of micro-air vehicles
(MAV) in the absence of air-data sensors is presented. In the first step, a multi-
objective optimization procedure is proposed to estimate wind during the flight
experiments. A simulation environment that includes a MAV model that can
be subjected to constant and variable winds was used to confirm the estimate
process. Conditions in different flight tests in which one or more system inputs
were excited were simulated, and after acquiring any necessary data from the
simulations, the wind estimation technique was applied. Several conclusions can be
extracted from these simulations. Firstly, under ideal conditions, wind estimation
is successfully achieved in any experiment. Secondly, it can be concluded that
only lateral experiments offer enough information to enable wind estimation under
realistic conditions. Aircraft orientation relative to the wind azimuth does not
vary during longitudinal experiments. Therefore, wind observability is significantly
reduced. The same reason is reflected in the improved performance detected during
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Figure 3.14. MO Model Identification: control and stability derivatives for Lateral
Aerodynamic Models
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Figure 3.16. Cl coefficient validation results

the aileron experiments when compared with rudder experiments. Observability
is improved when a wider range of orientation values are covered. For this reason,
mixed experiments, i.e., experiments that excite longitudinal and lateral variables
simultaneously, achieved better results for wind estimation. As shown in section
3.5.2, this type of experiments can theoretically be used to estimate the wind and
identify any of the aerodynamic coefficient models. But this fact has only been
checked on simulation.

The same wind estimation procedure was applied to real flight data for lateral
experiments. The obtained results infer that the wind was estimated and that the
information obtained can be used to correct airspeed dependent measurements.
As a final remark, the authors want to highlight that the estimation technique
presented in this work is not intended to replace air-data sensors (whenever avail-
able). However, in those cases when no information at all can be used, a rough
estimation of wind speed can significantly improve model quality. In addition, a
similar multi-objective optimization approach might also be employed when par-
tial airspeed information is available. That information could be incorporated in
the optimization problem in order to improve airspeed measurements.

In the second step of the methodology, multi-objective optimization is again pro-
posed to take advantage of the available flight data. The presented approach
enables diverse experiments to be utilized, so that adjusting model parameters
becomes, in reality, a multi-objective problem. This approach enabled us to ob-
tain a compromise model that suited some flight situations without losing much
performance in others. Furthermore, the visualization of the model fitness for sev-
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eral trials provides an idea of the quality of the obtained data and of the selected
model structure. Although mean squared error has been used here, using a heuris-
tic optimizer also enables the use of other performance indicators. For example,
the mean absolute error is normally more meaningful to engineers because it has
the same magnitude as the variable being modeled.
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Chapter 4

Control Strategies for Unmanned
Aerial Vehicles under Parametric
Uncertainty and Disturbances: a
Comparative Study 1

Abstract

UAVs within the class of Mini Aerial Vehicles (MAVs) are autonomous aircrafts
with low inertia that fly at relatively low speeds. In this sense, MAVs are exposed
to high airspeed uncertainties since unexpected changes in wind velocity repre-
sent an important percentage of the total airspeed of the vehicle. Moreover, such
changes directly modify the aerodynamic forces acting along the vehicle, which
leads to important variations on their acceleration owed to their low inertia. Al-
though the structure of the dynamic model of an aircraft is well known, important
difficulties arise on the identification of an specific MAV due to its particular char-
acteristics. Thus, modelling errors become an additional source of uncertainty
when control algorithms are designed. In this situation, studying the ability that
different control strategies present in performing trajectory tracking is of great
interest on the development of applications for this type of UAVs. In this paper
a comparative study of four control strategies is presented. All algorithms have

1J. Velasco, S. García-Nieto, R. Simarro, J. Sanchis. Control Strategies for Unmanned Aerial
Vehicles under Parametric Uncertainty and Disturbances: a Comparative Study. IFACWorkshop
on Advanced Control and Navigation for Autonomous Aerospace Vehicles June 10-12, 2015.
Seville, Spain. IFAC-PapersOnLine, vol. 48, n.o 9, pp. 1-6, 2015. https://doi.org/10.1016/j.
ifacol.2015.08.050
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been implemented in a MAV flight computer. Results from both, Hardware-In-
the-Loop (HIL) simulations and real flight experiments, are presented as the main
contribution of this work.

4.1 Introduction

MAVs are UAVs with masses between 1 and 15kg on take off and flying altitudes up
to 3000m [7]. Those characteristics along with their relative low velocity compared
to the wind speed make engineers confront to high uncertainties when system
dynamics have to be identified. Although the structure of the dynamic model of
an aircraft is well known, important difficulties arise on the particularisation of that
structure to an specific MAV. These modelling errors become an important source
of uncertainty when control algorithms are designed. Thus, the performance of a
given control strategy might decrease significantly when implemented, compared
to the observed behaviour by using the identified model.

In this paper a comparative study of four control strategies is presented: PID
tuned by root locus, PID tuned by means of multiobjective optimization, a Linear
Quadratic Regulator (LQR) and a Model Based Predictive controller (MPC). All
algorithms have been implemented in a MAV flight computer. Comparison results
between Hardware-In-the-Loop (HIL) simulations and real flight experiments are
presented as the main contribution of this work.

This paper is divided in five sections as follows: in section 4.2 a complete descrip-
tion of the UAV is made, including a dynamic model of the system and its lin-
earization; section 4.3 presents each of the control strategies implemented. Then,
results from simulation and experimentation will be shown in section 4.4 and some
final conclusions will be remarked in section 4.5.

4.2 UAV testbench

Three main points are develop along this section. Firstly, both simulation and
flight experiments setups are introduced. Including on one side, the aircraft and
its hardware components, and on the other, a HIL platform to previously test the
designed control algorithms. HIL simulations, the designing process itself and the
final controllers performance are mainly based and hence rely on a first principles
model of the platform. Therefore that model structure is derived in the second
point of this section. Finally, the last point of this section presents the linearisation
of the equations presented in 4.2.2 which is used inside the MPC controller and in
the LQR design.
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4.2 UAV testbench

Figure 4.1. Hardware in the loop simulations setup

4.2.1 Experiments and simulations setups

As the main component of the flight platform, a Kadett 2400 aircraft, manufac-
tured by Graupner, is found. It is a light weight air-frame with some features that
make it suitable for the purposes of this research. Some of those characteristics
are:

• 2.4m wing span.

• 0.9m2 wing area.

• 49g/dm2 weight/area ratio.

• 16.5l free volume.

It houses all necessary devices for its control, not only manually, but also in au-
tonomous mode. During flight, three control surfaces are provided: tail rudder,
elevators and ailerons. As the unit of propulsion a brushless engine of alternat-
ing current is integrated, which is fed by two LIPO batteries through a frequency
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variator. Alike the servomotors, the variator is controlled by sending Pulse Width
Modulated (PWM) signals as commanding signals.

There exists a bridge device between the manual and the autonomous states.
The Servo Switch Controller (SSC) is able to perform the commutation between
different command sources. Moreover, it offers the possibility of measuring the
applied deflections in control surfaces and changes in the motor torque.

Control actions are sent from the Flight Control Station (FCS), constituted by a
Beagle Bone Black (BBB)2 board. This unit houses the control algorithms and
performs all necessary tasks at each phase of the flight. The loop is closed by
the GPS-AHRS IG500N3 unit. It is a all-in-one device, which joins the efforts of
a wide range of sensors, such as accelerometers, gyroscopes and magnetometers.
Its Kalman filter is capable of mixing the information coming from those sensors
in order to offer precise measurements of position, orientation, linear and angular
speeds and accelerations, in the three aircraft body-axes. In [14, 13, 12, 11] is
presented this platform with more details together with the results of the first
flight tests.

Regarding the HIL simulation setup (Fig. 4.1), a National Instruments PXI with
a real time running model substitutes most of the hardware components, with
the exception of the FCS. In this way, the control algorithms are implemented
in the BBB and executed exactly as they will be during real flight experiments.
This strategy of simulation increases the confidence on the designed controllers by
assuring a higher level of safety in the hop from simulation to experimentation.

4.2.2 Aircraft Dynamic Model

Its particularization to our aircraft is the result of previous works published by
the authors and has proved to accurately describe the vehicle dynamics.

The dynamic model will not only be used for simulations in the design stage of
control algorithms, but also part of the control algorithm in the MPC strategy.
Hence the expressions that relate the input variables, deflection in the control
surfaces and motor load, to a series of output signals such as linear and angular
velocities and acceleration, and position in a 3D space, will have a direct impact
in some of the controllers developed.

Linear and angular momentum conservation principles conform the starting point
to derive such model [5]:

2http://www.beagleboard.org/
3http://www.sbg-systems.com/products/ig500n-miniature-ins-gps
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∑
ext

−→
F =

d

dt
(m
−→
V ) (4.1)

∑
ext

−→
M =

d

dt
(I−→ω ) (4.2)

where (4.1) and (4.2) deal with the sum of external forces and moments respec-
tively; m and I are the mass and the inertia tensor of the aircraft, and

−→
V and −→ω

are linear and angular velocity vectors. In particular three are the types of external
forces that affect to the behaviour of the vehicle: aerodynamic force (FA), force
applied by the motor (FT ) and the gravitational force (FG). At the same time,
two different sources can be counted as torque generators: the air flow -generating
aerodynamic torque (MA) and the motor moment (MT ). Thereby, the equations
(4.1) and (4.2) can be rewritten as:

−→
FA +

−→
FT +

−→
FG = m

−→̇
V +−→ω ×m

−→
V (4.3)

−−→
MA +

−−→
MT = I

−→̇
ω +−→ω × I−→ω (4.4)

The two previous equations are actually vectorial equations, so that, there is a
total of 6 equations that correspond to the 6 degrees of freedom of a rigid body in
the space. Deriving (4.3) and (4.4) the following expressions are obtained:

qS

 CX

CY

CZ

 +

 −g sin θ

g sinφ cos θ

g cosφ cos θ

 +

 T

0

0



= m

 u̇

v̇

ẇ

 +

 p

q

r

×m
 u

v

w


(4.5)

qS

 bCl

cCm

bCn

 +

 0

IpΩpr

−IpΩpq

 =

 Ix 0 −Ixz
0 Iy 0

−Izx 0 Iz


 ṗ

q̇

ṙ



+

 p

q

r

×
 Ix 0 −Ixz

0 Iy 0

−Izx 0 Iz


 p

q

r


(4.6)

Where u, v, and w are the components of the aircraft linear velocity in its body
axes (xb, yb, zb), and p, q, and r are the three components of the angular velocity;
Ip is the rotating inertia of the tandem motor and propeller; Ωp its rotating speed
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and T the motor thrust. As it can be noticed, the products of inertia related to the
longitudinal plane (Yb = 0), are both null. This is owed to the aircraft’s symmetry
with respect to this plane. Finally S, b and c are constructive constants of the
airplane whilst q is the dynamic pressure of the air.

It is important to highlight the apparition in equations (4.5) and (4.6) of the
variables Ci, that represent the Aerodynamic Coefficients (AC) of each component
of the resultant aerodynamic force and torque. Such coefficients are functions that
relate those components to some of the system variables, e.g. the deflection of
the control surfaces. In this way, their value directly influence the stability and
controlability of the system, basic issues for the controllers design. The AC can
be expressed as in ([11]):

Longitudinal aerodynamic models:

CD =CD0 + CDVair

1

V0
∆Vair + CDα∆α

+CD
α2 ∆α2 + CDq

c

2V0
q + CDδe

∆δe

(4.7)

CL =CL0 + CLVair

1

V0
∆Vair + CLα∆α

+CL
α2 ∆α2 + CLα̇

c

2V0
α̇+ CLq

c

2V0
q

+CLδe
∆δe

(4.8)

Cm =Cm0 + CmVair

1

V0
∆Vair + Cmα∆α

+Cm
α2 ∆α2 + Cmα̇

c

2V0
α̇+ Cmq

c

2V0
q

+Cmδe
∆δe

(4.9)

Lateral aerodynamic models:

CY =CY0 + CYβ∆β + CYp

b

2V0
p+ CYr

b

2V0
r

+CYδal
∆δal + CYδr

∆δr

(4.10)

Cl =Cl0 + Clβ∆β + Clp

b

2V0
p+ Clr

b

2V0
r

+Clδal
∆δal + Clδr

∆δr

(4.11)

Cn =Cn0 + Cnβ∆β + Cnp

b

2V0
p+ Cnr

b

2V0
r

+Cnδal
∆δal + Cnδr

∆δr

(4.12)
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Where α and β are the angle of attack and of side-slip respectively and Vair is the
airspeed. In particular, V0 is the airspeed measured at the steady state of flight,
before a maneuver begins. These variables are velocity dependent and they can
be calculated as follows:

α = arctan
(w
u

)
(4.13)

β = arcsin
( v
V

)
(4.14)

Vair = |
−→
V | =

√
u2 + v2 + w2 (4.15)

CL and CD are the Lift and Drag coefficients and their relation with CX and CZ
is:

CL =− CZ cos (α) + CX sin (α) (4.16)
CD =− CX cos (α)− CZ sin (α) (4.17)

The aircraft orientation is usually denoted with the Euler angles: roll φ, pitch θ,
and yaw ψ; which express the rotation of a body from a global reference system
to the body-axes. The kinematic equations that relate angular velocities of the
aircraft to the Euler angles are:

 p

q

r

 =

 1 0 − sin θ

0 cos θ sinφ cos θ

0 − sinφ cosφ cos θ


 φ̇

θ̇

ψ̇

 (4.18)

Finally, equations (4.19) to (4.27) are the result of reordering equations (4.5), (4.6),
and (4.18), so they can be directly used on the calculation of output values (such
values will be the same as those coming from the GPS-AHRS unit in real flights).
The δ symbol in brackets represents the dependency of the AC on the deflections
of the control surfaces.

Force equations:

u̇ = rv − qw +
qS

m
CX(δ[e,al,r])− g sin θ +

T

m
(4.19)

v̇ = pw − ru+
qS

m
CY (δ[e,al,r]) + g cos θ sinφ (4.20)

ẇ = qu− pv +
qS

m
CZ(δ[e,al,r]) + g cos θ cosφ (4.21)
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Torque equations:

ṗ− Ixz
Ix
ṙ =

qSb

Ix
Cl(δ[e,al,r])−

Iz − Iy
Ix

qr +
Ixz
Ix
qp (4.22)

q̇ =
qSc

Iy
Cm(δ[e,al,r])−

Ix − Iz
Iy

pr

− Ixz
Iy

(p2 − r2) + IpΩpr

(4.23)

ṙ − Ixz
Iz
ṗ =

qSb

Iz
Cn(δ[e,al,r])−

Iy − Ix
Iz

pq − Ixz
Iz
qr

− IpΩpq

(4.24)

Kinematic equations:
φ̇ = p+ tan θ(q sinφ+ r cosφ) (4.25)

θ̇ = q cosφ− r sinφ (4.26)

ψ̇ =
q sinφ+ r cosφ

cos θ
(4.27)

4.2.3 Model Linearization

Both in the case of PID design as in the LQR design a linear system associated
to the previous model is needed. Furthermore, the MPC calculates the optimum
values of future inputs based on the predictions of the future states. This pre-
dictions are actually given by a model of the system. For practical reasons, it is
a requirement that such model be linear, given that, in presence of a quadratic
cost function and a set of affine constraints, the resulting optimization problem
is convex and so can be rapidly solved. Therefore, the model derived in section
4.2.2 has to be linearised around an equilibrium point. The following conditions
are imposed:

θ0 6= 0 φ0 6= 0 ψ0 = 0 (4.28)
u0 = 18m/s v0 = 0 w0 = 0 (4.29)
p0 = 0 q0 = 0 r0 = 0 (4.30)
ṗ0 = 0 q̇0 = 0 ṙ0 = 0 (4.31)

Then solving the equations under these conditions, the solution obtained is:

δe0 = 0.0041 δal0 = 0 δr0 = 0 T0 = 19.920762

α0 = 0.019775 β0 = 0 θ0 = 0 φ0 = −0.0305

Giving the following linear system:
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ṙ

φ̇

θ̇

ψ̇



= A



Vx

Vy

Vz

p

q

r

φ

θ

ψ


+B


δe

δal

δr

δT

;

 Vx

φ

θ

 = C
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(4.32)

where:

A =



9833 0 461 0 1784 0 0 −4864 0

0 9687 0 0512 0 345 4828 0 0

−151 0 8583 0 −7575 0 0 37 0

0 −314 0 5655 0 354 −85 0 0

17 0 −79 0 5255 0 0 −4.6 0

0 244 0 −995 0 8931 6 0 0

0 −8.7 0 382 0 9.9 9999 0 0

0.5 0 −2.2 0 382 0 0 1e4 0

0 6.0 0 −28 0 473 0 0 1e4
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e
−4 (4.33)

B =
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0 0 3165 81

−22 3361 0 0
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0 0 −4378 −9167

0 0 0 −963

−77

0 −428 0 0

0 0 −132 −235
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e
−4 (4.34)

C =


1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

 (4.35)

4.3 Compared Control Strategies

4.3.1 PID Control

The first control scheme4 proposed for the study is the well-known PID ISA al-
gorithm (Anti-Windup included). In particular, a cascade PID scheme has been

4Numerical values for the controllers described in this section can be download at: http:
//goo.gl/U5xlku
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proposed [1]. The inner loop manages the pitch and roll variables, therefore 2
PIDs have been adjusted in this stage. On the other hand, the outer loop is ded-
icated to navigation and is composed by 3 PIDs (altitude, heading and velocity).
Moreover, KR, TI and TD for this set of 5 PIDs have been adjusted using two dif-
ferent approaches. The first one, a classical technique based on closed loop poles
assignment, the well-known Root Locus design procedure [15] (denoted as PID 1
in the comparative results).

