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Abstract: The mainstream of EU policies is heading towards the conversion of the nowadays
electricity consumer into the future electricity prosumer (producer and consumer) in markets in
which the production of electricity will be more local, renewable and economically efficient. One key
component of a local short-term and medium-term planning tool to enable actors to efficiently
interact in the electric pool markets is the ability to predict and decide on forecast prices. Given the
progressively more important role of renewable production in local markets, we analyze the influence
of renewable energy production on the electricity price in the Iberian market through historical
records. The dependencies discovered in this analysis will serve to identify the forecasts to use as
explanatory variables for an electricity price forecasting model based on recurrent neural networks.
The results will show the wide impact of using forecasted renewable energy production in the
price forecasting.

Keywords: electricity market; electricity price forecasting; day-ahead market; recurrent neural
networks; renewable energies

1. Introduction

As the question of climate change mitigation comes into the social and political focus, it becomes
more urgent to consider important structural questions in regard to our energy system, which is the
origin of most greenhouse gas (GHG) emissions [1]. Hereafter, the decarbonization of the energy
sector—meaning the need to abandon fossil fuels as the primary source of energy for any type of
activity—has become a basic Leitmotif of energy policy at EU and national level and even beyond EU
frontiers [2].

The energy sector is divided into three main areas depending on how the demand is satisfied:
electricity, heating and cooling and the transport sector, covering, respectively, approximately 25%, 50%
and 25% of the total demand [3]. Non withstanding the fact that most of the energy currently is not
electrical, the main trends of EU policies are framed by the idea of electrification and the fundamental
concept according to which, the nowadays electricity consumer will turn into the future electricity
prosumer (producer and consumer) in markets in which the production of electricity will be more
local, renewable and economically efficient. This vision raises many questions since the technical
characteristics, demand, pricing structures and supply chains of these markets are quite distinct.

In our work we focus our attention on the role of local communities and policy makers at regional,
subregional and urban scale in the planning of their energy system taking into account the policy
frameworks that come into play in this decarbonization via electrification pathway. Between the future
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individual prosumers and the large scale energy markets, the local decision makers will have a key role
in the facilitation, acceleration or eventual back away of certain policies due to their closeness to the
citizens and their regulatory and planning competences in most of EU countries. Moreover, in countries
like Spain, local communities are entitled to act as direct players in the electricity pool (known as
“direct electricity consumers” and alternatively as “demand aggregators”) [4], and can also negotiate
directly in the electricity market. There are different ways local communities can play a direct role in the
market as either producers, public utilities (e.g., Barcelona and Madrid) or even managing local scale
distribution system operators (DSOs). To characterize this multifaceted role of local communities in
the energy market we could talk in this case more accurate about “pubsumers” rather than prosumers,
able to heavily influence the future trends in the electricity markets.

In our research group we have been actively collaborating with different local communities in
our area to help decision makers in the planning and transformation of their local energy markets.
In this line, we have developed and implemented tools to help them forecast and decide upon the best
strategies to decarbonize and maximize their system efficiencies. These tools can be divided in four
areas: electricity pricing and demand forecasting, calculation of the impact in terms of GHGe emissions
of public and non-public activity sectors, planning tools to assess and develop local renewable energy
assets (biomass, solar and geothermal) and finally, dashboard and scoreboard tools to help assess the
impact (in terms of emissions) of different decisions towards decarbonization under several technical
and non-technical criteria [5].

One key component of a local short-term and medium-term planning tool to help pubsumers
and local DSOs to efficiently interact in the electric pool markets is their capacity to predict and decide
short-term based on predicted prices. In a local market in which further renewable production will be
progressively more important, it is also key to analyze the influence on (one-day-ahead) electricity
price forecasting of renewable energy production and electricity price through historical records.

As more and more governmental policies wager on renewable energies like hydraulic power,
wind power or solar energy, the energy sector is challenged to utilize all these sources pushing forward
new research and development. In fact nowadays the increasing concern about environmental issues
has led renewable energy to already have a deep impact in the local power markets of some European
countries such as Spain, Germany and Denmark. One of these major open challenges to be seized refers
to the volatility of the pricing structure when there is an increased share of renewables. Many decisions
rely on the forecasting of the energy supply and demand as well as predictions of the prices of
electricity, gas, water, and other renewable energy sources. Increased volatility increases economic risk
(a specially sensitive topic referring to local public decision bodies) and disincentives the participation
of such actors in the markets.

