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Abstract

Understanding the aspects of the cell functionality that account for disease or drug action

mechanisms is the main challenge for precision medicine. In spite of the increasing availability of

genomic and transcriptomic data, there is still a gap between the detection of perturbations in gene

expression and the understanding of their contribution to the molecular mechanisms that ultimately

account for the phenotype studied. Over the last decade, different computational and mathematical

models have been proposed for pathway analysis. However, they are not taking into account the

dynamic mechanisms contained by pathways as represented in their layout and the interactions

between genes and proteins. In this thesis, I present two slightly different mathematical models to

integrate human transcriptomic data with prior knowledge of signalling and metabolic pathways to

estimate the Mechanistic Pathway Activities (MPAs). MPAs are continuous and individual  level

values that can be used with machine learning and statistical methods to determine biomarkers for

the  early  diagnosis  and  subtype  classification  of  the  diseases,  and  also  to  suggest  potential

therapeutic targets for individualized therapeutic interventions.

The overall  objective is,  developing new and advanced systems biology  approaches to

propose functional hypotheses that help us to understand and interpret the complex mechanism of

the diseases. These mechanisms are crucial for robust personalized drug treatments and predict

clinical outcomes. First, I contributed to the development of a method which is designed to extract

elementary sub-pathways from a signalling pathway and to estimate their activity.  Second, this

algorithm adapted to metabolic modules and it is implemented as a webtool. Third, the method

used to reveal a pan-cancer metabolic landscape. In this study, I analyzed the metabolic module

profile of 25 different cancer types and the method is also validated using different computational

and experimental approaches. Each method developed in this thesis was benchmarked against

the existing similar methods, evaluated for their sensitivity and specificity, experimentally validated

when it is possible and used to predict clinical outcomes of different cancer types. The research

described in this thesis and the results obtained were published in different systems biology and

cancer-related peer-reviewed journals and also in national newspapers.
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Resumen

La comprensión de los aspectos de la funcionalidad de las células que cuentan para los

mecanismos de las enfermedades es el mayor reto de la medicina personalizada. A pesar de la

disponibilidad creciente de los datos de genómica y transcriptómica, sigue existiendo una notable

brecha entre la detección de las perturbaciones en la expresión de genes y la comprensión de su

contribución en los mecanismos moleculares que últimamente tienen relación importante con el

fenotipo  estudiado.  A  lo  largo  de  la  última  década,  distintos  modelos  computacionales  y

matemáticos se han propuesto para el análisis de las rutas. Sin embargo, estos modelos no toman

en cuenta los mecanismos dinámicos de las rutas como la estructura y las interacciones entre

genes  y  proteínas.  En  esta  tesis  doctoral,  presento  dos  modelos  matemáticos  ligeramente

distintos, para integrar los datos transcriptómicos masivos de humano con un conocimiento previo

de de las rutas de señalización y metabólicas para estimar las actividades mecánicas que están

detrás de esas rutas (MPAs). Las MPAs son variables continuas con valores de nivel individual

que pueden ser usadas con los modelos de aprendizaje de máquinas y métodos estadísticos para

determinar  los  biomarcadores  que  podemos  usar  para  los  diagnósticos  tempranos  y  la

clasificación  de  subtipos  de  enfermedades,  además  de  poder  sugerir  las  dianas  terapéuticas

potenciales para las intervenciones individualizadas.

El objetivo global es desarrollar nuevos y avanzados enfoques de la biología de sistemas

para  proponer  unas  hipótesis  funcionales  que  nos  ayuden  a  entender  e  interpretar  los

mecanismos complejos de las enfermedades. Estos mecanismos son cruciales para mejorar los

tratamientos  personalizados  y  predecir  los  resultados  clínicos.  En  primer  lugar,  contribuí  al

desarrollo de un método que está diseñado para extraer las subrutas elementales desde la ruta de

señalización con sus actividades estimadas. Posteriormente, este algoritmo se ha adaptado a los

módulos metabólicos y se ha implementado como una herramienta web. Finalmente , el método

ha revelado un panorama metabólico para una lista completa de diferentes tipos de cánceres. En

este estudio, analicé el perfil  metabólico de 25 tipos de cáncer distintos y se validó el método

usando varios enfoques computacionales y experimentales. Cada método desarrollado en esta

tesis ha sido enfrentado a otros métodos similares existentes, evaluados por sus sensibilidades y

especificidades,  experimentalmente  validados  cuando  fue  posible  y  usados  para  predecir

resultados  clínicos  de varios  tipos  de cánceres.  La  investigación  descrita  en esta  tesis  y  los

resultados obtenidos fueron publicados en distintas revistas arbitradas que están relacionadas con

el cáncer y biología de sistemas, y también en los periódicos nacionales.
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Resum

La  comprensió  dels  aspectes  de la  funcionalitat  de  les  cèl·lules  que  compten  per  als

mecanismes  de  les  malalties  és  el  major  repte  de  la  medicina  personalitzada.  Malgrat  la

disponibilitat creixent de les dades de genòmica i transcriptómica, continua existint una notable

bretxa entre la detecció de les pertorbacions en l'expressió de gens i la comprensió de la seua

contribució en els mecanismes moleculars que últimament tenen relació important amb el fenotip

estudiat. Al llarg de l'última dècada, diferents models computacionals i matemàtics s'han proposat

per a l'anàlisi de les rutes. No obstant això, aquests models no tenen en compte els mecanismes

dinàmics de les rutes com l'estructura i les interaccions entre gens i proteïnes. En aquesta tesi

doctoral,  presente  dos  models  matemàtics  lleugerament  diferents,  per  a  integrar  les  dades

transcriptómicos massius d'humà amb un coneixement previ de de les rutes de senyalització i

metabòliques per a estimar les activitats mecàniques que estan darrere d'aqueixes rutes (MPAs).

Les MPAs són variables contínues amb valors de nivell individual que poden ser usades amb els

models d'aprenentatge de màquines i mètodes estadístics per a determinar els biomarcadores que

podem usar per als diagnòstics primerencs i la classificació de subtipus de malalties, a més de

poder suggerir les dianes terapèutiques potencials per a les intervencions individualitzades.

L'objectiu global és desenvolupar nous i avançats enfocaments de la biologia de sistemes

per a proposar unes hipòtesis funcionals que ens ajuden a entendre i interpretar els mecanismes

complexos  de  les  malalties.  Aquests  mecanismes  són  crucials  per  a  millorar  els  tractaments

personalitzats i predir els resultats clínics. En primer lloc, vaig contribuir al desenvolupament d'un

mètode que està dissenyat per a extraure les subrutas elementals des de la ruta de senyalització

amb les  seues  activitats  estimades.  Posteriorment,  aquest  algorisme s'ha  adaptat  als  mòduls

metabòlics i s'ha implementat com una eina web. Finalment, el mètode ha revelat un panorama

metabòlic per a una llista completa de diferents tipus de càncers. En aquest estudi, vaig analitzar

el  perfil  metabòlic  de  25  tipus  de  càncer  diferents  i  es  va  validar  el  mètode  usant  diversos

enfocaments computacionals i experimentals. Cada mètode desenvolupat en aquesta tesi ha sigut

enfrontat a altres mètodes similars existents, avaluats per les seues sensibilitats i especificitats,

experimentalment validats quan va ser possible i usats per a predir resultats clínics de diversos

tipus de càncers. La investigació descrita en aquesta tesi i els resultats obtinguts van ser publicats

en diferents revistes arbitrades que estan relacionades amb el càncer i biologia de sistemes, i

també en els periòdics nacionals.
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Chapter 1
INTRODUCTION

1.1 Systems Biology

In the late 1860s, the nucleic acid was discovered by Dr Friedrich Miescher [1]. Almost one

century after this discovery, two more important contributions to the molecular biology and genetics

field were done. In 1953, Watson and Crick characterized the three-dimensional structure of DNA,

and  then,  in  1958,  Francis  Crick  explained  how  the  DNA  is  converted  into  the  functional

components of the cells. This process is called Central Dogma and it describes the flow of genetic

information from DNA to RNA and RNA to protein. This is the point where the systems biology was

born to determine and explain biological systems. Frederick Sanger, the Nobel Prize winner and a

scientist who pioneered the first sequencing technique in the 1970s stated that “A knowledge of

sequences could contribute much to our understanding of living matter” [2]. It was known that the

discovery  of  new  genes  in  the  genome,  the  quantification  of  their  functional  units  and  their

characterization were very important. And this could be done through the base sequence content

of  biological  molecules.  Thus,  the  sequencing  technique  proposed  by  Sanger  led  to  the

development of other methods; first Polymerase Chain Reaction (PCR), then Microarray and Next-

Generation Sequencing (NGS).

The biological systems are operated through dynamic interactions among genes and their

products,  regulatory  circuits  and  metabolic  networks.  Over  the  last  decades,  the  molecular

techniques that are mentioned  in the previous paragraph were widely used to generate a large

amount of quantitative expression data for the genes and proteins which act as members of a big

networking  system.  Such  data  is  used  to  uncover  the  physical  and  chemical  interactions  of

functional units and their causal relationships to build the structured map of cellular mechanisms by

mathematical  modelling.  These  mechanisms  are  called  biological  pathways  and  networks.

Interestingly, it is not clear when they were pronounced for the first time, which could be assigned

as a major milestone in the systems biology area. The complexity of these cellular systems is the

biggest challenge in the life sciences and their better understanding can let us elucidate phenotypic

traits and especially to discover the disease maps; from their initiation to progression and to their

treatment.

The systems biology  is  an integrated approach to decipher  the complexity of  biological

systems and it is based on computational and mathematical modelling. In a unique sentence, it is

rationally defined as “Systems biology is based on the understanding that the whole is greater than

the  sum of  the  parts”  [3].  Nowadays,  this  field  is  mainly  saturated  by  the  reference  network

construction and the context-specific network modelling using the genomic and transcriptomic data

as constraints on top of the existing reference models. The sink of systems biology mainly fills the

bucket  of  databases  with  the  curated  and  new  pathways.  Therefore,  “how  the  dynamic

http://f1000.com/work/citation?ids=8316694&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=8316641&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=8316732&pre=&suf=&sa=0
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mechanisms of these pathways can be used for the efficient treatment of complex diseases and

especially for the decision making systems of the personalized medicine applications” are the most

interesting questions that remain to be answered.

The  research  described  in  this  PhD  thesis  is  developed  under  a  systems  biology

perspective to elucidate the biological mechanisms of complex diseases and to determine their

dynamic  behaviours  by  integrating  the  genomic  and  transcriptomic  data  over  the  curated

pathways. The method developed in this thesis can be considered as a next-generation systems

biology approach which considers the activity of mechanisms (whole) as responsible from diseases

rather than the activity of their components (the sum of the parts).

1.2 Biological pathways and networks

Pathways and networks are the indivisible parts of systems biology. There are some small

conceptual differences between these two terms which will be defined under this section.

1.2.1 Pathways

A pathway is a schematic representation of the dynamic cellular processes (flow) which

indicate the different types of interactions among the molecules in a cell. Each pathway covers a

small fraction of the genome and these fractions are generally bounded by the biological concepts

that are also used to categorize the pathways. To indicate the direction of flow, pathways are

drawn as directed graphs. Each graph, G=(V,E), contains 2 main elements that are vertex/node (V)

and edge/arrow (E), to represent proteins and directed interactions, respectively. Based on the

pathway  type,  the  annotation  of  pathway  nodes  can  vary  as;  proteins,  genes,  enzymes  and

metabolites.  The  biological  pathways  can  be  divided  into  three  main  categories;  signalling

pathways, metabolic pathways and genetic pathways.
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Figure  1.1:  Examples  for  human  signalling,  metabolic  and  genetic  pathways  taken  from  KEGG
database.  A) VEGF signalling pathway (hsa04370). B) Glycolysis/Gluconeogenesis (hsa00010).  C) Basal
transcription factors (hsa03022). D) Edge (PTMs) representations in signalling pathways. 

Signalling pathways are also known as Signal Transduction Pathways (STPs), transmit the

specific information carried by the extracellular  signalling molecules (growth factors, hormones,

cytokines, metabolites, neurotransmitters, etc.) from cell's exterior to its interior (see Figure 1.1 A).

Cells can capture the physical or chemical stimulants by their cell membrane receptors and convert

them into  the signals  to initiate  intracellular  signalling  cascades.  The signal generated by  the

receptor must firstly be transferred into the cytoplasm and then transmitted over the intracellular

protein cascade until it arrives at the effector  protein or protein complex which is specialized to

trigger  a  specific  cellular  function  (to  elicit  specific  cellular  responses). These  three signalling

stages are called reception, transduction and response and they are all together aimed to maintain

and control the flow of celular information. The proteins in a signalling pathway are represented as

nodes and the post-translational modifications are represented as edges. The Post-Translational

Modifications  (PTMs)  (phosphorylation,  dephosphorylation,  ubiquitination,  glycosylation,  etc.)

modulate protein functions by series of complex biological reactions, however, on the contrary,

their  consequences on the proteins are more simple.  PTMs can inhibit  or  activate their  target

proteins. Thus, the edges in the signalling pathways are drawn using t and delta arrows, inhibition

and activation, respectively (see Figure 1.1 D, top). PTMs can be reversible or irreversible (like
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acetylation and deacetylation of FOXO protein, by CBP and SIRT1 proteins, see Figure 1.1 D).

Since the different mechanisms of reversible PTMs are catalyzed by different proteins, they can be

dissected in two different irreversible modifications. And this is a general practice applied by most

of the signalling pathway databases (see Figure 1.1 D, bottom) which also helps to reduce the

loops.  Compared to metabolic  and genetic pathways,  the signalling pathways contain very few

feedback loops.

Metabolic  pathways are the sequence of  biochemical  reactions  that  occur  in  the  cells.

These reactions are catalyzed by the enzymes and each reaction converts the reactants into the

products with the help of intermediating cofactors. Inputs and outputs of metabolic reactions are

called metabolites and their different bioactive forms are generally called compounds. Generally,

the metabolites in a metabolic pathway are represented as circular nodes and the reactions as

rectangular nodes. The edges show the direction of a reaction. In some cases, for visualization

purposes,  the  reaction  nodes  can  be  melted  over  the  edges  and  not  shown.  The  enzymatic

reactions can conduct two different processes; while the  anabolic process builds the molecules

needed by an organism such as hormones and it is an energy-consuming action, the catabolic

process breaks down the large molecules into the smaller ones and it usually releases energy (the

energy  used  by  the  anabolic  process).  The  metabolic  reactions  which  have  the  capacity  of

controlling these two processes known as reversible, otherwise, they are classified as irreversible

reactions.  The  reactions  of  glycolysis  and  gluconeogenesis  are  the  best  examples  for  the

reversible  reactions.  Actually,  the  topology  of  these  two  processes  are  exactly  same  while

glycolysis is a catabolic process that breaks down glucose into small molecules to generate ATP

which is the main source of energy for the most cellular processes, and gluconeogenesis is an

anabolic process that is the exact opposite of glycolysis and used by the cells when there is not

enough demand for glucose and ATP (see Figure 1.1 B).

Each reversible reaction in the metabolism is considered as a feedback loop and they are

the smallest  loops that can be found in any pathway. Thus, the metabolic pathways are more

complex biological systems when they are compared with the other pathway types. Because of the

highly interconnected nature of metabolic pathways, it is difficult to divide metabolic flow processes

into  stages.  Moreover,  their  functional  interpretation  is  more  challenging  compared  to  signal

transduction. The research objective of this PhD thesis is focused on developing a new method

that can be used both for cell  signalling and metabolism by means of some minor algorithmic

adaptations. 

Genetic pathways are also called Gene Regulation Pathways (GRP). They demonstrate

how the expression levels of mRNA and proteins are directed by some other sequence-specific

DNA-binding proteins that are classified as transcription factors (see Figure 1.1 C). This is a self-

controlled cellular system that is used by cells to adapt to their microenvironment and it prevents

abundant  production  of  the  proteins.  In  simple  terms,  we  can  say  that  the  gene  regulation

pathways turn genes on and off. Because of the time constraints of my PhD study, the genetic
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pathways are not studied and for that reason, there is no more information given about GRPs in

this thesis.

1.2.2 Pathway databases

Most of the databases contain similar pathway information. The pathway descriptions are

mostly stored in systems biology specific markup language formats. Biopax, SBML and SBGN are

the standard formats with different levels and used by different databases. Some databases have

their own formats; like KGML from the KEGG database. The well known and prominent pathway

databases are KEGG, Reactome, ASCN, SignaLink, and WikiPathways [4–8]. Comprehensive list

of the pathways can be found at the studies of meta-databases that compile all pathway databases

in one. OmniPath, Pathway Commons and PathCards are examples to these meta-databases [9–

11].

1.2.3 Pathway analysis methods

From the late ’90s to 2015, DNA array technologies used widely. In parallel to the usage of

microarrays,  in  the  early  2000s,  the  databases  for  the  functional  gene  sets  were  started  to

developed rapidly  [4, 12]. Microarrays were used to identify the Differentially Expressed Genes

(DEGs) between different conditions. However, it was most interesting to know which functional

classes were regulated by these DEGs. This commonly asked question was addressed first with

Over-Representation  Analysis (ORA)  or  enrichment  analysis.  The  ORA  identifies  relevant

pathways by comparing the number of DEGs found in a pathway against a background gene list

and in many cases this background is the number of all DEGs found in the genome. Fisher’s exact

is the most commonly used statistical test to determine whether a significant number of DEGs

belongs to a set of genes (gene ontology, pathways, etc.). The results of ORA can be biased by

some factors; the number of genes in a pathway which varies a lot between pathways and the

thresholds  (e.g.  p<0.05,  fold-change>2)  used to  define  the  DEGs.  To deal  with  the threshold

limitations of ORA, Gene Set Enrichment Analysis (GSEA) was proposed and it is considered as

the second generation pathway analysis method that uses the sorted list of the gene rankings.

GSEA is a method proposed by Subramanian et al., 2003 [13] and since than GSEA with different

ranking metrics were developed. The comprehensive list of these metrics is given by Zyla et. al.,

2017 [14] with their benchmark results. Nevertheless, there is no any GSEA method that can deal

with the interactions that are presented in a pathway. Thus, the new methods which use the gene

content of pathways and concurrently with pathways’ topology became an emerging issue in the

systems  biology  field.  The  first  Topology-based  Pathway  Analysis  (TPA)  was  introduced  by

Draghici el. al, 2007 [15]. TPAs are categorized as the third generation pathway analysis. They are

one step closer to the reality of biological systems and could be used to simulate the effect of

http://f1000.com/work/citation?ids=267283&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=27781,7763952,1589983,917637,267003&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
http://f1000.com/work/citation?ids=4507741&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=55879&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=27781,48995&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=3050563,1253717,178575&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=3050563,1253717,178575&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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genetic perturbations. Within the period of developments from ORA to TPA, as well as the analysis

methods,  the pathways were also improved;  they were drawn with more detailed  and curated

information.  Thus,  this  advanced pathway knowledge increased our  understanding  of  how the

pathways regulate cellular  functions. First,  a pathway is composed of several sub-mechanisms

which  are  connected  between  them  and  each  of  them  can  be  independently  activated  or

deactivated. These mechanisms overlap partially and they are differentiated by at least one node

(gene or protein). But even this kind of very small differences between sub-mechanisms can have

very different biological implications. These sub-mechanisms are called sub-pathways or circuits.

The topology-based sub-pathway activity analysis is the fourth generation pathway analysis and

known  as  Mechanistic  Pathway  Activity  (MPA).  For  the  first  time,  when  it  was  proposed  by

Sebastián-León et al., 2013 [16], the method was compatible with only the Affymetrix microarray

platform. While the ORA and GSEA methods are able to analyze all kinds of pathways, TPA and

MPA can only analyze the signalling pathways. The second version of MPA is developed within

this PhD thesis project as platform-independent (PCR, Microarray, RNA-Seq, etc.) and compatible

with both signalling and metabolic pathways. The details of this method are discussed in chapter 2

and 3.

1.2.4 Networks

A network  compiles  all  canonical  pathways  under  a  single  roof  to  reconstruct  a  more

complex mathematical model. Thus, the biological networks have the size of genome-scale and

demonstrate  the  crosstalks  between  the  pathways.  Networks  get  topological  structure  from

pathways  and  additionally  they  contain  more  complete  biochemical  information  such  as

stoichiometric coefficients and Gene-Protein-Reaction (GPR) rules. Genome-scale networks are

more successfully constructed for metabolism rather than cell signalling and extensively used in

the bioengineering of genetically modified microorganisms to increase the efficiency of production

[17]. 

The BiGG, SEED, Metabolic Atlas and Biomodels are the most known resources that store

the networks in XML like files such as SBML [18–21]. Human Metabolic Network (HMA) series are

named with the prefix of “Recon” and “HRM”. The latest HMA was published in March 2018 and

contains  13,543  metabolic  reactions  involving  4,140  unique  metabolites  [22]. Flux  Balance

Analysis (FBA) and its derivatives are the methods that are used to analyze metabolic networks

and  mostly  for  constraint-based  modelling  [23,  24].  FBA  solves  the  series  of  mathematical

problems by forcing the solution to get the maximum or minimum amount of the objective function

under the following assumption; the production and the consumption rates of each metabolite are

steady-state. The objective function can be the biomass or the production (or consumption) rate of

a  specific  metabolite.  The  biomass  and  the  amount  of  the  targeted metabolite  can be  easily

http://f1000.com/work/citation?ids=4852281&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=2450481&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7617636&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=224623,266740&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=2038532,224449,1238137,917530&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
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measured for the microorganisms, however, this is a challenging issue for mammalian cells. For

that reason, FBA methods are more successfully applied and advanced for microorganisms than

animal or plant cells  [25]. On the other hand, setting a correct objective function for animal cells

and especially for cancer cells is still not very easy. 

The protocol to construct a metabolic network from scratch is well defined by Thiele et al.,

2010  [26] and it  seems to be more straightforward than the signalling  and regulatory network

construction [27]. While metabolic pathways clearly separated from STPs and GRPs, there is a big

intersection  between  these  two  non-metabolic  pathway  types  which  makes  their  network

representation  quite  similar;  as  a  relevant  example,  we  can  give  the  map  of  Protein-Protein

Interactions (PPI). Apart from the compilation of all known STPs and GRPs in one network, PPI

networks can also contain interactions based on causal inferences, co-expression and correlation

analysis  of  quantified network entities. However,  with this kind of  analysis,  the directionality of

interactions can not be defined robustly [28]. Therefore, PPIs are constructed as undirected graphs

to make the network edges more homogenous. PPIs can be found on the following databases;

IntAct, MINT and BioGRID  [29–31]. A PPI can contain up to 700.000 interactions including low-

confidence level interactions. The visualization and analysis of big monolithic networks are close to

being impossible  because of  their  node sizes and the crossing edges  [32].  The complexity  of

enormous networks suggests that the network can be divided into clusters based on the interaction

strength  of  proteins.  From  the  highly  interconnected  networks,  different  functional  elementary

modules can be attributed and these operational entities can be identified by network clustering

algorithms. Short  random walks,  edge betweenness and greedy optimization of  modularity are

some of the community detection methods that have unquestionable success and widely used in

this field. The extensive collection of all other methods can be found under igraph network analysis

package. The set of detected network communities can be analyzed using enrichment methods

[33–35].

1.3 Thesis outline and overview

In spite of the increasing availability of genomic and transcriptomic data, there is still a gap

between  the  detection  of  perturbations  in  gene  expression  and  the  understanding  of  their

contribution  to  the  molecular  mechanisms  that  ultimately  account  for  the  phenotype  studied.