In a second approach a multi-objective optimization design (MOOD) method has
been used. MOOD have shown to be a valuable tool for controller tuning ap-
plications [9]. For a successful implementation of the MOOD procedure, three
fundamental steps are required: the multi-objective problem (MOP) definition,
the multi-objective optimization process and the multi-criteria decision making
step (denoted as PID 2 in the comparative results).

For the MOP definition, 7 design objectives (in time domain) have been included:
settling time of altitude (J1) and yaw (J2), integral of the absolute value of motor
usage (J3), and total variation of ailerons (J4), elevators (J5), roll (J6) and pitch
(J7). For the optimization process, the sp-MODE-II5 algorithm has been used; its
selection is due to its capabilities to improve convergence, diversity and pertinence
of solutions in the approximated Pareto front [8]. Finally, the MCDM step has
been performed using Level Diagrams [3] visualization technique6.

4.3.2 Linear Quadratic Regulator

The second control scheme proposed for the comparative study is a LQR with
infinite horizon [6]. This control technique minimizes the index (4.36) subject to
ẋ(t) = Ax(t) +Bu(t) and the feedback control law u(t) = −Kx(t).

J =

∫ ∞
0

(
xTQx+ uTRu

)
dt (4.36)

The main LQR advantage is that the optimal input signal u(t) is obtained from
full state feedback. The feedback matrix K is obtained by solving the associated
Ricatti equation. LQR controllers are widely used due to the implicit advantages in
this control structure as the guaranteed stability when a system has all of its states
available for feedback, stability margins under accuracy model representations and
simply adjustment using the weighting matrix Q and R.

5Implementation available at: http://www.mathworks.com/matlabcentral/fileexchange/
47035

6Implementation available at: http://www.mathworks.com/matlabcentral/fileexchange/
24042
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4.3.3 Model Predictive Control

Model Predictive Control (MPC) has been used in process industries such as chem-
ical plants and oil refineries since the 1980s [2]. Maybe, some interesting features
of MPC as its multivariable nature, constraints management, or explicit predic-
tors, can be pointed out as the responsible for its success. The basic idea of MPC
is the use of a process model to predict the behaviour of the system over a spec-
ified (finite) prediction horizon [10]. Assuming that the system under control is
described by a state transition equation

x(k + 1) = Ax(k) +Bu(k) (4.37)

Given the current state x(k), a predictive controller calculates the optimal sequence
of future control outputs u(k), · · · , u(k+C − 1), over a control horizon, such that
a cost function is minimized -giving a non static control law. Most of the objective
functions used are modifications of a quadratic function. The cost index selected
for our approach is:

J =

H∑
j=1

x(k + j)TQx(k + j) +

C−1∑
i=0

u(k + i)TRu(k + i) (4.38)

Index (4.38) is minimized, subject to the process model

x(k + j + 1) = Ax(k + j) +Bu(k + j), j = 1, · · · , H (4.39)

and a set of control constraints,

min(U) ≤ u(k + i) ≤ max(U), i = 0, 1, · · · , C − 1 (4.40)

The MPC control strategy is the most complex from the implementation point of
view compared with PIDs and LQR.

4.4 Results of the Comparative Study

The study presented compares the dynamical behaviour for the four control tech-
niques described in section 4.3 under a simple flight mission. In particular, the
flight mission has been defined as four 3D-waypoints area close to Valencia (Spain),
table 4.1 and figure 4.2 described the mission plan in detail:

The comparative study has been applied in two main and complementary scenar-
ios. On one hand, simulations based on a Hardware-In-Loop platform has been
performed. This technique is used for the non-destructive development and test-
ing of control algorithms. In a HIL simulation the physical part of a machine or
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Latitudeo Longitudeo Altitude (m)
WP 0 39.49612634133568 -0.6241178512573242 300.0
WP 1 39.49827887271285 -0.6208562850952148 350.0
WP 2 39.49923921136225 -0.6230878829956054 350.0
WP 3 39.49751721538407 -0.6264352798461914 300.0

Table 4.1. Waypoints information.

system is replaced by a simulation setup. In this case, all the complex sensors and
actuators present in the real UAV are virtualized and included in the simulation
procedure [4].

Data in figure 4.3(a) show the control performances reached by the four control
systems tested under HIL simulations. PID1 and PID2 algorithms present better
performances, related with minimum values shown in figure 4.3(b). The trial and
error procedure to tune the Q and R matrices in LQR and the constraints related
to control effort introduced in MPC lead to worse performance for these two control
algorithms when they are compared with PIDs.

Figure 4.2. Mission Plan.

On the other hand, a comparative real flight allows to study the dynamic be-
haviour under uncertainties and disturbances involved in any real context. This
second scenario will corroborate, or not, the predicted results obtained under HIL
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simulations, to determine the best alternative from the control scheme point of
view in the studied UAV platform. Results from flight tests are depicted on fig-
ures 4.4(a) and 4.4(b). Again PID controllers have a better performance in terms
of robustness to uncertainty and process disturbances. In particular, the PID
controller adjusted by optimization techniques (PID 2) obtains prominent results
in both HIL simulation and experimental flight. Whereas HIL simulations have
been performed assuming no wind and flight test were performed under windy
scenarios, advanced control techniques as LQR or MPC -both techniques relying
in the linear dynamic model, are less robust than PID controllers. That means
that wind information might be managed by the model to reach better results with
these control methodologies.

However, the results achieved by MPC related with the energy consumption in the
HIL simulations must be highlighted (Energy Cost row in figure 4.3(b)). The pos-
sibility of including constraints in control actions within the optimization process
is one of the major advantages of MPC, and could explain the observed behaviour
(Notice how, that kindness, is not present in the real flight test). A possible expla-
nation for such phenomenon resides in the existence of parametric uncertainties
in the model employed by the MPC. Those uncertainties are directly transmitted
to the controller in the form of prediction errors and, therefore, the advantage
reached on simulation disappears on a more realistic environment.
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(a) Comparative Dynamic responses
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(b) Comparative performance indexes

Figure 4.3. HIL simulation data
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(a) Comparative Dynamic responses
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Figure 4.4. Real flight data
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4.5 Conclusions

Results presented in the previous section show that the most robust strategies
for the proposed scenario, are PID controllers, and particularly the PID adjusted
by means of mutli-objective optimization. This is mainly due to the existence
of parametric uncertainties residing on the aerodynamic coefficients. Since more
complex techniques, such as LQR and MPC, have a much higher reliance on the
information provided by the model (used in the design phase or, in the case of
the MPC, even in the control phase), their behaviour decrease significantly on real
situations.

However, despite the results obtained from the point of view of dynamic response,
the MPC strategy presents a very interesting advantage, the proposal of input
signals much less aggressive and smoother than the rest of controllers, as it is
shown in figure 4.5. This fact by itself can be considered as a sufficient motivation
for choosing such techniques, since they ensure a much longer life cycle to the set
aircraft actuators, which is an issue of vital importance in this type of systems. In
addition, an iterative process of improving the values of the derivatives of stability
and control could significantly improve the performance of the LQR and MPC
controllers.

Figure 4.5. Flight Data: comparative throttle behavior. Max throttle=1
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Enhancing controller’s tuning
reliability
with multi-objective optimisation:
from Model in the loop to Hardware
in the loop 1

Abstract

In general, the starting point for the complex task of designing a robust and effi-
cient control system is the use of nominal models that allow to establish a first set
of parameters for the selected control scheme. Once the initial stage of design is
achieved, control engineers face the difficult task of Fine-Tuning for a more realis-
tic environment, where the environment conditions are as similar as possible to the
real system. For this reason, in the last decades the use of Hardware-in-The-Loop
(HiL) systems has been introduced. This simulation technique guarantees realistic
simulation environments to test the designs but without danger of damaging the
equipment. Also, in this iterative process of Fine-Tuning, it is usual to use differ-
ent (generally conflicting/opposed) criteria that take into account the sensitivities
that always appear in every project, such as economic, security, robustness, perfor-

1J. Velasco-Carrau, G. Reynoso-Meza, S. García-Nieto, X. Blasco Ferragud. Enhancing con-
troller’s tuning reliability with multi-objective optimisation: from Model in the loop to Hardware
in the loop. Engineering Applications of Artificial Intelligence, vol. 64, pp. 52-66, sep. 2017.
https://doi.org/10.1016/j.engappai.2017.05.005
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mance, for example. In this framework, the use of multi-objective techniques are
especially useful since they allow to study the different design alternatives based on
the multiple existing criteria. Unfortunately, the combination of multi-objective
techniques and verification schemes based on Hardware-In-The-Loop presents a
high incompatibility. Since obtaining the optimal set of solutions requires a high
computational cost that is greatly increased when using Hardware- In-the-Loop.
For this reason, it is often necessary to use less realistic but more computationally
efficient verification schemes such as Model in the Loop (MiL), Software in the
Loop (SiL) and Processor in the Loop (PiL). In this paper, a combined method-
ology is presented, where multi-objective optimisation and multi-criteria decision
making steps are sequentially performed to achieve a final control solution. The
authors claim that while going towards the optimisation sequence over MiL →
SiL → PiL → HiL platforms, the complexity of the problem is unveiled to the
designer, allowing to state meaningful design objectives. In addition, safety in the
step between simulation and reality is significantly increased.

5.1 Introduction

A controller tuning task typically starts with a certain nominal model of the process
under consideration. With such a nominal model, and with a previously selected
controller structure, the tuning process will seek a suitable controller, fulfilling
several requirements and performance specifications (hereafter design objectives)
imposed by the designer. Such design objectives range from time to frequency
domain exigencies, requirements and/or constraints.

In spite of the usefulness of using a nominal model for controller tuning purposes,
for some applications further performance evaluation is required. Therefore, with
the aim of enhancing controller’s performance evaluation, different platforms could
be used; for example, using a hardware in the loop (HiL) platform has become
an standard practice in order to evaluate embedded controllers, with the goal of
getting a more reliable measure of their performance [21, 48]. Such platforms
are common in automotive [7] and aeronautic/aerospace sectors [19], where it is
required to enhance the quality, safety and verification testing of their subsystems
[37].

On the other hand, it is not unusual to state a controller tuning task as an op-
timisation problem. The designer’s task is to define one or more performance
objectives to fulfil; afterwards, adjusting the tunable controller’s parameters using
an optimisation algorithm in order to meet such design objectives. Nevertheless,
designs found with a pure-performance optimisation approach are often prone to be
highly sensitive to the parameters used in the nominal model [27, 2, 13]; therefore,
they might be useless in a practical sense. According to this, assessing robustness
and reliability constraints (or objectives) has become the standard in such opti-
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misation instances. The former lead to robust design optimisation (RDO), where
the aim is to optimise the performance of the controller in the nominal model and
simultaneously minimize its sensitivity; the latter leads to reliability-based design
optimisation (RBDO), commonly based on stochastic analysis and its aim is to
provide a measure of risk of failure [12]. Different approaches for RBDO have
been used, as montecarlo sampling, simulation techniques or first/second order
reliability methods [44]

Therefore, the designer is, in general, dealing with a multi-objective problem
(MOP), where performance measures are in conflict with the reliability or robust-
ness indexes. Multi-objective optimisation (MOO) has shown to be a valuable tool
for controller tuning [35] when multiple and conflictive design objectives appear.
It handles the simultaneous optimisation of several conflicting objectives, in order
to provide what is known as the Pareto set [25], where all solutions are Pareto
optimal i.e. they have different trade-off between conflicting objectives.

The aim of this paper is to provide a systematic approach, using (successively)
different platforms in order to evaluate the controller’s performance with multi-
objective optimisation techniques. Reliability methods have been merged before
with multi-objective optimisation [8] or HiL platforms within the MOO process [41,
49] or within the MCDM stage [14]; nevertheless new methodologies to integrate
such approach when the computational burden in the HiL is considerable, might be
useful for control engineers. This is because, although tuning controllers directly
in a HiL set-up by means of MOO would be a perfect match, it is usually too
time-demanding in practice. This time cost leads to other difficulties that make
optimising from scratch in the HiL platform prohibitive.

Other less realistic (and less complex) platforms such as Model in the Loop (MiL),
Software in the Loop (SiL) and Processor in the Loop (PiL) can be previously used
in the multi-objective optimisation procedure. Thereby, in this paper a method-
ology is presented, where multi-objective optimisation and multi-criteria decision
making steps are sequentially performed over those platforms, going from the
least to the most complex, in order to achieve a final control solution. First, more
meaningful objectives can be posed as the designer gets more knowledge about
the interaction between the system and the control structure. Also preferences
on the objectives are more "maturely" included. Second, objectives and decision
variables bounds can be better delimited.

The remainder of this paper is as follows: in Section 5.2 brief backgrounds on
controller’s performance and MOO are given; in Section 5.3 the methodological
proposal of this work is presented and it is evaluated in an aircraft platform in
Section 5.4. The purpose will be to accomplish a certain flight mission via the
supervision of several way-points autonomously, which is reported in Section 5.5.
Finally, some concluding remarks and further directions of this work are com-
mented.
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5.2 Background

In this section a brief background on controller’s performance evaluation in en-
gineering design and MOO techniques will be given, in order to state a common
framework for the methodological proposal in this work.

5.2.1 Controllers’ evaluation in engineering design

Figure 5.1. Basic control loop.

According to [2], any controller tuning procedure should consider design objectives
related with:

• Load disturbance response

• Measurement noise response

• Setpoint response

• Robustness to model uncertainties

In agreement with the problem at hand, fulfilling one or some of them will be more
(or less) preferable by the designer. According to the basic control loop of Fig.
5.1, some common choices in controller tuning [35] for design objectives are:

• Maximum value of sensitivity function

JMs(x) =
∥∥(I + P (s)C(s))−1

∥∥
∞ (5.1)

• Integral of the absolute error value

JIAE(x) =

Tf∫
t=t0

|r(t)− y(t)| dt (5.2)

• Total variation of control action

JTV (x) =

Tf∫
t=t0

∣∣∣∣dudt
∣∣∣∣ (5.3)
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where r(t), y(t), u(t) are the reference, measured variable and control action in
time t. Equations (5.2) and (5.3) are commonly used for setpoint response and load
disturbance, while for example Equation (5.1) has been used to guarantee a desired
level of robustness. Time performance design objectives are usually preferred
in industrial applications over frequency domain, as industrial requirements are
usually expressed in such terms [26].

