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A B S T R A C T 
 
Monitoring an aquatic environment in aquaculture is usually carried out by controlling its 
physicochemical and biological parameters. The global state of the process is evaluated though 
the individual conditions shown in each parameter. However, the correlation structure in the 
data, caused by interdependence between these parameters, provides relevant information 
which must be controlled. Thus, the complex structure of the data requires a multivariate 
control method to explore both the individual and interactive effects of the environ- mental 
parameters. To achieve this goal, this paper presents a statistical method based on a 
Multivariate Exponentially Moving Average (MEWMA) chart to monitor the multivariate 
structure of an aquatic environment in aquaculture, especially in a crop of tilapia in 
Mozambique. The results show that the adjusted MEWMA chart  is more consistent when 
controlling the conformity and stability of environmental parameters. Therefore, it can be 
considered an efficient statistical method to monitor an aquatic environment in aquaculture. 
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1. Introduction 
 
The activity of breeding fish and other aquatic organisms dates back to ancient times, when man began 
to optimise fish production criteria for subsistence. Aquaculture production implies human intervention 
in the breeding process to obtain better results. Modern industrialised aquaculture has a marked 
significant scientific and technical compo- nent and is related to various disciplines such as biology, 
engineering and economics. Breeding tilapia, for example, is an activity that needs regular controls and 
comprehensive monitoring. The quality of a spe- cies in aquaculture depends to a large extent on the 
quality of water to which it is exposed. According to Martinez (Martinez, 2006), water quality is 
determined by its physicochemical properties such as oxygen, pH, temperature, salinity, alkalinity, 
ammonium, nitrate, nitrite, phosphorus, transparency, and silicon, which must be kept under con- trol 
to guarantee good breeding. A mismatch of the physicochemical parameters affects the aquatic 
environment, causing crises that can lead to death (Alves and Mello, 2007). 
Major advances are currently being made in research on methods to monitor an aquatic environment. These 
methods mainly focus on the improvement of technology to guarantee quality process data in real time. 
Some examples of recent research include the study by Zhou and Xing (Zhou and Xing, 2013), which applied 
a smart monitoring system     to aquaculture based on hardware and software to control the industrial 
aquaculture process, and the 2014 paper by Yan and Shi (Yan and Shi, 2014) that presented a combination 
of technologies for the intelligent breeding of aquatic species, consisting of analysing the environmental 
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factors which affect the growth of a species, in the search for a better environment for cultivation. In turn, 
Xu and Zhang  (Xu  and  Zhang, 2014) developed a method based on the Android platform using  a  system 
with many sensor nodes, recognising the environmental para- meter values (pH, temperature, oxygen, water 
level) and transforming them into digital data. In 2015, Jinfeng and Shun (Jinfeng and  Shun, 2015) developed 
a method for the management and cultivation of marine species based on computer technology. He 
proposed a system to monitor water quality based on digital technology known as ZigBee. The system collects 
and transmits data, records the water quality parameters (temperature, oxygen dissolute, pH, water level) 
and con- trols the increase of the oxygen. In 2016, Liu et al. (Liu et al., 2016) proposed a user-friendly water 
monitoring system, as well as a server    for storing and analysing the monitored data. 