Alterations in cell  metabolism and signalling are behind the initiation and progression of many

diseases, including cancer. The present work aims to develop a method which uses the patient's

transcriptomic data to calculate the activity level of the metabolic and signalling sub-pathways that

are  the  key  contributors  to  human  diseases.  The  method  developed  within  this  thesis  work

provides an individual level output which is very rarely happening in the systems biology field. This

prominent feature of the method which has been developed in this study lets us develop machine

http://f1000.com/work/citation?ids=3368232&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=4771689,6134421,6683235&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=6983266&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6350447,917792,800363&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=6400852&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1986687&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=346388&pre=&suf=&sa=0
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learning and statistical approaches to determine biomarkers for the early diagnosis and subtype

classification  of  diseases,  and  also  to  suggest  potential  therapeutic  targets  for  individualized

therapeutic  interventions.  This  thesis  consists  of  new method development,  its  application,  its

benchmarking with similar methods and its validation in the context of cell signalling and metabolic

pathways. Thus, this thesis organized into three core chapters. Each chapter starts by giving a

short overview of the objectives to be achieved. Although each chapter covers a different research

question, the overall objective is, developing new and advanced systems biology approach that

can  help  us  to  understand  and  interpret  the  complex  mechanism  of  the  diseases  for  robust

personalized drug treatments. Finally,  all  the results are exposed and discussed. The following

chapters are given in this thesis for the objectives of this thesis;

1) A model of mechanistic pathway activity

2) Metabolizer web tool for differential metabolic activity analysis and discovery of therapeutic 
targets using summarized metabolic pathway models

3) A pan-cancer metabolic landscape based on gene expression integration into pathway 
modules
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Chapter 2

A model of mechanistic pathway activity

Chapter 2 is adapted from the following publications: “Hidalgo MR,  Cubuk C, Amadoz A, et al.

(2017). High throughput estimation of functional cell  activities reveals disease mechanisms and

predicts  relevant  clinical  outcomes.  Oncotarget,  8(3):5160–5178.  DOI:

10.18632/oncotarget.14107”, and “Amadoz A, Hidalgo M, Cubuk C, et al. (2018). A comparison of

mechanistic  signalling  pathway  activity  analysis  methods.  Briefings  in  Bioinformatics,  bby040,

https://doi.org/10.1093/bib/bby040”. All the results and figures that appear here are derived from

the work of the PhD student in collaboration with the other authors. 
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Chapter 2
A MODEL OF MECHANISTIC PATHWAY ACTIVITY

2.1 Overview and objectives 

Although  the  most  phenotypic  traits  (including  disease  and  drug  response)  are  the

consequence  of  the  combination  of  multiple  altered  genes  (multigenic),  the  broad  majority  of

biomarkers in  use are based on single-gene perturbations  (expression change,  mutation,  etc.)

Obviously, the determination of the status of a single gene is technically easier than multiple gene

measurements. However, regardless of their extensive clinical utility, single-gene biomarkers not

always  have  mechanistic  links  to  the  fundamental  cellular  processes  responsible  for  disease

progression  or  therapeutic  response.  Such  processes  are  better  understood  as  pathological

alterations in the normal operation of functional modules caused by different combinations of gene

perturbations rather than by alterations of a unique gene [36]. Of particular interest are signalling

pathways, a type of functional module known to play a key role in cancer origin and progression,

as well as in other diseases. Consequently, analysis of the activity of signalling pathways should

provide a more informative insight into cellular function. Actually, the recent demonstration that the

inferred activity of the c-Jun N-terminal kinase pathway shows a significantly higher association

with  neuroblastoma  patients’  mortality  than  the  activity  of  their  genes  (including  MICN,  the

conventional neuroblastoma biomarker) [37] that constitutes a neat confirmation of this concept. In

a similar example, drug sensitivity is shown to be better predicted using probabilistic signalling

pathway models than directly using gene activity values [38]. However, conventional methods for

pathway analysis, even the most sophisticated ones are based on pathway topology and can only

detect the existence of a significant level of gene activity within the pathway  [39]. On the other

hand, these methods ignore the obvious fact that many pathways are multifunctional and often

trigger  opposite  functions  (e.g.  Figure  2.1;  depending  the  receptor  and  the  effector  proteins

involved in the transduction of the signal, the apoptosis pathway may trigger survival or cell death).

Thus,  the  independent  analysis  of  each  mechanism  in  a  pathway  is  becoming  increasingly

important. Moreover, whether the level of gene activity detected by conventional methods actually

triggers  cell  functionalities  or  not  and,  if  so,  what  genes  are  the  ultimate  responsible  for  the

resulting  cell  activity  is  something  that  must  be  determined  a  posteriori,  usually  by  heuristic

methods. Thus, pathway activity analysis emerges as an alternative way of defining a new class of

mechanistic biomarkers, whose activity is related to the molecular mechanisms that account for

disease  progression  or  drug  response.  However,  capturing  the  aspects  of  the  activity  of  the

pathway that is really related to cell function is not trivial. This requires an appropriate description

of the elementary sub-pathways and an adequate computation of the individual contributions of

gene activities to the actual activity of the sub-pathway. 

http://f1000.com/work/citation?ids=1307983&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3241270&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1299951&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=266738&pre=&suf=&sa=0
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Figure 2.1: An example of multifunctional pathway with opposite functions. Human apoptosis pathway
(hsa04010, 2010) taken from KEGG. Apoptosis pathway (a) can trigger opposite functions (b and c, survival
and apoptosis, respectively) through different circuits and effector proteins.
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Different approaches of computing activity scores for diverse sub-pathway definitions using

gene expression values [16, 40–42], or even gene mutations [43], have been proposed by others

(see  Table  2.1).  However,  in  most  of  them,  the  sub-pathway  definition  has  not  a  functional

annotation.  Because  it  is  either  disconnected  or  only  collaterally  related,  to  the  functional

consequences of pathway activity. This chapter introduces a new method, which is called HiPathia,

to estimate the activity within a pathway that uses biological knowledge of cell signalling to recode

individual gene expression values (and/or gene mutations) into the activity scores of the pathway

that ultimately account for cell functionalities at the same ranges of these scores. Specifically, it

estimates  the  level  of  activity  of  stimulus-response  sub-pathways  (also  signalling  circuits

thereinafter) within signalling pathways, which trigger cell responses (e.g. proliferation, cell death,

etc.). The activity values of these canonical circuits connected to the activation (or deactivation) of

cell functionalities can be considered to be multigenic mechanistic biomarkers that can easily be

related  to  phenotypes  and  provide  direct  clues  to  understand  disease  mechanisms  and  drug

mechanisms of action (MoA). Therefore, HiPathia is designated as a novel Mechanistic Pathway

Activity (MPA) tool for cell signalling concept. Users of this tool can reveal the dynamic cellular

functions  of  the  phenotype  of  interest  by  using  only  their  omics  data.  HiPathia  contains  pre-

computed signalling circuits that are ready to use the proposed network propagation algorithm. It is

implemented  as  a  web server  and R package,  available  on http://hipathia.babelomics.org  and

https://bioconductor.org/packages/hipathia, respectively.

Method Date Code
Pathway
modelled Circuit definition Scoring method

Activation /
Inhibition

HiPathia 2017 Web application;
R package

KEGG Receptor-to-effector
circuits

Propagation algorithm Yes

TAPPA 2007 ToPASeq R package KEGG All possible circuits Scores of co-expression that
explain the compared conditions

No

PWEA 2010 ToPASeq R package User-defined
pathways

All possible circuits Mutual influence among
gene expression within the circuit

No

CLIPPER 2013 Web application;
ToPASeq R package

KEGG;
Reactome

All possible circuits Weighted sum of GE No

PRS 2012 ToPASeq R package KEGG Trees of associated
DE genes

Topologically weighted sum of DE No

DEGraph 2012 ToPASeq R package KEGG;
User-defined
pathways

All possible circuits Multivariate two-sample tests of
means of DE genes within a 
subgraph

No

DEAP 2013 Python code KEGG Receptor-to-effector
linear circuits

Running sum of discretized DE Yes

SubSPIA 2015 R code KEGG Minimal spanning 
trees
(MST)

DE genes used to define the MST Yes

MinePath 2016 Web application KEGG All possible circuits Discretized GE values with
logical operators

Yes

GE = Gene expression; DE = Differentially expressed

Table 2.1: List of mechanistic pathway activity methods compared in this chapter.

http://f1000.com/work/citation?ids=7169622&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=704212,569359,2450481,6806841&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
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2.2 Materials and methods

2.2.1 Modelling strategy of the pathways

The  concept  of  pathway  activity  first  requires  a  neat  description  of  the  relationships

between proteins within the pathway, which can be taken from different pathway repositories [44].

The well known canonical pathways, such as the ones used in this study are quite similar between

public  repositories.  Here,  KEGG  signalling  pathway  definitions  [45] are  used,  but  any  other

repository could be used instead, as Reactome  [5] or others. The pathway activity concept also

requires a way to estimate the activation status of each protein, which accounts for the intensity of

the signal that they can transmit along the pathway. A total of 60 KEGG pathways (Table 6 in

Hidalgo et al. 2017, the short link: bit.ly/2k5Lhb0), which include the main KEGG categories related

to signalling, such as; signal transduction pathways, signalling molecules and interaction pathways,

cell  growth and death,  cell  communication,  endocrine system and immune system, as well  as

some other related pathways are used in this modelling framework. This selection of pathways

includes a total of 2212 gene products that participate in 3379 protein nodes. It must be noted that

any gene product can participate in more than one node (even in different pathways) and a node

can contain more than one gene product. 

The pathways are directed networks in which nodes (composed by one or more proteins)

relate to each other by edges. In KEGG pathways, the relation edges are consist of different types

of  protein interactions (mainly  the post-translational  modifications)  that  include phosphorylation,

dephosphorylation, ubiquitination, deubiquitination, glycosylation, methylation, etc. Generally, each

interaction  includes a  specific  label  to  indicate  the influence type of  modification.  These post-

translational related influence types are  inhibition and  activation  (see Figure 2.2). Another edge

type is the  Association which has two subcategories as  groups and  binding-associations. These

kinds  of  edges  represent  the  necessary  cooperation  of  different  genes  in  order  to  make  the

transmission of the signal possible. Thus, rather than computing the signal propagation, they are

used for the reconstruction of nodes. To this end, the pathway topology is remodelled in such a

way  that  these  edges  are  removed  and  new  nodes  representing  the  new  combinations  are

introduced. These new nodes are called complex nodes, in contrast to the original nodes which are

called plain nodes. Complex nodes are created in two ways [46]:

 Binding-associations: are defined by undirected edges between the nodes of KEGG

pathways to describe the transient associations. Thus, the original plain nodes that let

the signal reaches to the effector node are preserved but also a new complex node

which represents the association is created. Figure 2.2 (A) illustrates this modelling.

http://f1000.com/work/citation?ids=7763952&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1381475&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3857001&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7169699&pre=&suf=&sa=0
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 Groups: are defined as separated entities that are consisting of different combinations

of already defined nodes.  Groups have their  own interactions defined in the KGML

files, and therefore a complex node with the specified interactions is created based on

the information given in the pathway files. Figure 2.2 (B) illustrates this modelling.

Figure 2.2: Pathway (node end edge) modelling framework. a) Node A activates node B, B inhibits node 
D and node C can be functional if it binds to B. Thus, a new complex node by the association rule of binding-
associations, node BC, is introduced and now node A also activates node BC and BC inhibits node D. b) 
When ML complex node is constructed by the association rule of groups, it can be activated by node K and 
then its active form can activate node R.

In order to transmit the signal along the pathway, a protein needs: first, to be present and

functional, and second, to be activated/inhibited by other protein(s). Preferably, the amount and

activity  of  proteins should be quantified  by proteomic,  phosphoproteomic  and chemoproteomic

experiments  [47], however, the production of these types of data is still relatively complex  [48].

Instead, the extensively used systems biology approaches are taking the presence of the mRNA

(gene expression) corresponding to the protein as a proxy for the presence of the protein [16, 40–

42, 48, 49]. Therefore, the presence of the mRNAs corresponding to the proteins present in the

pathway is quantified as a normalized gene expression value between 0 and 1. Second, a value of

signal  intensity  transmitted through a protein is  computed as taking into account;  the level  of

expression of the corresponding mRNA and the intensity of the signal arriving in it. The net value of

the signal transmitted across the pathway corresponds to the signal values transmitted by the last

proteins of the pathway that ultimately trigger the cell functions. Figure 2.3 illustrates a toy model

http://f1000.com/work/citation?ids=631870,4349,704212,569359,2450481,6806841&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
http://f1000.com/work/citation?ids=631870,4349,704212,569359,2450481,6806841&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
http://f1000.com/work/citation?ids=4349&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=5292755&pre=&suf=&sa=0
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for the quantification of the protein nodes and a circuit with the signal intensity transmitted through

these nodes.

2.2.2 Decomposing pathways into circuits

Pathways are represented by directed graphs,  which connect  input  (receptor)  nodes to

output (effector) nodes. The signal arrives in a receptor node and is transmitted along the pathway

following the direction of the interactions until  it  reaches an output node that triggers an action

within the cell. Thus, from different receptor nodes, the signal may follow different routes along the

pathway  to  reach  different  output  nodes.  Within  this  modelling  context,  a  canonical  circuit  is

defined as any possible route the signal can traverse to be transmitted from a particular receptor to

a specific output node (see Figure 2.4, left). The output node is the ultimate responsible elements

of the circuit to carry out the signal propagation and is in charge of functional events in the cell.

Then, from a functional viewpoint, an effector circuit can be defined as a higher-level signalling

entity composed by the collection of all the canonical circuits ending in a unique output (effector)

node  (see Figure  2.4,  centre).  When applied  to  effector  circuits,  the  method returns  the joint

intensity of the signal arriving at the corresponding effector node. A total of 6101 canonical circuits

and 1038 effector circuits can be defined in the 60 pathways modelled.

2.2.3 Estimating the value of protein node activation

  

The  methodology  proposed,  as  proposed  herein,  accepts  a  matrix  of  gene  expression

values  (mgenes x  nsamples)  as  the  input  data,  which  are  the  proxies  of  protein  amounts,  and

consequently,  of  potential  protein  activation  values  [16,  40–42,  48,  49].  The  matrix  is  first

normalized and then transformed into the node values matrix (knodes x nsamples where m ≠ k and

generally  k  >  m  because  one  gene  can  participate  in  various  nodes)  using  the

information of node composition taken from KEGG database. This transformed matrix

includes the normalized values of inferred activity of each node for each sample. The

expression matrix is normalized into the values between 0 – 1 interval by subtracting

the minimum and dividing by the maximum value of each gene. 

http://f1000.com/work/citation?ids=631870,4349,704212,569359,2450481,6806841&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
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Figure 2.3: A toy model of a circuit with the propagation of cellular signal.  A) Gene expression data
used as proxies of protein node values. B) Equation of the iterative algorithm that is used at each node for
the computation of signal intensity. C) Illustration of the signal propagation. The signal is transmitted across
the signal transduction circuit in three main steps; reception, transduction and response. The signal leaving
the effector node, node H, is considered as the quantity of the cellular function.
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Figure 2.4: Schema that illustrates the relationship between circuits, effector circuits and functions.
Left: signalling circuits, which are canonical sub-pathways that transmit signals from a unique receptor to a
unique effector node. Center: effector circuits that represent the combined activity of all  the signals that
converge into a unique effector node. Right: functional activity that represents the combined effect of the
signal received by all the effectors that trigger a particular cell function or similar functions (see also section
2.2.5).

As it is mentioned above, in the modelling strategy section, there are two different kinds of

nodes: plain and complex nodes. The normalized value of each node is computed according to the

type of node;

 Plain  nodes: They  represent  an  original  KEGG node,  which  may  contain  one  or

several proteins. To compute the plain node value, a summarization of the values of

the proteins included in the node is applied, generally taking the percentile 90. If no

protein is associated with the node,  it  takes the value of  0.5 (imputing the missing

values with a default value) in order to not interfere in the signal propagation.   

 Complex nodes: They include more than one node, as a result of modelling of the

groups or binding-association relations. To compute their node value, the value of each

included plain node is computed separately, and then the minimum value among them

is  taken.  In  this  way,  it  captures  the idea  that  all  the  proteins  in  the  complex  are

necessary to transmit the signal through the complex node.

Since the matrix of gene expression values is normalized between 0 and 1, node values will

be in the same interval.
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2.2.4 Computing the circuit activity

The computation of the signal intensity for a circuit is performed by means of an iterative

algorithm starting from the receptor nodes of this circuit. In order to initialize the circuit signal, it is

assumed that a signal value of 1 that stimulates the receptor nodes of any circuit always present

(see Figure 2.3, A). This assumption substitutes for barely measured molecular signals (oxidative

stress, hormone level, metabolite concentration, etc.) that are captured from the microenvironment

of a cell by its receptors. Then, for each node  n of the network, the signal value is propagated

along the nodes according to the following rule (see Figure 2.3, B for the equation): where Sn is

the signal intensity for the current node  n,  vn is its normalized value,  A is the total number of

activator signals  (sa), arriving in the current node from activation edges,  I is the total number of

inhibitory signals  (si)  arriving in the node from inhibition edges. The algorithm to compute the

transmission of the signal along the network is a recursive method and conceptually quite similar to

sum-product message-passing algorithm for directed trees  [50]. By this algorithm, at each node,

the signal  is  being  updated  and  the  recursive  visiting  of  the  graph nodes  continues  until  the

difference  between  the  previous  and  updated  signal  values  becomes  smaller  than  the  given

threshold. This threshold is a value very close to zero (default=10-6) and allows for more precise

estimation of circuit activities by converging the loops. It is also a decision criterion to terminate the

recursive  visits  on  a  graph.  Many  MPA  methods  simply  cannot  handle  loops  and  artificially

disconnect them or even remove them from the calculations  [40–42, 46, 51–53]. Figure 2.3 and

Figure  2.5  represent  the  computation  of  intensity  of  signal  transmission  in  a  node  and  also

demonstrates a simple scenario of how the signal is transmitted across a circuit.

http://f1000.com/work/citation?ids=6806841,569359,704212,7169699,704206,4463879,631430&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0
http://f1000.com/work/citation?ids=4743645&pre=&suf=&sa=0
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Figure 2.5: Illustration of the signal propagation over the protein node. The figure illustrates a protein
node  which  receives  two  activating  and  one  inhibiting  signals  with  the  strength  of  0.65,  0.5  and  0.4,
respectively. In this example, to make the calculations more apparent, the node value is given as 1. In this
case, the 0 value means no expression and 1 indicates the highest amount of the expression among the
samples for the given node. We assume that the protein node is %100 inactive until the first activating signal
is received. Activating signals can activate the inactive parts and inhibiting signals can inhibit the active parts,
and vice versa when the first signal is inhibition. When a protein node receives activating and inhibiting
signals,  the  order  of  the  calculation  does  not  matter  while  the  main  mathematical  operation  between
activation and inhibition is multiplication. Finally, the signal intensity of this node is 0.495.

2.2.5 Circuits for functional analysis

Effector proteins that are located at the end of each circuit trigger specific cellular functions

in the cell. The magnitude of cellular functions is correlated with the strength of the signal received

by these proteins.  Thus, once the circuit  activities are calculated,  from the matrix of  circuits a

matrix  of  functions  can  be  inferred,  which  contains  an  intensity  value  of  the  signal  for  each

molecular function and for each sample. Different effector circuits of different pathways may end in

the same effector protein, thus they trigger the same cellular function. Also, different effector nodes

may trigger the same function. Therefore, the signal intensity, Sf , received by a particular function

f,  is  summarized from the intensity signal  values of  all  the circuits ending in an effector node

related to  f by taking the mean of all signal intensity values related to the function  f. Figure 2.4

illustrates how effector circuits are composed of different signalling circuits and how functions can

be  triggered  by  several  effector  circuits.  Since  the  KGML files  do  not  contain  the  functional

annotations of effector proteins that are shown on KEGG pathway layouts, the external databases
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were used for the annotation of effectors to make the process automatized and to minimize manual

data  entry  by  the  users.  In  this  study,  Gene  Ontology  (GO)  [12] terms  corresponding  to  the

biological process ontology (http://geneontology.org/docs/download-ontology/, February 16, 2016

release) and molecular  function keywords of Uniprot  [54] (http://www.uniprot.org/help/keywords,

the release of  September  21,  2015) are used to define the functions triggered by the effector

proteins.  Different  functional  annotations  can  be  also  used  for  functional  analysis.  Here,  we

selected these two external annotations, because they were covering the high percentage of the

effector protein annotations. 

2.2.6 Case examples for the application of HiPathia

HiPathia was successfully applied in different research scenarios which include the analysis

of functions triggered in cancer cells and their predictive power in patient survival  [55–58],  the

discovery of the cellular processes triggered by death and during the post-mortem interval  [59],

and the explanation of molecular mechanisms behind the obesity [60]. In all the studies cited in this

section, the PhD student of this dissertation was listed as a co-author. These reference studies

contain  a  detailed  functional  interpretation  of  the  results  obtained  by  the method  proposed.  I

believe that the utility of the activity of signalling circuits as highly reliable mechanistic biomarkers

was demonstrated well enough within these references. On the other hand, similar applications,

analyses and functional interpretations will be discussed in the following chapters in the context of

metabolic circuits (modules). Thus, in this chapter, I will only focus on the benchmarking of the

proposed method with other similar methods.

2.2.7  Comparison  with  other  available  methods  for  defining  and  scoring  circuit

activity

Although HiPathia is a unique method, it was needed to check the accuracy of this method

by benchmarking it with other proposals that define circuits and calculate their activity scores. The

nine  methods  listed  in  Table  2.1  were  satisfying  three  basic  conditions  needed  for  a  fair

comparison: they can be applied to RNA-Seq data, they have a common definition of the pathway

(KEGG  pathways  constituted  the  unique  common  pathway  definition)  and  there  is  software

available for running them. Since circuit definition and scoring methods used will potentially have

an  impact  on the relative  performances of  the  methods,  a  comparative  benchmark  has been

carried out to study their relative performance. The relative performance of the methods compared

was derived from the estimation of their ratio of true and false negatives.

http://f1000.com/work/citation?ids=854369&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=48995&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=7171756&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=4837574&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6619741,7171725,3365930,7171726&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
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2.2.8 Sensitivity and specificity of the methods

To assess the sensitivity (true positive rate - TPR) of the methods compared, the 12 cancer

types listed in Table 2.1 were used. In any of the 12 normal versus tumour comparison (e.g. BRCA

Tumor  vs  BRCA Normal),  it  was expected to detect  the  changes of  activity  in  the  14 KEGG

pathways (Table 2.3) that belong to the cancer pathways category. As different methods have

different circuit definitions, the comparison of the methods was carried out at the level of the whole

pathway definition rather than the numbers of significant circuits. This means that a pathway was

considered as altered when at least one circuit in this pathway was found significantly activated by

means of a Wilcoxon test with Bonferroni correction. For each method, TPR was estimated as the

number of altered cancer pathways (containing one or more differentially activated circuits) divided

by the total number of cancer pathways given in Table 2.3.

To estimate the specificity (false positive rate - FPR) of the methods compared, two groups

that composed by identical individuals of the same cancer types for the same cancer pathways

were used. As the individuals compared belong to the same phenotype of the same cancer type

(e.g. BRCA Tumor vs BRCA Tumor), any differentially activated circuit would be a false positive

detection.  For each comparison,  randomly selected two data sets of  25 tumour samples were

used. Comparisons between both data sets were repeated 100 times per method and cancer type.