Different platforms are available to evaluate the performance of a controller. Re-
garding proximity to the real set-up, the authors are using the following division:

• Model in the loop (MiL): a classical approach, where a nominal model is used
to calculate and evaluate the performance of a controller.

• Software in the loop (SiL): the approach where the controller is evaluated as
it will be embedded ; that is, using the coding/script as it will be implemented
in the embedded control device.

• Processor in the loop (PiL): the approach where the controller is executed in
the processor/device where it will be embedded. Note that this is normally
a real-time simulation.

• Hardware in the loop (HiL): the platform where the interactions (including
physical communications) among processor, sensors and actuators are placed
inside the real-time simulation loop.

The goal of using one platform over another, is on the one hand, getting a more
meaningful and deeper understanding of the controller’s performance to be imple-
mented; on the other hand, getting a certain grade of reliability on its performance
measure. Such measure can be expressed as risk of failure [40] or with probabilistic
indices [1] Hereafter, this set of platforms will be denoted as XiL platforms.

In any case, the conflict between robustness and performance arises [13], and
therefore, MOO techniques might be an appealing tool to address the controller
tuning problem.

5.2.2 Multi-objective optimisation design review

As referred in [25], a MOP 2, can be stated as follows:

min
x
J(x) = [J1(x), . . . , Jm(x)] (5.4)

subject to
2Any maximisation problem can be converted to a minimization one. For each of the objectives

that have to be maximised, the transformation: max Ji(x) = −min(−Ji(x)) could be applied.
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K(x) ≤ 0 (5.5)
L(x) = 0 (5.6)

xi ≤ xi ≤ xi, ∀i = [1, . . . , n] (5.7)

where x = [x1, x2, . . . , xn] is defined as the decision vector; J(x) as the objective
vector and K(x), L(x) as the inequality and equality constraint vectors respec-
tively; xi, xi are the lower and upper bounds in the decision (or search) space
X.

It has been pointed out that there is not a single solution in MOPs, because there is
not (in general) a better solution in all the objectives. Therefore, a set of solutions,
the Pareto set ΘP , is defined. Each solution in the Pareto set defines an objective
vector in the Pareto front JP . All solutions in the Pareto front conform a set of
Pareto optimal and non-dominated solutions (Fig. 5.2):

Definition 6. (Pareto optimality [25]): An objective vector J(x1) is Pareto op-
timal if there is not another objective vector J(x2) such that Ji(x2) ≤ Ji(x

1) for
all i ∈ [1, 2, . . . ,m] and Jj(x2) < Jj(x

1) for at least one j, j ∈ [1, 2, . . . ,m].

Definition 7. (Dominance [9]): An objective vector J(x1) is dominated by an-
other objective vector J(x2) iff Ji(x

2) ≤ Ji(x
1) for all i ∈ [1, 2, . . . ,m] and

Jj(x
2) < Jj(x

1) for at least one j, j ∈ [1, 2, . . . ,m]. This is denoted as J(x2) �
J(x1).

It is important to notice that the Pareto front is usually unknown, and the designer
can only rely on a Pareto front approximation J∗P and Pareto set approximation
Θ∗P . In order to successfully embed the multi-objective optimisation concept into
a design process, three fundamental steps are required: the MOP statement (mea-
sure); the MOO process (search); and the multi-criteria decision making (MCDM)
step (multicriteria analysis). This procedure will be named multi-objective opti-
misation design (MOOD) procedure (Fig. 5.3).

MOOD procedures have shown to be a valuable tool for controller tuning appli-
cations (see [33, 24], and references therein). Such techniques have been used in
different controller structures [23]; for example PID controllers [47], fractional or-
der controllers [38, 51] and state space controllers [16]. They enable the designer
or decision maker (DM) to have a close embedment into the design process; since
it is possible to take into account each design objective individually, they also
enable comparing design alternatives, in order to select a controller fulfilling the
expected trade-off among conflicting objectives. Such procedures have been used
with success when (1) it is difficult to find a reasonable trade-off for a controller
tuning fulfilling several requirements; and (2) it is worthwhile analysing design
objectives exchange among design alternatives.
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Figure 5.2. Pareto optimality and dominance concepts. A Pareto front (dotted line in
objective space J) is approximated with a set solutions (depicted with stars) selected from
the feasible decision space X. Dark solutions are non-dominated solutions in the set and
therefore, they are used to build a Pareto front approximation (solid line). Remainder
solutions are dominated solutions.

Figure 5.3. Multi-objective Optimisation Design (MOOD) procedure.
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In spite of its success in controller tuning applications, few works focus on in-
corporating the XiL platforms (besides the HiL) in their procedures ([41, 49] in
the MOO process or [14] in the MCDM stage). Next, an integrative framework
between XiL platforms and the MOOD procedure for controller tuning will be
presented. Here it is assumed that:

• Using directly the HiL is not always possible in the MOO process, due to
computational burden.

• While going towards the sequence MiL → SiL → PiL → HiL the efforts
required to evaluate a controller are gradually increased. This is because (1)
the more meaningful the objectives are the more complex they become (2)
setup and analysis also increase in complexity and time.

• Not only robustness but also reliability of the controller’s performance will
be sought.

5.3 XiL platforms within a MOOD framework for
controller tuning applications

In this section, an integrative framework to enhance controller performance eval-
uation in MOOD procedures is given. Such framework considers using different
XiL platforms throughout the optimisation and decision making process. Firstly,
the MOP statement, the MOO process and the MCDM stage will be stated for
controller tuning; afterwards, a full integration with the XiL platforms will be
proposed.

5.3.1 The MOOD process

MOP statement

According to Section 5.2, the general MOP that must be considered in controller
tuning applications is:

min
x
J(x) = [JSR(x),JLR(x),JNR(x),

JRDO(x),JRBDO(x, φ)] (5.8)

Where x is now the vector of tunable parameters of the controller structure se-
lected; JSR(x), JLR(x), JNR(x) are the set of design objectives related with

122



5.3 XiL platforms within a MOOD framework for controller tuning applications

setpoint response, load disturbance response and measurement noise response re-
spectively (performance objectives); JRBO(x), JRBDO(x) are the set of design
objectives related with robust design optimisation and reliability-based design op-
timisation respectively (robustness/reliability objectives). RBDO design objec-
tives will be related with the stochastic evaluation of the performance objectives
for different scenarios. That is, for example, given a set of scenarios Φ and a
performance objective for a given scenario J(x, ·), plausible design objectives are
(for example) the worst case performance (Equation (5.9)) or the variance on the
performance (Equation (5.10))

Jworst = max (ς) (5.9)
ς = J(x, φ),∀φ ∈ Φ

Jvar = σ (ς) (5.10)
ς = J(x, φ),∀φ ∈ Φ

While it is common to state the design objectives or constraints in a RDO sense,
stating them to get reliability (RBDO) and actively using them in the optimisation
process is less common. However, they are quite useful, since they provide a
deeper (more reliable) insight on controller performance, its risk of failures and its
expected behaviour [1, 50, 26, 40].

As a system might comprise several sub-processes and their interactions (that is, a
multi-variable process), several design objectives for each of the sub-processes may
appear. The designer might need to measure and optimise them all. In [31] it was
intended to provide a general framework for controller tuning, dealing with such
many-objective optimisation statement (usually m > 3). Nevertheless, in spite of
its usefulness, the approximated Pareto front could contain a considerable amount
of solutions, which could in turn overwhelm the DM in the MCDM stage, even for
a 2x2 multi-variable process. Therefore a different approach is needed.

A feasible approach in controller tuning can be found when incorporating prefer-
ences in the optimisation process3. This is possible since (1), the designer has an
idea of the objectives which he/she needs to meet and/or (2), a reference controller
exists (manually tuned or using tuning rules)4. Lets assume that the designer can
incorporate such preferences via the following function f:

3Correlation analysis might be useful in order to reduce the dimensionality of the problem,
nevertheless they don’t embed information about the preferences that might be useful for the
designer.

4If no reference controller is available, a preliminary analysis on a Pareto front approximation
(calculated without preferences) might provide the required information in order to state the
preference matrix.
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f : x ⊆ X → (P ∨PC) (5.11)

That is, f(x) is a function which determines if a given solution is aligned with
the designer’s preferences (P) or not (PC), regarding the desired performance of
the control loop (time and/or frequency domain). Such function and preferences
5 can be incorporated numerically into the set of constraints previously stated in
eq. (5.4). Hence, the MOP statement of eq. (5.8) will be subject to:

K(x) ≤ 0 (5.12)
L(x) = 0 (5.13)
f(x) ∈ P (5.14)

xi ≤ xi ≤ xi, ∀i = [1, . . . , n] (5.15)

Given the above, an algorithm to deal with this many-objectives optimisation
instance, as well as with preferences and constraints, is required.

MOO process

Several algorithms exist, and the selection of one over another should be pondered
by the characteristics of the problem (for instance multimodality, many-objectives,
expensive optimisation) and the expected outcome (convergence, diversity and
pertinency).

The approach presented by [36] using the sp-MODEII6 algorithm [33] will be fol-
lowed in this paper. Its main characteristics are useful in order to deal with many-
objective optimisation statements, covering the basic properties of convergence,
diversity and pertinency of the Pareto front. Such characteristics are:

• It uses Differential Evolution [42] algorithm as optimisation engine, which
has shown a good trade off between global search and convergence to the
Pareto front [10].

• The objective space is partitioned in spherical sectors [34], in order to im-
prove the spreading along the Pareto front.

• Preferences P are coded a priori in the form of a preference matrix m by
the designer (Table 5.1). For each design objective Ji(x), i ∈ [1, · · · ,m] six

5Hereafter, fraktur style will be used to denote such input from the designer.
6Scripts and tutorials available at www.mathworks.com/matlabcentral/fileexchange/authors/

289050.
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Table 5.1. Typical preference matrix m for GPP index. Five preference ranges have been
defined: highly desirable (HD), desirable (D), tolerable (T) undesirable (U) and highly
undesirable (HU).

Preference matrix m

← HD → ← D → ← T → ← U → ← HU →
Objective J0

i J1
i J2

i J3
i J4

i J5
i

J1(x) [-] J0
1 J1

1 J2
1 J3

1 J4
1 J5

1
...

...
...

...
...

...
...

Jm(x) [-] J0
m J1

m J2
m J3

m J4
m J5

m

values (J0
i , · · · , J5

i ) are stated (in the original units for each design objective)
in order to define 5 preference ranges: highly desirable (HD), desirable (D),
tolerable (T) undesirable (U) and highly undesirable (HU).

• Preferability function f(·) is computed using the above commented matrix
m. With such preference matrix, the algorithm computes a global physical
programming index (GPP) [3] to evaluate the preferability of one solution
over another solution, which is a modified form of the physical programming
methods [22]. Such index is used to prune the approximated Pareto front,
in order to get a compact and pertinent approximation, with the number of
desired solutions imposed by the designer.

• This approach enables to state a difference between design objectives for
decision making and for optimisation. In the former case, they represent
the design objectives where the DM is willing to perform a decision making
and where the objective space is partitioned; the latter, are design objectives
that are used in the optimisation stage, used to calculate the GPP index,
but are not used a priori in the design objective partitioning. For example,
in Fig. 5.4 such difference is depicted for a 3-objective problem where two
Pareto-optimal solutions lie. Assume that square solution has a better GPP
index than the circle solution. In the 2D projection (design objective for
decision making), seems that the circle solution should be selected, since it
dominates the square solution and both belong to the same spherical sector;
nevertheless when considering the overall objective space in the 3D represen-
tation the selection of one over the another will rely on the f(x) preferability
function and thus, the square solution is selected. Such technique is help-
ful for many-objectives optimisation instances in controller tuning purposes
[36]. Basically, we are spreading solutions in a 2D space, where the designer
might feel more comfortable to analyse the Pareto front, but taking into ac-
count the m-dimensional space with the GPP index, and therefore, all design
objectives are considered.
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Figure 5.4. Difference between design objectives for optimisation (3-objective) and for
decision making (2-objective) using dominance and preferences. Square-solution has a
better GPP index for 3-objective than circle-solution.
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MCDM step

The main goal in the MCDM step, is to (1) select one preferable solution x ∈ Θ∗P
or (2) select a subset X ⊆ Θ∗P of preferable and feasible solutions for further
evaluation. In any case, the DM needs to perform an accurate analysis of the Θ∗P
approximation in a multidimensional and multicriteria environment. It is widely
accepted that visualization tools are valuable and provide to the DM meaningful
methods to analyse the Pareto front and take decisions [5, 43].

For two-dimensional problems (and sometimes for three-dimensional problems) it
is usually straightforward to make an accurate graphical analysis of the Pareto
front, but the difficulty increases with the dimension of the problem. Common
alternatives to tackle an analysis in higher dimensions are Scatter Diagrams, Par-
allel Coordinates [17, 18] and Level Diagrams (LD) [4, 30]. Recently, hybrid tools
merging Parallel Coordinates, Dendograms, and Cluster Maps have been proposed
[6].

Given that design objectives for decision making and for optimisation will be
stated, a reduced space for MCDMwill be sought (up to 3 objectives); nevertheless,
as auxiliary visualization, a LD tool will be used 7, due to its capabilities to
propagate interpretability from J∗P to Θ∗P and due to its robustness, scalability
and simplicity properties [43]. They have been used before for design applications
[28, 29] and controller tuning [15, 20]. Additionally, in order to evaluate 2-5 design
alternatives, radial plots8 are used due to their simplicity to depict few design
options with several design objectives.

5.3.2 Integration to enhance controller’s performance
evaluation

We will state a minimal example of an integrated MOOD using the MiL and
SiL platforms. Again, it is important to remember that, enhancing controller’s
performance evaluation is always possible with a HiL platform. What is not always
possible, however, is to use such platform actively in the MOO process (globally
or locally) at least from scratch.

The general purpose, before getting into the SiL platform, is to get a suitable set
of solutions, as well as to improve the DM’s knowledge on the problem’s trade-off
by using the information extracted from the MiL platform. That is, the designer
will define a MOP at the MiL platform:

7Available at http://www.mathworks.com/matlabcentral/fileexchange/24042
8Also known as star, rose, spider diagrams.
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min
x
J(x) |MiL

s.t.

K(x) |MiL ≤ 0

L(x) |MiL = 0

fMiL(x) ∈ P |MiL

xi ≤ xi ≤ xi, ∀i = [1, . . . , n]

(5.16)

And starting from such MOP statement, a MOO process will output the Pareto
Set and Front approximations Θ∗P |MiL , J∗P |MiL respectively, with a given mMiL.

A MCDM analysis on Θ∗P |MiL , J∗P |MiL might include the SiL platform. Design
objectives could be evaluated in the SiL environment, or new indexes might be
calculated (different form the J(x) |MiL statement, but important to consider).
After such procedure at the MCDM stage, the designer will select a set X ⊆
Θ∗P |MiL of preferable solutions; lets denote this subset as XMiL.

Nevertheless, if such additional indexes are important, the designer could also
consider an active seeking in the SiL platform. Lets suppose this is the case, then
a new MOP can be stated:

min
x
J(x) |SiL

s.t.

K(x) |SiL ≤ 0

L(x) |SiL = 0

fSiL(x,XMiL) ∈ P |SiL
xi ≤ xi ≤ xi, ∀i = [1, . . . , n]

(5.17)

Again, after a MOO process based on the MOP from eq. (5.17), the designer will
obtain the Pareto Set and Front approximations Θ∗P |SiL , J∗P |SiL respectively,
with a given mSiL. It is important to notice that the fSiL(x,XMiL) function
includes, besides preferences of the DM, the information gained in the previous
MCDM step (here represented by the subset XMiL). This is aligned with the
philosophy of innovization [11], where information from the MOO stage is retrieved
in order to gain a deeper knowledge on trade-off of the current MOP and its design
objectives (that is, innovation trough optimisation).