The abovementioned methods guarantee the quality of real-time process data. However, the techniques 
currently used in water quality monitoring are based on univariate methods, which consist of mea- suring each 
parameter over time and verifying their conformity through theoretical limits. The data structure of the 
aquaculture process is very complex, presenting a significant correlation between variables (phy- sicochemical 
parameters) and autocorrelation in the observations caused by time dependence. Therefore, it is not 
appropriate to decide on the overall state of the process based solely on the individual conditions of the 
parameters. 
Monitoring an aquatic environment in aquaculture is more than registering and observing the 
compliance of conformity conditions to each physicochemical parameter. A multivariate process can 
show that all the variables separately are within control limits, while the corre- lation between them 
could be out-of-control; or vice versa. 
In a statistical approach, it is not coherent to analyse each physi- cochemical parameter separately and to 
consider the independence of the observations, since the process information originated by the in- teraction 
between the parameters and the time dependence is not modelled. This work aims to apply a multivariate 
statistical monitoring method which enables the evaluation of the water quality environment by exploring 
the overall variability of physicochemical parameters. Martinez et.al (Martínez et al., n.d.) analyzed the 
variability of physi- cochemical and biological parameters in the coastal waters of  the Murcia region through 
a factor and principal component analysis; and Zhou et al. (Zhou et al., 2014) applied multivariate  statistical 
methods  to describe the composition and abundance of micro-invertebrates and their relationship with the 
aquatic environment. However, these studies do not show how the joint variability of parameters can 
influence water quality, and how the dependence on observations can affect monitoring process decisions. 
This paper analyses the complex data structure and suggests an appropriate statistical method to monitor the 
aquatic en- vironment in the tanks of tilapia cultivation in Mozambique. 
The quality environment in aquaculture is characterised by a set of parameters which change their properties 
over time. The dependence between parameters and observations implies the presence of data correlation 
and autocorrelation. Thus, the MEWMA chart developed to control the multivariate and autocorrelated data 
can be used. 
In this study, four physicochemical parameters that characterise the aquatic environment were 
considered: dissolved oxygen, temperature, pH and transparency. These parameters are described 
below: 
Dissolved oxygen is considered to be the most important physico- chemical parameter in the cultivation of 
aquatic species (Alves and  Mello, 2007). Oxygen variations in aquaculture produce important changes in the 
process. According to Martinez, (Martinez, 2006), the recommendable range of oxygen for the  cultivation  of  
tilapia  is  5.0–9.0 mg/l. Aquatic species exposed to low oxygen levels are sus- ceptible to decreases in their 
rate of growth, increases in their feed/ weight gain ratio, lethargy, susceptibility to diseases  and the reduction 
of their reproductive capacity (Nicovita, 2002). The  Mozambique  ti- lapia (Oreochromis mossambicus) has 
an advantage compared to other species because it can withstand low concentrations of dissolved oxygen of 
0.1 ppm for short periods (Russell and Thuesen, 2012). However, a  lack of control of this parameter can 
drastically affect the productivity   of this species. 
Temperature is one of the parameters that limits a large variety of biological processes (Alves and Mello, 
2007). Fish and shrimps are poikilothermic animals (their internal temperature depends on the environmental 
temperature) and are sensitive to changes in temperature (Nicovita, 2002). Unlike mammals and birds, their 
internal temperature is not regulated. Thus, the environmental temperature has a significant effect on the 
growth, feeding rate and metabolism of these animals. Poikilothermic animals are subordinated to their 
environment  (Alves  and Mello, 2007), since their activity and survival are permanently 

dependent on the habitat temperature. The temperature range for cultivating tilapia is 28 − 32°C, with a 
tolerance of up to 5°C below this optimum range (Alves and Mello, 2007). It is considered extremely important 
to ensure that the temperature levels are kept within their tolerance limits to ensure good breeding. 
Oreochromis mossambicus stop growing at temperatures below 16°C. For Oreochromis niloticus the 
minimum lethal temperature is 12°C, whilst Oreochromis aureus tolerates relatively low temperatures 
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compared to most tilapia species, with   a minimum lethal temperature of 8°C (Lucas and Southgate, 2003). 

pH has a significant effect on the metabolism and physiological processes of all aquatic organisms, as 
well as influencing many chemical processes, such as the availability of nutrients that are directly related 
to primary productivity. pH is the concentration of hydrogen ions (H+) in water, indicating its degree of 
acidity or alkalinity.  Alves and Mello (Alves and Mello, 2007) considered that the ideal pH for  tilapia 
cultivation is 7–9. pH values outside this range cause changes in the behaviour of the fish, such as lethargy, 
growth retardation and re- production problems. 
Nurseries with very transparent waters have little phytoplankton, which indicates a limited amount of 
natural food for tilapia, and this parameter is an important indicator to control food intake in the tilapia 
cultivation process. Good production of tilapia requires an ideal water transparency level of 30–50 cm. 
Although nitrogen content, and nitrite and chemical oxygen de- mands are some of the limiting factors in 
aquaculture, these parameters were not considered in this work. The objective of this research is to show 
how the monitoring of the aquatic environment in aquaculture can be carried out by modelling the structure 
of the data using a multivariate statistical method, applied to the abovementioned parameters. 
Nevertheless, this does not limit the use of the method applied to any particular set of environmental 
parameters, since these can be quantified. 
 