For each of these repetitions, the sampling was done independently to ensure the sample variation

between the iterations. Similarly to the case of TPR, the FPR of any method is calculated as the

number of cancer KEGG pathways in which the method finds one or more circuits significantly

activated, then divided by the total number of pathways analyzed (14 for HiPathia and DEAP and

13 for the rest of methods, because PPAR signalling pathway [hsa03320] was not implemented in

them). Again, Wilcoxon test with Bonferroni correction was used to assess significantly activated

circuits.

Finally,  TPR  and  FPR  distributions  of  each  method  were  compared  using  the  same

statistical assessment as mentioned above, to detect significant differences among them.
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TCGA Identifier Cancer
Primary
tumour

Normal adjacent
tissue

BLCA Bladder Urothelial Carcinoma 301 17

BRCA Breast invasive carcinoma 1057 113

COAD Colon adenocarcinoma 451 41

HNSC Head and Neck squamous cell carcinoma 480 42

KIRC Kidney renal clear cell carcinoma 526 72

KIRP Kidney renal papillary cell carcinoma 222 32

LIHC Liver hepatocellular carcinoma 294 48

LUAD Lung adenocarcinoma 486 55

LUSC Lung squamous cell carcinoma 428 45

PRAD Prostate adenocarcinoma 379 52

THCA Thyroid carcinoma 500 58

UCEC Uterine Corpus Endometrial Carcinoma 516 23

Table 2.2: Cancers types used in this chapter with the number of samples sequenced of both tumour biopsy
and normal adjacent tissue.

KEGG ID Pathway name

hsa04010 MAPK signalling pathway

hsa04310 Wnt signalling pathway

hsa04350 TGF-beta signalling pathway

hsa04370 VEGF signalling pathway

hsa04630 Jak-STAT signalling pathway

hsa04024 cAMP signalling pathway

hsa04151 PI3K-Akt signalling pathway

hsa04150 mTOR signalling pathway

hsa04110 Cell cycle

hsa04210 Apoptosis

hsa04115 p53 signalling pathway

hsa04510 Focal adhesion

hsa04520 Adherens junction

hsa03320 PPAR signalling pathway

Table 2.3: Fourteen KEGG pathways belonging to the subcategory of ‘Pathways in cancer’ were used to
detect changes when cancers versus control comparisons were done. 
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2.2.8 Data source and processing

A large The Cancer Genome Atlas (TCGA) data set of RNA-Seq counts for 12 cancer types

analyzed was used for the benchmark provided in this chapter. Only the cancer types in which the

RNA-Seq counts for healthy control and cancer samples were available by the time of this analysis

were used for the benchmark analysis (Table 2.2). The data were downloaded from the ICGC data

portal (https://dcc.icgc.org/releases/release_20/Projects) and preprocessed as given below. 

Since  TCGA  cancer  data  has  different  origins  and  underwent  different  management

processes,  non-biological  experimental  variations  (batch  effect)  associated  with  Genome

Characterization  Center  (GCC)  and  plate  ID  must  be  removed  from  the  RNA-Seq  data.  The

COMBAT method [61] was used to remove the batch effect. Then, we applied the Trimmed Mean

of  M-values  normalization  method  (TMM) method  [62] for  data  normalization.  TMM is  a  very

efficient  normalization  method  that  corrects  a  well-known  artefact  derived  from  RNA-Seq

technology: the RNA-composition bias. When comparing two different samples, the number of read

counts of an equally expressed gene may vary depending on the level of expression of the other

genes due to the fact that the library depth is fixed. The read counts of a gene represent the

proportion of the gene with respect to the total RNA production of the sample, but this proportion is

not a quantitative number which can be compared if the total RNA production is different between

samples.  TMM normalization  estimates  the  ratio  of  RNA production  between  samples  with  a

weighted trimmed mean of the log expression ratios (trimmed mean of M values or TMM). Then it

uses this estimation to modify the observed library size of a sample to a comparable library size

which follows the proportion of RNA production between the samples. The resulting normalized

values were used as input of the circuit activity methods. 

2.3 Results

2.3.1 Estimation of the sensitivity and specificity of the MPA methods

As it is explained in the section of materials and methods, the tumour samples of each

cancer  type  were  compared  with  their  corresponding  healthy  tissue  samples  and  within  this

strategy, the expectation was to find TPRs through the number of significant cancer-associated

KEGG pathways. In Figure 2.6a, the  violin plots show for any method the mean TPR in the

central line. This figure shows how only HiPathia was able to detect the changes in the activity of

circuits that are belonging to all the cancer pathways analyzed across the 12 cancer types. Other

groups  of  three  methods  (TAPPA,  DEGraph  and  subSPIA),  with  a  significantly  different

performance (P-value = 3 × 10−4), was able to detect between 50% and 75% of the alterations in

the cancer pathways used here. The rest of the methods could detect differential activity in less

http://f1000.com/work/citation?ids=148215&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=614151&pre=&suf=&sa=0
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than 50% of the cancer pathways.

To check whether the high sensitivity of HiPathia, TAPPA, DEGraph and subSPIA is real or

is only the consequence of low specificity, we calculated their FPRs. To achieve this, data sets of

identical samples were compared and significant differences in circuit activity found by a particular

method in the comparisons are considered as false positives. A total of 10,800 comparisons (100

times × 9 methods × 12 cancer types) between pairs of data sets of 25 samples each, randomly

sampled among cancer samples, were performed. The FPR was computed as the mean of the

number of significant cancer pathways divided by the total number of cancer pathways per method

and cancer. Figure 2.6b shows how most of the methods have a low FPR, except PWEA, which

displays a high ratio of false positives (over 30%). Note that this figure, on its y-axis, displays 1-

FPR for  better  visualization  purpose.  The best  performer is  SubSPIA (P-value = 0.006),  which,

together with CLIPPER and HiPathia methods, showed the highest specificity (P-value = 0.001).

Here the p-values were obtained by the statistical comparison of FPRs of methods or cluster of

methods. 

2.4 Discussion

Since the early 2000s, different functional profiling methods have been proposed for the

interpretation  of  the  omics  data,  such  as  over-representation  methods  (ORA)  or  gene-set

enrichment  methods  (GSEA)  [63–66],  that  focus  on  the  collective  activity  of  genes  within

biologically  relevant  entities  such  as  pathways.  However,  given  that  most  pathways  have

multifunctional  entities  and  these  methods,  even  in  their  most  sophisticated  versions  do  not

consider the internal structure of the pathway. They are simply illustrative and fail to provide real

mechanistic  information  on  the  specific  outcomes  of  a  cell.  Especially  nowadays,  the  high

throughput transcriptomic experiments are affordable and provide a wealth of precise data that

must be interpreted in light of their biological consequences and implications. On the other hand,

this increasing availability of the omics data lets us design detailed and well-curated pathways. By

this means, it also opens a new door to the development of MPA models which are essential to

make the functional  interpretations as  much as close to the real.  Models of  MPA fill  the  gap

between the conventional approaches based on single-gene biomarkers, or functional enrichment

methods,  and the more realistic,  model-based approaches.  These methods use the biological

knowledge available on the relevant biological modules (such as signalling pathways) to explain

how their  perturbations ultimately cause diseases or responses to treatments.  Therefore,  MPA

methods provide a link between gene perturbations (measured as gene expression changes) and

disease mechanisms or drug MoAs [67, 68]. 

http://f1000.com/work/citation?ids=7171855,652931&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=1079782,49078,1209716,2867593&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
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Figure 2.6: Simultaneous comparison of sensitivities and specificities of the different MPA methods.
A Wilcoxon test with Bonferroni correction was used to compare successive FPR or TPR distributions to
detect  significant  differences  among  them.  Black  lines  with  the  p-values  denote  significant  differences
between consecutive methods. Brackets define groups of methods with no significant differences in their
performances. A) TPR or sensitivity was computed as the number of significant cancer pathways found,
when cancer samples are compared with samples of the tissue of reference, divided by the total number of
cancer pathways per method and cancer. Violin plots obtained using 12 cancer types show for any method
the mean TPR in the central line. The figure shows the methods ranked by TPR value. B) FPR or specificity
was computed as the mean of the number of significant cancer pathways found, when cancer samples are
compared with cancer samples, divided by the total number of KEGG cancer pathways along 100 bootstraps
(see section 2.2.8), per method and cancer. Violin plots show average values and distributions of FPR for
each method. The figure shows the methods ranked by FPR value and the y-axis represents 1 - FPR. 
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To evaluate the performance of the different pathway definition and scoring strategies used

by the different MPA methods to capture biological information that accounts for cell behaviour

(such as signal transduction circuit activities) and relate them to phenotypic conditions, we have

produced a benchmarking of nine MPA methods that could be compared in similar conditions. Both

together,  Figure 2.6 offers a summarized view of  both specificity and sensitivity of the methods

analyzed in this chapter. Whereas most of the MPA methods show an excellent specificity (except

PWEA), the differences in terms of sensitivity are more pronounced. They could be clustered in

four groups according to their relative sensitivity and specificity. The first group of highly sensitive

and  specific  methods  would  include  HiPathia,  the  only  one  able  to  detect  differences  in  the

activities of all the cancer pathways across all the cancer types analyzed while maintaining a high

specificity as well. The second group of methods with medium sensitivity but still high specificity,

which includes TAPPA, DEGraph and SubSPIA, detects changes in only 75%–50% of the cases

(P-value = 0.08).  The third group of methods, with low sensitivity but still  high specificity, which

includes CLIPPER, DEAP, MinePath and PRS, shows poorer performance, detecting changes in

circuit  activities in less than 25% of the cases. Finally,  the conceptually most different method,

PWEA, does not only present a low specificity but also a low sensitivity.

It is difficult to attribute the relative performance of the methods to a unique factor and it

rather seems to be a combination of several of them. Apparently, the use of a receptor-to-effector

definition  of  the  circuit  and  the  distinction  between  activations  and  deactivations  seem  to  be

important  factors  that  differentiate  HiPathia  from  the  rest  of  methods  in  terms  of  sensitivity.

MinePath and DEAP also use activation/inhibition information to calculate the score and DEAP

uses  receptor-to-effector  circuit  definitions,  but  in  both  cases,  the  scoring  algorithm  uses

discretized values of differential gene expression, which seem to reduce drastically the sensitivity.

The most representative feature of the second group of methods seems to be the use of differential

gene expression or co-expression to obtain scores for circuits. These circuits that can effectively

separate  the  conditions  compared  are  chosen  as  differentially  activated.  In  the  third  group,

showing poorer sensitivity (below 25%), the discretization of differential gene expression values

seems to represent a hurdle for obtaining a better sensitivity for two of the methods (DEAP and

MinePath).  The case of  CLIPPER and PRS is probably  related to a combination  between the

scoring strategy and the circuit definition. Finally, the PWEA presents, in addition, a low specificity.

Probably, the PWEA case is a combination of the circuit definition and a scoring algorithm, based

on mutual influence among genes, which is not capturing properly the underlying biology of the

pathway activity. Moreover, all the methods in their original publications demonstrated to be more

sensitive than the conventional ORA and GSEA methods [40–42, 52, 53, 57, 69–71].

Receptor-to-effector  subpathways  are  relevant  circuit  definitions  from  a  biological

standpoint, as they represent the possible routes taken from the beginning of a pathway, where the

signal  is  originated,  to  its  end,  where  a  function  is  triggered.  Within  the  context  of  signalling

pathways,  such  circuit  definitions  effectively  model  signal  transduction  events.  MPA methods

http://f1000.com/work/citation?ids=6806841,569359,704212,4463879,631430,3365930,2471562,3277471,632534&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0
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implementing these circuit definitions model more realistically biological events and consequently

produce better  results.  In  addition,  an interesting  feature of  the  methods that  use receptor-to-

effector circuits is that the changes in the activity of such circuits can be easily associated with cell

functionalities triggered by the effector protein [57]. Contrarily, given the fact that many genes and

subnetworks can be shared by several pathways, pathway definitions based in subnetworks are, in

principle,  more  prone  to  false  positives.  Because  most  of  the  methods  only  accept  KEGG

pathways as input, it is not possible to test potential biases of the different methods under different

pathway definitions. As a more extensive approach, in future this benchmark can be done in the

following scenario; testing each MPA algorithm with all different circuit definitions to find the best

combination of circuit activity algorithm and circuit definition.

http://f1000.com/work/citation?ids=3365930&pre=&suf=&sa=0
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Chapter 3

Metabolizer  web  tool  for  differential
metabolic activity analysis and discovery
of therapeutic targets using summarized
metabolic pathway models

Chapter 3 is adapted from the following publication: “Cubuk C,  Hidalgo MR, Amadoz A, et al.

(2019).  Differential  metabolic  activity  and  discovery  of  therapeutic  targets  using  summarized

metabolic pathway models. npj Systems Biology and Applications, 5(7). DOI: 10.1038/s41540-

019-0087-2”. 
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Chapter 3
METABOLIZER WEB TOOL

3.1 Overview and objectives 

Most rare diseases have an identified genetic origin and multigenic nature. Thus, the rare

diseases  are  often  better  understood  as  failures  of  functional  modules  caused  by  different

combinations of perturbed gene activities rather than by the failure of a unique gene [36]. In fact,

an  increasing  corpus  of  recent  evidence  suggests  that  the  activity  of  well-defined  functional

modules,  like  pathways,  provide  a  better  prediction  of  complex  phenotypes,  such  as  patient

survival [37, 57], drug effect [38], etc., than the activity of their constituent genes. In particular, the

importance of metabolism in cancer [72] and other diseases [73] makes of metabolic pathways an

essential asset to understand disease mechanisms and drug modes of action (MoA) and search

for new therapeutic targets.

Genes encode proteins and proteins operate cell  function.  Therefore,  the thousands of

genes expressed in a particular cell determine what that cell can do. Gene expression changes

have been used to understand pathway activity in different manners. Initially, conventional gene

enrichment  [74] and gene set  enrichment  analysis  (GSEA)  [64] were used to  detect  pathway

activity  from  changes  in  gene  expression  profiles  [75].  However,  these  methods  provided  an

excessively simplistic view on the activity of complex functional modules that ignored the intricate

network  of  relationships  among  their  components.  Other  methods  took  advantage  of  network

structures to gain understanding in mechanisms of action [76] using massive transcriptomic data

on massive cell perturbation repositories [77]. In the previous chapter, Chapter 2, we discussed the

advantages  of  mechanistic  models  over  the  enrichment  methods  for  the  pathway  analysis.

Mechanistic  models  focus  into  the  elementary  components  of  the  pathways  associated  with

functional responses of the cell [42, 57] and in this way they provide a more accurate picture of the

cell activity [78]. Specifically, in the context of metabolic pathways, constraint-based models (CBM)

have been applied to find the relationship between different aspects of the metabolism and the

phenotype  [79]. Using transcriptomic data, CBM allows the analysis of human metabolism at an

unprecedented  level  of  complexity  [80,  81].  However,  as  many  mathematical  models,  CBM

presents some problems, such as their  dependence on initial  conditions or the arbitrariness of

some assumptions, along with difficulties of convergence to unique solutions  [79, 82]. Moreover,

with limited exceptions  [83],19 most  of  the software that  implements CBM models only  run in

commercial platforms, such as MatLab and working with them require skills beyond the experience

of experimental researchers.

Because of the highly interconnected nature of metabolic pathways, they considered as

complex  biological  processes  and  less  dissectable.  However,  metabolic  modules  have  been

defined to provide a comprehensive curated summary of the main aspects of metabolic activity and

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397295/#CR19
http://f1000.com/work/citation?ids=58462&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1187144&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3241270&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1299951,3365930&pre=&pre=&suf=&suf=&sa=0,0
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account for the production of the main classes of metabolites (nucleotides, carbohydrates, lipids,

and amino acids)  [84].  This  chapter  presents a simple model  that  accounts for  the activity  of

metabolic modules [84] taking into account the complex relationships among their components and

the integrity of the chain of biochemical reactions that must occur to guarantee the transformation

of simple to complex metabolites or vice versa. The likelihood of such reactions to occur is inferred

from gene expression values within the context of metabolic modules. The model has been used in

a pan-cancer study that has demonstrated high precision in detecting cancer vulnerabilities [85]. In

order to make these models accessible and easily usable to the biomedical community, I have

developed  Metabolizer,  an  interactive  and  intuitive  web  tool  for  the  interpretation  of  the

consequences that changes in gene expression levels within metabolic modules can have over cell

metabolite production. A case study of Metabolizer, pan-cancer analysis of metabolic modules, is

given and discussed in chapter 4 rather than here. Thus, this chapter consists of the method and

tool description, proof of concept, and comparison of Metabolizer to other methods.

3.2 Materials and methods

This section describes the webtool and also provides validation of the method. To increase

the  readability,  the  material  and  methods  part  was  organized  under  two  subsections  as

implementation of Metabolizer web server and evaluating the predictive power of Metabolizer.

3.2.1 Implementation of Metabolizer web server

Under  this  section,  you  will  find  the  details  of  the  method,  technical  details  and

functionalities of the web tool.

3.2.1.1 Estimating the metabolic activity of a KEGG module

Pathway modules [84] are used to depict the complex interactions among proteins carrying

out the reactions that account for the main metabolic transformations in the cell. Here, a total of 95

modules were used, that comprise a total of 446 reactions and 553 genes. The comprehensive list

of  modules with their  detailed information (module ID,  main metabolic  category,  sub metabolic

category, description/name, KGML file, pathways, KEGG link of module, start/end metabolite) can

be found at the supplementary tables of Cubuk et al. Cancer Research., 2018 [85] and Cubuk et

al., npj SBA, 2019 [86]. The pathway modules (Table 3.8) were downloaded through REST-style

KEGG API from the KEGG MODULE (http://www.genome.jp/kegg/module.html) database in plain

text  format  files  that  include  information  of  the  metabolites,  genes  and  reactions.  Metabolic

pathways were downloaded from KEGG PATHWAY database in KGML format files. Then, each

KEGG  module  is  made  up  of  reaction  nodes  (composed  by  one  or  several  isoenzymes  or
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enzymatic complexes [49], which are connected by edges in a graph that describes the sequence

of  reactions  that  transforms  simple  metabolites  into  complex  metabolites,  or  vice-versa.  The

potential  catalytic  activity  level  of  a  KEGG module  can be derived from the potential  catalytic

activities  of  all  the reaction nodes,  assuming all  the  intermediate  metabolites  are present  and

available  (equivalent  to  setting  all  their  values  to  1,  assuming  that  all  of  them  are  present).

However,  if  metabolite  measurements  are  available,  their  normalized  values  can  easily  be

integrated into this modelling  framework.  Under this modelling framework,  the potential  for  the

catalytic  activity  of  a  reaction  node  is  inferred  from the  presence  of  the  constituent  proteins.

However, given the difficulty of obtaining direct measurements of protein levels,  an extensively

used proxy for protein presence is the observation of the corresponding mRNA within the context

of module [16, 40, 42, 46, 48, 49, 57]. Therefore, the presence of the mRNAs corresponding to the

proteins present in the pathway is quantified as a normalized gene expression value between 0

and 1. To estimate the potential activity of the reaction node two scenarios are considered  [87]:

isoenzymes, where the activity is produced if at least one of them is present (Expression Isoenzyme1

OR ExpressionIsoenzyme2 OR …) and enzymatic complexes, where the activity occurs only if all the

enzymes are present (ExpressionEnzymeA AND ExpressionEnzymeB AND …). For example, in Figure

3.1, the last reaction transforming isocitrate into 2-oxoglutarate is catalysed by either an enzymatic

complex or two alternative isoenzymes, represented as “(R01899 AND R00268) OR R00267 OR

R00709”, which may be estimated from the normalized gene expression values of the mRNAs

corresponding to proteins R01899, R00268, R00267 and R00709 as: 

V = 𝑚𝑎𝑥{𝑚𝑖𝑛{𝐸R01899, 𝐸R00268}, 𝐸R00267, 𝐸R00709} where V is the activity of the node and Ep is the 90th

percentile of normalized expression of the gene corresponding to the enzyme p. This approach is

very similar to computing the Gene-Protein-Reaction (GPR) rules in metabolic networks [87]. It is

worth  noting  that  some  enzymes  can  participate  in  more  than  one  node  (even  in  different

modules), and thereby contribute to different reactions. 
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Figure 3.1: The metabolic module Citrate cycle, first carbon oxidation, oxaloacetate => 2-oxoglutarate
module (M00010).
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Figure  3.2:  Procedure  used  to  estimate  reaction  node  activity  and  module  activity  from  the
constituent gene expression activities. 1) If an enzyme is composed for more than one gene, the enzyme
activity value is obtained as the 90th percentile of normalized gene expression (to avoid possible outliers or
artefacts). 2) When an isozyme is a complex, composed by more than one enzyme, the complex isozyme
activity is obtained as the minimum activity value of all the involved enzymes (the limiting reaction capability).
When a reaction node is composed of more than one isozyme, then, the maximum isoenzyme activity value
is taken as the activity of the reaction node. 3) Finally, the module activity is inferred from the corresponding
node activities.

Then, the contribution of potential catalytic activities of all  individual nodes to the whole

module metabolic activity can be derived by using a recursive method that sequentially traverses

the module from the simpler to the more complex metabolite. Assuming a value of 1 for the initial

node of the module, the potential catalytic activity of the subsequent nodes is calculated by the

equation given in Figure 3.2. In the formula, Sn is the catalytic activity of the current node n, Vn is

the value of catalytic node activity which is inferred from normalized gene expression values  of the

current node n, An is the set of edges arriving in the node n that, within this modelling framework,

accounts for the flux of metabolites produced by the corresponding reactions in other nodes with

activity values sa. 

The resulting integrity value of the whole sequence of reactions represented in the module

is summarized by the value of catalytic activity propagated until the last node, which carries out the

last the transformations of the chain of reactions that ultimately produces the final metabolite [85].

This method is an adapted version of the propagation algorithm on graphs successfully used to

estimate  cell  signalling  activities  in  cancer  [57].  Here,  in  metabolism,  there  are  only  reactions

instead of gene interactions such as activations and inhibitions that appear in signalling. Then, the

formula  accounts for  the integrity  of  the chain  of  reactions that  connect  the initial  to  the final

http://f1000.com/work/citation?ids=3365930&pre=&suf=&sa=0
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metabolite. Figure 3.2 outlines the procedure. In brief, this formula is equivalent to the activation

part of the given formula in chapter 2, under the concept of cell signalling. Despite the similarity of

these formulas given in this chapter and chapter 2, the formulas are explained slightly different

based on the differences of biological mechanisms and components that exist between the cell

signalling and metabolic pathway. 

3.2.1.2 Differential metabolic module activity

The  significant  alterations  in  module  activities  across  the  compared  conditions  can  be

calculated in a similar way to differentially expressed genes using linear models, t-test or Wilcoxon

test. Here, Wilcoxon test is used to assess the significance of the observed changes of metabolic

module  activity  when  samples  of  two  conditions  are  compared.  Since  many  modules  are

simultaneously  tested,  multiple  testing  effects  need  to  be  corrected.  FDR method  (known  as

Benjamini & Hochberg procedure) [88] is used for this purpose.