The advantage of following this process relies on two facts. First, from the com-
putational sense, evaluating performance of a controller in SiL platforms could
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be more expensive than doing it in MiL platforms; this is due to the fact that
SiL platforms would include (for example) sampling rate effects (hence slowing
down the simulations). Therefore, performing the MOO process from scratch in
a SiL platform is sometimes impractical. More practical could be however, using
previous information from the Θ∗P |MiL , J∗P |MiL in order to refine the preference
matrix mMiL and the objective space bounds xi and xi ∀i = [1, . . . , n]; further-
more, solutions XMiL might be used as initial population (initial candidate solution
in the optimisation algorithm) to accelerate the convergence in the SiL platform.
Second, from the problem knowledge sense, a progressive approximation to reality
may help to gradually reduce the engineer’s uncertainty about the problem. Note
that an approach to reality usually means an increase in complexity. In this way,
the more information the designer gets from previous iterations, the more accurate
is the request on the controller performance.

Following this idea, the MOPs of Equations (5.18) and (5.19) could be defined.
Such elements are summarised in Fig. 5.5.

min
x
J(x) |PiL (5.18)

s.t.

K(x) |PiL ≤ 0

L(x) |PiL = 0

fPiL(x,XMiL,XSiL) ∈ P |PiL
xi ≤ xi ≤ xi, ∀i = [1, . . . , n]

min
x
J(x) |HiL (5.19)

s.t.

K(x) |HiL ≤ 0

L(x) |HiL = 0

fHiL (x,XMiL,XSiL,XPiL) ∈ P |HiL
xi ≤ xi ≤ xi, ∀i = [1, . . . , n]

It is important to remark that sometimes using all theXiL platforms is not possible
nor even practical. As an example, the designer might use only two of them: a SiL
(comprising the MiL) and the HiL (comprising the PiL). This election will highly
depend on the facilities and infrastructures available for such tests, as well as on
the complexity of the problem. A case of study for which this methodology could
be suitable will be presented next.
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Figure 5.5. The Multi-objective Optimisation Design Procedure (MOOD) for controller
tuning using XiL platforms.

5.4 Methodology implementation

As commented before,XiL platforms are very useful for automotive and aeronautic
applications. Therefore, in order to validate the usability of this methodology using
MOOD procedures, the attitude and navigation control of an aircraft intended to
perform way-points supervision tasks will be tuned. Hence, MOPs increase in
complexity not only because of the change of platform but also because of the
addition of new objectives.

5.4.1 System description

The aircraft for test and validation is presented in Fig. 5.6. The main component
of the UAV flight system is a Kadett 2400 aircraft manufactured by Graupner.
The aircraft has a very lightweight frame and characteristics that make it suitable
for the purposes of this research. These characteristics include a 2.4 m wing span,
0.9 m2 of wing surface, 48.07 N/m2 wing loading, and 1.65× 10−2 m3 of available
volume to house control hardware.

During normal flight, the tail rudder, elevators, and ailerons serve as the control
surfaces. Propulsion is provided by a brushless alternating current engine supplied
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by two lithium-ion polymer (LiPo) batteries through a frequency variator. The
variator and the servomotors are controlled by pulse width modulated (PWM)
command signals.

The flight control station (FCS), housed in an ARM-based microcontroller, hosts
the control algorithms. The control loop is closed by a IG500N unit from SBG
Systems, that integrates a wide range of sensors, including the accelerometers,
gyroscopes, and magnetometers. A Kalman filter fuses the sensor information to
estimate position, orientation, linear and angular speed, and acceleration. This
same platform was presented with more detail in [45, 46] together with the results
of the first flight tests.

Figure 5.6. Hardware elements on board experimental platform, the aircraft Kadett
2400

The purpose of the aircraft (for this paper), is to perform a supervision of several
way-points. As general approach and without loss of generality, a proportional-
integral (PI) controller structure is selected to drive each control variable to its
set-point.
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C(s) = kp

(
1 +

1

Tis

)
(5.20)

where kp is the proportional gain and Ti the integral time.

Figure 5.7. Kadett’s control loop structure. Control and guidance over a user-defined
mission.

The complete control structure is a set of five PI regulators as the one shown in Fig.
5.7. Three references (altitude, heading and velocity) are served to three of the five
regulators. Those references are calculated by a reference manager based on the
mission plan (way-points through which the aircraft must pass) and the aircraft
current position. Thrust is directly applied to the motor as result of the velocity’s
PI, whereas pitch and roll references are respectively obtained from altitude and
heading regulators. Finally, pitch and roll PIs generate deflections to be applied on
elevators and ailerons. A total of ten variables [x1, . . . , x10], five pairs of the form
(kp,Ti), must then be adjusted so that a set of user-defined objectives becomes
Pareto optimal.

5.4.2 The MOOD-XiL definition

Now, following the methodology, three XiL platforms are presented for this exam-
ple:

MiL: A non-linear model has been identified according to [45, 46]9; roughly
speaking, multi-objective optimisation techniques have been used to adjust
several constants of a first principle model of our aircraft.

SiL: The same non-linear model is used, but here the controller’s scripts are
added as they will be coded in the FCS; this includes different sampling rates
(50 ms for outer loops and 20 ms for inner loops), together with bumpless
transfer and anti-windup mechanisms.

9This model has been implemented in Simulink c© Matlab c© version R2013a, with
ode3(Bogacki-Shampine) solver with a fixed-step size of 1ms.
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HiL: A National Instruments PXI with a real time running model substitutes
most of the hardware components; those components are "virtualized" so
that the FCS can be added to the loop without any software modification,
i.e. as it is programmed in a real flight (see Fig. 5.8).

Given these three platforms, a particularized version of the methodology depicted
in Fig. 5.5 can be posed for the problem at hand. As we can see, only MiL and
SiL platforms are used actively in the MOO process whereas all three (MiL, SiL,
and HiL) are employed in the MCDM stage. This is because the current HiL
platform’s infrastructure does not allow for complete integration with the MOO
algorithm. The MIL platform will be used with a simple control test in order
to identify suitable controllers in the optimisation phase; afterwards, with such
results a new optimisation process will be carried out in the SiL platform, where
a flight mission will be stated and used in order to evaluate the performance of a
given controller. Finally, after this optimisation phase using the simulation model,
a final decision making process will be carried out in the HiL platform.

Additionally, a reference controller xref , adjusted via pole placement, is available
from previous works. A reference controller is useful for two main reasons: (i) it
provides a rough first idea of what preferences might be reasonable to ask for; (ii)
it can be taken as a starting point for the MOO process in the first round.

Figure 5.8. HiL platform for Kadett aircraft.

MOOD at the MiL platform

This MOOD statement will be named hereafter, TimePiL (time performance in
the loop) and it will be stated as a RDO instance. For this step the MOP definition
is:

min
x
J(x) |MiL = [JM1

(x), . . . , JM7
(x)] (5.21)
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s.t.

fMiL(x) ∈ P |MiL

xi ≤ xi ≤ xi, i = [1, . . . , n]

with x = [kp1 , Ti1 , · · · , kp5 , Ti5 ] and |kp| ∈ [0, 5] and Ti ∈ ]0, 50]∪{+∞}; a setpoint
response is evaluated for a simultaneous change in heading and altitude. The
design objectives are:

• JM1(x): Settling time for yaw at ±2%.

• JM2
(x): Settling time for altitude at ±2%.

• JM3
(x): Throttle’s total variation of control action (Eq. (5.3)).

• JM4
(x): Aileron’s total variation of control action (Eq. (5.3)).

• JM5
(x): Elevator’s total variation of control action (Eq. (5.3)).

• JM6
(x): Roll’s total variation of control action (Eq. (5.3)).

• JM7
(x): Pitch’s total variation of control action (Eq. (5.3)).

Design objectives JM1
(x) and JM2

(x) are stated for performance (JSR(x)) while
JM3

(x) to JM7
(x) for robustness (JRBO(x)), since total variation is a valid measure

for robustness [39].

The preference matrix mMiL is depicted in Table 5.2. The idea behind preferences
JM3(x) to JM7(x) is to provide some meaning to the values obtained from Eq.
(5.3) by posing them relative to the reference controller xref . This idea comes
from the fact that the total variation of a control action by itself does not provide
the same level of interpretability as, for example, time related indexes JM1

(x) and
JM2

(x), for which preferences are easy to state. This has been previously exposed
in [32]. For example, for JM3 in Table 2 it has been defined as a tolerable value
up to a 10% of additional control effort of the reference controller xref . The
desirable value ranges from a reduction of 10% and 20% of such control action,
and the highly desirable value for a reduction up to 30%.

Now JM1
(x) to JM7

(x) are used in the MOO process. Pareto set Θ∗P |MiL and
front J∗P |MiL are obtained for the seven design objectives, however only JM1

(x)
and JM2(x) are analysed in the MCDM stage; this means that, while all the
design objectives are considered in the evolution process, and used to calculate
the GPP index in the pruning mechanism of the spMODE-II algorithm, only
the first two (the most interpretable) are used to partition the objective space.
Optimisations were carried out in a desktop computer, with IntelR CorTM i7-4790
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Table 5.2. Preference matrix mMiL for the TimePiL (J(x) |MiL ) statement. Five pref-
erence ranges have been defined: highly desirable (HD), desirable (D), tolerable (T)
undesirable (U) and highly undesirable (HU). For readability purposes, JMi(xref ) has
been substituted by ĴMi .

Preference Matrix

← HD → ← D → ← T → ← U → ← HU →
Objective J0

i J1
i J2

i J3
i J4

i J5
i

JM1
(x) [s] 10 15 20 25 50 100

JM2
(x) [s] 10 20 30 40 80 160

JM3
(x) [-] 0.7 · ĴM3

0.8 · ĴM3
0.9 · ĴM3

1.1 · ĴM3
1.2 · ĴM3

1.4 · ĴM3

...
...

...
...

...
...

...
JM7

(x) [-] 0.7 · ĴM7
0.8 · ĴM7

0.9 · ĴM7
1.1 · ĴM7

1.2 · ĴM7
1.4 · ĴM7

processor, 3.60GHz and RAM memory 32GB; a total of 5000 function evaluations
were computed in a time lapse of 6h27m.

The resulting Pareto set and front approximations Θ∗P |MiL and J∗P |MiL are il-
lustrated in Fig. 5.9. From such Figure, and with the help of the SiL platform, a
subset XMiL (depicted as ©) is selected for the next step within the MOOD-XiL
procedure.

MOOD definition at the SiL platform

The performance of the adjusted control structure with a given mission φ will be
evaluated in this round. For that reason, this MOOD statement will be named
hereafter, MissionPiL (mission performance in the loop). Such mission comprises
the supervision of five different way points in a bounded air space. MissionPiL
statement is intended to be a RBDO instance, where reliability on controller’s
performance to fulfil different flight missions is evaluated. For this purpose, a set
Φ of 15 flight missions are defined. Each mission has five randomly distributed
and feasible (according to the characteristics of the aircraft) way-points.

Therefore, the MOP definition for this step stays as follows:

min
x
J(x) |SiL = [JS1

(x), . . . , JS9
(x)] (5.22)

s.t.

fSiL(x,XMiL) ∈ P |SiL
xi ≤ xi ≤ xi, i = [1, . . . , n]

with x = [kp1 , Ti1 , · · · , kp5 , Ti5 ] and kp ∈ [0, 5] and Ti ∈ ]0, 50]∪{+∞}; The design
objectives stated are:
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(a)

(b)

Figure 5.9. Pareto Front (a) and Pareto Set (b) for TimePiL statement at MiL platform.
Solutions marked with© are the subset XMiL from Θ∗P |MiL selected for further analysis.
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(a)

(b)

Figure 5.10. Pareto Front (a) and Pareto Set (b) for MissionPiL statement at SiL
platform. Solutions marked with ©,�,♦ are the subset XSiL from Θ∗P |SiL selected for
further analysis.
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• JS1
(x): Median of time required to perform a flight mission ς[s] ∀φ ∈ Φ:

JS1
(x) = median(ς) (5.23)
ς = MissionT ime(x, φ),∀φ ∈ Φ

• JS2(x): Median absolute deviation (MAD) of time required [s] to perform a
flight mission ∀φ ∈ Φ

JS2(x) = median(|ς − JS1(x)|) (5.24)
ς = MissionT ime(x, φ),∀φ ∈ Φ

• JS3
(x) : Maximum time required [s] to perform a flight mission ∀φ ∈ Φ (Eq.

(5.9)).

• JS4(x) : (Negative) number of successful fight missions.

• JS5(x) : Median of roll’s total variation of control action per flight time
duration (Eq. (5.25)).

• JS6
(x) : Median of pitch’s total variation of control action per flight time

duration (Eq. (5.25)).

• JS7
(x) : Median of elevator’s total variation of control action per flight time

duration (Eq. (5.25)).

• JS8(x) : Median of throttle’s total variation of control action per flight time
duration (Eq. (5.25)).

• JS9(x) : Median of aileron’s total variation of control action per flight time
duration (Eq. (5.25)).

JTV2(x) = median (υ) (5.25)

υ =

 Tf∫
t=t0

∣∣∣∣dudt
∣∣∣∣
 · [1

ς

]
,∀φ ∈ Φ

The preference matrix mSiL is depicted in Table 5.3. In this case, preferences
values are in accordance with the values observed when testing XMiL solutions in
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Table 5.3. Preference matrix mSiL for the MissionPiL statement. Five preference ranges
have been defined: highly desirable (HD), desirable (D), tolerable (T) undesirable (U)
and highly undesirable (HU).

Preference Matrix mSiL

← HD → ← D → ← T → ← U → ← HU →
Objective J0

i J1
i J2

i J3
i J4

i J5
i

JS1
(x) [s] 60 85 90 95 120 150

JS2
(x) [s] 5 7 10 15 30 50

JS3(x) [s] 60 95 120 175 240 300
JS4

(x) [-] -15 -15 -15 -13 -10 -5
JS5

(x) [-] 0.10 0.15 0.18 0.20 0.25 0.30
JS6

(x) [-] 0.10 0.40 0.50 0.67 0.10 0.15
JS7(x) [-] 0.05 0.08 0.10 0.12 0.15 0.20
JS8

(x) [-] 0.02 0.05 0.08 0.12 0.15 0.20
JS9

(x) [-] 0.02 0.05 0.08 0.10 0.15 0.20

the SiL platform. Indeed, when controllers optimised for MiL platform are con-
fronted to the more realistic SiL platform, they reveal additional information and
trade-off among design objectives. When passing through this "experience", the
DM reaches better understanding on the capabilities of the overall control struc-
ture for the problem at hand, and hence, he/she is able to glimpse the limits, in
terms of performance, that the control algorithm can be led to. Therefore, mixing
the observed trade-off in the preference matrix mSiL, aligns with the search of a
controller able to satisfy every preference simultaneously. In the same way, initial-
ization bounds are designed given the results of the Θ∗P |MiL . Optimisations were
carried out in a desktop computer, with IntelR CorTM i7-4790 processor, 3.60GHz
and RAM memory 32GB; a total of 528 function evaluations were computed in a
time lapse of 33h03m.

Again the Pareto set and front approximations Θ∗P |SiL and J∗P |SiL result from
the MOO process. They can be visualized in Fig. 5.10. For example, circle
solution has a better performance on JS1

when compared with the square solution;
nevertheless, this is at expenses of worsening JS2 . That is, a trade-off between
median performance and dispersion when evaluated with the flight missions set.
Similar analysis can be performed with the remainder plots in level diagrams.
After the MCDM analysis, a subset XSiL of three suitable controllers (in their
trade-off sense) is selected.
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Final MCDM stage at the HiL platform

In order to help with the final decision making, the subset XSiL will be analysed
in the HiL platform. Although an active MOO is not possible at the moment
(and could even be impractical from a computational point of view), manually
implementing those pre-selected controllers in the HiL might definitely shed some
light on which controller is the best final choice. Five random missions of eight way-
points each have been generated for this purpose. The three controllers x1, x2, x3
from XSiL, together with the reference controller, have been implemented in the
aircraft FCS. To ensure the most similar initial conditions, each flight path comes
preceded by three extra way-points that constitute the initialisation track. Those
way-points are only used for homogenisation purposes and hence they are not
considered in the performance analysis. Since five sets of data are available for
each controller, cost functions JSi∀i = {1, ..., 9} can be now obtained.