In this paper, we focus on short-term (one-day-ahead) electricity price forecasting and we analyze
the correlation between the renewable energy production and electricity price through historical
records. The work in [6] uses the amount of wind energy and hydro energy, the most relevant
renewable energy sources in the Iberian Market, to come up with an optimal model for one-day-ahead
electricity price forecasting. In the Italian electricity market, which is currently facing a low-carbon
transition, electricity prices are highly influenced by the generation from renewable sources [7]. In this
latter work, a day-ahead predicted wind generation introduced as a regressor in the model enables to
capture the peculiarities of the market and thus improve the forecasting ability of the model.

Renewable energy production is also highly dependent on weather and climate, which can in turn
affect the feasibility of future low-carbon energy supply systems. In this sense, climate change not only
affects our energy consumption habits but also impacts most renewable resources. We can find several
studies that estimate the adaptability of high-elevation hydropower generation to climate warming [8],
analyze future changes of wind speed and wind energy potentials considering different global and
regional climate model chains [9] or evaluate the impact of climate change in the vulnerability of
supply systems of solar photovoltaic power generation [10,11]. The impact of climate change on
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the renewable resources also affects the energy markets on both electricity demand and supply of
electricity [12,13].

Another key aspect to understand the role of renewable energies sources (RES) in the electricity
markets is the dispatchability of intermittent RES (iRES) into the grid [14], which makes the price of
electricity be dependent on the time and location at which it is produced [15]. The intermittent nature
of renewable energies has fostered the emergence of aggregation facilities with the aim to facilitate
municipalities and corporations to rely completely on renewable energy and become catalysts of the
transition to a carbon free environment. As potential electricity generators, corporations are interested
in knowing in advance electricity prices for balancing the decision related to the load to produce and
inject into the grid [16]. Hence, accurate day-ahead electricity forecasts are also very valuable for a
consumer to be able to operate in the grid.

It is important to note that iRES like solar power, wind power or tidal power may be predictable
(length of days, weather patterns, tidal cycles), and that the time period that electricity can be
dispatched is limited. Consequently, the temporal variation in the electricity production of intermittent
and stochastic renewable energy systems requires of systems to restore the supply-demand balance,
which also impacts the energy cost. For that matter, the ability to accurately forecast the output
of RES is essential. Since the variability and stochastic variation of RES have a cost, an efficient
forecasting of the source fluctuation will largely impact future investments in the RES sector [17].
Interestingly, the dominating view that renewable electricity production increases the price variance
has been questioned in other contributions. Authors in [18] put forward a static market model
which predicts that small to medium quantities of RES bring about a reduction of the electricity price
variance while large quantities produce the opposite effect. In general, the impact of intermittent
wind generation on hourly equilibrium prices has shown to lead to below-average prices and to a
higher price variance in Great Britain [19], Denmark [20], Texas [21] or New England [22]. In the same
line, an analysis of the impact of wind and photovoltaic energy on day-ahead electricity prices at the
European Energy Exchange reveals that the introduction of these renewable energies enhances extreme
price changes and decreases market spot prices [23]. Likewise, price spikes are higher and more
frequent in the California system when the photovoltaic capacity is higher [24]. However, the impact
of the renewable energy sources on the electricity price in the Dutch electricity market is claimed to be
rather modest [25].

It is known for a fact that renewable energies affect electricity prices in one way or another.
The impact of RES in different regions is subject to the regulations of the electricity market and the
energy production. In this paper we are particularly interested in determining whether the impact of
RES is accurately accounted for in the price electricity forecasts in the Iberian Market, a market that is
characterized by an important wind, hydro and, to a lesser extent, solar energy production. In order
to address this task, we present a non-linear model for price electricity forecasting and we analyze
the sensitiveness of the price forecasting to iRES infeeds by studying the relationship between the
renewable energy production and electricity price through historical records. More specifically, we will
study whether the introduction of forecasted generation of wind and solar energy in the prediction
model affects the error rate in the electricity price forecasting. Ultimately, we seek to answer the
following questions:

¢ can we find a correlation between renewable production and spot price? If so, can we find the
same correlation with renewables forecasts?

*  how does forecast of renewables affect prediction of price? is it a distorting variable or an aligned
component for electricity price forecasting?

This paper is structured as follows. The next section presents a brief overview of the most
relevant approaches to electricity price forecasting, stressing particularly models that draw on neural
networks. Section 3 summarizes the two neural network architecture that we will use to design
our prediction model. Section 4 presents a comprehensive analysis of historical data to uncover the
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potential correlation of electricity price with RES. Subsequently, we introduce the dataset from the
Spanish day-ahead market and come up with our proposed model for predicting prices in Section 5.
Section 6 shows the results when comparing the performance of various models with and without
consideration of forecasted renewables as explanatory variables. Finally, we present a discussion on
the potential impact of the obtained results on the energy policies and last section summarizes our
contribution.