3.2.1.3 Build a predictive model

The class prediction functionality includes two sub-functionalities: training process, where

the predictor is built  using a training set (the model is stored for future use), and classification

process,  where  the  predictor  can  be  used  for  class  prediction  purposes.  In  order  to  build  a

predictor, a training set composed by samples belonging to two or more classes is required. The

selection  of  samples  that  properly  represent  the  variability  of  the  classes  is  critical  for  the

generatability  of  the predictor.  Additionally,  in  order to  avoid the production  of  suboptimal  and

biases models, the following rules are set; sample size of each class needs to be higher than 10

and sample sizes between different  classes need to be balanced.  The minimum allowed ratio

between the sample sizes of the two classes is 0.66. 

Two  powerful  prediction  algorithms,  Random  Forest  (RF)  [89],  as  implemented  in

randomForest package in R (https://cran.r-project.org/web/packages/randomForest/), and support

vector  machines  (SVM),  [90] as  implemented  in  e1071  package

(https://cran.r-project.org/web/packages/e1071/), can be chosen to train the predictor. There is no

specific reason behind the selection of these two supervised learning algorithms in the Metabolizer

rather  than  their  fast  and  easy  parameter  and  model  optimisation.  These  algorithms use  the

profiles  of  metabolic  module  activities  of  the  two or  more  groups  of  samples  compared.  The

accuracy obtained by the predictor is assessed by k-fold cross-validation and the area under the

receiver operating characteristic (ROC) curve. Once a model has been trained, the predictor can

be saved and can be used in a second phase to classify unknown samples. Thus, using the option

“Test existing model” in the Metabolizer web interface, a list of samples can be uploaded and the
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proper predictor can be selected from the list of saved predictors. The predictor chosen will return

a table with the probabilities of belonging to any of the classes for each sample. 

3.2.1.4 Prediction of the impact of KOs in metabolism

The method proposed can be used not only to derive metabolic module activity profiles in

real conditions but also in simulated conditions. Therefore, knockouts (KOs) or over-expressions,

alone or in combinations, can easily be simulated by changing the values of the targeted genes to

0 or 1 (or to any other low or high value between 0 and 1), respectively.  Then, the simulated

condition  is  compared to the original  condition  and a fold change threshold  of  2 (that  can be

modified  by the user)  can be used to detect  the  most  relevant  changes in  module  metabolic

activity. Since only two individual conditions (before and after KO) are compared a conventional

test cannot be applied here. In addition to individual gene interventions, the effect of drugs with

known targets (as described in  DrugBank  [91] )  over  the  different  metabolic  modules  can be

studied. It is possible to simulate the effect of drugs alone, in combinations, or combined with gene

KOs or over-expressions. Since it is common that genes participate in more than one pathway and

drugs  often  affect  more  than  one  gene,  the  results  can  contain  more  than  one  module  and

pathway.  Obviously,  off-target  effects  not  described  in  DrugBank  cannot  be  included  in  the

predictions.  However,  Metabolizer  would  allow  conjecturing  new off-target  effects  by  checking

inconsistencies between the expected metabolic module activities from the prediction and the real

ones observed upon the application of the drug. This fact reinforces the utility of comprehensive

holistic modelling approaches like the one presented here. The single gene intervention strategy

implemented here is similar to the one used in the PathAct web tool [43] in the context of signalling

pathway genes.

3.2.1.5 Automatic detection of optimal therapeutic targets

The Knockout option of Metabolizer implements the Auto Knockout functionality to find the

optimal KO to revert a condition. Within this modelling framework a gene KO is easy to simulate.

Simply,  the  expression  value  is  multiplied  by  0.01.  This  is  a  randomly  selected  constant  that

simulates  the KO effect  by  decreasing the expression value.  Zero value  is  not  used to  allow

propagation in the network. Once the KO is applied, the method recalculates the module activity

profiles. It is worth noting that a gene can participate in more than one module and that, depending

on the location of the KO gene in the topology of the module, the KO can have a drastic or an

irrelevant effect on the module activity.

Then, if  two groups of samples are provided, metabolizer finds the KO intervention that

makes samples of one of the classes resemble more to samples of the other class at the level of

metabolic module activity profiles. This functionality has been designed to compare diseased to
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healthy conditions, or similar scenarios, and find the KO intervention that produces the maximum

reversion from the disease to the healthy condition. Firstly, a class predictor is built, using RF, that

best  discriminate  among  the  two  classes  compared.  Since  only  553  genes  participate  in  the

modules, for each sample all the possible gene KOs can be carried out. For each simulated KO,

the metabolic values are recalculated and then the probability of a sample of belonging to the

opposite  class  is  calculated.  All  metabolic  profiles  resulting  from  the  KO  are  ranked  by  this

probability  and  the  higher  probabilities  represent  the  most  promising  KO  interventions.

Combinations of KOs are not feasible in interactive mode but they can be tested manually in the

individual sample mode. Figure 3.3 shows a schema of the procedure.
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Figure 3.3:  Auto Knockout functionality to find the optimal KO to revert a condition. A) Initially,  a
predictor is trained to distinguish between normal and tumour samples. B) Then, for the tumour sample
problem, all the possible KOs are simulated by sequentially multiplying by 0.01 the expression values of any
of the genes involved in all the modules. Then, the theoretical KO profiles are calculated for each simulated
KO sample and the predictor is used to assign a probability to belong to a normal or a tumour class. The
rank of more likely belonging to the normal class is a rank of the potential of transformation of a tumour
sample into a normal sample. C) Illustration of how mechanism-based modelling can reveal the dynamical
aspect of cancer reversion taken from Cho K-H et al., 2017 [92].

3.2.1.6 Web server development

Metabolizer is a web-based application that implements the above-described functionalities.

Metabolizer  web client  has been developed  in  HTML5 with web components  while  the server

component is written in R programming language. The program recodes gene expression data

(either from microarray or from RNA-seq) into estimates of enzymatic activities along the sequence

of reactions t at transform simple into complex metabolites or vice-versa. Metabolizer can be used

for several purposes that include: (1) estimation of differential metabolic activity by comparing two

http://f1000.com/work/citation?ids=8051961&pre=&suf=&sa=0
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conditions,  (2)  construction  of  class  predictors  for  further  classification  of  new samples  using

metabolic activities as multigenic biomarkers; (3) search of therapeutic targets by predicting the

ultimate impact of KOs on the final metabolite production activity of the modules, and (4) automatic

detection of the optimal KO that makes the metabolic profile of an initial condition as close as

possible to a final condition (e.g., the KO that reverts a disease to the normal status).

In addition to human metabolism, Metabolizer includes the metabolism of 5 more model

species, namely mouse, rat, zebrafish, drosophila and worm, taken from the KEGG repository too.

The input for Metabolizer consists of files of normalized gene expression values (in TSV format)

along with an accompanying text  file containing the experimental  design.  A tutorial  explains in

detail  the required format.  The results produced include a graphical output that represents the

metabolic modules analyzed in which the sequences of enzymatic reactions that transform simple

into complex metabolites are highlighted. In this way, disruptions or aimage5.pngctivations in the

metabolite transformation chain can be easily visualized providing a straightforward interpretation

of its real impact on the ultimate metabolite production activity. A convenient graphical interface,

based on the CellMaps [93] libraries, provides an interactive view of the metabolic modules with

configurable colour-coded representation of the metabolic modules and their components. In this

interface, gene activity and module activities are simultaneously represented providing a visual,

intuitive indication on relevant changes in the activity of the genes and their final impact in the

activity  of  the modules  (see Figure  3.4).  Tables  of  the results  that  listing  the modules  with  a

significant change in the activity are provided, along with the statistics and the corresponding p-

values. Metabolizer web server can be found at http://metabolizer.babelomics.org and the code is

given at https://github.com/babelomics/metabolizer

http://f1000.com/work/citation?ids=2925131&pre=&suf=&sa=0
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Figure 3.4: Metabolizer graphic interface with a representation of the modules. On the right side there
is a list of KEGG pathways with arrows up or down in case they contain modules with up or down activations,
respectively. When the arrow is grey, the change in activity is not significant.  Red up arrows indicate a
significant increase in activity and blue down arrow a significant decrease of activity in the module. Below the
pathway list, there is another list with the modules within the pathway with the same code for arrows.

3.2.2 Evaluating the predictive power of Metabolizer

3.2.2.1 Samples and data processing

RNA-seq  counts  of  breast  invasive  carcinoma  (BRCA),  liver  hepatocellular  carcinoma

(LIHC), kidney renal clear cell carcinoma (KIRC), and prostate adenocarcinoma (PRAD) cancer

types (a total 2256 cancer samples and 285 healthy reference tissue samples) were downloaded.

The breakdown of sample sizes are given in Table 3.1). Unwanted technical variation, batch effect,

was removed by COMBAT method [61] and the trimmed mean of M-values normalization method

(TMM) [62] was used for gene expression normalization. Normalized gene expression values were

log-transformed and re-scaled between 0 and 1. Breast Invasive Carcinoma subtype classifications

were  available  through  the  cBIOportal  (https://www.cbioportal.org/study/clinicalData?

id=brca_tcga_pan_can_atlas_2018).  Cell  survival  measurements  after  gene  knockdown  were

taken  from  the  Project  Achilles  2.20.2

(https://portals.broadinstitute.org/achilles/datasets/15/download)  [94].  Escherichia  coli  (E.  coli)

gene expression data in  eight  different  combinations  of  carbon sources,  nitrogen sources and

electron  acceptor  conditions  [44]  was  taken  from
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http://systemsbiology.ucsd.edu/In_Silico_Organisms/E_coli/E_coli_expression2.  Metabolomics

data for BRCA and KIRC were downloaded from the supplementary files of Terunuma et al. 2014,

[95] and Hakimi et al. 2016 [96], respectively.

Cancer type Abbreviation Tumour
samples

Normal samples

Breast invasive carcinoma BRCA 1057 113

Kidney renal clear cell carcinoma KIRC 526 72

Liver hepatocellular carcinoma LIHC 294 48

Prostate adenocarcinoma PRAD 379 52

Total 2256 285

Table 3.1: TCGA samples used in this study.

3.2.2.2 Sensitivity and specificity of models of metabolic module activity

To differentiate cancer from healthy samples, categorical models were built using module

activities as features and RF as a supervised learning algorithm  [89]. These categorical models

were used to evaluate the sensitivity and specificity, the predictive power of modules for class

membership prediction. Since the number of features is not too high (there are only 95 modules),

feature selection was not considered necessary here. Specifically, we repeated 50 times the five-

fold cross-validation on the dataset: two groups, one composed of normal samples and another,

with the same size, composed of tumour samples randomly sampled were constructed. Four fifth

parts were used to train a RF  [89] predictor and the remaining fifth part  was used to test the

predictor with all the module activities (see Figure 3.6). Since the real labels of the fifth part are

known, the correct and wrong assignations per class were used to calculate the area under the

ROC curve (AUC).

3.2.2.3 Comparison of Metabolizer to other methods

Different approaches for the detection of different aspects of metabolic module activity have

been proposed. In order to compare the accuracy of Metabolizer in detecting metabolic module

activity, we have used a version of GSEA based on logistic regression [63] as implemented in the

mdgsa  Bioconductor  package  (http://bioconductor.org/packages/release/bioc/html/mdgsa.html)

and a popular PT-based algorithm SPIA [97], as implemented in the SPIA Bioconductor package

(http://bioconductor.org/packages/release/bioc/html/SPIA.html).  For  these  methods,  gene  sets

were defined using the genes within the metabolic modules. Additionally, the SPIA method also

requires the topology of the modules. In order to adapt the modules to the pathway format needed

for the SPIA function the relations between metabolites on a module are considered as activations.

GSEA detects only differential activity while SPIA and Metabolizer also detect whether this different
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activity implicates activation or deactivation (up/down regulation). Four cancers (Table 3.1) were

used for the comparison. The sensitivity of the method was measured as to the number of modules

detected as differentially active by comparing the four cancers in Table 3.1 with respect to their

corresponding healthy tissues. The specificity was measured as the number of differentially active

modules (false positives) found by each method in a comparison involving individuals of the same

class.

In addition, we utilized a well-known version of CBM method [98], as implemented in the

IMAT  tool  [99] using  the  human  metabolic  network  Recon  2  V2.02  [100],  to  compare  its

performance  against  to  Metabolizer  as  well.  The  IMAT tool  maximizes  the  number  of  highly

expressed reactions that are active and the number of lowly expressed reactions that are inactive.

The reaction activity is inferred from the binarization of the corresponding gene expression values

following a Boolean logic from gene-protein-reaction (GPR) rules within the context of metabolic

networks  [87]. CPLEX (V12.6.2) solver was used for solving Mixed Integer Linear Programming

problems. Optimum solutions provide flux values of reactions and these flux values were used to

classify reactions as active and inactive. All parameters were set as in the original article [98]. The

binary results of reactions (active/inactive) were used to train a classifier. Since this CBM method

is  based on a pathway definition  (Recon 2)  [100] which is  different  from the KEGG metabolic

modules used here [84], we use a different benchmarking framework in which reaction values are

used as predictor features [101]. Given that classifiers based either on Module activities or on CBM

reaction activities were able to distinguish cancer and normal tissues with almost 100% accuracy.

For that reason, we challenged them with a more complex classification problem: distinguishing

between cancer subtypes in the case of breast cancer. The BRCA dataset (Table 3.1) contains

PAM50-defined  [102] subtypes; Basal-like, HER2-enriched, Luminal A, and Luminal B of Breast

Invasive Carcinoma  [103]. The performance of a RF  [89] based classifier trained using module

activities by Metabolizer and reaction activities obtained by CBM were compared by five-fold cross

validation, using gene expression-based classification as a gold standard. It is worth noting that

only one gene belonging to the metabolic modules, PHGDH, was in the list of PAM50 genes used

to define the BRCA subtypes.

3.2.2.4 Validation of KO predictions and case uses

3.2.2.4.1 An example of automatic optimal KO

To illustrate the potential of the Auto-KO option, we have used this tool to find KOs that

would  make  a  KIRC  sample  as  similar  as  possible  to  a  normal  kidney  sample  in  terms  of

metabolism.  We used  a  balanced  dataset  that  is  composed of  all  72  normal  kidney samples

available and 72 KIRC samples randomly sampled among all the available tumour samples and
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used the Auto-KO option. Then, a class predictor is built that will be used to decide to what extent

the tumor sample, after the KO, could be identified as likely as a normal sample. This approach

used for each tumour sample that were in the list of 72 tumour samples. Then the results were

given  as  the  mean  of  these  tumour  samples.  Most  of  the  KOs  do  not  have  an  effect  that

significantly  reverts the metabolic tumor status towards that of a normal kidney,  in a way that

increases the probability of being recognized as normal by the predictor. Then, KOs were clustered

based on their effect similarities (change in probability). The gene cluster which has the highest

effect  on the likelihood of  being normal  was used to create double KO pairs and to test  their

synergistic effects. Auto-KO option of the Metabolizer does not generate compute double KOs

automatically, but users can apply multiple KOs manually.

3.2.2.4.2 Experimental validation in a cancer model of gastric adenocarcinoma of an

optimal KO prediction in gastric cancer patients

Finally,  as an additional  validation,  we used the optimal  KO option  of  Metabolizer  in  a

different cancer type, gastric cancer patients (STAD). Table 3.2 shows the predictions. The gene

causing  the  strongest  effect,  DPYS,  was  found  as  essential  in  the  catalogue  of  cancer

dependencies [94]. The second predicted gene, UPB1, encodes an enzyme (β-ureidopropionase)

that  catalyzes  the  last  step  in  the  pyrimidine  degradation  pathway,  required  for  epithelial-

mesenchymal transition [104]. Using a cancer model of gastric adenocarcinoma (AGS cell line) we

carried  out  a  cell  proliferation  experiment  upon  depletion  of  UPB1  gene  expression.  All  the

following experimental validation work was done by the collaborators and in their wet-lab (Pujana’s

Lab,  IDIBELL,  Barcelona).  The  shRNAs  targeting  UPB1  were  purchased  from  the  MISSION

(Sigma Aldrich) library, catalogue SHCLNG-NM_016327. Lentivirus production and transduction

was performed following standard protocols and cell cultures were selected with puromycin for 72 h

prior cell seeding for evaluation of proliferation/viability by methylthiazol tetrazolium (MTT)-based

assays (Sigma-Aldrich).  The data  corresponds to sextuplicates  and was replicated in  different

assays.  UPB1  expression  was  detected  with  the  Human  Protein  Atlas  HPA000728  antibody

(Sigma-Aldrich) and gene expression measured with primers 5′-TCGACCTAAACCTCTGCCAG-3′

and 5′-TAAGCCTGCCACACTTGCTA-3′, using PPP1CA as control.

http://f1000.com/work/citation?ids=93427&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3984491&pre=&suf=&sa=0


46

Gene symbol Entrez ID  p(normal) 
after KO

p(normal) 
before KO

Change in probability

DPYS 1807 0.468 0.33 0.138

UPB1 51733 0.468 0.33 0.138

GART 2618 0.416 0.33 0.086

ATIC 471 0.416 0.33 0.086

PAICS 10606 0.416 0.33 0.086

SLC27A5 10998 0.392 0.33 0.062

BAAT 570 0.392 0.33 0.062

HSD17B12 51144 0.368 0.33 0.038

TECR 9524 0.368 0.33 0.038

ALDH5A1 7915 0.354 0.33 0.024

ABAT 18 0.354 0.33 0.024

Table 3.2: Probabilities of STAD metabolic profiles being identified as normal cell metabolic profile 
after the KO of the gene.

3.2.2.4.3 Applying the method in other model organisms

E. coli can grow on different carbon sources using different metabolic routes [105]. A large-

scale compendium of gene expression data of different E. coli growth in a variety of conditions is

available  [106].  Table  3.3  summarizes  the  eight  conditions  studied.  We  have  used  the  gene

expression values to derive the module activities for all conditions, looking for specific scenarios in

which the activation of certain modules was expected. Of particular interest is the behaviour of

Glycolysis and TCA cycle modules that should be affected by some of the conditions reported in

the  study  that  involve  aerobic  and  anaerobic  conditions  with  different  carbon  sources  [106],

providing thus insights into energy metabolism linked to cellular respiration. Figure 3.5 illustrates

the knowledge given in the biology textbook, the routes used by E.coli  under different forms of

respiration.

Carbon
Sources

Nitrogen
Sources

Electron Acceptor
(Respiration)
Conditions Conditions # Samples

D-galactonate NH4 Aerobic Condition 1 2

Glucose NH4 Aerobic Condition 2 9

Glucose NH4 Anaerobic Condition 3 10

Glucose Nitrate Anaerobic Condition 4 3

Glycerol NH4 Aerobic Condition 5 5

Lactate NH4 Aerobic Condition 6 6

L-galactonate NH4 Aerobic Condition 7 3

Thymidine NH4 Aerobic Condition 8 3

Total 41

Table 3.3: Details of Escherichia coli growth conditions and the number of samples for each condition.

http://f1000.com/work/citation?ids=6536381&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6536381&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=346411&pre=&suf=&sa=0
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Figure 3.5: Metabolic routes used by E. Coli during the aerobic and anaerobic respiration. Glycolysis
(red route, KEGG module Id: M00002) is used under both conditions. While aerobic respiration continues
with  oxidative  phosphorylation  through  TCA  cycle  (blue  route,  KEGG  module  Id:  M00009),  anaerobic
respiration continues with fermentation process for the production of lactic acid (animals and bacteria) and
ethanol (yeast).

3.2.2.4.4  Concordance  between  module  activity  and  concentration  of  final

metabolite

To further assess the validity of the predictions, metabolomic data from breast and kidney

cancer were then analyzed.  We used the balance between the initial  and final  metabolite fold

changes (ratio of the arithmetic mean values) as an indication of activation (relative increase in the

final  metabolite  with  respect  to  the  initial  one)  or  inactivation  (relative  decrease  in  the  final

metabolite with respect to the initial one). 

3.3 Results and Discussion

Metabolizer web tool offers several functions. Under this chapter, all these functions were

benchmarked, and the results were validated based on literature and wet-lab experiments. Below,

we discussed all the results in the order given; differentially module activity, knockout simulations,

and constructing predictors. 

To  evaluate  the  predictive  power  of  Metabolizer,  categorical  models  were  built  using
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module  activities  as  features  and  RF  as  a  supervised  learning  algorithm.  The  models  were

evaluated using five-fold cross-validation using datasets with real cancer and control labels and

also randomized labels. As it is shown in Table 3.4, the predictive power of the models which built

using module activities as features is extremely high in four cancer types. The AUC in real class

comparisons can be compared to the poor AUC values in artificial classes obtained by random

permutation of cancer and control labels. This strongly suggests that module activities account for

real biological features that change between cancers and normal tissues.

BRCA
BRCA

random LIHC
LIHC

random KIRC
KIRC

random PRAD
PRAD

random

Mean 1.000 0.495 1.000 0.525 0.999 0.477 0.998 0.491

Standard 
deviation

0 0.190 0 0.251 0.002 0.216 0.006 0.208

Median 1.000 0.5025 1.000 0.533 1.000 0.464 1.000 0.469

Median absolute 
deviation

0 0.205 0 0.312 0 0.243 0 0.228

Table 3.4: AUC values obtained for tumour types in Table 3.1, with the corresponding AUC values obtained
when artificial classes are obtained by randomizing sample label.

In order to compare the accuracy of Metabolizer in detecting metabolic module activity, we

set  two different  comparison  scenarios  based  on  the  existing  tools  and  their  output.  We first

compared the capability for detecting differentially activated modules when cancer is compared to

the corresponding unaffected tissue in four distinct cancer types: BRCA, LIHC, KIRC, and PRAD

(Table 3.1). Second, in order to calculate the false positive rates, we compared 1000 times two

artificial sample sets by random sampling of normal tissues maintaining the proportions of the real

comparison. That is 102 vs. 11 for BRCA, 41 vs. 7 in LIHC, 63 vs. 9 in KIRC and 46 vs. 6 in PRAD.

The same procedure was repeated using cancer samples. In this case, the proportions were 995

vs. 102 in BRCA, 253 vs. 41 in LIHC, 463 vs. 63 in KIRC and 333 vs. 46 in PRAD. For this

contrast, we used the conventional approach based on unstructured gene sets, the GSEA  [63],

and an approach that takes into account the relationships among genes within gene sets, the SPIA

[97].  Table  3.5  shows the number  of  modules  found as differentially  activated in  the different

cancers by the different methods. Metabolizer outperforms both the sensitivity and specificity of

GSEA and SPIA. GSEA founds between 5 and 14 modules, depending on cancer, with averages

ranging from 2 to 7 false positive (FP) modules. SPIA increases the specificity at the exchange of

reducing the sensitivity, with a very low detection rate. Metabolizer increases by almost one order

of  magnitude  both  sensitivity  and  specificity  (Table  3.5).  In  general,  the  results  found  by  the

methods were consistent across them, taking into account their different sensitivities. As expected,

modules  controlling  the biosynthesis  of  nucleotide  precursors  [107] and Acetyl-CoA  [108,  109]

were found across cancers by GSEA and Metabolizer.  However,  several well-known metabolic

http://f1000.com/work/citation?ids=2069303,1243691&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=713830&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=632385&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1079782&pre=&suf=&sa=0
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activities associated to cancer development and progression, such as increased production of l-

Proline  [110] and  succinate,  9 or  related  to  metastasis,  such  as  fumarate,  4-aminobutanoate

(GABA biosynthesis)  [111] or N-acylsphingosine (Ceramide biosynthesis),  [112] were found only

by the more sensitive Metabolizer method. 