Figure 5.11. Performance of the selected controllers together with the reference controller
in the HiL platform

Figure 5.11 is a radial representation of the values of JSi functions with a particu-
larity. This radial representation gives an idea about the trade-off of a particular
solution when compared with others. A solution covering all the radial space is a
solution which is worsening all design objectives. The smaller the area, the closer
to the ideal solution (center of the representation). All indices JSi in Fig.5.11 have
been scaled over their worst value. This is, if a specific controller shows a value
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of 1 in one cost index, it means that such controller has the worst performance
observed for that particular objective (see Eq. (5.26)). Additionally, objective 4
has been removed from this analysis because all controllers were able to complete
the five flight missions successfully. When observing a radial representation like
the one in Fig. 5.11, the closeness to the nadir solution and utopian solution are
directly related to the vertices position of the polygon given by one specific solu-
tion10. Hence, those controllers whose vertices are closer to the center are to be
preferred, since they fulfil each individual objective with a better performance. We
can then conclude from Fig. 5.11 that XSiL controllers outperform the reference
one. They do not only show smaller costs for most of the objectives, but also have
a very similar value in those for which the reference regulator is slightly better.

J∗Si(x) = JSi(x)/JmaxSi (5.26)

where

JmaxSi = max{JSi(x1), JSi(x2), JSi(x3),

JSi(xref.)}

Figure 5.12. Performance of the selected controllers in the HiL platform

10In an approximation set, nadir solution is the objective vector with the worst values in the
set; on the opposite, the utopian solution is the objective vector with the better values contained
in the set.
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Table 5.4. Parameter of the selected controllers
Altitude PI Heading PI Pitch PI Roll PI Velocity PI

Controller x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 0.0497 3.2483 −0.9604 8.4343 −0.9591 6.7427 −0.5409 15.1889 0.0179 7.5268
2 0.0398 4.4099 −0.9232 11.0291 −0.7739 7.8579 −0.6339 10.5024 0.2155 7.4387

Now, if the reference controller is removed from the analysis a new perspective is
achieved. Thereby, the three controllers x1, x2 and x3, that result from our MOO
methodology are illustrated again in Fig. 5.12. The first fact we can observe is that
they are very similar in performance when the first six objectives are taken into
account. Differences appear though, when low-level actuators are analysed. As we
see, x1 has its vertices closer to the center than the other two, being much better
when throttle total variation is considered, and with an intermediate performance
for elevators and ailerons. Note that smooth behaviours in the engine are directly
related to lower energy consumptions. Hence, x1 is to be preferred as the final
controller. x2 behaves very well with ailerons and turns out to be the worst in
managing throttle and elevators. On the opposite, x3 is smoother with elevators
and throttle, but more aggressive when using the ailerons. Controllers 1 and 2
have been tested in real flight. Since HiL platform includes the aircraft FCS,
controllers were tested exactly as they were coded for the simulations. Results
from both flights and some conclusions are now exposed in Section 5.5.

5.5 Results and validation on Flight test

Controllers selected for further validation appear in Table 5.4. A mission of six
way-points (plus three from the initialisation track) has been programmed and
performed in real flight. A way-point is defined in the 3-D space by its latitude
and longitude coordinates and its altitude above sea level. Around each of them,
a tolerance cylinder (defined by an altitude error and a plain circle) is placed.
Therefore, a way-point is considered to be passed when the aircraft is targeting
that way-point and enters its tolerance cylinder. Besides, the flight path has been
randomly generated to lie within the volume enclosed inside a 500 m diameter and
150 m height cylinder and does not share any of the way-points previously used
in simulations.

Figs. 5.13 and 5.14 and Tables 5.5 and 5.6 have been included in order to present
flight test’s results. On one side, Figs. 5.13 and 5.14 show the resulting trajectories
(cyan line) along the mission path (red line), obtained by controllers 1 and 2
respectively. Reference tracking of altitude and velocity are also represented. The
tolerance cylinders are depicted by green circles around the way-points (graphs on
the top) and two green lines underneath and above the altitude references (graphs
in the middle). To support discussion, Table 5.5 includes the value of the mean
IAE (MIAE) got by each controller for every controlled variable. MIAE gives a
sense of the tracking error in average, and is easy to interpret since it has the
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magnitude of the variable for which it is calculated. The expression to calculate
MIAE is

JMIAE(x) =
1

Tm

Tm∫
t=0

|rx(t)− yx(t)| dt (5.27)

where Tm is the mission time, rx(t) is the reference signal and yx(t) is the controlled
variable value during a mission in which controller x is active. Finally, Table 5.6
shows the values of the subset of SiL design objectives that can be calculated for
a single real flight. They are:

• JR1
(x): time required to perform the flight mission (in representation of

[JS1(x), JS2(x), JS3(x)]).

• JR2(x): roll total variation of control action per flight time duration (in
representation of JS5(x)).

• JR3
(x): pitch total variation of control action per flight time duration (in

representation of JS6
(x)).

• JR4
(x): elevators total variation of control action per flight time duration

(in representation of JS7
(x)).

• JR5
(x): throttle total variation of control action per flight time duration (in

representation of JS8(x)).

• JR6(x): ailerons total variation of control action per flight time duration (in
representation of JS9

(x)).

Now, going back to Figs. 5.13 and 5.14, we can see that both controllers are
able to successfully complete the mission, driving the aircraft through every way-
point of the flight path. Every time the UAV enters the tolerance cylinder of its
targeted way-point, a new reference is imposed by the reference manager. This
process keeps going until the last way-point is reached and the mission is finished.
Although the reference manager also imposes different velocities for each path
section, accomplishing them is not a requirement of the mission. Several points can
be highlighted from Figs. 5.13 and 5.14. First, x1 makes the aircraft draw smother
trajectories with more opened turns; this has an influence in the trajectory length
and consequently, in the mission time (for which x2 is slightly better). Second,
every change in the aircraft orientation strongly disturbs altitude tracking and
even more velocity tracking; this is logic, since we are dealing with a coupled non-
linear system. Third, while x1 is better in sticking to the altitude reference, it is
significantly worse than x2 when trying to follow velocity references. Finally, the
reader should note that velocity tracking is not within the design objectives, and
hence, no cost index explicitly accounts for velocity tracking performance; even
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Table 5.5. Mean IAE indices for the five controlled variables achieved by controller 1
and 2 in a real flight experiment

Mean IAE of the controlled variables

Objective J(x1) J(x2) Jmax J∗(x1) J∗(x2)

Mean IAE Roll 0.06 0.08 0.08 0.73 1.00
Mean IAE Pitch 0.03 0.04 0.04 0.91 1.00
Mean IAE Heading 0.71 0.68 0.71 1.00 0.96
Mean IAE Altitude 4.17 4.98 4.98 0.84 1.00
Mean IAE Velocity 2.94 1.51 2.94 1.00 0.51

Table 5.6. Objective function values achieved by controller 1 and 2 in a real flight
experiment

Cost indices for real flight test

Objective J(x1) J(x2) Jmax J∗(x2) J∗(x2)

JR1 - Mission Time 110.13 104.84 110.13 1.00 0.95
JR2 - Roll Total Variation 0.17 0.21 0.21 0.80 1.00
JR3

- Pitch Total Variation 0.06 0.08 0.08 0.74 1.00
JR4

- Elevators Total Variation 0.15 0.33 0.33 0.44 1.00
JR5 - Throttle Total Variation 0.04 0.24 0.24 0.15 1.00
JR6 - Ailerons Total Variation 0.16 0.11 0.16 1.00 0.69

so, both controllers are able to drive the system towards the velocity references;
this is interesting, and might be explained under the assumption that it could be
a correlation between velocity tracking and the success in a flight mission.

If Fig. 5.7 is looked, three control flows are observed. On the top, the reference
manager proposes altitude references to be achieved by the altitude PI, which in
turn proposes pitch references to be accomplished by the pitch PI acting over
elevators deflections. If we now return to Tables 5.5 and 5.6, it can be observed
that x1 is softer than x2 both managing elevators and proposing pitch references
(66% in the case of JR4

and 26% in the case of JR3
); and even so, x1 is capable of

outperforming x2 by obtaining 9% and 16% smaller MIAEs for pitch and altitude
respectively. This last data confirms the better behaviour in altitude tracking
already observed in Figs. 5.13 and 5.14. The second control flow shown in Fig.
5.7 is the lateral control, where the reference manager imposes heading references
to the heading PI, which in turn proposes roll references tracked by the roll PI
acting over ailerons deflections. In this case x2 is 31% smoother with the ailerons
(J∗R6

(x2) = 0.69) and slightly better in heading tracking (4% smaller heading
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MIAE), while x1 achieves a 26% smaller roll total variation JR3
, and 27% better

roll MIAE; it means that the heading PI in x1 is softer proposing control actions
and, at the same time, x1’s roll PI is better in following them, at the cost of a
higher usage of the ailerons. This is again aligned with what was observed in Figs.
5.13 and 5.14, where controller 2 exhibits closer turns than controller 1. Finally,
Fig. 5.13 showed that x1 is slower in converging velocity to its set-point; this fact
is also supported by the values on Table 5.5 where velocity’s MIAE of controller
2 is 49% smaller than that of controller 1. However, Table 5.6 evidences that the
throttle total variation of x1 is 85% smaller (J∗R5

(x1) = 0.15) than the throttle
total variation obtained by x2.

Fig. 5.15 has been included to derive final conclusions. Two radial graphs are
present in that figure. On the top, (Fig. 5.15 (a)) the values of the six cost indices
{JR1

, ..., JR6
} are represented both for x1 and x2. The values obtained from the

HIL platform for controllers 1 and 2 have been again represented in Fig. 5.15 (b).
Two remarks must be mentioned. First, note that only six over the nine indices are
represented; this is because only the six SiL design objectives that can be directly
compared to the real flight indices JRi , have been included in the graph. Second,
those indices have been re-scaled, taking now into account only the values obtained
by x1 and x2. Thus, Fig. 5.15 (b) can be seen as a version of Fig. 5.12 with a
smaller amount of objectives and without x3. Something remarkable from Fig. 5.15
is the resemblance among graphs (a) and (b). Although obviously not equal, the
shapes that one controller gets for the HiL platform and for the real flight are quite
similar. This is a significant fact because clearly shows the importance of having an
accurate model of the system and reliable XiL platforms for the RBDO statement
in the MOOD procedure. And there is where the strength of our methodology
resides. With a good dynamic model, a designer passing through every step gains
real knowledge on the design problem and is able to understand what should be
optimised and how to do it. In addition, a realistic HiL platform (only achievable
with a good dynamic model) assures safety in the hop from simulation to real
experimentation. All this is finally translated in a controller that is well designed
and behaves in reality as expected from simulations. As a final comment, Fig. 5.15
(a) proves that x1 should be preferred over x2, as its vertices are closer to the center.
This was already concluded is Section 5.4, and evidences that a final MCDM stage
with several simulations in the HiL platform is indeed a good practice.

5.6 Conclusions and future work

A systematic approach to enhance controller performance evaluation and design
has been presented throughout this paper. Multi-objective optimisation is used in
conjunction with different simulation platforms in order to provide the integrative
framework on which the methodology is based. Thereby, MiL, SiL, PiL and HiL
platforms (or a subset of them) can be employed in successive multi-objective
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optimisations in order to gain better understanding of the problem as the process
moves forward. As we saw, the information obtained in previous stages is used
in two directions when a new optimisation is to be posed: (i) more meaningful
objectives can be stated and (ii) preferences and solution constraints can be better
delimited. On one side, (i) generally leads to more complex MOPs, what obviously
increases the computational burden. On the other side, (ii) reduces the search
space helping, therefore, to decrease that complexity during the optimisation stage.
Both (i) and (ii) go in the direction of getting more adequate solutions (in the
sense of what the designer prefers) for the problem at hand.

As a demonstrator, a UAV system with a predefined control structure has been
presented. That structure is formed by a total of five PI controllers that perform
attitude control and navigation tasks. The ten PI parameters had to be tuned so
that the resulting controller was able to drive the aircraft in the supervision of
several way-points. Section 5.4 showed how the methodology can be adapted to
this specific problem, in accordance to the available simulation platforms. As the
process moved forward, reliability objectives, where several missions were actively
accomplished inside the MOO, were posed. At the same time, a better understand-
ing of the problem allowed the designer to refine preferences’ matrices, as well as
optimisation limits. A final MCDM stage comprising several missions inside the
HiL platform has been performed. In that last phase, a controller was chosen from
the rest.

To validate the final choice, a real flight mission has been carried out. The chosen
controller and a second one within the final Pareto set have been tested exactly
as they were coded for HiL simulations. In Section 5.5 experimental results con-
firmed that the selected controller was as good accomplishing flight missions as
the MCDM stage suggested. This evidenced that a realistic model of the system
is of great importance to obtain a controller that behaves as the designer expects.
A second conclusion is that, even when the HiL platform cannot be actively used
in the MOO process, including it in the final MCDM stage is a good practice.

Several new flight paths can be taken as future works. First, adapting the HiL
simulation platform so that it can be actively used in the MOO process could
be of great interest (although practicality must be had in mind). Second, the
authors would like to study the applicability of the technique on the design of
multi-variable controllers. Indeed, tuning weighting matrices for linear quadratic
regulators or adjusting design parameters in model based predictive controllers can
be something tricky when the system comprises many states and inputs. Third,
applying this technique to systems with modelled parametric uncertainties can be
a good practice to achieve a certain level of robustness.
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Figure 5.13. Performance of the Controller 1 in the Kadett in a real flight mission.
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Figure 5.14. Performance of the Controller 2 in the Kadett in a real flight mission.
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(a) Real flight

(b) HIL flights

Figure 5.15. Scaled Pareto front of the selected controllers during Real flight
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Chapter 6

Motion Equations and Attitude
Control in the Vertical Flight of a
VTOL Bi-Rotor UAV 1

Abstract

This paper gathers the design and implementation of the control system that allows
an unmanned Flying-wing to perform a Vertical Take-Off and Landing (VTOL)
maneuver using two tilting rotors (Bi-Rotor). Unmanned Aerial Vehicles (UAVs)
operating in this configuration are also categorized as Hybrid UAVs due to their
ability of having a dual flight envelope: hovering like a multi-rotor and cruising like
a traditional fixed-wing, providing the opportunity of facing complex missions in
which these two different dynamics are required. This work exhibits the Bi-Rotor
nonlinear dynamics, the attitude tracking controller design and also, the results
obtained through Hardware-In-the-Loop (HIL) simulation and experimental stud-
ies that ensure the controller’s efficiency in hovering operation.

1Sergio García-Nieto, Jesús Velasco-Carrau, Federico Paredes-Valles, José Vicente Salcedo
and Raúl Simarro. Motion Equations and Attitude Control in the Vertical Flight of a VTOL
Bi-Rotor UAV. Electronics, vol. 8, n.o 2, p. 208, feb. 2019. https://doi.org/10.3390/
electronics8020208
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6.1 Introduction

In recent years, the continuous development in engineering-related fields, as auto-
matic systems, flight control and the aerospace industry as a whole, has contributed
to the rapid growth of the area of Unmanned Aerial Vehicles (UAV), becoming
to represent an appealing research topic in both military and civil applications.
In terms of civil application it is important to mention those related with agri-
cultural services, marine operations, natural disaster support, etc. Within the
military field, UAVs are mostly used in missions in which, due to the high risk,
the presence of a human-pilot is not justified.