2. Related Work

In this section we summarize the most relevant approaches to day-ahead and short-term
electricity price forecasting, stressing the studies that employ renewable energies in the design of the
prediction models.

The literature on electricity price forecasting (EPF) is extensive and diverse. The excellent review
work presented in [26] classifies methods of EPF into five groups, among which statistical models
and non-linear models stand out from the rest. The former group makes use of classical statistical
models and transformations traditionally applied to time-series analysis. Classical methods include
many variations of the ARIMA family of models [27-29], where the price is modeled as a function
of the prices of previous days and the residuals of the forecasts. These models can be augmented
to include exogenous variables (ARIMAX) [30]. GARCH models have been used to explain the
behaviour of the residuals, specially when price spikes are present [31]. In contrast, methods based
on non-linear models put the emphasis on techniques from computational intelligence and machine
learning. Different approaches propose using classical machine learning methodologies such as neural
networks [32-35], support vector machines [36], random forests [37] and k-closest neighbours [38].
Genetic algorithms have sometimes been used in order to select the hyper-parameters of those models.

The neural network revolution that is dominating much of the research in artificial intelligence
has also proven very successful in EPF. Recurrent neural networks (RNN) have extensively been used
in EPF due to their capacity to model long term dependencies. An early investigation that proposes
using an Elman network for EPF shows a good capability for predicting price spikes in the Spanish and
New York real-world electricity markets [39]. An hybrid combination of RNN and coupled excitable
systems have shown to allow close approximation of spiky time series [40]. In a more recent work,
authors claim that RNN are the preferred method for time series type problems due to their efficient
memory management of previous instances, a crucial factor for estimating electricity prices of the
day-ahead market [41]. The combination of RNN with convolutional neural networks (CNN) has also
shown to successfully predict the electricity price of the next hour based on the prices of the previous
24 h. Particularly, the combination of RNN and CNN outperforms other traditional machine learning
methods like support vector machines, decision trees, random forests or a stand-alone CNN/RNN [42].
Recently, an exhaustive empirical analysis, which compares 27 state-of-the-art methods for predicting
electricity prices in an extensive benchmark, concludes that deep learning models achieve a predictive
accuracy that is statistically significantly better than any other model [43]. It is also worth noting that
this latter work concludes that machine learning methods produce, in general, a greater accuracy
than statistical models as well as that RNN-based models are better for predicting prices at some
specific hours.

We can safely argue that NN-based models, particularly variants of deep NN, are the currently
dominating technology for EPF as these methods have overall shown to outperform statistical methods.
However, in rare cases one can see the use of renewable energy sources in the benchmarks used for
computing the EPF models. In general, there is common agreement that RES raise several concerns
regarding their influence on electricity prices and grid stability, claiming that the high dependency of
renewables on weather conditions brings about the volatility in electricity prices. Despite there is no
doubt regarding the contribution of RES to build a more sustainable world, the increasing integration
of RES makes the electricity market become naturally more unpredictable, which typically leads EPF
models to neglect RES forecasts as explanatory variables. It is also the case that RES forecasts are not
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always available in electricity markets. In this regard, albeit the Iberian market does provide data of
renewable energy forecasting, only a few works have actually deemed RES predictions, particularly
hourly wind power generation forecasts [35,44,45].

3. Preliminaries

Deep learning is a programming paradigm consisting of a multitude of machine learning
algorithms that allows computers to learn from observational data. The models underlying these
techniques are known as artificial neural networks (ANN), given that they are loosely inspired by the
biology of the brain. A neural network is a collection of interconnected nodes, known as neurons,
that process the data they receive and transmit their output to other nodes. ANNs are data driven
systems that learn to perform tasks by inferring rules from large amounts of training examples.

In the following, we will describe the two types of ANNs used in this work: feedforward neural
networks, and recurrent neural networks.

3.1. Feedforward Neural Networks

Feedforward neural networks (FFNN) are the most common neural networks. In FFNN, neurons
are organized in layers, with one input layer, one or more hidden layers, and one output layer.
FFNN receive this name because the output of one layer is used as input to the next layer, meaning
that information flows only in one direction, from the input layer to the output layer.

In a FFNN, each neuron receives input from neurons in the preceding layer, computes its activation
state and outputs it to all the neurons in the next layer. A neuron can be understood as a vector-to-scalar
function. Given the input vector x = (xy, ..., xp, ), the activation state of a neuron is computed as:

Dy

s = f()_ wexy +wp) o

k=1

where w; is the weight associated to input x;, wy is the bias and f is an activation function.