Method
BRCA LIHC KIRC PRAD

Found FP Found FP Found FP Found FP

GSEA 8 3.5/1.8 5 2.8/6.0 14 7.4/3.4 5 2.7/2.3

SPIA 2 0.07/0.05 1 0.3/0.1 2 0.1/0.07 1 1.1/0.1

Metabolizer 81 0.008/0.06 77 0.04/0.04 77 0.03/0.03 73 0.05/0.05

Table 3.5: Number of modules found as differentially activated in the cancers listed in Table 3.1 by the
different  methods GSEA, SPIA, and Metabolizer.  The number of  false positives (FP) was calculated by
comparing 1000 times two artificial  sample sets  by random sampling of  normal  tissues maintaining the
proportions of the real comparison. That is 102 vs. 11 for BRCA, 41 vs. 7 in LIHC, 63 vs. 9 in KIRC and 46
vs. 6 in PRAD. The same procedure was repeated using cancer samples. In this case the proportions were
995 vs. 102 in BRCA, 253 vs. 41 in LIHC, 463 vs. 63 in KIRC and 333 vs. 46 in PRAD. The second column
for each cancer type shows the average number of FPs obtained with normal samples/the same figure
obtained from cancer samples

Since CBM analysis is based on a different type of pathway (Recon 2), the comparison

cannot  be  carried  out  in  the  previous  benchmarking  framework  that  uses  metabolic  modules

defined  within  KEGG  pathways.  Instead,  we  carried  out  a  comparison  of  classification

performances using a previously proposed benchmarking framework based on the use of reaction

activities estimated by CBM as features for classification  [101]. Given that cancer versus normal

tissue was a quite naive classification problem for which both CBM and Metabolizer resulted in

almost 100% classification accuracy. Thus, we used a more challenging classification problem:

BRCA subtype prediction. Classification performances were carried out using a RF-based predictor

with five-fold cross-validation. Since BRCA subtypes have been defined using the expression of 50

genes with the PAM50 classifier,43 the classification obtained using the expression of all genes is

expected to provide an upper limit of classification performance. Figure 3.6 shows how module

activities obtained with Metabolizer outperform CBM-based reaction activities in classifying all the

BRCA subtypes. It is worth noting that there is no common list of features between gene-based

and module based predictors. Only one gene belonging to the metabolic modules, PHGDH, was in

the list of PAM50 genes used to define the BRCA subtypes.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397295/#CR49
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397295/#CR43
http://f1000.com/work/citation?ids=1213820&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1395916&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=2923072&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3012298&pre=&suf=&sa=0
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Figure 3.6: BRCA subtype classification performances obtained using module activities inferred with
Metabolizer and CBM-based reaction activities by iMAT. BRCA subtypes are defined on the bases of
PAM50  gene  activities  and  therefore,  gene  expression  is  taken  as  the  gold  standard  classification
performance. Upper panel of this figure illustrates the 50 x 5 cross-validation applied to obtain classification
performances.

Knockout  option  allows  studying  single  gene  KOs and  the effect  of  drugs  with  known

targets.  When enough  samples  for  at  least  two  different  conditions  provided,  Auto-KO option

allows  us  to  integrate  omics  data  on  top  of  biological  pathways  and  apply  machine  learning

algorithms  to  discover  patient-specific  potential  drug  targets  automatically.  In  the  given  KIRC

example, in a few cases the result of the KO changes the metabolic status of the tumor in a way

that is identified as normal in approximately 25%. Figure 3.7 shows the KOs which have a similar

strength of condition reverting effect. The details of the KO results for the genes in group G_1.5 are

given in Table 3.6. This table lists the genes in which a KO produces changes in the metabolic

profile of the tumor cell that make it more similar to the metabolic profile exhibited by a normal

kidney  cell.  Some of  these optimal  KO predictions  were known as  cancer-related genes.  For
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example,  HSD17B12,  is a known cancer antigen  [113],  EBP is a long-known cancer  estrogen

receptor [114] or DHCR24 is a gene whose over-expression is related to bad prognostic in several

cancers  [115],  which explain  the potential  predicted impact  that  their  KOs have in  the cancer

metabolic profile. However, beyond the knowledge derived from the literature, other experimental

evidence, such as the recent release of a large-scale map of cancer dependency [94], can be used

to  validate  predictions  made  on  the  simulated  KOs  that  would  potentially  reduce  the  cancer

phenotype of cells and make them resemble normal cells. 

Gene symbol Entrez ID p(normal) after KO p(normal) before KO Change in probability

HSD17B12 51144 0.348 0.92 0.256

TECR 9524 0.348 0.92 0.256

SC5D 6309 0.328 0.92 0.236

EBP 10682 0.328 0.92 0.236

DHCR24 1718 0.328 0.92 0.236

LSS 4047 0.328 0.92 0.236

TM7SF2 7108 0.328 0.92 0.236

NSDHL 50814 0.328 0.92 0.236

CYP51A1 1595 0.328 0.92 0.236

HSD17B7 51478 0.328 0.92 0.236

DHCR7 1717 0.328 0.92 0.236

Table 3.6: Probabilities of KIRC metabolic profiles being identified as normal cell metabolic profile after the
KO of the gene.

http://f1000.com/work/citation?ids=3984491&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=8334986&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3331706&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=4742073&pre=&suf=&sa=0
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Figure 3.7: KOs which have similar strength of condition reverting effect in KIRC. Genes were ranked
based on their effect, 1 is the best performing genes. Then the mean of ranks for 72 tumour samples was
calculated (y-axis). Based on the mean ranks the genes were clustered (x-axis). The genes which had the
highest impact on condition reverting are given in cluster G_1.5.

The  expectation  is  that  inhibitions  of  optimal  KO genes  should  result  in  the  reduction  of  the

proliferative capability of the corresponding cell lines that could be interpreted as a reversion of

cancer phenotype towards a normal cell (or at less, a non-proliferative cell). In spite of the fact that

cancer outcome is a much more complex phenotype than the proliferation of a cell  line,  when

genes in Table 3.6 are inhibited in the cancer  dependency experiment  [94] a reduction in  the

proliferation was observed for ten out of the eleven predicted optimal KOs (HSD17B12, TECR,

SC5D, EBP, DHCR24, LSS, NSDHL, CYP51A1, HSD17B7, DHCR7) (see Figure 3.8). Moreover,

in  some  cases,  we  were  able  to  detect  an  increase  in  patient  survival  in  patients  with  low

expression of some of the optimal KO proteins in Table 3.6. Thus, according to Protein Atlas [116],

low expression of TECR protein is significantly associated to better patient survival in urothelial

cancer  (see  https://www.proteinatlas.org/ENSG00000099797-TECR/pathology/tissue/

urothelial+cancer),  and  the  same  is  observed  in  DHCR24  in  endometrial  cancer

(https://www.proteinatlas.org/ENSG00000116133-DHCR24/pathology/tissue/endometrial+cancer),

https://www.proteinatlas.org/ENSG00000116133-DHCR24/pathology/tissue/endometrial+cancer
https://www.proteinatlas.org/ENSG00000099797-TECR/pathology/tissue/urothelial+cancer
https://www.proteinatlas.org/ENSG00000099797-TECR/pathology/tissue/urothelial+cancer
http://f1000.com/work/citation?ids=4070132&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3984491&pre=&suf=&sa=0
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LSS  in  urothelial  cancer  (https://www.proteinatlas.org/ENSG00000160285-LSS/pathology/tissue/

urothelial+cancer), CYP51A1 in cervical cancer (https://www.proteinatlas.org/ENSG00000001630-

CYP51A1/pathology/tissue/cervical+cancer),  and  HSD17B7  in  renal  cancer

(https://www.proteinatlas.org/ENSG00000132196-HSD17B7/pathology/tissue/renal+cancer).

However,  Protein  Atlas  results  that  support  Metabolizer  predictions  must  be  taken  with  some

caution given that they implicitly make the assumption that lower cancer cell  survival would be

equivalent to higher patient survival.

Figure  3.8:  Essentiality  (Demeter  score)  of  genes  predicted  as  optimal  KOs  with  respect  to  the
background distribution of essentiality values. Values below 0 indicate lower proliferation. From left to
right and top to bottom: HSD17B12 and SC5Din cell line G401 (KIDNEY); TECR in cell line TUHR4TKB
(KIDNEY) (this gene shows the same results in KMRC1 cell line of KIDNEY, data not shown); SC5D and
EBP in SLR25 cell line (KIDNEY) (SC5D shows the same result in G401 cell line of SOFT_TISSUE, data not
shown); DHCR24 in cell line HK2 (KIDNEY); LSS in cell line SLR23 (KIDNEY); NSDHL, DHCR7, and TECR
in  769P cell  line  (KIDNEY);  CYP51A1 in  cell  line  SKRC20 (KIDNEY) (also  less  proliferative  in  SLR20
KIDNEY cell line, data not shown); HSD17B7 in cell line CAKI2 (KIDNEY); DHCR7 and EBP in cell  line
SLR26 (KIDNEY)

https://www.proteinatlas.org/ENSG00000132196-HSD17B7/pathology/tissue/renal+cancer
https://www.proteinatlas.org/ENSG00000001630-CYP51A1/pathology/tissue/cervical+cancer
https://www.proteinatlas.org/ENSG00000001630-CYP51A1/pathology/tissue/cervical+cancer
https://www.proteinatlas.org/ENSG00000160285-LSS/pathology/tissue/urothelial+cancer
https://www.proteinatlas.org/ENSG00000160285-LSS/pathology/tissue/urothelial+cancer
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Drug  repurposing  has  emerged  as  an  alternative  approach  for  rapid  identification  of

effective therapeutics to complex diseases. Synergistic drug combinations using approved drugs

identified from drug repurposing screens is a useful option which may overcome the problem of

weak activity of individual drugs. Double KOs simulation is a computational strategy for predicting

synergistic  KO and drug pairs  and biomarkers.  Although a 25% increase in  the probability  of

resembling a normal cell might look a small value, it is not expectable that a cancer cell becomes a

normal cell with a unique intervention. However, if we assay combinations of double KOs between

genes in Table 3.6, we observe a dramatic increase in the “normal” character of the cancer cell, as

graphically depicted in Figure 3.9 Most of the combination have a similar effect that the single KOs

alone  (peak  around  0.25).  However,  some  combinations  produce  synergistic  changes  with  a

dramatic  effect  in  the  metabolic  profile  of  KIRC cells  that  make them more similar  to  normal

cellsthan to cancer cells (peak around a 0.5 of change in the probability).

Figure 3.9: Distribution of the difference of probabilities that the predictor identifies a sample as a
normal cell after and before the KOs of the corresponding genes (red distribution) or pair of genes
(blue distribution). 
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Figure 3.10: Representation of the modules corresponding to the Steroid biosynthesis (hsa00100)
and Fatty acid elongation (hsa00062). Arrows point to the KO genes (SD5S and TERC). KOs were made
by substituting the actual gene expression values by a low non-zero value of 0.01 (as can be seen in the Add
genes box of the Metabolizer program. Genes in red indicate that they were active.  At the end of both
modules the resulting metabolite can be seen.

As an example, Figure 3.10 shows the double KO in genes SC5D and TERC, which affects

to the Fatty acid elongation module and the Steroid biosynthesis module, the last one involved in

the  production  of  cholesterol.  Actually,  it  is  long  known  that  tumour  membranes  are  rich  in

cholesterol  [117], suggesting that cholesterol utilization by cancer cells is an important feature of

carcinogenesis and, probably, metastasis [118].

As an additional validation, we used the optimal KO option of Metabolizer in a different

cancer type, gastric cancer patients (STAD). Table 3.2 shows the predictions. The gene causing

the strongest effect, DPYS, was found as essential in the catalogue of cancer dependencies.56

The second predicted gene, UPB1, encodes an enzyme (β-ureidopropionase) that catalyzes the

last  step in  the pyrimidine degradation  pathway,  required for  epithelial-mesenchymal transition

[118].

shRNA-mediated experimental  KO conditions  set,  however,  because of  some technical

issues,  only UPB1 experiments were successfully completed.  As anticipated by our prediction,

three different short hairpin shRNA sequences directed to UPB1 caused a significant decrease in

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397295/#CR56
http://f1000.com/work/citation?ids=8335095&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=8335095&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=8335061&pre=&suf=&sa=0
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cell proliferation (see Figure 3.11). This result constitutes an independent validation that reinforces

the prediction made by the model proposed. Additionally, the inhibition of the rest of genes caused

a remarkable reduction in the proliferation in the cancer dependency experiment, being in all the

cases within the 10% most affected genes [94].

Finally, two more validations were done based on the request of the peer reviewers during

the review process of the article of Metabolizer. Most of the metabolic modelling applications have

been  extensively  dealing  with  bacterial  organisms.  We have  used  a  classical  bacterial  model

organism: Escherichia coli to demonstrate the validity and usefulness of the models of metabolic

modules. Of particular interest is the behaviour of Glycolysis and TCA cycle modules that should

be affected by some of the conditions reported in the study that involve aerobic and anaerobic

conditions  with  different  carbon sources  [106],  providing  thus  insights  into  energy  metabolism

linked to cellular respiration. E. coli samples which grown either aerobically or anaerobically with

glucose present high activity of glycolysis (Conditions 2, 3 and 4 in Figure 3.12 A). Conversely,

TCA  cycle  was  almost  inactive  for  anaerobic  conditions,  while  it  showed  activity  in  aerobic

conditions (conditions 3 and 4 in Figure 3.12 B). Under the anaerobic conditions, pyruvate cannot

be converted into acetyl-CoA and therefore it does not enter the TCA cycle but rather continues

with the fermentation process. When only the reaction activities corresponding to the enzymes

contained in the modules (estimated using the IMAT tool [36]) are considered, it is difficult to detect

similar condition-specific increases or decreases of activities (see Figure 3.12). This is probably

due to the fact that, while module activities are describing whole biological processes, reaction

activities are elementary pieces of such processes, shared by different modules. Therefore, it may

happen that some reactions can be active within inactive modules because they are part of other

active modules. For the same reason, similar behaviour is observed for gene expression activities

(Figure 3.12).  Consequently,  module activities seem to be a better  descriptor  of the metabolic

processes of the cell. 

https://docs.google.com/document/d/1R6ng7V7dNPzZZ1rbZgkWqMLq_hWUeZoqk-nKmweWU5Q/edit#heading=h.1hmsyys
http://f1000.com/work/citation?ids=3984491&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6536381&pre=&suf=&sa=0
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Figure 3.11: Experimental validation of an optimal KO prediction in gastric cancer patients. Relative
cell proliferation of line AGS (stomach gastric adenocarcinoma) upon UPB1 expression depletion by three
different  MISSION shRNAs or  transduced with  control  vector  pLKO.1.  The asterisk  indicates  significant
differences (Mann–Whitney test p-values < 0.01). The percentage of reduction of cell  proliferation is also
shown.  The  prediction  of  UPB1  essentiality  made  by  Metabolizer  was  confirmed  by  a  relatively  more
sensitive behaviour.
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Figure 3.12: Two examples of module activity in E. coli growing under different conditions. Colours
are showing different  conditions.  From navy blue to  red;  condition 1,2,3,4,5,6,7,8  (details  in  Table  3.3).
Module activity, reaction node activity and gene expression values are given for two modules, M00002 and
M00009. A module can be composed of several reactions and genes, due to this reason, from up to down
the number of boxplots are getting more per condition. Y-axis shows the level of module activity, reaction
node activity gene expression values. A) E. coli samples which grown either aerobically or anaerobically with
glucose present high activity of glycolysis / M00002 (especially condition 3, but also 2 and 4). B) TCA-cycle /
M00009 is almost inactive for anaerobic conditions, while shows activity in aerobic conditions (conditions 3
and 4). 
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Initial Metabolite Final Metabolite

Module
Cancer

type Metabolite
Normal

Median (SE)
Cancer

Median (SE)
Fold

Change Metabolite
Normal

Median (SE)
Cancer

Median (SE)
Fold

Change
Model

prediction Validation

M00035_1

BRCA
C00073

0.79 (0.08) 1.47 (0.1) 1.9
C02291

0.11 (0.03) 0.87 (0.87) 7.8 Up Correct

KIRC 1.49 (0.06) 0.68 (0.04) 0.5 NA NA NA Down NA

M00100

BRCA
C00319

0.08 (0.12) 0.92 (1.76) 11.1
C00346

0.4 (0.18) 6.85 (2.08) 17.3 Up Correct

KIRC 0.57 (0.09) 1.28 (0.29) 2.2 1.06 (0.03) 0.9 (0.05) 0.8 Down Correct

M00135

BRCA
C00134

0.09 (0.06) 1.14 (0.9) 12.9
C00334

0.27 (0.02) 0.33 (0.11) 1.2 Down Correct

KIRC 0.55 (0.11) 2.11 (0.63) 3.6 2.19 (0.41) 0.65 (0.05) 0.3 Down Correct

Table 3.7: Fold changes of metabolites from metabolomics data in BRCA and KIRC, and fold changes of
predicted module activities.

Modules present the chain of biochemical reactions that transform of simple to complex

metabolites or vice versa. The final metabolite of a module can be produced by different modules

and also can be consumed by different biochemical reactions. Due to these reasons, the module

activity  can  not  be  inferred  as  a  direct  estimate  of  the  concentration  of  the  final  metabolite.

However,  we  may  expect  to  observe  some  correlation  between  assay  based  metabolite

measurements and module activity predictions if the proposed model is accurate.

With the premise that both the initial and final metabolites of each module were measured

in  these studies,  we found two datasets  where  three modules  could  be evaluated.  For  these

settings, as it is shown in Table 3.7, all of our five predictions proved to be correct. Therefore, the

predictions from our study are generally transferable metabolic activity levels.

Module Main
Category

Description/Name Start molecule End molecule

M00001 CH-LPD Glycolysis (Embden-Meyerhof pathway), glucose => pyruvate C00267 C00022

M00002 CH-LPD Glycolysis, core module involving three-carbon compounds C00111 C00022

M00003 CH-LPD Gluconeogenesis, oxaloacetate => fructose-6P C00036 C05345

M00004 CH-LPD Pentose phosphate pathway (Pentose phosphate cycle) C01172 Cycle: Pentose
phosphate 
pathway

M00006 CH-LPD Pentose phosphate pathway, oxidative phase, glucose 6P => ribulose 5P C01172 C00199

M00007 CH-LPD Pentose phosphate pathway, non-oxidative phase, fructose 6P => ribose 5P C05345+C00118 C00117

M00009 CH-LPD Citrate cycle (TCA cycle, Krebs cycle) C00024+C00036 Cycle:
Citrate cycle

M00010 CH-LPD Citrate cycle, first carbon oxidation, oxaloacetate => 2-oxoglutarate C00036+C00024 C00026

M00011 CH-LPD Citrate cycle, second carbon oxidation, 2-oxoglutarate => oxaloacetate C00026+C15972 C00036

M00013 CH-LPD Malonate semialdehyde pathway, propanoyl-CoA => acetyl-CoA C00100 C00024

M00014 CH-LPD Glucuronate pathway (uronate pathway) C00029 C00231

M00015 NUC-AA Proline biosynthesis, glutamate => proline C00025 C00148

M00020 NUC-AA Serine biosynthesis, glycerate-3P => serine C00197 C00065

M00027 NUC-AA GABA (gamma-Aminobutyrate) shunt C00025 C00042

M00029_1 NUC-AA Urea cycle C00014+C00049 C00122

M00029_2 NUC-AA Urea cycle C00014+C00049 C00086
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M00032 NUC-AA Lysine degradation, lysine => saccharopine => acetoacetyl-CoA C00047 C00332

M00034_1 NUC-AA Methionine salvage pathway C00073 C00147

M00035_1 NUC-AA Methionine degradation C00073+C00065 C02291

M00036 NUC-AA Leucine degradation, leucine => acetoacetate + acetyl-CoA C00123 C00164

M00037 NUC-AA Melatonin biosynthesis, tryptophan => serotonin => melatonin C00078 C01598

M00042 NUC-AA Catecholamine biosynthesis, tyrosine => dopamine => noradrenaline => adrenaline C00082 C00788

M00043 NUC-AA Thyroid hormone biosynthesis, tyrosine => triiodothyronine/thyroxine C00082 C02465

M00044_1 NUC-AA Tyrosine degradation, tyrosine => homogentisate C00082 C00122

M00046_1 NUC-AA Pyrimidine degradation, uracil => beta-alanine, thymine => 3-aminoisobutanoate C00106 C00099

M00046_2 NUC-AA Pyrimidine degradation, uracil => beta-alanine, thymine => 3-aminoisobutanoate C00178 C05145

M00047 NUC-AA Creatine pathway C00062 C00791

M00048 NUC-AA Inosine monophosphate biosynthesis, PRPP + glutamine => IM C00119+C00064 C00130

M00049 NUC-AA Adenine ribonucleotide biosynthesis, IMP => ADP,ATP C00130 C00002

M00050 NUC-AA Guanine ribonucleotide biosynthesis IMP => GDP,GTP C00130 C00044

M00051_1 NUC-AA Uridine monophosphate biosynthesis, glutamine (+ PRPP) => UMP C00064+C00119 C00105

M00052 NUC-AA Pyrimidine ribonucleotide biosynthesis, UMP => UDP/UTP,CDP/CTP C00105 C00112

M00055 CH-LPD N-glycan precursor biosynthesis C00110 G00008

M00056_1 CH-LPD O-glycan biosynthesis, mucin type core C02189+G10611 G00025

M00056_2 CH-LPD O-glycan biosynthesis, mucin type core C02189+G10611 G00029

M00056_3 CH-LPD O-glycan biosynthesis, mucin type core C02189+G10611 G00031

M00057 CH-LPD Glycosaminoglycan biosynthesis, linkage tetrasaccharide C02189 G00157

M00058 CH-LPD Glycosaminoglycan biosynthesis, chondroitin sulfate backbone G00157 G00160

M00059 CH-LPD Glycosaminoglycan biosynthesis, heparan sulfate backbone G00157 G00164

M00065 CH-LPD GPI-anchor biosynthesis, core oligosaccharide C01194 G13044

M00066 CH-LPD Lactosylceramide biosynthesis C00195 C01290

M00067_1 CH-LPD Cerebroside and sulfatide biosynthesis C00195 C06125

M00067_2 CH-LPD Cerebroside and sulfatide biosynthesis C03201 C20825

M00068 CH-LPD Glycosphingolipid biosynthesis, globo-series, LacCer => Gb4Cer G00092 G00094

M00069 CH-LPD Glycosphingolipid biosynthesis, ganglio series, LacCer => GT3 G00092 G00118

M00070 CH-LPD Glycosphingolipid biosynthesis, lacto-series, LacCer => Lc4Cer G00092 G00037

M00071 CH-LPD Glycosphingolipid biosynthesis, neolacto-series, LacCer => nLc4Cer G00092 G00050

M00073 CH-LPD N-glycan precursor trimming G00009 G00012

M00075_1 CH-LPD N-glycan biosynthesis, complex type G00013 G00019

M00075_2 CH-LPD N-glycan biosynthesis, complex type G00013 G00022

M00075_3 CH-LPD N-glycan biosynthesis, complex type G00013 G00018

M00076 CH-LPD Dermatan sulfate degradation C00426 G00872

M00077 CH-LPD Chondroitin sulfate degradation G12336 G00872

M00078 CH-LPD Heparan sulfate degradation C00925 G02632

M00079 CH-LPD Keratan sulfate degradation C00573 G01391

M00082 CH-LPD Fatty acid biosynthesis, initiation C00024 C05744

M00083 CH-LPD Fatty acid biosynthesis, elongation C03939 C05745

M00085 CH-LPD Fatty acid biosynthesis, elongation, mitochondria C00024 C00040

M00087 CH-LPD beta-Oxidation C00154 C02593

M00089 CH-LPD Triacylglycerol biosynthesis C00093 C00422

M00090 CH-LPD Phosphatidylcholine (PC) biosynthesis, choline => PC C00114 C00157
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M00091 CH-LPD Phosphatidylcholine (PC) biosynthesis, PE => PC C00350 C00157