In order to increase the number and complexity, and so the performance efficiency,
of these applications, UAVs characterized by a dual flight envelop are currently
needed. This unmanned vehicles, inheriting the advantages of both traditional
fixed-wing aircraft and rotorcraft, have the ability to execute a VTOL maneuver
and to inspect aggressively a certain area, as well as to perform a high-speed aerial
surveillance over a wide region. For the aforementioned reasons, this vehicles are
known as Hybrid UAVs.

According to [27], hybrid UAVs can be categorized into two main types: Conver-
tiplanes and Tail-Sitters. Firt of all, Convertiplanes category regroup those aerial
vehicles that take off, cruise, hover and land with the aircraft reference line re-
maining horizontal. Respect to this class, there exist several vehicles implementing
the idea such as FireFLY6 [36] and TURAC [1]; and also projects researching in
this direction [12, 23]. Second, a Tail-Sitter is an aircraft that takes off and lands
vertically on its tail and the whole aircraft tilts forward using differential thrust
or control surfaces to achieve horizontal flight. This category, as it is considered
as a complex challenge from the point of view of control systems engineering, has
become an interesting research concept as shown by vehicles like Quadshot [30] or
prototype [28].

This paper presents recent work concerning the first stage in the development of
a hybrid UAV that can be categorized as Tail-Sitter with the exceptions that in
this case the aircraft takes off and lands vertically on its nose (using an external
ground-station) and that this platform changes the sense of the rotors in order to
perform the transition phase between hovering and cruising. Figure 6.1 shows the
maneuverability scheme of the proposed unmanned aerial vehicle. In addition, the
prototype built based on this philosophy has been nicknamed V-Skye.
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Figure 6.1. Scheme of the transition maneuver between flight modes

In this article, the design of the control system is not only based on simulations,
but also on an experimental procedure in which the controllers have to adequately
stabilize the UAV allowing it to hover filtering external disturbances. In order
to control the attitude, the vehicle is provided with two tilting rotors that allow
alterations of its pitch angle and yaw rate and also, modifications in the motor
throttles in order to handle roll and vertical speed variables. This is the first
step of the development of the entire autonomous system, that will provide this
UAV with the hybrid characteristics required by autonomous aviation market, as
presented in [33].

Different types of controllers can be designed for UAVs. The simplest ones are lin-
ear PID based on linearized models of UAVs. In the literature it is possible to find
several approaches which solve the problem of controlling non-linear UAVs: non-
linear PID based solutions [18, 10, 22], non-linear robust approaches [39, 24, 38],
back-stepping algorithms [14, 26, 15], sliding mode control [39, 15], H∞ control
[26] or non-linear observer based [17, 3].

As commented, the objective of this article is to adequately stabilize the designed
hybrid UAV in an experimental procedure. This is performed by using 4 linear
PIDs tuned by a genetic algorithm. The genetic algorithm searches for the PID
parameters that minimize a performance index such as the integral squared error
or the settling time.

Using 4 linear PIDs can be considered as a first approach to the design of the
control system, and also the easiest way to implement a control system from an
experimental point of view. In further researches authors will try to apply more
complex techniques such as non-linear PID [18, 10, 10] and non-linear robust ap-
proaches [39, 24, 38].
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The rest of this article is structured as follows. Section 6.2 covers the description
of the airframe that has been used during this project, while Section 6.3 is focused
on the explanation of the mathematical model that describes this aerial vehicle.
In Section 6.4, the design of the attitude control system is presented. Section
6.5 gathers information related to the HIL simulation platform and finally, Sec-
tion 6.6 presents the simulation and real-test results that ensure the controller’s
performance.

6.2 Airframe Description

A rigid body moving inside a three-dimensional (3D) space has a total of six-
degrees-of-freedom (6DoF). In this way, a mechanical system formed by a single
rigid body needs at least six independently manipulated interactions with the
system (inputs) to drive it to an arbitrary orientation and position.

In a hovering maneuver, a flying vehicle is maintained motionless over a reference
point at a constant altitude (constant reference position) and on a constant heading
angle ψ. Hence, only four of the six degrees of freedom are forced to a reference
value (controlled) when hovering. The other two, i.e. pitch θ and roll φ angles are
dependent variables that evolve along time according to the system equations of
motion.

The V-Skye is designed with two tilting-rotors moved by servo-mechanisms. The
result is a vehicle with two motors for which thrust ~TR and ~TL can be independently
modified, not only in magnitude, but also in one direction. The system is thus
provided with the amount of independent inputs needed for the hovering maneuver.

Figure 6.2 shows an outline drawing of the V-Skye. In order to simplify the dynam-
ics, all actuation parts (motors, motor frames, servomotors and their transmission
parts) are allocated as symmetrically as possible about the fixed coordinate axis
{X̂b, Ŷb, Ẑb} of the aircraft reference frame. In particular, all elements are placed
on the ŶbẐb plane and symmetrical to the X̂bẐb plane.
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Le#	Rotor	
Right	Rotor	

Ẑb
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

X̂b
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ŷb
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Figure 6.2. Local axis in the 3D graphical model of the V-Skye UAV

For simplicity on the explanations, authors have divided the aircraft into three
well-differentiated frames.

6.2.1 Main body frame

As depicted in Fig. 6.2, the main body has the constructive shape of a Flying-
Wing aircraft, such as the ones used in [37, 25]. It is a rigid body housing all the
electronics as well as the two servomotors that allow rotation of the motor frames
(see section 6.2.2 and 6.2.3).

The reference system {X̂b, Ŷb, Ẑb} has its origin at the aircraft centre of gravity and
it is fixed to the main body frame. For its vertical flight phase, the X̂b direction
points front, towards what would naturally be the upper part of the fuselage. The
Ẑb direction points down, towards the nose of the flying-wing. Finally, Ŷb axis is
perpendicular to the other two and points towards the right-side wing.

The earth coordinate axis {X̂e, Ŷe, Ẑe} is a North-East-Down (NED) inertial frame
of reference, also positioned at the aircraft centre of gravity but fixed to the earth
surface. Euler angles roll φ, pitch θ and yaw ψ define the main body orientation
respect to the earth axis. Figure 6.5 shows those three independent rotations.
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6.2.2 Right motor frame

It is formed by the right motor, its right-handed propeller and a structure specially
designed to hold it and stand any reaction force derived from the flight. It can be
seen as a second rigid body attached to the aircraft by a rotatory joint, as Fig.
6.3 describes in detail.

Le#	Rotor	

Right	Rotor	

ŶbR
, ŶmR
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Ẑb
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X̂b
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Ŷb
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Figure 6.3. Right rotor coordinate reference system.

Two coordinate systems are defined to describe the motion of this frame with
respect to the main body. {X̂bR , ŶbR , ẐbR} is fixed to the the main body frame
and parallel to {X̂b, Ŷb, Ẑb}; its centre ObR is placed where the rotatory joint
intersects the motor shaft axis. On the other hand, {X̂mR , ŶmR , ẐmR} have its
origin OmR at ObR ; the ŶmR axis coincides with ŶbR (ŶbR ‖ ŶmR) and Ẑb axis
coincides with the motor shaft axis.

Because the right motor frame is attached to the main body by a rotatory joint,
it has one single DOF: the angle λR rotated about the axis ŶbR ‖ ŶmR . When
λR = 0, both {X̂mR , ŶmR , ẐmR} and {X̂bR , ŶbR , ẐbR} have the exact same position
and orientation. The direction of the right motor’s thrust is changed by actuating
on the λR value, since the thrust has always the ẐmR direction. For this reason,
a servomotor is used to manipulate λR.
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6.2.3 Left motor frame

The left motor frame includes namely the left motor with a left-handed propeller
and the structure to hold it. The right and left propellers are designed to be right
and left handed respectively. This makes the motors to rotate in opposite senses,
helping to compensate motors torques. Figure 6.4 illustrates the configuration and
coordinate reference systems.

Le#	Rotor	

Right	Rotor	

X̂bL
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ẐbL
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ẐmL
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

X̂mL
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ŶbL
, ŶmL

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 6.4. Left rotor coordinate reference system.

Similarly to the right motor frame, two coordinate systems are defined for the
left motor frame: {X̂bL , ŶbL , ẐbL} and {X̂mL , ŶmL , ẐmL} with λL being the angle
rotated by {X̂mL , ŶmL , ẐmL} with respect to {X̂bL , ŶbL , ẐbL} about the ŶbL ‖ ŶmL
axis.
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Figure 6.5. Roll, pitch and yaw motions

6.3 Mathematical Model

The equations that conform the 6-DOF non-linear dynamical model are derived
in this paper assuming the following hypothesis:

1. The whole aircraft is assumed to be rigid body; it means that the distance
between any two points in the airframe remains constant. This is a funda-
mental condition because it allows to understand the movement of the vehicle
as a translation and a rotation around the center of gravity independently.

2. Derived from the previous item, the changes in λR and λL angles do not
affect the mass distribution along the aircraft body.

3. The rotational movement of the Earth is negligible with respect to the accel-
erations on the vehicle. i.e. the Earth frame is an inertial frame of reference.

4. The atmosphere is assumed to be calm (no wind or turbulence)

5. The plane {Yb = 0} is a plane of symmetry. Hence, the inertia products
about the Yb axis Iybxb = Iybzb = 0
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6.3.1 Translational equations

Let ~F be the resultant force vector of all the external forces acting on the system,
m the total mass of the aircraft and ~V the aircraft linear velocity with respect to
the earth frame. Newton’s second law can be written as:

~F = m · ~̇V (6.1)

{Fxb , Fyb , Fzb} = m ·
Ed

dt
({u, v, w}) (6.2)

where Fxb , Fyb , Fzb , u, v and w are the three components of the resultant force
and the system velocity respectively, both magnitudes expressed in body axis.
Velocity’s time derivative with respect to the earth frame might be now rewritten
as the summation of its time derivative with respect to the body frame and the
cross product of angular and linear velocities as follows

~̇V =
Bd

dt
({u, v, w}) +E ~ωB × ~V (6.3)

~̇V = {u̇, v̇, ẇ}+ {p, q, r} × {u, v, w} (6.4)

~̇V = {u̇+ q · w − r · v, v̇ + r · u− p · w, ẇ + p · v − q · u} (6.5)

where E~ωB is the angular velocity of the body frame with respect to the earth
frame, and p, q and r its components expressed in body axis. Therefore, vector
equation (6.1) is separated into three independent equations as shown next

m · (u̇+ q · w − r · v) = Fxb (6.6)
m · (v̇ + r · u− p · w) = Fyb (6.7)
m · (ẇ + p · v − q · u) = Fzb (6.8)

The external forces considered in this work are the rotors thrust and the aircraft
weight. Since the work is focused on the design of a control scheme for a hovering
maneuver, the dynamics model do not consider aerodynamic effects on the aircraft
body. In a VTOL procedure, the lift is totally generated through the thrust
produced by the rotors. On the other hand, drag produced by the flying-wing
airframe is taken as an external disturbance for the attitude tracking controller.

Denoting by TR and TL the thrust magnitudes of right and left rotors respectively,
the definition of the thrust forces in body axis is characterised by the angles λR
and λL of the right and left motor frames with respect to the body frame.
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~TR = −TR · {sinλR, 0, cosλR} (6.9)
~TL = −TL · {sinλL, 0, cosλL} (6.10)

In [4] a complete study of the performance of several types of propeller at different
airflow conditions is presented. Along the paper, John B. Brandt and Michael S.
Selig., explain how to model thrust and torque at low Reynolds numbers, gathering
data of these values to calculate aerodynamic coefficients for a large number of
commercial propellers. Now taking the equations presented in [4] as a reference,
and letting T and τ denote thrust and torque magnitudes of a propeller and CT
and Cτ its force and torque coefficients, then

T = CT ρn
2D4 (6.11)

τ = Cτρn
2D5 (6.12)

Hence, the relation between torque and thrust on the propeller can be written as

T =
CT

D · Cτ
τ (6.13)

If we denote by δR and δL the motors throttle, and given that the aircraft will be
mounting two brushless DC motors managed by electronic speed controllers (ESC),
the two motor torques are related to their throttle by the expressions (6.14) and
(6.15).

τR = kτδR (6.14)
τL = kτδL (6.15)

and hence

TR =
CT

D · CQ
kτδR = kT δR (6.16)

TL =
CT

D · CQ
kτδL = kT δL (6.17)

kτ is the torque’s throttle coefficient and is assumed to be constant for a given
motor and ESC combination whereas kT is the thrust’s throttle coefficient that
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depends on the airspeed and is constant for the static case. This leads to the
following definition of thrust force:

FTx = −kT δR · sinλR − kT δL · sinλL (6.18)
FTy = 0 (6.19)
FTz = −kT δR · cosλR − kT δL · cosλL (6.20)

The aforementioned force variables {Fxb , Fyb , Fzb} are now substituted by their
corresponding terms of thrust and weight forces in the body axis.

m (u̇+ q · w − r · v) = −kT δR · sinλR − kT δL · sinλL
−m · g · sin θ (6.21)

m (v̇ + r · u− p · w) = m · g · cos θ sinφ (6.22)
m (ẇ + p · v − q · u) = −kT δR · cosλR − kT δL · cosλL

+m · g · cos θ cosφ (6.23)

6.3.2 Rotational equations

By definition of angular momentum about the gravity centre ~Hc.g. and considering
a rigid-body configuration

~Hc.g. =

 Ixbxb −Ixbyb −Ixbzb
−Iybxb Iybyb −Iybzb
−Izbxb −Izbyb Izbzb


c.g.

·E ~ωB (6.24)

where Iii∀i ∈ {xb, yb, zb} are the moments of inertia of the aircraft body about its
gravity centre in body axis and Iij∀ij ∈ {xb, yb, zb}with j 6= i are the products of
inertia.

Now, the total moment of forces about the aircraft’s gravity centre is equal to its
angular momentum’s time derivative with respect to the earth frame. Additionally,
we can again split the time derivative of the angular momentum with respect to
the earth frame into its time derivative with respect to the body frame and the
cross product of the angular velocity and the angular momentum.

~Qc.g. = ~̇Hc.g. (6.25)

~Qc.g. =
Bd

dt

(
~Hc.g.

)
+E ~ωB × ~Hc.g. (6.26)
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Equation (6.26) gives the following three independent equations

L = Ixxṗ− Ixz ṙ − Ixzpq + (Izz − Iyy) qr (6.27)
M = Iyy q̇ − Ixz

(
p2 − r2

)
+ (Ixx − Izz) pr (6.28)

N = Izz ṙ − Ixz ṗ+ Ixzrq + (Iyy − Ixx) pq (6.29)

being L, M and N the three body axis components of the total external moments
applied on the aircraft centre of gravity.

The right rotor thrust applied at right motor frame generates an external moment
about the aircraft centre of gravity. Denoting ~rmR = {xmR , ymR , zmR} as the
position vector of the right motor frame, the total moment of the right rotor
thrust about the centre of gravity is given by equations (6.30) and (6.31). Note
that xmR = 0 by design.

~QmR = ~rmR × ~TR (6.30)
~QmR = kT δR · {−ymR cosλR,−zmR sinλR, ymR sinλR} (6.31)

Additionally, the right motor torque applied to the propeller is translated to the
right motor frame as a reaction torque (same direction but opposite sense). That
torque is then translated to the body frame according to λR angle. From eq. (6.14)

~τR = τR · {sinλR, 0, cosλR} (6.32)
~τR = kτδR · {sinλR, 0, cosλR} (6.33)

In accordance, thrust moment and motor torque for the left rotor are given by
expressions (6.34) and (6.35)

~QmL = kT δL · {−ymL cosλL,−zmL sinλL, ymL sinλL} (6.34)
~τL = −kτδL · {sinλL, 0, cosλL} (6.35)

Now, substituting the total external moments and torques into equations (6.27) -
(6.29)
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Ixxṗ− Ixz ṙ
−Ixzpq + (Izz − Iyy) qr = δR (kτ sinλR − kT ymR cosλR)

−δL (kτ sinλL + kT ymL cosλL) (6.36)
Iyy q̇ − Ixz

(
p2 − r2

)
+ (Ixx − Izz) pr = −δLkT zmL sinλL − δRkT zmR sinλR (6.37)

Izz ṙ − Ixz ṗ
+Ixzrq + (Iyy − Ixx) pq = δR (kτ cosλR + kT sinλRymR)

+δL (kT ymL sinλL − kτ cosλL) (6.38)

6.3.3 Collection of non-linear equations

In addition to the six dynamics equations derived above, six kinematic equations
can be stated to express the transformation from the body to the earth system
of reference. The aircraft behaviour is therefore described by a total of twelve
equations of motion.