2. Material and methods 
 
The database used in this work was obtained in the physicochemical parameter registration  process  in  
the  company  Aquapesca  de Mozambique. The cultivation of tilapia was carried out in brackish water, 
with 30 g/kg of salinity, in a 600m2 tank with a density of 100g/ m2. Based on the size of the tank and its 
total biomass, the cultivation system was classified as intensive (Nicovita, 2002). The data collection 
process consisted of the simultaneous measurement of the four chosen physicochemical parameters. 
The study was carried out in an open pond, exposed to sunlight. The oxygen, temperature, and pH 
parameters were measured every day at     6 am and 3 pm to capture their variability at two different times 
of day (morning and  afternoon);  transparency  was  measured   at   midday   (12 pm), as this was considered 
to be the best time. 
The oxygen, temperature, and pH parameters were measured using   a portable multi-parameter meter. The 
transparency of the water was recorded using a 20 cm diameter Secchi disk, divided into quadrants painted 
alternately black and white, tied to a graduated rope. 
The tilapia crop (Oreochromis mossambicus) was monitored for 21 weeks, and environmental 
parameters were recorded every day. In accordance with the objectives of the company, which intended 
to analyse the variability of the weekly aquatic environment in the Oreochromis mossambicus pond, the 
weekly averages and the respective standard deviations of each physicochemical parameter were calcu- 
lated. This resulted in a set of 21 observations for each parameter, where each piece of data 
corresponded to the average of 14 observations measured in the respective week (for oxygen, 
temperature and pH) and 7 observations for transparency. Therefore, the database was made up of four 
variables corresponding to the physicochemical para- meters and 21 observations, corresponding to the 
weeks of the cultivation process. 
 
3. MEWMA chart for autocorrelated processes 
 
The MEWMA control chart is considered to be a multivariate version of the EWMA (Exponentially Moving 
Average) chart proposed by Roberts (Roberts, 1959). The EWMA chart has the advantage of de- tecting 
small changes in the process compared to the Shewhart (Shewhart, 1931) chart, and its MEWMA 
multivariate version maintains this advantage respect to the Hotelling (Hotelling, 1947) chart. The first 
reference to the MEWMA chart is attributed to Lowry et al. (Lowry et al., 1992). The method consists of 
simultaneously controlling m correlated variables through a control chart. The parameters of Lowry et 
al.'s (Lowry et al., 1992) MEWMA chart are calculated under the  hypothesis  of  normality  and  
independency  between observations. 
 
However,  the  time  dependency  of  the  environmental  parameters  in aquaculture cannot be avoided, 
and the process shows significant correlation and autocorrelation in the data. 
 
Statistical methods have been developed to monitor  multivariate  and autocorrelated processes (Claro et al., 
2007; Montgomery and Mastrangelo, 1991; Patel and Divecha, 2013; Testik, 2004). These methods are mainly 
based on two approaches: (1) fitting an adequate time series model for each process characteristic and 
adjusting a control chart for the obtained white noise (Claro et al., 2007; Montgomery and Mastrangelo, 
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1991; Testik, 2004); (2) including the correlation structure in the calculation of the chart parameters and 
applying them in the multivariate chart  (Patel  and  Divecha,  2013;  Vasilopoulos  and  Stamboulis, 1978). 
 
This paper is based on the first approach, where the MEWMA chart is adjusted to the white noise of the 
ARIMA (Autoregressive integrated moving average) model fitted to each environmental parameter. A good 
fit of the autocorrelation structure provides an ARIMA model with normal   and   independent   residuals.   
Under   these   conditions,  Lowry et al.'s (Lowry et al., 1992 MEWMA chart can be applied without any 
difficulty. Thus, it is assumed that any changes appearing in the  residual chart could indicate that the 
process is out-of-control. 

 
The MEWMA chart was adjusted as follows: 

 

3.1 Adjusting an ARIMA model for each environmental parameter 
Let p1t, p2t, p3t, … , pmt denote m physicochemical parameters that characterise   an   aquatic   environment   in   
the   aquaculture cultivation process. According to the characteristics of the aquaculture process, the m 
environmental parameters are expected to present a significantly correlated and autocorrelated structure. Thus, 
each parameter pit (i = 1, … , m and t = 1, … , n) is a time series and the corresponding method must be applied. 
 
In the case studied the pit value corresponded to the weekly mean of (i = 1, … , m and t = 1, … , n) is a time 
series and the corresponding method must be applied. 

In the case studied the pit value corresponded to the weekly mean of each physicochemical parameters, 
where i = 1,2,3,4 represented the number of considered parameters and t = 1, 2, … , 21 the weeks. 
For each pit parameter, an ARIMA (p,d,q) model was fitted with the following expression: 

Φp (B)∇dpit = c + Θp (B)ait      (1) 

where: 

Φp (B) = 1 − ϕ1 B − ϕ2 B2 − …−ϕp Bp Θp (B) = 1 − θ1B − θ2B2 − …−θq Bq 

∇d = (1 − B)d 

B is the delay operator; d is the number of necessary differences to achieve stationarity in the mean, 
and; ait is the white noise (ait ∼ N    (0, σ2)). 