M00092 CH-LPD Phosphatidylethanolamine (PE) biosynthesis, ethanolamine => PE C00189 C00350

M00094_1 CH-LPD Ceramide biosynthesis C00154+C00065 C00195

M00095 CH-LPD C5 isoprenoid biosynthesis, mevalonate pathway C00024 C00235

M00098 CH-LPD Acylglycerol degradation C00422 C00116

M00099 CH-LPD Sphingosine biosynthesis C00154 C00319

M00100 CH-LPD Sphingosine degradation C00319 C00346

M00101 CH-LPD Cholesterol biosynthesis, squalene 2,3-epoxide => cholesterol C01054 C00187

M00103 CH-LPD Cholecalciferol biosynthesis C01164 C01673

M00104_1 CH-LPD Bile acid biosynthesis, cholesterol => cholate C00187 C00695

M00104_2 CH-LPD Bile acid biosynthesis, cholesterol => cholate C00187 C02528

M00106_1 CH-LPD Conjugated bile acid biosynthesis, cholate => taurocholate/glycocholate C00695 C05122

M00106_2 CH-LPD Conjugated bile acid biosynthesis, cholate => taurocholate/glycocholate C00695 C01921

M00107 CH-LPD Steroid hormone biosynthesis, cholesterol => prognenolone => progesterone C00187 C00410

M00108 CH-LPD C21-Steroid hormone biosynthesis, progesterone => corticosterone/aldosterone C00410 C01780

M00109 CH-LPD C21-Steroid hormone biosynthesis, progesterone => cortisol/cortisone C00410 C00762

M00110 CH-LPD C19/C18-Steroid hormone biosynthesis, pregnenolone =>
androstenedione => estrone

C01953 C00468

M00118 NUC-AA Glutathione biosynthesis, glutamate => glutathione C00025 C00051

M00120 NUC-AA Coenzyme A biosynthesis, pantothenate => CoA C00864 C00010

M00128 NUC-AA Ubiquinone biosynthesis, eukaryotes, 4-hydroxybenzoate => ubiquinone C00156 C00399

M00130 CH-LPD Inositol phosphate metabolism, PI=> PIP2 => Ins(1,4,5)P3 => Ins(1,3,4,5)P4 C01194 C01272

M00131 CH-LPD Inositol phosphate metabolism, Ins(1,3,4,5)P4 => Ins(1,3,4)P3 => myo-inositol C01272 C00137

M00132 CH-LPD Inositol phosphate metabolism, Ins(1,3,4)P3 => phytate C01243 C01204

M00133_1 NUC-AA Polyamine biosynthesis, arginine => agmatine => putrescine => spermidine C00062+C00019 C00315

M00134 NUC-AA Polyamine biosynthesis, arginine => ornithine => putrescine C00062 C00134

M00135 NUC-AA GABA biosynthesis, eukaryotes, putrescine => GABA C00134 C00334

M00141 NUC-AA C1-unit interconversion, eukaryotes C00101 Cycle: C1-unit
interconversion

M00338_1 NUC-AA Cysteine biosynthesis, homocysteine + serine => cysteine C00065+C00155 C00097

M00367 NUC-AA C10-C20 isoprenoid biosynthesis, non-plant eukaryotes C00129 C00353

M00415 NUC-AA Fatty acid biosynthesis, elongation, endoplasmic reticulum C00083 C20876

M00549 CH-LPD Nucleotide sugar biosynthesis, glucose => UDP-glucose C00267 C00029

M00554 CH-LPD Nucleotide sugar biosynthesis, galactose => UDP-galactose C00124 C00052

M00632_1 CH-LPD Galactose degradation, Leloir pathway, galactose => alpha-D-glucose-1P C00124 C00103

M00741 CH-LPD Propanoyl-CoA metabolism, propanoyl-CoA => succinyl-CoA C00100 C00091

CH-LPD: Carbohydrate and lipid metabolism; NUC-AA: Nucleotide and amino acid metabolism

Table 3.8: Metabolic modules used in this study.
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Chapter 4

A pan-cancer metabolic landscape based

on gene expression integration into

pathway modules

Chapter 4 is adapted from the following publication: “Cubuk C,  Hidalgo MR, Amadoz A, et al.

(2018).  Gene  expression  integration  into  pathway  modules  reveals  a  pan-cancer  metabolic

landscape. Cancer Research, 78(21), 6059-6072. DOI: 110.1158/0008-5472.CAN-17-2705”. This

chapter  can  be  also  considered  as  a  case  study  which  efforts  to  accomplish  modelling  the

metabolism of cancer using mathematical models given in the previous chapters.
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Chapter 4
THE PAN-CANCER METABOLIC LANDSCAPE

4.1 Overview and objectives

Metabolic reprogramming plays an important role in cancer development and progression

and is  a  well-established neoplastic  hallmark.  Cancer  cells  need to adapt  their  metabolism to

survive and proliferate under the metabolically compromised conditions provided by the tumour

microenvironment. It is well known that the common proliferative phenotype of cancer cells require

intensive  support  for  the biosynthesis  of  cellular  components and generation of  energy,  which

overall  are accomplished  by reprogramming of  metabolism.  Warburg effect,  enhanced aerobic

glycolysis,  is one of  the well-known reprogramming observation done almost  one century ago.

Additionally, alterations in the synthesis of nucleotides, amino acids and lipids [119], mutations in

metabolic  genes  and  accumulations  of  key  metabolites  [120] have  been  reported.  These

observations, along with the discovery of the therapeutic potential of metabolic targets in cancer

[121], has sparked a growing interest in cancer metabolism [122, 123]. Recent studies show that

genes involved in metabolic pathways display a remarkable heterogeneity across various cancer

types [124], which suggests that personalized therapies are likely to be successful if the context of

the intervention is accurately depicted.  In this context,  synthetic lethality,  defined as combined

molecular perturbations with a drastic effect on cell viability, but with no individual effect, offers a

promising range of potential therapeutic interventions based on cancer metabolic dependencies

[125]. Recent studies have demonstrated that complex phenotypes or outcomes such as patient

survival [37, 57] and drug activity [38] are better predicted by the inferred activity of pathways, than

by the activity of their  constituent genes and/or proteins. Indeed, mechanistic models of signal

propagation have been successfully  applied to predict  complex phenotypes using estimates of

signalling pathway activities inferred from gene expression data [38, 57], chapter 2 of this thesis].

In addition, such models provide important information about disease mechanisms and mode of

action (MoA) of drugs [57]. This approach successfully extended to metabolism in the context of

metabolic modules (Chapter 3). Here we generalize the application of this approach to describe the

metabolic profiles and dependencies across 14 cancer types. This chapter reveals common and

specific metabolic modules that influence patient survival and also identify metabolic dependencies

based on targeted molecular predictions that point to novel therapeutic interventions. 

http://f1000.com/work/citation?ids=3365930&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3365930,3241270&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=3241270&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=1299951,3365930&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=1381214&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=76535&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=328985,77241&pre=&pre=&suf=&suf=&sa=0,0
http://f1000.com/work/citation?ids=63188&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=2993&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=77275&pre=&suf=&sa=0
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4.2 Materials and methods

4.2.1 Data resources and processing

RNA-seq counts for a total of 9428 samples, 8319 corresponding to cancer and 649 to

healthy reference tissue, belonging to 25 cancer types, (see Table 4.1), as well as their subtype

stratification,  were  downloaded  from  the  International  Cancer  Genome  Consortium  (ICGC)

repository  (https://dcc.icgc.org/releases/release_20/Projects).  The  trimmed  mean  of  M-values

(TMM) normalization method [62] was used for gene expression normalization. Expression data on

responses to drugs were taken from GSE25066, GSE50948, GSE5462 datasets downloaded from

GEO. Probes mapping in more than one gene were discarded. The median value of the probes

mapping on a gene was used as the expression value for this gene. Microarray data normalization

and  background  correction  were  done  using  the  RMA  method  implemented  in  the  affy

Bioconductor package (https://bioconductor.org/packages/release/bioc/html/affy.html). Normalized

expression  datasets,  both  microarray  and  RNA-seq,  were  log-transformed  and  truncation  by

quantile 0.99 was applied. The COMBAT method [61] was used for batch effect correction. Finally,

data were re-scaled between 0 and 1.  Somatic mutation data, in MAF format as the output of

MuTect2  variant  aggregation  and masking workflow,  were taken from the CDG cancer  portal;

https://portal.gdc.cancer.gov/files/995c0111-d90b-4140-bee7-3845436c3b42  and

https://portal.gdc.cancer.gov/files/da904cd3-79d7-4ae3-b6c0-e7127998b3e6 for BRCA and GBM,

respectively.  Cell  line expression values and cell  line survival data were taken from CCLE and

Achilles projects. A total of 212 cell lines were used in this study (Supplementary Table S2, Cubuk

et al. Cancer Research., 2018 [85] ). Gene expression data were taken from the Cancer Cell Line

Encyclopedia  (https://portals.broadinstitute.org/ccle/)  and  preprocessed  as  given  above.  Cell

survival  measurements  after  gene  KD  were  taken  from  the  Project  Achilles  2.4.3

(https://portals.broadinstitute.org/achilles/datasets/5/download) [126]. Survival validation data were

taken from the new release 2.20.2 of the project Achilles (https://portals.broadinstitute.org/achilles/

datasets/15/download)  [94].  Clinical  data were  available  through  the  cBIOportal

(http://www.cbioportal.org/) [127]. These data included individual survival information that was used

for survival analysis. 

https://cancerres.aacrjournals.org/highwire/filestream/364466/field_highwire_adjunct_files/1/188823_4_supp_4958031_pd5lp3.xlsx
http://f1000.com/work/citation?ids=606745&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3984491&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=482181&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6983304&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=614151&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=148215&pre=&suf=&sa=0
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Cancer type Abbr. Tumor Normal Metastasis Unknown Alive Deceased Analysis type

Bladder Urothelial Carcinoma BLCA 301 17 - - 161 134 Diff/Cor/KM/Cox/Nor

Breast Invasive Carcinoma BRCA 1057 113 7 - 900 146 Diff/Cor/KM/Cox/Nor

Cervical Squamous Cell Carcinoma
and Endocervical Adenocarcinoma CESC 259 3 2

-
195 65 KM/Cox/Nor

Chronic Lymphocytic Leukemia CLLE 311 - - - - - Nor

Colon Adenocarcinoma COAD 451 41 1 1 335 93 Diff/Cor/KM/Cox/Nor

Glioblastoma Multiforme GBM 153 - - 13 32 125 KM/Cox/Nor

Head and Neck Squamous
Cell Carcinoma HNSC 480 42 2 - 271 210 Diff/Cor/KM/Cox/Nor

Kidney Renal Clear Cell Carcinoma KIRC 526 72 - - 345 173 Diff/Cor/KM/Cox/Nor

Kidney Renal Papillary Cell Carcinoma KIRP 222 32 - - 189 32 Diff/Cor/KM/Cox/Nor

Acute Myeloid Leukemia LAML 173 - - - 59 114 KM/Cox/Nor

Brain Lower Grade Glioma LGG 439 - - 14 340 109 KM/Cox/Nor

Liver Hepatocellular Carcinoma LIHC 294 48 - 3 184 112 Diff/Cor/KM/Cox/Nor

Lung Adenocarcinoma LUAD 486 55 - 2 305 173 Diff/Cor/KM/Cox/Nor

Lung Squamous Cell Carcinoma LUSC 428 45 - - 239 188 Diff/Cor/KM/Cox/Nor

Malignant Lymphoma MALY 97 - - 7 - - Nor

Ovarian Serous Cystadenocarcinoma OV 342 - - 34 107 160 KM/Cox/Nor

Pancreatic Adenocarcinoma PAAD 142 3 - - 64 77 KM/Cox/Nor

Pancreatic Cancer PACA 83 - - 10 - - Nor

Pancreatic Endocrine Neoplasms PAEN 32 - - 1 - - Nor

Prostate Adenocarcinoma PRAD 379 52 - - 367 7 Diff/Cor/KM/Cox/Nor

Rectum Adenocarcinoma READ 153 9 - 1 126 26 Diff/Cor/KM/Cox/Nor

Skin Cutaneous melanoma SKCM 80 1 353 - 54 28 KM/Cox/Nor

Gastric Adenocarcinoma STAD 415 35 - - 251 163 Diff/Cor/KM/Cox/Nor

Thyroid Papillary Carcinoma THCA 500 58 8 - 488 16 Diff/Cor/KM/Cox/Nor

Uterine Corpus Endometrial 
Carcinoma UCEC 516 23 - 1 421 88 Diff/Cor/KM/Cox/Nor

Total number of individuals 9428 8319 649 373 87 5433 2239

Table 4.1: Cancer types used in this study and specific type of analysis in which the cancer was used. Diff: 
Differential module activity analysis, Cor: Cooperation of metabolic modules, KM: Kaplan-Meier, 
Cox: Cox multiple regression analysis, Nor: Batch effect correction and normalization.

4.2.2 Differential module activity estimation 

Activity  values  for  the  modules  were  calculated  using  Metabolizer  web  tool,

http://metabolizer.babelomics.org. Details of the method for module activity and the web tool are

given in Chapter 3. The Wilcoxon test is used to assess the significance of the observed changes

in  module  activity  when samples  of  two conditions  are  compared.  Since  many modules  were

simultaneously  tested,  the  popular  FDR method  [88] was  used  to  correct  for  multiple  testing

effects. 

http://f1000.com/work/citation?ids=8327420&pre=&suf=&sa=0
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4.2.3 Survival analysis

Kaplan-Meier  (K-M)  curves  were  used  to  relate  module  activity  to  patient  survival  in

different cancers. The value of the activity estimated for each module in each individual was used

to  assess  its  relationship  with  individual  patient  survival.  Calculations  were  carried  out  using

survdiff  function  in  the survival  package of  R (https://cran.r-project.org/web/packages/survival/).

Cox regression analysis  [128] was used to relate  combined  module  activity  to  survival  in  the

different  cancers.  Calculations  were carried  out  using  the  coxph function  in  the  survival  of  R

package (https://cran.r-project.org/web/packages/survival/).  A stepwise algorithm implemented in

the  step  function  of  the  stats  R  package

(https://stat.ethz.ch/R-manual/R-devel/library/stats/html/step.html),  was  used  to  add  or  remove

modules  according  to  the significance  of  their  contributions  to  explain  survival  in  the  multiple

regression model. The step function uses the Akaike Information Criterion (AIC) to select the best

model by iteratively adding and removing variables. Finally, the method yields a list of modules

whose combination is significantly related to survival. Adjustment for multiple testing was made by

the FDR method [88]. For patient stratification, based on predicted module activity, high and low

module activity groups were defined using the 80% and 20% percentiles, respectively. 

4.2.4 Module essentiality

4.2.4.1 Simulation of the effect of gene knockdowns on module activity

Given a set of gene expression values (wt expression), the activity of the modules was

estimated as described above (wt activity). Then, the knocked down gene(s) expression value(s)

were set to 0.001 (KD expression) and the activity of the modules was recalculated again (KD

activity). The log-fold-change in module activities was then calculated from the comparison of KD

and wt module activity profiles as; 

Log-fold-change = log(KD module activity) - log(wt module activity)

4.2.4.2 Relationship between module activity and cell survival 

To estimate module activity essentiality, cell lines were grouped by cancer type. For each

cancer type, the impact of gene KDs on the activity of the modules was calculated as described

above. Then, a Spearman correlation coefficient between log-fold-change values and cell survival,

as described in the Project Achilles was calculated. Lower Achilles scores indicate higher mortality

and, consequently,  the essentiality of the KD gene. Positive correlations indicate essentiality in

http://f1000.com/work/citation?ids=8327420&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=8336026&pre=&suf=&sa=0


68
module activity (the less activity the lower the Achilles index) in this particular cancer type. 

4.2.5 Validation of the essentiality predictions

4.2.5.1 Independent dataset validation 

Data on cancer dependencies,  which include estimates of cell  viabilities after gene KD,

from the Project Achilles 2.20.2 was used to check the validity of the predictions made with the

Project  Achilles 2.4.3. It  was expected that the inhibition of  an onco-module would reduce the

viability of cancer cells. Conversely, the inhibition of a tumour suppressor module should result in

greater cell survival. In order to detect these increases or decreases, the Project Achilles 2.20.2

cell viability scores observed in the cell line in which an effect of KD on cell survival was predicted

were compared with the scores reported for the other cell lines (background score). Increases or

decreases in the mean values were taken as evidence of predicted effects on cell viability. 

4.2.5.2 Experimental validation

The shRNAs targeting UPB1 were purchased from the MISSION library (Sigma Aldrich),

catalogue  SHCLNG-NM_016327.  Lentivirus  was  produced  and  transduced  following  standard

protocols  and cell  cultures  were selected with puromycin  for  72 hours before cell  seeding  for

evaluation  of  proliferation/viability  by  methylthiazol  tetrazolium  (MTT)-based  assays  (Sigma-

Aldrich).  The data corresponds to sextuplicates and were replicated in different  assays.  UPB1

expression was detected with the Human Protein Atlas HPA000728 antibody (Sigma-Aldrich) and

gene  expression  measured  with  primers  5´-TCGACCTAAACCTCTGCCAG-3’  and  5’-

TAAGCCTGCCACACTTGCTA-3’, using PPP1CA as control.

4.3 Results

4.3.1 Data pre-processing

RNA-seq counts for 25 cancer types, totalling 9428 samples (Table 4.1) were downloaded

from  The  International  Cancer  Genome  Consortium  (ICGC)  repository.  Principal  component

analysis  (PCA)  was  used  to  detect  possible  batch  effects.  The  results  are  shown  by  plotting

samples with respect to disease status (Figure 4.1 A and B), sequencing centre (Figure 4.1 C and

D) and project (Figure 4.1 E and F). An appreciable technical batch effect due to the sequencing

centre was found (Figure 4.1 C) and this was corrected by application of the COMBAT [61] method

(Figure 4.1 D). Samples were normalized and preprocessed as explained in Methods. 

http://f1000.com/work/citation?ids=614151&pre=&suf=&sa=0
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Figure 4.1: PCA plots for detecting batch effects.

4.3.2 Pan-cancer metabolic activity profiles

For this differential module activity analysis we used 14 cancer types in which at least a 5%

of  healthy  reference  samples  were  available  (totalling  6299  cancer  samples  and  687  healthy

samples). For each cancer type, the activity of the modules was calculated for all tumours and for
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all  healthy  tissue  samples  as  described  in  Methods.  Briefly,  gene  expression  profiles  were

converted into metabolic module activity profiles by applying formula (Figure 3.2) that takes into

account the chain of metabolic reactions required to complete the transformation of simple into

complex metabolites in each module.  Next,  the Wilcoxon test  was used to assess differences

between conditions. Figure 4.2 shows the significant activations and deactivations of modules in

tumours with respect to the corresponding healthy tissue.

Figure 4.2: Heatmap with the significant (FDR-adjusted P < 0.05) changes in module activity when the
14 cancers analyzed were compared with the corresponding tissue of origin. Activity upregulation is
represented in red and downregulation in blue. The left-most column represents modules in which one or
several gene products are targets of cancer drugs; the second column represents modules in which one or
several gene products are targets of other types of drugs; the third column represents the general metabolic
categories: carbohydrate (CH), amino acid (AA), lipid (LP), or nucleotide (NT).
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4.3.3 Metabolic modules may be altered by oncogenic mutations

Many cancer drivers are known to promote metabolic reprogramming in cancer. To test our

predictions in this context, we analyzed the impact of relatively frequent oncogenic mutations in

well-established drivers linked to metabolic reprogramming; AKT1 and PIK3CA in BRCA, and IDH1

in GBM (Table 4.2).  Most  of the variants were causing missense and in-frame shift  sequence

changes without clear evidence of pathogenicity or loss of function effect. The intronic, intergenic,

non-coding exon, non-coding transcript and synonymous variants were excluded from the analysis

(Supplementary Tables 8B, Cubuk et al. Cancer Research., 2018 [85]). The module activity of the

groups below were compared;

Breast invasive carcinoma (BRCA): 
 AKT1 mutated samples vs. AKT1 not mutated samples
 PIK3CA mutated samples vs. PIK3CA not mutated samples

Glioblastoma multiforme (GBM):
 IDH1 mutated samples vs. IDH1 not mutated samples

Consistent with a major role linked to metabolism, mutations in PIK3CA caused significant

changes in the predicted values of many metabolic modules, with coherent changes in seven of

the modules also being significantly altered by AKT1 mutations (Supplementary Tables 8C, Cubuk

et al. Cancer Research., 2018 [85]). Among the altered modules in PIK3CA mutants, some of the

findings  were consistent  with  current  knowledge.  The largest  predicted metabolic  activation  in

PIK3CA mutants is found to be the M00027 module of GABA shunt (end metabolite succinate),

which  is  consistent  with  data  of  reprogrammed  glutamine  metabolism  in  this  setting

(Supplementary Tables 8C, Cubuk et al. Cancer Research., 2018 [85] and [129]). In contrast, the

activity of the M00034_1 module of methionine salvage is predicted to be higher in PIK3CA wild-

type tumours, but interestingly this pathway becomes activated as a mechanism of resistance to

PI3K inhibitors (Supplementary Tables 8C, Cubuk et al. Cancer Research., 2018 [85] and [130]).

The IDH1 mutations in GBM caused fewer module alterations, probably in part because only seven

mutated  samples  were  included  in  the  analysis.  Nonetheless,  the  largest  impact  upon  IDH1

mutations is predicted to be activation of proline biosynthesis (M00015), which links to metabolites

downstream of IDH1 activity. Another predicted effect was the downregulation of glycosphingolipid

biosynthesis (M00071), which is consistent with the major demand of citrate towards the substrate

of  the  reaction  catalyzed  by  IDH1.  In  turn,  the  major  activation  corresponds  to  components

downstream of its activity that is related to proline biosynthesis (M00015) (Supplementary Tables

8C, Cubuk et al. Cancer Research., 2018  [85]). Thus, the predictions from this study may also

support  the  identification  of  specific,  cancer  driver-linked,  metabolic  reprogramming  and/or

vulnerabilities. 

https://cancerres.aacrjournals.org/highwire/filestream/364466/field_highwire_adjunct_files/1/188823_4_supp_4958031_pd5lp3.xlsx
https://cancerres.aacrjournals.org/highwire/filestream/364466/field_highwire_adjunct_files/1/188823_4_supp_4958031_pd5lp3.xlsx
https://cancerres.aacrjournals.org/highwire/filestream/364466/field_highwire_adjunct_files/1/188823_4_supp_4958031_pd5lp3.xlsx
https://cancerres.aacrjournals.org/highwire/filestream/364466/field_highwire_adjunct_files/1/188823_4_supp_4958031_pd5lp3.xlsx
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http://f1000.com/work/citation?ids=6983304&pre=&suf=&sa=0
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Cancer
Type

Gene
Samples with

mutation
Samples without

mutation

BRCA
AKT1 28 1020

PIK3CA 307 741

GBM IDH1 7 141

Table 4.2: Number of samples in each group that were used to test the impact of mutations over metabolic
module activities.