As a summary, the aircraft model is divided in the following sets.

Translational dynamics equations

u̇ = rv − qw − g sin θ − kT
m

(δR sinλR + δL sinλL) (6.39)

v̇ = pw − ru+ g cos θ sinφ (6.40)

ẇ = qu− pv + g cos θ cosφ− kT
m

(δR cosλR + δL cosλL) (6.41)
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Rotational dynamics equations

ṗ− Ixz
Ixx

ṙ = +
Ixz
Ixx

pq +
Iyy − Izz
Ixx

qr

+
δR
Ixx

(kτ sinλR − kT ymR cosλR)

− δL
Ixx

(kτ sinλL + kT ymL cosλL) (6.42)

q̇ =
Ixz
Iyy

(
p2 − r2

)
+
Izz − Ixx
Iyy

pr

− 1

Iyy
δLkT zmL sinλL

− 1

Iyy
δRkT zmR sinλR (6.43)

ṙ − Ixz
Izz

ṗ = −Ixz
Izz

rq +
Ixx − Iyy

Izz
pq

+
δR
Izz

(kτ cosλR + kT sinλRymR)

+
δL
Izz

(kT ymL sinλL − kτ cosλL) (6.44)

Kinematic translational equations

u = ẋe cos θ cosψ + ẏe cos θ sinψ − że sin θ (6.45)
v = ẋe (sinφ sin θ cosψ − cosφ sinψ)

+ẏe (sinφ sin θ sinψ + cosφ cosψ) + że sinφ cos θ (6.46)
w = ẋe (cosφ sin θ cosψ + sinφ sinψ)

+ẏe (cosφ sin θ sinψ − sinφ cosψ) + że cosφ cos θ (6.47)
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Kinematic rotational equations (Euler angles)

p = φ̇− ψ̇ · sin θ (6.48)
q = θ̇ · cosφ+ ψ̇ · cos θ · sinφ (6.49)
r = ψ̇ · cos θ · cosφ− θ̇ · sinφ (6.50)

6.4 Control System

The control problem associated with the presented UAV stabilization is challenging
for several reasons. The complexity of flight dynamics resides on the system non-
linearity, unstable nature and high degree of coupling. Furthermore, in this case,
the system is under-actuated because only four control inputs can be used during
take off, landing and hover maneuvers, while the whole system is six-degree-of-
freedom (6DoF). Therefore, robust and reliable feedback control strategies are
needed to regulate the attitude of the UAV within an operational range.

Due to their simplicity, ease of implementation and robust performance, a decen-
tralised and linear control scheme based on four proportional-integral-derivative
controllers (PID) has been chosen to design the attitude tracking controller. Fig-
ure 6.6 shows the block diagram of the proposed feedback control scheme. It is
composed by a controller for each angle of orientation and one for the vertical
velocity.

Figure 6.6. Attitude and vertical speed controller scheme of the UAV V-Skye

Attending to the nonlinear equations of motion presented in Section 6.3, a mod-
ification on one of the four system inputs δR, δL, λR or λL, excites more than
one state variable at the same time. This means that the system dynamics are
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highly coupled. In an attempt to reduce the effect of coupled actuators, a set of
four inputs u1, u2, u3 and u4 are defined as a combination of the real input vari-
ables. Equations (6.51) to (6.54) show the new system input variables and their
relationship with motors throttle and thrust angles

u1 =
1

2
(δL − δR) (6.51)

u2 = −(λR + λL) (6.52)
u3 = λR − λL (6.53)

u4 =
1

2
(δR + δL) (6.54)

(6.55)

With this new definition of the system inputs, a change in u1 has high effect on the
ṗ variable, u2 on q̇, u3 on ṙ and u4 on ẇ. Now the different PID control schemes
are defined accordingly.

6.4.1 Roll and pitch controllers

Controllers for roll and pitch angles are implemented similarly: both use standard
PID controllers with feedback of estimated angles (roll or pitch) from a comple-
mentary filter, resulting in the following control law:

u1 = Kp,1((φd − φ) +
1

Ti,1

∫
(φd − φ)dt+ Td,1(φ̇d − φ̇)) (6.56)

u2 = Kp,2((θd − θ) +
1

Ti,2

∫
(θd − θ)dt+ Td,2(θ̇d − θ̇)) (6.57)

Where Kp,i, Ki,i and Kd,i are the proportional, integral and derivative gains,
respectively. φd and θd is associated with the reference angles or desired roll
and pitch, while ui is the controller action; on one hand, u1 corresponds to the
differential thrust between two rotors, while u2 is associated with the tilt angle of
both rotors.
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6.4.2 Angular velocity r controller

Despite of the fact that the heading of the UAV is generally a less critical degree
of freedom, external disturbances can generate undesired rotational movements
around the Z axis during flying. In order to overcome this drift, a yaw rate PI
controller has been implemented using the next expression:

u3 = Kp,3((rd − r) +
1

Ti,3

∫
(rd − r)dt) (6.58)

In this case, the reference (rd) is compared with the feedback yaw angular velocity
(r) measured by a yaw rate gyroscope. The resulting difference is sent to the
controller in order to generate opposite tilt angles by using a differential servo
deflection (u3).

6.4.3 Vertical velocity controller

Due to the high coupling, changes on angles λR and λL, from the roll and r
controllers, induce variations on the vertical thrust, which leads to variations on
vertical velocity. Therefore, a vertical velocity PID controller is implemented as
shown in expression (6.59).

u4 = Kp,4((żed − że) +
1

Ti,4

∫
(żed − że)dt+Kd,4(z̈ed − z̈e)) (6.59)

Where, żed is the reference vertical velocity, że is the measured vertical velocity es-
timated from measures of the inertial magnetic unit (IMU) sensors. u4 corresponds
to the increase in the same amount of thrust in both rotors.

6.4.4 Local Stability

The global close loop stability has been considered from two aspects. Firstly, the
control structures presented in this Section have been adjusted to ensure that the
poles of the closed loop system have all of them negative real terms [21]. For this
purpose, the particular transfer functions presented in Section 6.5 (equation (6.60))
have been used. Obviously, this only guarantees stability close to the equilibrium
point defined for the linearization and, therefore, it is a local stability constraint.

Secondly, in order to study the margin of the local stability, HIL simulations have
been performed using the designed controllers against the full non-linear model of
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the UAV. In this way, the validity range of the controllers designed from the linear
transfer function is tested by realistic simulations [2, 5]. Obviously, this is not an
overall guarantee of stability, but it is possible to define a range of operation with
a high degree of confidence for the control design.

6.5 Test Prototype

The initial test platform presented in the work is a Flying-wing from Multiplex,
model XENO UNI [19]. This RC plane has been modified to add two tilt rotors,
following the main concept of VTOL UAV described previously. Figures 6.7 and
6.8 show the prototype assembled for real flight tests.

8 de junio de 2015, Valencia         TFG – Federico Paredes Vallés                                               4/99         

UAV V-Skye 

1. Objetivos y alcance 

Figure 6.7. Xeno UNI form Multiplex with two customised tilt rotors.

8 de junio de 2015, Valencia         TFG – Federico Paredes Vallés                                               5/99         

UAV V-Skye 

1. Objetivos y alcance 

Figure 6.8. Tilt rotor mechanical structure.
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The set of aircraft parameters used for control design and simulation have been
derived form the test platform described in the previous paragraph, and their
particular values are as follows:

• Wingspan: 1.26 m

• Fuselage length: 0.526 m

• Empty weight: 0.1904 kg

• Operating weight: 0.7484 kg

• kT=15.7 and kτ=0.34

• Brushless motors: T-MOTOR Antigravity MT2814 770 KV

• Propellers: T-MOTOR 12x4 CF

• Electric Speed Controllers: HW-09-V2-OEM

• Tilt Rotor Servos: HITEC HS-5475HB

• Flight Controller: CC3D OpenPilot Revolution

• Battery: 2200mAh 4S 80/160C

Apart from these geometrical characteristics, the engines provide a maximum
thrust of 15, 7 N and the tilt-mechanism admit a deflection up to 0.5235 rad.
The combination of engines, propellers, Electronic Speed Controllers (ESC) and
servos employed in this airframe provide enough power and maneuverability to
successfully accomplish the hovering mission even with a larger payload, such as
an action camera.

In order to complete the tilt-rotor model parameters, the corresponding moments
of inertia are: Ixx = 0.0015 kg m2, Iyy = 0.0160 kg m2 y Izz = 0.0176 kg m2, and
also a product of inertia of Ixz = −1.4182 · 10−5 m4.

6.5.1 Prototype model linearization

In order to design the linear control approach described in section 6.4, first of all,
the attitude dynamic model described by expressions of section 6.3 is decoupled
into four linearized single-input single-output (SISO) models around the opera-
tional range of a hovering maneuver, which implies that p ' q ' r ' 0 and
u ' v ' w ' 0.

The four linear models are obtained by replacing the nonlinear equations of motion
with their Taylor series approximation truncated to the first order with respect to
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the controlled variables and inputs. This linearization approach is well know and,
frequently, it is defined as Small Perturbation Theory [31, 35, 34, 29]. Once the
set of equations have a linear structure and after replacing the model parameters
by their prototype value, the following transfer functions are obtained:

Gφ(s) = φ(s)
u1(s) =

554.78

s2(s+ 19.05)
(6.60)

Gθ(s) = θ(s)
u2(s) =

−13.95(s− 138.5)(s+ 138.5)

s2(s+ 153.2)(s+ 21.75)
(6.61)

Gr(s) = r(s)
u3(s) =

1.1674(s− 56160)

s(s+ 153.2)(s+ 21.75)
(6.62)

Gże(s) = że(s)
u4(s) =

−117.09

s(s+ 19.05)
(6.63)

6.5.2 Tuning PID loops for prototype control

After calculating the transfer functions, the controllers parameters can be obtained
either using classical techniques, such as the Root-Locus method, or more modern
techniques based on optimisation with genetic algorithms.

The use of Root-Locus method for PID tuning proves to be quite easy and use-
ful compared to others techniques, since it indicates the manner in which the
open-loop poles and zeros should be modified so that the response meets system
performance specifications [21]. However, a disadvantage of using this technique
is that it is necessary to employ a linear model, which is only an approximation
of the complex dynamics of the UAV.

On the other hand, PID tuning and optimisation using genetic algorithms is a mod-
ern technique that provides an adaptive searching mechanism inspired on Darwin’s
principle of reproduction and survival of the fittest. The individuals (solutions) in
a population are represented by chromosomes that are associated to a fitness value
(problem evaluation). The chromosomes are subjected to an evolutionary process
which takes several cycles. Basic operations are selection, reproduction, crossover
and mutation [11]. One of the main advantage of using genetic algorithms is that
it is a global search technique of optimal and sub-optimal solutions of a problem
and hence it can directly interact with the non-linear dynamics model.

Parameters of PID controllers obtained using both techniques are presented in
Tables 6.1 and 6.2.
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PID Controller Kp Ti Td
φ 0.25886 ∞ 0.952
θ 0.11936 ∞ 0.95
r 0.415 0.83 0
że 0.85 ∞ 1.076

Table 6.1. Pid parameters using the Root-Locus method

PID Controller Kp Ti Td
φ 0.2979 4.2997 0.2945
θ 0.2080 9.8801 0.368
r 0.2 4 0
że 0.55 6.5 0.5

Table 6.2. Pid parameters using a genetic algorithm

In order to compare the performance of the attitude and vertical speed control
system tuned using both classical and modern strategies, a numerical simulation
with the nonlinear model of the UAV is made using both set of parameters and
the accuracy requirements for the system are formulated in terms of the settling
time (ts) and the integral squared error index (ISE), which is related to the time
response of the system.

ISE =

∫ t

0

e2dt (6.64)

The presented simulations consisted in transition with predefined dynamics from
one steady state flight to another. Numerical results evaluating the proposed
indexes are shown in Tables 6.3 and 6.4.

PID Controller ts ISE
φ 4.603 96075
θ 3.618 128310
r 3.986 95095
że 3.986 4922

Table 6.3. Controller performance using the Root-Locus method
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PID Controller ts ISE Enhancementts(%) EnhancementISE(%)
φ 2.931 95385 36.32 0.72
θ 1.890 127080 47.76 0.96
r 2.835 95140 28.88 -0.05
że 2.168 4419 45.61 10.22

Table 6.4. Controller performance using a genetic algorithm

Taking into consideration the proposed control effort indexes, PID tuning obtained
by a genetic algorithm is the most comprehensive choice. For this reason, this set
of parameters will be adopted during the simulations and flight tests (Section 6.6).

6.5.3 HIL Simulation Platform

The HIL simulation platform is shown in Fig. 6.9. The main computation unit is
a PXI laboratory computer from National Instruments. This equipment includes
several boards to interface a great amount of external devices. As an example
digital and analogue input/output boards, Ethernet and Serial ports or four USB
ports. This hardware comes with a real-time operative system that can be config-
ured to run Real-Time simulations [5, 13, 9].

r PID

ROLL PID

PITCH PID

Vz PID

Roll 
reference

Pitch 
reference

yaw rate
reference

Vertical velocity 
reference

 KALMAN FILTER: Position, Orientation, Linear velocity, Angular velocity

VTOL Dynamic Model

Joystick INPUTS

FCS (OpenPilot Revolution)

Figure 6.9. Hardware In the Loop platform diagram

The set of 12 equations of motion derived in section 6.3 have been particularised
for the prototype model and implemented in Matlab/Simulink. Simulink allows
to compile the model to be run on the PXI real-time target [20, 6].

A CC3D OpenPilot Revolution Board [7] has been elected as the flight control unit
(FCS). It is a digital board with a micro-controller that comes with the necessary
onboard sensors and autopilot software already installed. The control algorithms
have been modified and implemented on the FCS. Then the onboard sensors have
been bypassed so that the values coming from the model are used to close the
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loop. Finally, the board has been connected to the PXI to send actuators values
and receive state variables values. A joystick has also been connected to the board
to send the reference value to the controllers.

6.6 Results

This section covers the analysis of the results obtained in simulation (using HIL
simulation platform) and in real flight tests. The main goal is to understand
the dynamical behaviour of the system while it is hovering at certain attitude
configurations.

6.6.1 Simulation results

The first simulation consists in coupled changes of roll and pitch that allow the
reader to understand how the control actions (throttle and tilt-angle) have to be
modified in order to follow the reference in attitude and vertical velocity.
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Figure 6.10. Rotor deflection against modifications in φ and θ

Two conclusions can be drawn based on the previous Fig. 6.10. First of all, as
it was already mentioned, the system deflects the rotors in the same direction in
order to achieve certain pitch angles. As it can be observed, until t = 15 seconds
there have only been modifications in the pitch angle, and therefore, λL = λR.

However, the interesting aspect of this result is what happens with the tilt-angle
when a roll maneuver is being carried out. As mentioned, this rotation needs a
different thrust generated by each of the rotors until the air-frame reaches the
desired configuration. Therefore, during this procedure the total torque is no
longer null, meaning that there exists a tendency to modify the yaw of the system
by increasing its angular velocity r. The result of the coupling of these dynamical
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movements is that the attitude tracking controller produces opposite tilt-angles in
order to maintain r = 0.