3.2 Calculation of mean vector and covariance matrix of the white noise  
  
m and σ 2 were considered as the respective mean and variance of the ARIMA white noise for the environmental 
parameter i.  
 
Then, for the four parameters m = (0,0,0,0) and σ2 = (σ1

2, σ 2, σ 2, σ 2) was obtained representing the 
mean and variance  
vector, respectively. For a pair of parameters i and j, the covariance between ait and ajt can be estimated 
as: 
 

(2) 
 
Then, the covariance matrix of the white noise ai and aj for the in- control process is: 
 
 

 
 
   (3) 
 
 
 

 
 
3.3. Adjusting the MEWMA chart for the white noise 
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Using the control chart proposed by Lowry et al.  (Lowry  et  al.,  1992) with the calculated parameters, the 
MEWMA chart  for  the  ARIMA white noise was defined as: 
 
→zt = Λ→at  + (1 − Λ)→zt−1                       (4) 
 
Where 
 

 

and  0  <  λi  < 1  (i = 1, … , 4); →a   was the estimated vector means of the  residual  in  each  time  t;  ⎯m⎯→ 
was the in-control means process, as previously shown, all the elements were null for this vector. 
The process is considered out-of-control if 
 

 (5) 
  
where h2 > 0 was the control limit and was calculated to obtain a specific in-control ARL. The 
covariance matrix of zt was calculated asymptotically as follows: 
 

    
 
assuming the equality of weights in the last observations for the m variables (λ1 = … = λ4 = λ). 
 
Multivariate process monitoring using an MEWMA chart consists of controlling process stability based 
on the T2 statistic, assuming that the process is in-control if the value of this statistic is in the range [0,h2]. 
A process is considered to be stable if its parameter (mean and/or var- iance) does not change over time. 
 
3.4. Results and discussion 
 
Monitoring an aquatic environment in aquaculture seeks to verify the conformity of the parameters over 
time. Process conformity refers   to the compliance of the established requirements of environmental 
parameters to ensure water quality. 
In many aquaculture cultivation processes, only the conformity control of the environment parameters is 
prioritised. However, the process stability control is also important, as commented by Martinez (Martinez, 
2006). Sudden changes of 5oC in the water temperature can cause fish to become stressed and they can 
sometimes die. 
This work focuses on the monitoring of conformity as well as stability. Thus, the MEWMA chart shown above 
was applied to accomplish both aspects. 
Fig. 1 shows the weekly means of the four parameters measured daily in the tilapia breeding process in the 
company Aquapesca de Mozambique. For each parameter, the theoretical limits used as an indicator of the 
conformity of water quality were considered (designated as   Conformity   Control   Limit   (CCL)),   as   
suggested   by   Martinez (Martinez, 2006) and Alves and Mello (Alves and Mello, 2007); as was the statistical 
control limit (designated: Stability Control Limit (SCL)) calculated through the X-bar chart method 
developed by Shewhart (Shewhart, 1931): 
 

 
 
where x is the general mean (in this case, it is the mean of the weekly mean values of each environmental 
parameter) of the variable x; σ is the standard deviation of variable x; and L=3 (to comply with the 3-sigma 
rule). 
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     Fig. 1. Environment parameters. 
 
The caption shows the meaning of the symbols used in the Fig. 1. Observations with the symbol (•) are those 
that complied with both the conformity and stability requirements; (∘) indicates that the observation failed 
one requirement; and (×) corresponds to observations that did  not comply with either requirement. 
Therefore, the observations 3, and 8, and 4, 15 and 20 did not comply with conformity and stability in 
oxygen and pH, respectively. Considering that the process is in-control if all observations comply with 
the conformity and stability requirements for each parameter, only the observations 6, 12 and 16 were 
shown to be in-control. 
This univariate method becomes complex for processes with many parameters, since the state of the process 
is verified by the condition for each parameter. Using this method, the relevant information provided by the 
correlation structure between parameters is not controlled. 
This research is focused on the multivariate method, and we defend that the overall state of a multivariate 
process should not be evaluated solely on the non-compliance of the requirements of each variable. 
Therefore, a MEWMA chart for the ARIMA white noise was adjusted to monitor the joint variability of the 
environmental parameters. 
The multivariate method started by fitting an ARIMA model to each environmental parameter. Through 
simple and partial correlation functions (Fig. 2), AIC and BIC statistics, and the AR(1), a model was identified 
and estimated for the four environmental parameters. The obtained residual was tested (Ljung-Box test, 
simple and partial correlations function) and it was verified that, at a significance  level of 5%, the noise of 
the models was normal and independent. 
 