4.3.4 Cooperation between metabolic modules

Metabolic modules do not function in isolation, but rather display highly correlated (positive

or  negative)  patterns  of  activity  that  influence  cancer  development  and/or  progression  [124].

However,  how these correlations  vary from normal  tissue to cancer is poorly  understood.  Our

results  document  a variable proportion of  modules,  ranging from 5.3% (in LIHC) to 26.9% (in

READ), that are significantly positively correlated in normal tissue but not in the corresponding

tumour. This proportion is smaller for negative correlations, ranging from 1.1% (in LUSC) to 10.6%

(in BLCA). 10-35% of the activity of metabolic modules is uncoupled when normal and cancer

metabolic activities are compared (Figure 4.3). Figure 4.4 represents in detail the modules whose

activities  are correlated in  normal  and/or cancer  tissue and those in  which the significance or

direction of the correlation change.

http://f1000.com/work/citation?ids=76535&pre=&suf=&sa=0
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Figure 4.3: Cooperation between metabolic modules. Changes in correlations of module activities from
the normal tissue (the inner circle) to the corresponding cancer type (outer circle). The proportion of positive
correlations in the activity of the modules is represented in red, while the proportion of negative correlations
is represented in blue.
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Figure 4.4: Detailed description of changes in pairwise module correlation. Colour code is as follows:
pairs of modules with correlated activity both in normal tissues and in cancer in dark red, pairs of modules
with activity correlated in normal tissues that lost the correlation in cancer in pale red, modules with negative
correlation in their activities that lost the correlation in cancers in pale blue and modules uncorrelated in the
normal tissue that appear correlated in cancer in black.

4.3.5 Modules associated with cancer outcome

Modules differentially activated between cancer and the corresponding normal tissue may

highlight metabolic processes that are required for cancer development and/or progression. The

availability of patient survival data in 21 cancer types (see Table 4.1) allows the identification of

modules in  which changes in  activity  are significantly  associated with the progression of  each

cancer  type.  Supplementary  Table  9 (Cubuk et  al.  Cancer  Research.,  2018  [85])  portrays the

modules whose change in activity is significantly associated with poorer patient survival in at least

one cancer type. Since the number of deceased patients and, in general, data on mortality follow-

ups is limited in the ICGC repository, significant results were obtained for only a few modules. In

particular,  kidney  (KIRC),  liver  (LIHC)  and  glioma  (LGG)  cancer  types  featured  a  remarkable

number  of  modules  influencing  cancer  outcome.  Moreover,  following  from  the  observation  of

http://f1000.com/work/citation?ids=6983304&pre=&suf=&sa=0
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correlated modules, the impact on survival may be further determined by combinations of their

metabolic  activities.  Thus,  we  applied  Cox  multiple  regression  analysis  [128] to  find  the

combination of module activities that best accounted for patient survival. Supplementary Table 10

(Cubuk  et  al.  Cancer  Research.,  2018  [85])  shows  the  combinations  of  module  activities

significantly related to survival in various cancer types. Previous results have shown that predicted

activities  of  single  or  combined  metabolic  modules  are  associated  with  differences  in  cancer

outcome,  further  emphasizing  their  fundamental  role  in  cancer  progression.  In  addition,  we

observed that the magnitude of their effect on survival was greater in some instances than for any

of the individual activities of the genes that comprise a given module, which provides additional

evidence that modules are real entities that contribute as whole units to cell functioning (Table 4.3).

Module Module
status

Module
adj.

p-value
Cancer

type Gene

Gene
adj.

p-value
Gene
status

Malonate semialdehyde pathway DOWN 1.80e-10 KIRC EHHADH 1.1e-08 DOWN

Pyrimidine ribonucleotide biosynthesis UP 3.50e-08 KIRC NME1-NME2 1.1e-07 UP

C21-Steroid hormone biosynthesis DOWN 3.50e-05 LGG CYP17A1 4.7e-05 DOWN

Chondroitin sulfate degradation DOWN 5.60e-05 KIRC HYAL1 2.4e-04 DOWN

Citrate cycle, second carbon oxidation DOWN 6.60e-05 KIRC SDHD 1.0e-04 DOWN

Inositol phosphate metabolism UP 1.40e-04 LGG IPPK 0.02 DOWN

Pyrimidine degradation DOWN 1.50e-04 KIRC UPB1 4.1e-03 DOWN

Glycosphingolipid biosynthesis, neolacto-series UP 2.30e-04 LUAD B4GALT4 0.11 UP

Pentose phosphate pathway, oxidative phase UP 4.80e-04 LGG PGLS 0.76 UP

Glycosphingolipid biosynthesis, neolacto-series UP 5.60e-04 KIRC B4GALT2 2.7e-03 UP

Cerebroside and sulfatide biosynthesis DOWN 6.50e-04 LGG GAL3ST1 3.4e-03 DOWN

Glycolysis. core module involving three-carbon compounds UP 2.20e-03 LIHC TPI1 0.01 UP

Conjugated bile acid biosynthesis DOWN 2.20e-03 LIHC SLC27A5 9.6e-03 DOWN

Inositol phosphate DOWN 2.20e-03 LIHC INPP4B 9.6e-03 DOWN

Pyrimidine ribonucleotide biosynthesis DOWN 2.50e-03 OV NME3 0.33 DOWN

C19/C18-Steroid hormone biosynthesis UP 3.60e-03 LIHC CYP19A1 9.6e-03 UP

Inosine monophosphate biosynthesis UP 3.60e-03 LIHC ATIC 0.02 UP

Pentose phosphate pathway (Pentose phosphate cycle) UP 4.70e-03 LGG TKTL2 5.0e-03 DOWN

Inositol phosphate DOWN 5.60e-03 BLCA INPP1 0.03 DOWN

Heparan sulfate degradation UP 5.90e-03 GBM GNS 0.2 DOWN

Cholecalciferol biosynthesis UP 6.30e-03 KIRC CYP2R1 0.02 UP

Triacylglycerol biosynthesis DOWN 6.40e-03 LIHC PLPP1 9.6e-03 DOWN

GABA (gamma-Aminobutyrate) shunt DOWN 7.70e-03 LGG GAD1 0.02 DOWN

Ubiquinone biosynthesis, eukaryotes DOWN 8.10e-03 LIHC COQ7 0.03 DOWN

Cysteine biosynthesis DOWN 8.30e-03 LIHC CTH 0.11 DOWN

Propanoyl-CoA DOWN 8.30e-03 LIHC MCEE 9.6e-03 DOWN

Bile acid biosynthesis DOWN 8.30e-03 LIHC CYP27A1 9.6e-03 DOWN

Bile acid biosynthesis DOWN 8.90e-03 LIHC SLC27A5 9.6e-03 DOWN

Citrate cycle. first carbon oxidation DOWN 0.01 LGG CS 0.33 UP

http://f1000.com/work/citation?ids=6983304&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=8336026&pre=&suf=&sa=0
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Serine biosynthesis UP 0.02 LIHC PSPH 0.06 UP

Melatonin biosynthesis DOWN 0.02 LGG DDC 0.02 DOWN

Pentose phosphate pathway (Pentose phosphate cycle) UP 0.02 LIHC TKT 0.03 UP

Citrate cycle, second carbon oxidation UP 0.02 LGG SDHA 0.02 DOWN

Glycosphingolipid biosynthesis, globo-series UP 0.02 LUAD A4GALT 0.13 UP

Steroid hormone biosynthesis UP 0.02 KIRC CYP11A1 0.05 UP

Pyrimidine degradation DOWN 0.02 LUAD DPYS 0.07 DOWN

Pyrimidine ribonucleotide biosynthesis UP 0.02 LIHC AK9 0.03 DOWN

Methionine degradation UP 0.03 UCEC MAT2A 0.03 UP

Catecholamine biosynthesis UP 0.03 UCEC DDC 0.03 UP

Cysteine biosynthesis UP 0.03 UCEC CBS 0.09 UP

Pentose phosphate pathway (Pentose phosphate cycle) UP 0.03 LUAD RPE 0.07 UP

Citrate cycle, second carbon oxidation DOWN 0.03 KIRP FH 0.04 NA

beta-Oxidation DOWN 0.03 LIHC EHHADH 0.04 DOWN

Phosphatidylcholine (PC) biosynthesis DOWN 0.03 LIHC CHKA 0.12 UP

Guanine ribonucleotide biosynthesis UP 0.03 KIRP IMPDH2 0.55 UP

Catecholamine biosynthesis DOWN 0.04 KIRP PNMT 0.5 DOWN

GABA biosynthesis. eukaryotes DOWN 0.04 UCEC ALDH3A2 0.13 DOWN

Citrate cycle, second carbon oxidation UP 0.04 UCEC SDHC 0.16 UP

Glycolysis (Embden-Meyerhof pathway) UP 0.04 LUAD PGK2 0.05 UP

Propanoyl-CoA DOWN 0.04 KIRP PCCA 0.04 DOWN

O-glycan biosynthesis, mucin type core DOWN 0.04 UCEC GALNT2 0.09 UP

O-glycan biosynthesis, mucin type core DOWN 0.04 UCEC GALNT2 0.09 UP

Keratan sulfate degradation UP 0.04 LIHC GALNS 0.1 UP

Glycosphingolipid biosynthesis, globo-series UP 0.04 KIRP A4GALT 0.23 UP

Phosphatidylcholine (PC) biosynthesis DOWN 0.04 UCEC PEMT 0.05 DOWN

Glycolysis (Embden-Meyerhof pathway) UP 0.05 HNSC PKLR 0.2 DOWN

Table 4.3: Modules showing the strongest association with survival than any of their gene components.
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Figure  4.7:  K-M plots  showing  the  relationship  between  module  activity  and  patient  survival  in
different cancer types. High and low module activity groups were defined by patients in the 80% and 20%
percentiles of module activity, respectively. The x-axis shows time in months and the number of patients at
risk in the high activity and low activity groups. A) Pentose phosphate pathway in LICH. B) C5 isoprenoid
biosynthesis in LGG. C) Propanoyl-CoA metabolism in KIRC. D) Guanine ribonucleotide biosynthesis in
KIRP.

4.3.6 Essentiality and module activity

The availability of basal gene expression data from 212 cell lines of the Cancer Cell Line

Encyclopedia,  along  with  the  release  of  the  results  of  Project  Achilles,  which  assessed  the

consequences of individual silencing of thousands of genes across many cancer cell lines, allows

the influence of predicted metabolic module activities on cancer robustness to be evaluated. The

effect of every gene expression KD on the activity of the corresponding module was calculated as

the log-fold-change between the estimated activity using cell line gene expression values and the

activity  estimated  by  assigning  a  very  low  expression  value  (see  Methods)  to  the  KD  gene.

Subsequently,  the  correlations  of  the  log-fold-change  values  with  the  Achilles  score,  which

accounts  for  cell  viability,  were  calculated.  Given  that  different  cancer  types  display  specific
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patterns of differential module activations, essentiality in modules is also expected to be specific to

particular cancer types. Therefore, cell lines were grouped by cancer type to obtain the correlations

between module activity and cell viability. Considering only significant correlations (FDR adjusted

p-value < 0.05) with a correlation coefficient > 0.5 (or < -0.5) obtained from at least eight data

points (cell lines x KD genes), a total of 20 modules in 12 cancer types showed significant positive

(Table 4.4 and Figure 4.5A) or negative correlations (Table 4.4 and Figure 4.5B). 

Figure  4.5:  Correlation  between module  activity  and cell  survival.  Correlation  between increase  in
module  activity,  expressed  as  log-fold  change (x-axis)  and  cell  survival  (y-axis)  corresponding  to  gene
knockdowns in A) heparan sulfate degradation module and B) bile acid biosynthesis module.
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Module KD Genes Predicted KD r p-value Tissue
Cell

Lines
Module End
Metabolite

Bile acid biosynthesis AKR1D1
CYP8B1
SLC27A5

CYP27A1- AMACR-
ACOX2* CYP7A1
HSD17B4* SCP2-
HSD3B7* ACOT8*

-0.883 0.003 Urinary
tract

3 C00695: Cholic acid

Dermatan sulfate 
degradation

IDS ARSB
HYAL1

IDUA- HYAL4- SPAM1
HYAL3* HYAL2*

-0.812 0 Bone 6 G00872: Chondroitin
4-sulfate

C10-C20 isoprenoid 
biosynthesis

IDI1 FDPS
GGPS1

IDI2* -0.692 0.016 Stomach 4 C00353: 
Geranylgeranyl 
diphosphate

Chondroitin sulfate 
degradation

ARSB HYAL1 HYAL4- SPAM1
HYAL3* HYAL2*

-0.662 0.019 Bone 6 G00872: Chondroitin
4-sulfate

Inosine monophosphate 
biosynthesis

ATIC ADSL
PAICS PFAS

PPAT GART -0.622 0.035 Prostate 3 C00130: IMP

Serine biosynthesis PSAT1 PHGDH+ PSPH* -0.61 0.03 Breast 13 C00065: L-Serine

Leucine degradation DLD BCKDHA
IVD BCAT1

BCKDHB HMGCL
HMGCLL1* AUH

MCCC1 MCCC2* DBT*
BCAT2

-0.601 0.043 Urinary
tract

3 C00164: 
Acetoacetate

beta-Oxidation ACAA1 HADHB
EHHADH
ECHS1

ACAA2* HADH HADHA -0.58 0 Esophagu
s

10 C02593: 
Tetradecanoyl-CoA

Nucleotide sugar 
biosynthesis

PGM1 HK2 HK3
UGP2

PGM2 HK1* HKDC1* -0.552 0.002 Skin 7 C00029: UDP-
glucose

Pentose phosphate 
pathway (Pentose 
phosphate cycle)

RPE PGD
PGLS

GPI* TKT* TKTL1*
TKTL2* RPIA* RPEL1*

G6PD* TALDO1

-0.541 0 Breast 13 C01172: beta-D-
Glucose 6-
phosphate

Sphingosine degradation SPHK1 SGPL1 SPHK2* -0.532 0.017 Esophagu
s

10 C00346: 
Ethanolamine 
phosphate

Ceramide biosynthesis CERS5 DEGS2
DEGS1
SPTLC1
SPTLC2

CERS1* CERS3
CERS6* CERS2

CERS4* SPTLC3*
KDSR*

-0.523 0.045 Prostate 3 C00195: N-
Acylsphingosine

Melatonin biosynthesis AANAT ASMT* DDC* TPH2*
TPH1

-0.515 0.044 Pancreas 16 C01598: Melatonin

Inositol phosphate 
metabolism

ITPK1 IPMK IPPK -0.505 0.025 Kidney 10 C01204: Phytic acid

Glycosphingolipid 
biosynthesis, ganglio 
series

ST8SIA1
ST3GAL5

-0.5 0 Haematop
oietic

27 G00118: Ganglioside
(GT3)

C10-C20 isoprenoid 
biosynthesis

IDI1 FDPS
GGPS1

IDI2* 0.5 0.022 Skin 7 C00353: 
Geranylgeranyl 
diphosphate

Heparan sulfate 
degradation

IDS GNS SGSH HPSE2+ IDUA
HGSNAT- NAGLU*

GUSB*

0.554 0 CNS 35 G02632: glycan

Pyrimidine degradation DPYD DPYS UPB1* 0.574 0.035 Skin 7 C00099: beta-
Alanine

Pyrimidine degradation DPYD DPYS UPB1* 0.574 0.035 Skin 7 C05145: 3-
Aminoisobutyric acid

Conjugated bile acid 
biosynthesis

SLC27A5 BAAT 0.6 0.006 Kidney 10 C05122: 
Taurocholate

Conjugated bile acid 
biosynthesis

SLC27A5 BAAT 0.6 0.006 Kidney 10 C01921: 
Glycocholate

Methionine salvage 
pathway

ADI1 MRI1
SRM AMD1

MAT2B MAT1A

APIP+ MTAP* MAT2A*
ENOPH1*

0.618 0.032 Soft tissue 2 C00147: Adenine
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Polyamine biosynthesis SRM AMD1 AZIN2* AGMAT* 0.639 0 Haematop

oietic
27 C00315: Spermidine

Nucleotide sugar 
biosynthesis

PGM1 HK2 HK3
UGP2

PGM2* HK1 HKDC1* 0.641 0.025 Urinary
tract

3 C00029: UDP-
glucose

Inosine monophosphate 
biosynthesis

ATIC ADSL
PAICS PFAS

PPAT GART 0.677 0 Bone 6 C00130: IMP

Dermatan sulfate 
degradation

IDS ARSB
HYAL1

IDUAI* HYAL4-
SPAM1* HYAL3

HYAL2*

0.692 0 Esophagu
s

10 G00872: Chondroitin
4-sulfate

Pyrimidine degradation DPYD DPYS UPB1 0.762 0.037 Stomach 4 C00099: beta-
Alanine

Pyrimidine degradation DPYD DPYS UPB1 0.762 0.037 Stomach 4 C05145: 3-
Aminoisobutyric acid

Table 4.4: Essential modules. The first column contains the name of the module; the second column the
genes knocked down  in  Project  Achilles;  the  third  column  lists  the  other  genes  in  the  module,  whose
inhibition is predicted to cause inhibition of the corresponding module and therefore the same effect as the
genes in the second column (*, confirmed effect; +, inconclusive effect; -, no information available for them);
the  fourth  column states  the correlation  coefficient  (r),  whose  positive  and negative  values  respectively
indicate an oncomodule and a tumor suppressor module; the fifth column the p-value; the sixth column the
cancer tissue from which the cell lines were derived; the seventh column lists the number of different cell
lines derived from each tissue and the last column the final metabolite of the module.

4.3.7 Validation of the gene essentiality predictions 

We used a recently published study on cancer dependencies [94, 126] that provides extra

data on cell survival after massive gene KD. The comparison of cell survival in the cancer types

predicted with respect to survival in cancers validated 48 of the 77 predictions (62%), along with

three less conclusive validations, which would result in a 66% validation rate, covering 24 of the 28

modules predicted to affect cell viability (see Table 4.4 and Supplementary Table S13, Cubuk et al.

Cancer  Research.,  2018  [85]).  This  is  an  excellent  proportion  of  validations,  especially  if  we

consider that the method used for validation can fail to detect real KD effects when the KD also

markedly affects background survival. Actually, independent experiments can confirm inconclusive

validations  of  predicted  inhibitions  of  essential  modules.  An  interesting  example  is  a  small

molecule, CBR 5884, which inhibits PHGDH causing selective toxicity in breast cancer cell lines by

inhibiting serine biosynthesis  [131], as predicted (see Table  4.4 and Supplementary Table S13,

Cubuk et al. Cancer Research., 2018 [85]). Finally, to further validate of our predictions (Table 4.4),

the impairment of cell proliferation upon depletion of UPB1 gene expression was assessed in two

models  of  gastric  cancer  (AGS  and  MKN45  cell  lines).  This  gene  encodes  an  enzyme

(βureidopropionase) that catalyzes the final step in the pyrimidine degradation pathway, which in

turn  is  required  for  epithelial-mesenchymal  transition  [104].  Thus,  two  short  hairpin  shRNA

sequences directed to UPB1 caused a significant decrease in proliferation of the two gastric cancer

cell  lines  (AGS and MKN45),  as predicted by the model.  Conversely,  the inhibition  in a colon

adenocarcinoma cell  line (SW480), predicted as non-essential by our model did not result  in a

http://f1000.com/work/citation?ids=93427&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6983304&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3258816&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=6983304&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=3984491,482181&pre=&pre=&suf=&suf=&sa=0,0
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significant  difference in  growing  (Figure  4.6),  providing  a  negative  control  validation.  Although

additional experiments may be warranted to confirm cancer vulnerability or resistance based on

predicted  metabolic  activities,  these  results  can  be  considered  independent  validations  that

reinforce the predictions made by the model proposed (Table 4.4 and Supplementary Table S13,

Cubuk et al. Cancer Research., 2018 [85]). 

Figure 4.6: Graph showing relative cell proliferation upon UPB1 expression depletion (two different
MISSION shRNAs were used as detailed in the inset) or transduction with control vector pLKO.1.  The
asterisk indicates significant differences (Mann–Whitney test p < 0.01) and the range of reduction (%) of cell
proliferation is also shown. The prediction of UPB1 essentiality made by the model in lines AGS and MKN45
(stomach gastric adenocarcinoma) was confirmed by relatively more sensitive behavior, while UPB1 does
not seem to be relatively sensitive in SW480 (colon adenocarcinoma), as predicted by the model as well.

4.3.8 Therapeutic targeting of metabolic modules

Onco-modules are effective candidates for treating cancer (individually or in combinations),

but interventions that activate some tumour suppressor metabolic modules may also offer useful

therapeutic strategies. Supplementary Table S14, Cubuk et al. Cancer Research., 2018 [85] lists

137 potential interventions with known drugs that are likely to affect cancer cell viability according

to the predictions of the model proposed here. 

http://f1000.com/work/citation?ids=6983304&pre=&suf=&sa=0
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4.4 Discussion

Although the role of metabolism in cancer has long been known  [132, 133], the results

presented here provide a more detailed, mechanistic view documenting the relevance of specific

metabolic module activities in cancer. This study is based on the integration of gene expression

data into metabolic  pathway modules and, therefore,  may be limited by the lack of correlation

between gene and protein expression, and with metabolic activities. However, evaluation of RPPA

data [134] and gene expression indicates that gene expression measures are generally a valuable

proxy for protein expression and activities (Cubuk et al. Cancer Research., 2018 [85] ). 

As expected, the production of nucleotides and their precursors (CDP and GTP) shows

recurrent significant activation in all cancer types when compared with the corresponding reference

tissues (Figure 4.2).  Other pervasively  activated modules include well-known cancer metabolic

dependencies, like cholesterol biosynthesis (M00101), which is consistent with its essential role in

cell membranes and as a precursor of steroid hormones [135], and proline biosynthesis (M00015),

which is essential in many carcinogenesis settings [110]. In addition, the predicted overexpression

of L-cystathionine and L-cysteine across many cancer types may reflect a defect in S-adenosyl-L-

methionine, which in turn is consistent with common DNA hypomethylation in cancer cells  [136].

On the other hand,  this study reveals  metabolites whose production is significantly  reduced in

several  cancers types.  For example,  the well-known Warburg effect,  that  is,  the preference of

cancer cells for anaerobic over aerobic metabolism is apparent in modules such as Citrate cycle,

second carbon oxidation (M00011). It is also known that many human tumours do not express

ASS1 [137], one of the key enzymes of the Urea cycle (M00029) module, which is systematically

downregulated in almost all cancer types. Specific observations also support the relevance of the

predicted  metabolic  activities.  Examples  of  cancer  metabolic  specificities  are:  upregulation  of

leucine (M00036) and catecholamine metabolism (M00042) in prostate [138] and colorectal  [139]

cancer,  respectively,  and  downregulation  of  glycosaminoglycan  (M00058)  and  polyamine

biosynthesis (M00134) in the liver  [140] and breast  [141] cancer, respectively. In turn, this study

highlights less explored metabolic associations, such as downregulation of the pentose phosphate

cycle  (M00004)  in  head and neck cancer,  or  accumulation  of  cysteine (M00338_1)  in  several

cancer  types,  which  may  indicate  a  link  to  altered  metabolism  of  reactive  oxygen  species.

Collectively,  the  results  of  this  study  depict  biologically  relevant  metabolic  profiles  throughout

human cancer and provide many novel hypotheses about metabolic alterations in the disease.