This effect is better explained in Fig. 6.11.
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Figure 6.11. Evolution of r and λ against modifications in φ and θ

It is also important to remark that the system tends to modify its heading when
the hovering takes place at configurations characterised by non-null pitch and roll
angles. The reason of this azimuth variation is that the controller is based on the
manipulation of the angular velocity r instead of the yaw angle ψ, and therefore,
the system acts in order not to change the heading that it has at a specific time t
but if this modification occurs, the new heading would be the new reference and
the system would not try to recover the initial orientation.
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Once the time-response of the tilt-angles has been analysed at different attitude
configurations, the same study with the thrust generated by each of the rotors has
been performed, as shown in Fig. 6.12.
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Figure 6.12. Thrust signal against modifications in φ and θ

In this second study, it is important to remark two conclusions about the behaviour
of the thrust when the system follows the attitude configurations shown in Fig.
6.10 and Fig. 6.11. First of all, as it was established in Section 6.2, a change in roll
implies the controller to modify the same absolute value of the rotational velocity
in each of the rotor but with different sign. As a result, the thrust is not longer
equal until the reference is reached.

The other conclusion refers to the thrust modification associated with changes
in pitch from the equilibrium configuration. Although, this effect can not be
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graphically observed due to the resolution of the thrust signal, when a certain
pitch angle is established as a reference, the engines have to create more thrust
in order to compensate the fact that the entire system is tilted, and therefore, to
maintain the equilibrium of external forces. This means that the higher the pitch
angle is, the higher the increase in thrust has to be.

The last study linked to this changes in attitude is focused on the analysis of the
time-response of the vertical velocity że shown in Fig. 6.13. Due to the control
scheme design, when the aircraft takes non-equilibrium attitude configurations,
it has a tendency to descend, i.e., to increase the positive value of its velocity
in the Ze axis of the earth reference frame. The vertical velocity controller tries
to maintain a given reference value allowing to reduce variations in this velocity,
but, because the altitude is not directly controlled, the system keeps changing its
vertical position.

Figure 6.13 illustrates that each pitch or roll angle apart from the equilibrium
(φ 6= 0 or θ 6= 0) implies an increase in że, which is compensated by an increase
in the thrust generated by the rotors. Again, since the controlled variable is the
vertical velocity, each time a perturbation occurs there is a loss of altitude that
is never recovered, but the vertical speed controller manages to stop falling and
reaches again the że = 0 set-point.
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Figure 6.13. Evolution of Vz and thrust signal against modifications in φ and θ

6.6.2 Real flight results

In order to verify the performance of attitude control system designed for this UAV,
the proposed PID control laws have been implemented in the on-board hardware
using the OpenPilot Revolution Board [7], which contains a full 10 DOF IMU with
gyroscopes, accelerometers, magnetometers and barometric pressure sensors.

In the experimental test flight, the goal was the stabilisation of the UAV, com-
pensating any external disturbance during vertical flight. Due to the lack of GPS,
velocity and position can only be calculated by integration of accelerometers com-
bined with the gyroscopes measures and with the barometric pressure sensor (sen-
sor fusion [16, 32]). As result, the measures of velocity and position are not reliable
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enough to close the loop. For this reason, in the experimental test presented, the
vertical velocity controller has been annulled and the pilot directly acts on the u4

system input. That means, direct modification of motors nominal thrust which
implies a manual (piloted) control of the speed and vertical position.

The experimental results for the platform control are presented in Fig. 6.14 as a
time plot of all angles of the UAV and the controller actions.

Figure 6.14. Time series of Euler angles and controller outputs

As can be seen, the closed loop response of the UAV is stable because of the fact
that Euler angles vary within a limited range, confirming the effectiveness of the
proposed approach and theoretical results. Since vertical speed and altitude are
manually piloted and the absence of GPS, it is impossible to define a 3D trajectory
through waypoints. To cover this drawback, the real test flight demonstration
video can be visualized on Youtube [8]2. Thanks to this video, readers can have
an approximate idea of the 3D trajectory of the UAV during the test flight.

2 V-Skye Prototype: Test Flight - https://youtu.be/zS9oWur-Pss
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6.7 Conclusions and Future Work

The design and implementation of the attitude tracking controller for a Bi-Rotor
VTOL UAV have been presented in this article. The simulations performed in
a HIL environment showed the main aspects of the dynamical behaviour of this
system, while the real test flight results presented verify the stability and viability
for this UAV platform. Therefore, the UAV designed has the ability to hover
despite its complex dynamics and allows future designs based on cascade control
schemes focused on controlling global position and velocities. In addition, future
works will explore the robust control design that allows the automatic transition
between the two different flying modes: VTOL and cruise flight.
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Conclusions and Future Works

7.1 Conclusions

This thesis is dedicated to the study of modelling and control of unmanned aircraft
systems, always posed as a multi-objective optimization problem. Although all of
them are framed in this theme, each chapter itself is the publication of a research
work that begins and ends in that chapter. Therefore, the conclusions drawn have
been reflected here separately, grouping them according to the two main parts of
this thesis.

7.1.1 Conclusions on part I: Modelling and Parameters
Identification

In chapter 2, a methodology for the identification of UAVs aerodynamic models
is presented. Besides a demonstration of its application in a real system is car-
ried out with satisfying results. The technique presented gives the already stated
advantages in the data analysis and the identification process, since it involves a
phase of decision making by the designer. This phase allows then, the study of
several models and the election of the one that fits better with the designer needs.
In addition, confronting experiments offers information about the difficulties of
finding a model that fits different flight conditions at the same time, which im-
proves the understanding of the system. This technique may also give information
about the importance of a particular kind of experiment in the identification of the
model. All these advantages lead to better models that may save time and money
when designing autonomous aircraft control algorithms and are particularly inter-
esting for low cost MAVs for which CFD or wind tunnel experiments information
is normally not present.

189



Chapter 7

In chapter 3 a two-step identification technique for MAV in the absence of air-data
sensors is presented. In the first step, a multi-objective optimization procedure is
proposed to estimate wind during the flight experiments. A simulation environ-
ment that includes a MAV model that can be subjected to constant and variable
winds is used to confirm the estimate process. Conditions in different flight tests
in which one or more system inputs are excited are simulated, and after acquir-
ing necessary data from simulations, the wind estimation technique is applied.
Several conclusions can be extracted from these simulations. First, under ideal
conditions, wind estimation is successfully achieved in any experiment. Second,
it can be concluded that only lateral experiments offer enough information to en-
able wind estimation under realistic conditions. Aircraft orientation relative to
the wind azimuth does not vary during longitudinal experiments. Therefore, wind
observability is significantly reduced. The same reason is reflected in the improved
performance detected during the aileron experiments when compared with rudder
experiments. Observability is improved when a wider range of orientation values
are covered. For this reason, mixed experiments, i.e., experiments that excite
longitudinal and lateral variables simultaneously, achieved better results for wind
estimation. As shown in section 3.5.2, this type of experiments can theoretically be
used to estimate the wind and identify any of the aerodynamic coefficient models.
But this fact has only been checked on simulation.

The same wind estimation procedure is applied to real flight data for lateral ex-
periments. The obtained results infer that the wind is estimated and that the
information obtained can be used to correct airspeed dependent measurements.
As a final remark, the estimation technique presented in chapter 3 is not intended
to replace air-data sensors (whenever available). However, MAVs price and size
make it sometimes impossible to include quality data sensors. Therefore, in those
cases when no information at all can be used, a rough estimation of wind speed
can significantly improve models quality. In addition, a similar multi-objective
optimization approach might also be employed when partial airspeed information
is available. That information could be incorporated in the optimization problem
in order to improve airspeed measurements.

In the second step of the methodology presented in publication of chapter 3, multi-
objective optimization is again proposed to take advantage of the available flight
data. The presented approach enables diverse experiments to be utilized, so that
adjusting model parameters becomes, in reality, a multi-objective problem. This
approach enables obtaining a compromise model that suits some flight situations
without losing much performance in others. Furthermore, the visualization of the
model fitness for several trials provides an idea of the quality of the obtained
data and of the selected model structure. Although mean squared error has been
used here, using a heuristic optimizer also enables the use of other performance
indicators. For example, the mean absolute error is normally more meaningful to
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engineers because it has the same magnitude as the variable being modeled. This
second step, is in accordance to the methodology used in chapter 2.

7.1.2 Conclusions on part II: Control, Simulation and Test

Chapter 4 presents a comparative study between classic PID control techniques,
and other model based structures where, the power of taking a multi-objective
design approach shows advantages on reducing uncertainties. Indeed, results pre-
sented in chapter 4 show that the most robust strategies for the proposed scenario
are PID controllers and, particularly, PIDs adjusted by means of mutli-objective
optimization stand out over the others. This is mainly due to the existence of
parametric uncertainties residing on the aerodynamic coefficients. More complex
techniques, such as LQR and MPC, have much higher reliance on the information
provided by the model, since it is used in the design phase for LQR and even in
the control phase for MPC. Therefore, the behavior of these strategies deteriorates
significantly on real situations when the reference model is not reliable.

However, despite the results obtained from the point of view of dynamic response,
the MPC strategy presents a very interesting advantage, the proposal of input
signals much less aggressive and smoother than the rest of controllers. This fact
by itself can be considered as a sufficient motivation for choosing such techniques,
since they ensure a much longer life cycle to the set aircraft actuators, which is an
issue of vital importance in this type of systems. In addition, an iterative process
of improving the values of the derivatives of stability and control could significantly
improve the performance of the LQR and MPC controllers.

Going deeper on the tuning strategy follow in chapter 4, a systematic approach
to enhance controller performance evaluation and design is presented through-
out chapter 5. Multi-objective optimization is used in conjunction with different
simulation platforms in order to provide the integrative framework on which the
methodology is based. Thereby, MiL, SiL, PiL and HiL platforms (or a subset
of them) can be employed in successive multi-objective optimizations in order to
gain better understanding of the problem as the process moves forward. As we
saw, the information obtained in previous stages is used in two directions when a
new optimization is to be posed: (i) more meaningful objectives can be stated and
(ii) preferences and solution constraints can be better delimited. On one side, (i)
generally leads to more complex MOPs, what obviously increases the computa-
tional burden. On the other side, (ii) reduces the search space helping, therefore,
to decrease that complexity during the optimization stage. Both (i) and (ii) go in
the direction of getting more adequate solutions (in the sense of what the designer
prefers) for the problem at hand.

As a demonstrator, a UAV system with a predefined control structure has been
presented. That structure is formed by a total of five PI controllers that perform

191



Chapter 7

attitude control and navigation tasks. The ten PI parameters had to be tuned so
that the resulting controller was able to drive the aircraft in the supervision of
several way-points. Section 5.4 showed how the methodology can be adapted to
this specific problem, in accordance to the available simulation platforms. As the
process moved forward, reliability objectives, where several missions were actively
accomplished inside the MOO, were posed. At the same time, a better understand-
ing of the problem allowed the designer to refine preferences’ matrices, as well as
optimization limits. A final MCDM stage comprising several missions inside the
HiL platform has been performed. In that last phase, a controller was chosen from
the rest.

To validate the final choice, a real flight mission has been carried out. The chosen
controller and a second one within the final Pareto set have been tested exactly
as they were coded for HiL simulations. In Section 5.5 experimental results con-
firmed that the selected controller was as good accomplishing flight missions as
the MCDM stage suggested. This evidenced that a realistic model of the system
is of great importance to obtain a controller that behaves as the designer expects.
A second conclusion is that, even when the HiL platform cannot be actively used
in the MOO process, including it in the final MCDM stage is a good practice.

Several new flight paths can be taken as future works. First, adapting the HiL
simulation platform so that it can be actively used in the MOO process could
be of great interest (although practicality must be had in mind). Second, the
authors would like to study the applicability of the technique on the design of
multi-variable controllers. Indeed, tuning weighting matrices for linear quadratic
regulators or adjusting design parameters in model based predictive controllers can
be something tricky when the system comprises many states and inputs. Third,
applying this technique to systems with modeled parametric uncertainties can be
a good practice to achieve a certain level of robustness.

Finally, the design and implementation of the attitude tracking controller for a Bi-
Rotor VTOL UAV have been presented in chapter 6. The simulations performed
in a HIL environment showed the main aspects of the dynamical behavior of this
system, while the real test flight results presented verify the stability and viability
for this UAV platform. Therefore, the UAV designed has the ability to hover
despite its complex dynamics and allows future designs based on cascade control
schemes focused on controlling global position and velocities. In addition, future
works will explore the robust control design that allows the automatic transition
between the two different flying modes: VTOL and cruise flight.
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7.2 Research Impact

Table 7.1 gives different indices that sum up the overall contribution of this re-
search. Journals’ Impact factor and CiteScore values correspond either to the year
when the papers where published or the most recent values known.

Paper Title Journal/Congress Year Citations1 CiteScore2 JCR-Q3

Unmanned Aerial Vehicles
Model Identification using
Multi-Objective Optimiza-
tion Techniques

19th World Congress of
The International Fed-
eration of Automatic
Control.

2014 6 N/A N/A

Multi-Objective Optimiza-
tion for Wind Estimation
and Aircraft Model Identifi-
cation.

Journal of Guidance,
Control, and Dynamics

2016 21 2.77 1.856 - Q1

Control Strategies for Un-
manned Aerial Vehicles un-
der Parametric Uncertainty
and Disturbances: a Com-
parative Study.

IFAC Workshop on
Advanced Control and
Navigation for Au-
tonomous Aerospace
Vehicles

2015 4 N/A N/A

Enhancing controller’s tun-
ing reliability with multi-
objective optimisation: from
Model in the loop to Hard-
ware in the loop.

Engineering Appli-
cations of Artificial
Intelligence.

2017 14 3.75 2.819 - Q1

Motion Equations and Atti-
tude Control in the Vertical
Flight of a VTOL Bi-Rotor
UAV.

Electronics 2019 4 1.9 2.412 - Q2

Table 7.1. Research citations and impact measurements

From indices and citations presented on table 7.1 it can be concluded that the
works exposed on this thesis have received a successful acceptance/impact on the
community of the field of research.

7.3 Future Works

Every research work opens new research paths to explore. In the case of this thesis,
the platform presented in chapter 6, represents a very interesting dynamic system
on which some of the techniques developed throughout this work could be applied
or even extended.

1Data source: Google Scholar
2Data source: Scopus
3Data source: Web of Science
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A very interesting field of study is the inclusion of some key aircraft constructive
parameters in the MOOD process from chapter 5 together with the controller
parameters. The main idea is to optimize control robustness and performance
objectives by tuning, not only the controller parameters themselves, but also those
constructive parameters that affect such performance at the same time. This idea
seems interesting and a very powerful way to tackle the pursued goals even before
the aircraft has been designed and built. The complexity of the VTOL aircraft
presented in chapter 6 seems a perfect platform to apply and test this concept.
As an example, the position of the two rotors (distances to the gravity center
and from each other) affects directly to the maneuverability of the system, and
therefore, to the control performance and robustness. Including those parameters
on the MOOD process can help to improve the desired objectives indexes.

Making use of the concept presented in chapter 6 again, the dynamic model based
on the aircraft constructive parameters might not reflect its real dynamic behavior
in a reliable manner. Besides, the work performed on chapter 6 is only focused on
the vertical flight mode. For these reasons, designing and executing experimental
flights to adjust the dynamic model for every flight mode would be one of the
following steps to be taken. To do so, multi-objective optimization techniques
presented in chapters 2 and 3 have proven to be useful strategies.

On chapter 4, MPC controller stands out because of how this controllers handles
actuators. In that work, PID controllers tuned by means of MOOD is taken as a
better strategy because of its better performance in the cost indexes. On one side,
it seems logical, since the PID controller has been optimized for those objectives.
And, on the other side, model dependence is an intrinsic feature of MPC controller,
what makes it somehow fragile to model uncertainties. In this sense, working on
improving the dynamic model incorporated to the controller could be a way to
increase its overall performance, making MPC a good candidate to substitute PID
strategy. On the other hand, weighting matrices can also be tuned from a MOOD
perspective. The problem here is that the space of solution widens, since the
number of parameters to tune increases significantly. However, working on this
possibility is also an interesting way to make MPC a realistic alternative to PID
controllers.
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