 
Fig. 2. simple and partial function of the parameters. 
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To adjust the MEWMA chart for the ARIMA white noise, the mean vector m 

⎯m→⎯    = (0,0,0,0) 
 

and the covariance matrix: 
 

 

were calculated, and then were determined using expression (4) and (5) statistics →zt  and  T2. 
 
The control limit h2 (stability control limit) was calculated applying the Markov chain method used by 
Patel and Devicha (Patel and Divecha, 2013) and, by Lucas and Saccucci (Lucas and Saccucci, 1990) for 
the ARL (Average Run Length) calculation. In this work, an in- control ARL equal to 370 (ARL(d = 0) = 
370) was considered, meaning that 370 samples would be necessary to detect a false alarm in the 

process. This considered in-control ARL corresponds to a false alarm probability of α =1 − p(i, 0) = 
0.0027, where p(i,0) is the probability that the observation is kept under control when moving to 
another state. The conformity control limits were determined as follows: 

 
and 

 

where the vectors i = (23,5,7,30) and s = (32,9,9,50) were composed of the minimum and maximum 
aquaculture tolerance limits for temperature, oxygen, pH and transparency, respectively. 
Therefore, process conformity was considered when 
CCLi < T2 < CCLs. 
 
Table 1 shows the numerical results corresponding to the zt and T2 statistics for the 21 observations (weeks) 
considered. The T2 values marked with (*) correspond to the abovementioned out-of-control observation. 
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The resulting MEWMA chart adjusted for the ARIMA white noise is shown in Fig. 3, in which the aquatic 
environment was monitored using the four physicochemical parameters simultaneously. Both conformity 
and stability were considered. The T2 statistic is an indicator of the overall variability of the aquatic 
environment denoted by these para- meters. The MEWMA chart shows that more than half of the 
observations of the process verified both the stability and conformity requirements. The observations 
2,4,8,12,13,14,15,20 and 21 did not verify both requirements, and thus were considered out-of-control. 

 
The proposed multivariate method for monitoring an aquatic environment in aquaculture consisted of 
applying the MEWMA chart  shown in Fig. 3. However, the univariate charts are still relevant. In the 
cases where the MEWMA chart indicated out-of-control observations, univariate charts were used to 
identify which parameter caused the anomaly. In this specific case, this shows that the pH caused the 
non- conformity of the stability of observation 4. The non-conformity of  
 

 
Fig. 3. Monitoring process using MEWMA chart. 

 
observation 8 was caused by temperature and oxygen; and the levels of oxygen, pH and transparency 
contributed to the uncontrolled environment in observations 2,12,13,14,15,20 and 21. 
The observations 1,3,5,9,10,11 were marked as being out-of-control in the univariate method; however, the 
multivariate method shows they were within both control limits (SCL and CCL). These observations are 
considered to be false alarms (type I error). On the other hand, observation 12 complied with the conformity 
requirement for all environmental parameters; however, it was not verified in the MEWMA chart, indicating 
that the univariate method could not identify the process failure caused by the correlation of the parameters 
(type II  error). 
Therefore, the inclusion of joint parameter information and the control of both stability and conformity must 
be carried out in order to signal anomalies in the process, avoiding the mentioned errors, and to ensure a 
good aquatic environment in the cultivation of aquatic species in aquaculture. 
 
4. Conclusions 
 
This paper has discussed the issues that occur when monitoring a multivariate process using univariate 
methods. Thus, the study was oriented towards the analysis of the adequacy of a statistical method in the 
data structure of aquaculture. Therefore, the MEWMA chart was adjusted for the white noise of the ARIMA 
model fitted to four parameters selected to characterise the aquatic environment in cultivation tanks in the 
company Aquapesca de Mozambique. 
Monitoring was performed using the proposed multivariate statis- tical method to control both the 
conformity and the stability of the process. The results showed that the aquatic environment was often out-
of-control. However, most of the observations indicated by the univariate method corresponded to false 
alarms. The multivariate control method based on the MEWMA chart was adjusted to the data structure of 
the observed aquatic environment in aquaculture, and the correlation and autocorrelation in the parameters 
was modelled. Nevertheless, the proposed multivariate method was shown to be more consistent when 
controlling the conformity and stability of an aquatic environment. Therefore, it can be considered an efficient 
methodology for monitoring aquatic environments in aquaculture. 
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