Metabolic  modules  are  also  relevant  for  establishing  the  molecular  basis  that  differentiates

between cancer subtypes.  Supplementary Table S7, (Cubuk et al. Cancer Research., 2018 [85])

provides a detailed survey of differential and common metabolic module activities when cancer

subtypes are compared. Although a detailed description of the findings is beyond the scope of this

manuscript  it  is  worthwhile  highlighting  some  observations,  such  as  the  significant  specific
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reduction of the activity of the module C21-Steroid hormone biosynthesis, progesterone (M00109)

in basal-like breast cancer subtype (the only non-hormone dependent form of the disease) [142].

Experts  in  specific  cancer  types  can  use  Supplementary  Table S7,  (Cubuk  et  al.  Cancer

Research., 2018 [85]) to identify relevant subtype-specific module activities that can be exploited

for  therapeutic  purposes.  Some of  the  modules  that  display  different  behaviors  in  cancer  are

expected to have a direct effect on patient survival. In spite of the limited patient survival data in

the  ICGC  repository,  Supplementary  Table S9,  (Cubuk  et  al.  Cancer  Research.,  2018  [85])

demonstrates that a remarkable number of modules are associated with poorer patient survival.

Specifically, a high level of activity of the pentose phosphate module was found to be significantly

associated with poor survival  in five cancer types (see  Supplementary Table S9 (Cubuk et  al.

Cancer Research., 2018 [85]) and K-M plots in Figure 4.7A). This observation is consistent with the

role of this module in the biosynthesis of nucleotides and NADPH, which is known to play a key

role in facilitating cancer cells to cope with anabolic demands and to fight oxidative stress [143].

The analysis of metabolic modules reveals their role as ultimate mechanistic entities whose activity

is  related  to  cancer  cell  fate.  For  example,  the  expression  of  EHHADH  has  recently  been

associated  with  poor  prognosis  of  KIRC  [144],  but  the  corresponding  module,  Malonate

semialdehyde pathway (M00013) better predicts outcome (see Supplementary Table S11, Cubuk

et  al.  Cancer  Research.,  2018  [85]).  In fact,  out  of  the 69 metabolic  modules associated with

differences in survival, a total of 27 (40%) modules (see Supplementary Table S11, Cubuk et al.

Cancer Research., 2018 [85]) showed a stronger effect (based on hazard ratio estimations) than

any of their corresponding genes. Other modules are also significantly related to survival in other

cancer types as LGG (Figure 4.7B), KIRC (Figure 4.7C) or KIRP (Figure 4.7D). Moreover, in the

same way, that genes are co-regulated in higher-level entities (metabolic modules), the activations

and deactivations of metabolic modules are not an independent process and, in fact, proper cell

functionality seems to require a high degree of module activity coordination. Figure 4.3 illustrates

how only a few core processes originally correlated in the normal tissues maintain the correlation in

all cancer types. An example of this concordance is the positive coordination between fumarate,

succinyl-CoA, and urea, which indicates the expected link between the citric acid and urea cycles

(Figure 4.4). Unexpectedly, some modules uncorrelated in normal tissue emerge as being coupled

in tumours (see Figure 4.4). Thus, according to cancer metabolic demands, bile acids (e.g. cholic

acid, M00104_1) is positively correlated with cholesterol (M00101) and triacylglycerol (M00089). In

turn,  the  negative  correlation  of  the  previous  metabolites  with  a  glycosphingolipid  (globoside,

M00068),  which  is  linked  to  differentiation  and  antigenicity  [145],  is  lost  in  cancer.  Similarly,

cholesterol is positively correlated with nucleotide sugar biosynthesis (M00554 and M00632_1),

but another glycosphingolipid (ganglioside, M00069) is negatively correlated with this process only

in  normal  tissue.  Collectively,  these  results  further  highlight  the  complexity  of  metabolic

reprogramming  in  cancer.  Available  data  on  survival  of  cancer  cell  lines  after  extensive  KD

(Supplementary Table S2, Cubuk et al.  Cancer Research., 2018  [85]) allowed the model to be
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used to relate module activity to cell survival in cell lines. Positive correlations between module

activity  and cell  viability  (see Table  4.4)  indicate  that  the  corresponding  module  may play  an

essential  role  in  the  corresponding  cancer  type.  Therefore,  they  can  be  classified  as  onco-

modules. Such constitutively active modules include common cancer dependencies, like nucleotide

sugar biosynthesis, necessary for cell proliferation, and heparan sulfate degradation, necessary for

extracellular matrix biosynthesis and thereby, cancer progression and invasion [140]. Conversely,

tumour  suppressor  modules  showed negative  correlations  with  cell  viability  possibly  indicating

constraints  in  cancer  development  and/or  progression.  These  modules  include  bile  acid

biosynthesis (M00104), which produces metabolites known to induce apoptosis and inhibit cancer

cell proliferation  [146] (Table 4.4 and Figure 4.5B). In addition, the study identifies modules with

contrary  effects  depending  on  the  tissue  of  origin,  which  probably  indicate  specific  cancer

dependencies. For example, inosine monophosphate biosynthesis is positively (bone) or negatively

(prostate)  correlated  depending  on  whether  there  is  also  reduced  or  enhanced  oxidative

phosphorylation,  respectively  [147].  The  detection  of  onco-modules  and  tumour  suppressor

modules  was  used  to  suggest  previously  unidentified  potentially  actionable  genes  (Table  4.4)

because the model proposed predicted an effect of their KD on the activity of the corresponding

modules. Recently published extra data on cell survival after massive gene KD [94] was used to

validate the predictions made, confirming these for 62% of the genes (48 of the 77 predictions)

included in 86% of the modules (24 of the 28), which constitutes a high rate of validation. Given the

level  of  accuracy  of  the  predictions  of  the  model  of  metabolic  module  activities,  the  obvious

subsequent step was to predict the effect of drugs, with known targets within modules, in order to

shed light on their mechanisms of action (MoA). Actually, components of some metabolic modules

are  targeted  by  well-known  clinical  drugs,  such  as  gemcitabine,  which  is  approved  for  the

treatment of several cancer types (see Supplementary Table S14, Cubuk et al. Cancer Research.,

2018  [85] and specifically  DB00441 entry in DrugBank).  This drug is a nucleoside analog that

impairs DNA synthesis by specifically inhibiting the production process of GTP, CDP, and their

precursor metabolites. In addition, consistent with recent findings for different cancer types [110,

148], targeting proline (M00015), and less frequently serine (M00020) metabolism, may be efficient

strategies for  cancer treatment.  Additional  observations may extend the applications of  cancer

drugs. The predicted activation of isoprenoid biosynthesis (M00095) in breast cancer is consistent

with  a  potentially  protective  role  of  simvastatin  in  the  progression  of  this  cancer  type  [149].

Following from this observation, predicted metabolic activities support similar applications in the

bladder and endometrial  cancer  [150].  Furthermore, the use of pamidronate, which is currently

applied to target bone metastasis in breast cancer and multiple myeloma, and targets isoprenoid

biosynthesis (M00367) module, might also be applied to bladder and endometrial cancer [151]. It is

worth  pointing  out  that  other  bisphosphonates  show  some  benefit  in  these  settings  and  in

colorectal cancer [152], which was also predicted in this study. In addition, targeting accumulation

of L-cystathionine (M00035_1) by azacitidine, which causes global DNA hypomethylation, may be
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useful in at least 10 cancer types. The study also supports drug repurposing, like the potential use

of an approved drug for rheumatoid arthritis, leflunomide (which targets UMP biosynthesis) to treat

several cancer types  [153]. Therefore, this study describes cancer metabolic dependencies that

highlight  novel  therapeutic  opportunities  either  by  using  current  drugs  or  compounds,  or  by

developing targeted approaches against essential gene products. It is worth noting that a total of

16 commonly  mutated genes from the COSMIC database  [154] were present  in  11 modules.

Although it is likely that some of the samples used in this study contained any of these mutations,

the information about the mutational status of the genes in the modules provided in the ICGC

repository was scarce and so we could not include this information in the model. However, if this

information  were  available,  two  scenarios  could  be  considered  by  the  model  used  here:  i)

activating mutation (e.g. a translocation to another constitutive promoter), which will be detected in

the gene expression level itself, and ii) loss-of-function mutation, which can be simulated in the

model  by  setting  the  gene  expression  value  to  0  (an  expressed  non-functional  gene  is

mechanistically  equivalent  to  a  non-expressed  gene)  [43,  155].  Although  Project  Achilles  has

yielded abundant data, its results are far from exhaustive and, consequently, those obtained here

can be considered an underestimate of the actual total number of modules that are essential in

cancer. 
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Chapter 5
CONCLUSIONS

5.1 Conclusions

In  this  thesis,  Cubuk  et  al.  developed  computational  systems  biology  approaches  for

modelling functional modules of cell signalling and metabolism. Using the bioinformatics framework

given in this thesis, we are able to understand intra-cellular behaviours that lie behind the disease

initiation and progression. Moreover, in light of this understanding, it is being feasible to integrate

omics  data  on  top  of  biological  pathways  and  apply  machine  learning  algorithms to  discover

patient-specific  potential  drug  targets.  The  applications  of  genomics-guided  therapeutics,  and

changing the paradigm for drug development through cell modelling are becoming an emerging

need [156, 157]. Thus, the research done in this thesis is important and timely, due to the extreme

relevance for systems biology and even more for systems medicine. 

The conclusions of this thesis are summarised and organised below according to the goals

originally defined in objectives;

5.1.1 A model of mechanistic pathway activity

MPA methods provide an innovative, biologically inspired alternative for the interpretation of

transcriptomic  experiments.  They  can  be  considered  as  the  next-generation  pathway  analysis

methods. MPA methods constitute an evolution of pathway analysis methods in which pathways

are decomposed into elementary subpathways or circuits that potentially account for cell outcomes

that can help to explain mechanistic features of phenotypes (disease mechanism, drug MoA, etc.).

Here, we developed a new MPA method and benchmarked its sensitivity and specificity with the

existing methods. From this comparison we concluded that, although most of the methods were

highly specific, they presented remarkable differences in terms of sensitivity. From their relative

performances, it can be concluded that a biologically realistic definition of the circuits like receptor-

to-effector  circuits within  the pathways analyzed is  a major  determinant  of  the success of  the

method. However, the scoring approach, which accounts for the activity of the circuit, must also be

representative of the biological activity of the cell.  Thus, the propagation algorithm used by the

method proposed, HiPathia, seems to be the most efficient solution, followed by scores based on

differential gene expression, implemented in subSPIA, DEGraph and TAPPA. On the other hand,

many MPA methods simply cannot handle loops and artificially disconnect them or even remove

them from the calculations. However, our iterative method does not violate the topology and uses it

with all given features. In any case, MPA methods have demonstrated to be more sensitive than

the conventional functional analysis (ORA or GSEA) and represent a promising alternative for the
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interpretation of genomic measurements. I believe that the demand on the MPA methods is and

will be increasing because of the enhancing importance of systems medicine which is fundamental

to face the challenges of  diagnosis  and treatment of  complex diseases  [158].  Since the MPA

methods analyze cellular  mechanisms rather  than their  components,  they  can be used as an

alternative to compensate for the ineffective usage of single-gene biomarkers in the near future.

MPA can help to discover actionable mechanistic biomarkers.

5.1.2 Metabolizer web tool for differential metabolic activity analysis and discovery

of therapeutic targets using summarized metabolic pathway models

Metabolic  module  activities  obtained  under  the proposed  modelling  method  outperform

other methods used to infer metabolic activity, such as GSEA  [64], SPIA  [97], or CBM  [98] (as

implemented in IMAT tool [99] ). And, furthermore, we have validated most of the predictions made

by the method in an independent  dataset.  These results show that metabolic  modules can be

considered a relevant type of functional module in cancer and probably also in other diseases

related to metabolism. The program Metabolizer allows researchers to easily estimate metabolic

module activities from gene expression measurements and use them for different purposes. Thus,

the comparison between two conditions can throw light on the subjacent molecular mechanisms

that make them different.  In this way, disease mechanisms or drug mechanisms of action can

easily be interpreted within the context of metabolism. Such comparisons can also be used to

derive multigenic predictors with a mechanistic meaning, that have demonstrated to be useful to

predict complex traits [38].

Diagnostic strategies are rapidly changing in cancer and other diseases because of the availability

of  increasingly  affordable  genomic  analysis  [159].  Therapies  that  specifically  target  genetic

alterations are probing to be safer and more effective than traditional chemotherapies when used

in the adequate patient population [160]. Perhaps, one of the most relevant aspects of modelling is

that models allow predicting the effect of simulated gene expression profiles over the activity of

metabolic modules, opening the door to anticipate the effect of the intervention on genes. In this

respect, Metabolizer constitutes an extremely useful tool for finding putative actionable targets for a

specific condition [68]. This is very relevant in the context of personalized medicine and can help in

finding individualized therapeutic interventions for patients [67]. In fact, recent reports indicate that

genes involved in metabolic pathways show a remarkable heterogeneity across different cancer

patients  [124]. This suggests that personalized therapies might likely be successful providing the

context  of  the  interventions  can  be  properly  explored  and  understood  with  a  tool  such  as

Metabolizer.  For example,  synthetic lethality,  defined as genetic  mutations or  gene expression

alterations with little or null  individual  effect  on cell  viability but  that  results in  cell  death when
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combined, offers a promising range of potential therapeutic interventions  [125] that can only be

properly exploited in a framework such as the one provided by Metabolizer.

Therefore,  Metabolizer  can  be  considered  an  innovative  tool  that  enables  the  use  of

standard measurements of  gene  expression in  the  context  of  the  complexity  of  the  metabolic

network, with a direct application in the clinic as well as in research in animal models.

5.1.3 A pan-cancer metabolic landscape based on gene expression integration into

pathway modules

Changes  in  the  metabolic  processes  play  a  key  role  in  cancer  development  and

progression and this phenomenon is a recognized cancer hallmark (7). However, metabolic maps

are complex and understanding the global  implications  in  cancer of  changes in  the activity  of

processes or components is challenging. Recently, the metabolic map has been decomposed into

modules, which consist of sequential reactions representing a summary of fundamental metabolic

processes (20). Here we have explored the usefulness of modules to understand cancer metabolic

profiles and their relation with cancer outcome and treatment. A simple model is used to predict

module activity from the expression levels of its gene components. In a pan-cancer analysis, we

demonstrate that the activity of certain modules changes significantly between cancers and the

corresponding tissues of origin. We also report changes in the correlated activity of modules. The

activity of several modules is significantly associated with cancer prognosis and, moreover, these

associations  are  stronger  for  the module  than for  any  of  their  constituent  genes.  This  finding

strongly supports the notion that the effect on the phenotype arises from the coordinated activity of

the genes in the module. Therefore, essentiality at the gene level would be a consequence of the

impact  of  the  activity  of  the  corresponding  gene  product  on  the  activity  of  the  module.  The

associations with the outcome and cell viability allow us to coin the concepts of tumour suppressor

metabolic  modules  and  onco-modules.  The  associations  found  between  metabolic  module

activities and patient survival confirms that metabolic modules can be realistically modelled within

the proposed framework. Finally, using this modelling framework, we propose potential therapeutic

targets to inhibit metabolic reprogramming in cancer.

Certainly,  the  metabolic  modules  used  in  this  modelling  framework  describe  only  a  limited

(although representative) portion of the whole known map of human metabolism. Therefore, the

model  presented  here  provides  mechanistic  insights  into  cell  metabolic  activities  that  are

significantly linked to complex phenotypes, such as cancer prognosis, but probably has limitations

in the accurate prediction of the fate of specific metabolites or phenotypes not affected by the

metabolites  resulting  from the 95 metabolic  modules  used in  the  model.  More comprehensive

models that encompass larger portions of the metabolism will, no doubt, increase the reliability of
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the  predictions.  We  anticipate  that  the  data  and  models  produced  will  play  an  increasingly

important role in personalized treatment (54).
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Pitch Challenge Presentation,  IV Meeting of  PhD Students at  UPV, Valencia,  Spain,  June 01,

2017.

-  Cubuk  C,  Hidalgo  M,  Carbonell-Caballero  J  &  Dopazo  J.  Signalling  circuit  activities  as

mechanism-based features to predict mode of action of chemicals. CAMDA 2015 Conference at

ISMB/ECCB, Dublin, July 10-11, 2015.

- Hidalgo M, Cubuk C, Carbonell-Caballero J & Dopazo J. Functional hallmarks in clear cell renal

cell  carcinoma grade and stage progression revealed by changes in signalling circuit  activities.

CAMDA 2015 Conference at ISMB/ECCB, Dublin, July 10-11, 2015.

POSTERS:

- Cubuk C, Loucera C, Hidalgo M & Dopazo J. The metabolite abundances in coherence with the

activities  of  signaling  pathway  circuits.  4th  Disease  Maps  Community  Meeting  (DMCM2019),

Sevilla, Spain, October 2-4, 2019.

-  Cubuk C, Hidalgo M, Loucera C, Rian K, Pena-Chilet M, Falco M, Nepomuceno-Chamorro I,

Milina-Abril H & Dopazo J. Interpreting genomic profiles with mechanistic models of pathways. XIV

Symposium On Bioinformatics (JBI2018), Granada, Spain, November 12-14, 2018.
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- Cubuk C, Hidalgo M, Amadoz A, Carbonell-Caballero J & Dopazo J. Gene expression integration

into  pathway  modules  reveals  a  pan-cancer  metabolic  landscape.  XIV  Symposium  On

Bioinformatics (JBI2018), Granada, Spain, November 12-14, 2018.

- Cubuk C, Hidalgo M, Carbonell-Caballero J & Dopazo J. Identification of key metabolic patterns

of cancer using RNA-Seq data. 4th Conference on Constraint-Based Reconstruction and Analysis

(COBRA  2015),Heidelberg,  Germany,  September  16-18,  2015,  and  XIII  Symposium  on

Bioinformatics (JBI2016), UPV, Valencia, Spain, May 10-13, 2016.

-  Cubuk  C and  &  Dopazo  J.  Constraining  metabolic  model  with  gene  expression  data  to

understand  functional  differences.  MLPM  Summer  School,  Institut  Curie  in  Paris,  France,

September 11-19, 2014.

CHALLENGES:

-  Cubuk  C,  Hidalgo  M,  Loucera  C,  Rian  K,  Pena-Chilet  M,  Garrido-Rodriguez  M,  Falco  M,

Gundogdu P & Dopazo J. Dream Challenge: Single Cell Signaling in Breast Cancer Challenge,

2019.

-  Cubuk  C,  Hidalgo  M,  Amadoz  A,  Carbonell-Caballero  J  &  Dopazo  J.  DREAM  Challenge:

AstraZeneca-Sanger Drug Combination Prediction, 2017. (Published: doi.org/10.1038/s41467-019-

09799-2)

-  Amadoz  A,  Hidalgo  M,  Cubuk  C,  Carbonell-Caballero  J  &  Dopazo  J.  DREAM  Challenge:

Discovering  Dynamic  Molecular  Signatures  in  Response  to  Virus  Exposure,  2016  (Published:

doi.org/10.1038/s41467-018-06735-8).

- Cubuk C, Hidalgo M, Carbonell-Caballero J & Dopazo J. FDA SEQC Challenges (CAMDA 2015):

SEQC Rat TGx - rat liver response to chemicals, 2015.

PARTICIPATION IN CONFERENCES, MEETINGS, WORKSHOPS:

- 02-04 October 2019, 4th Disease Maps Community Meeting (DMCM2019), Sevilla, Spain.

https://disease-maps.org/DMCM2019

- 12-14 November 2018, Oncothon and JBI2018, Granada, Spain.

http://oncothon.ptsgranada.com/ and http://jbi2018.ugr.es/
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- 01 June 2017, IV Meeting of PhD Students at UPV, Valencia, Spain.

https://www.upv.es/contenidos/ENCDOC/indexi.html

- 21 October 2016, Alfried Krupp-Symposium, Munich, Germany.

http://mlpm.eu/summer-school/alfried-krupp-symposium/

- 20-21 October 2016, MLPM ITN Final Meeting, Munich, Germany.

http://mlpm.eu/summer-school/final-itn-meeting/

- 21-24 May 2016, Europe Genetics Conference, Barcelona, Spain.

https://www.eshg.org/home2016.0.html

- 19-20 May 2016, MLPM Closing Conference, (ESHG Symposium 2016), Barcelona, Spain.

http://mlpm.eu/summer-school/4th-annual-meeting/

- 10-12 May 2016, XIII Symposium on Bioinformatics, Valencia, Spain.

http://www.jbi2016.org/

- 14-18 March 2016, Team Working Event: The 2nd ITN March Retreat, Valencia, Spain. 

I was the organizer. http://www.mlpm.eu/blog/team-working-event-the-2nd-itn-march-retreat/

- 21-25 September 2015, 3rd MLPM Summer School, Manchester, United Kingdom. 

http://mlpm.eu/summer-school/summer-school-2015/

-  16-18  September  2015,  4th  Conference  on  Constraint-Based  Reconstruction  and  Analysis

(COBRA  2015).  Heidelberg,  Germany. http://www.aiche.org/sbe/conferences/conference-on-

constraint-based-reconstruction-and-analysis-cobra/2015

-  10-14  July  2015,  ISMB/ECCB  2015  -  23rd  Annual  International  Conference  on  Intelligent

Systems for  Molecular  Biology  and the 14th European Conference on Computational  Biology,

Dublin, Ireland. http://www.iscb.org/ismbeccb2015

-  8-10  April  2015,  6th  Annual  IMPPC  Conference,  Molecular  Targets  for  Predictive  and

Personalized Medicine of Cancer, Barcelona, Spain.

http://www.imppc.org/media/upload/pdf/6th_annual_conference_booklet_2015_editora_3_54_1.pdf

- 2-4 March 2015, Team Working Event: 1st MLPM Mini-Hackathon in Basel, Basel, Switzerland.

http://www.mlpm.eu/blog/1st-mlpm-mini-hackathon-in-basel/



97
- 11-19 September 2014, 2nd MLPM Summer School, Paris, France. 

http://mlpm.eu/summer-school/summer-school-2014/

-  12-14  May  2014.  The  Systems  Biology  Modelling  Cycle  (supported  by  BioPreDyn).  EBI,

Cambridge, United Kingdom. http://www.ebi.ac.uk/training/course/BioPreDyn2014

INTERNATIONAL PROJECTS INVOLVED: 

 -  Nov.  2013  -  Nov.  2017,  Machine  Learning  for  Personalized  Medicine  (MLPM-ITN),  7th

Framework Programme, EU. (http://mlpm.eu/)

INTERNSHIPS AND SECONDMENTS

-  July - October 2016, Secondment of MLPM Project, Pharmatics Limited. Edinburgh, Scotland,

UK.              

The projects which I worked on;

▪ Mendelian randomization using summary-level data.

▪ Adapting linear discriminant analysis (LDA) and prediction analysis for microarrays (PAM)

to summary level data.

▪ An automated system for scientific literature search in PubMed. 

- February - May 2016, Secondment of MLPM Project, Machine Learning & Computational Biology

Lab., Basel, ETH Zürich, Switzerland.

The projects which I worked on;

▪ Assessment of gene essentiality using metabolic module activities.

▪  Correlation  of  metabolic  module  activities  (before/after  insilico  knockout)  with  Achilles

gene essentiality scores

▪  Predicting  gene  essentiality  from metabolic  module  activities  using  machine  learning

methods (Random Forest, Support Vector Machines and Lasso).
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