We can then understand a FENN as a composition of functions, some of which (usually those in the
hidden layers) are non-linear. The purpose of a FENN is to approximate some function. In fact, FFNNs
are considered universal function approximators, since any function can be arbitrarily approximated
using enough neurons.

3.2. Recurrent Neural Networks

Neural networks can also include feedback connections, in which case they are named recurrent
neural networks (RNN) [46]. These feedback connections are represented by loops in the network
that indicate the influence of the present state of a neuron on its own state and on the states of other
neurons in a future time step. The influence over future inputs can be seen as a memory which allows
recurrent networks to learn long-term dependencies. This feature makes RNNs ideal for processing
sequences of vectors (x(1), ..., x(T)),

Figure 1 shows an example of a recurrent neural network with three neurons in the hidden
layer that takes as input a sequence of vectors of dimension 2, ((xgl), xgl)) ... (x],xI)). The presence
of feedback connections in this network means that to compute the output at time ¢, the neurons

(5) ()

take into account the current input vector (x;’,x,’) as well as the output of the last time step,

(1) 51 =)y,

Hence, the output of a neuron s
computed as:

()

; at time t in a layer with Ds neurons and D inputs is

O _ &), & (1)
s;” = f(Y_ wex’ + Y wsy ) +w), @)
k=1 k=1
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(t=1)

where w; is the weight associated to input x;, u; is the recurrent weight associated to outputs;” /,
wy is the bias and f is an activation function.

Figure 1. Recurrent neural network.

Recurrent networks usually employ complex memory cells instead of the previously explained
neurons. The most popular cell is the long short-term memory (LSTM) [47]. LSTM cells contain an
internal self-loop that adds another level of recurrence to the RNN and allows LSTM networks to learn
long-term dependencies more easily than with simple neurons.

4. The Day-Ahead Iberian Electricity Market

This section is devoted to delving into the functioning of the day-ahead Iberian electricity market
and to analyzing the historical series of electricity prices over the period 2014-2016. We are interested
in examining the relationship between the electricity price and the actual values of variables for which
the Iberian electricity market provides forecasts, namely electricity demand, and solar and wind
energy production. Specifically, our purpose is to gain insight on the influence of these variables in the
electricity price so as to determine whether it is positive introducing the forecast for these variables
in the hourly-ahead EPF model. Ultimately, we aim to inspect the role of renewable energies in the
electricity price and thereby the convenience of using the forecasts of clean energies in the forecast of
electricity price.

The section is structured as follows. In Section 4.1, we outline the operation of the Iberian market
and we describe OMIE, the Spanish market operator that manages the wholesale electricity market on
the Iberian Peninsula. The following subsection provides a comprehensive history of the correlation
of the electricity price with respect to electricity demand, solar energy generation and wind energy
generation. Moreover, we also studied whether a similar correlation exists between the electricity price
and the forecasts for these three variables.

4.1. Market Description

Due to the nature of electricity, markets are held in advance of the actual consumption in energy,
in order to allow the grid operator to plan and prepare for any problem or imbalance that might arise.
This is why many markets are referred as day-ahead markets, as auction is held one day before the
actual electricity is consumed. This specific feature introduces an additional challenge to the forecasting
problem, as many of the variables that determine the actual demand and generation of electricity for
each trading period of a given day are not known at the time the auction is held. Forecasting systems
have to rely on other forecasts of those variables or use lagged values in order to be able to make
good predictions about the price. The problem then, consists in forecasting the electricity price for the
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24 one-hour periods in a day, using only the information available up to the time of the auction, held
in the previous day.

OMIIE, the Spanish market operator [4], oversees and manages both day-ahead and intraday
electricity markets. These markets are where both generators and consumers of electricity submit their
bids in order to be able to trade. The day-ahead market is held every day, and market participants
have up to 12 PM to submit their bids for each of the 24 periods (each comprising one hour) of the next
day. Participants can submit a bid only stating how much electricity they want to trade and at what
price, or they can also attach specific restrictions to their bids such as a minimum income condition
(the offer should be considered only if the seller obtains a minimum amount of money). These types of
bids are known as simple bids and complex bids, respectively.

Once all bids have been collected, the market operator carries out the procedure of determining
the final price. The Spanish market is a type of two-sided auction, where bids are aggregated and
sorted by price. For each period, purchasing bids are sorted by descending price (higher prices have
preference), while sale bids are sorted by ascending price, with priority given to lower prices. The final
price is fixed by the intersection of this two curves, where there is a purchase bid whose price is
lower than the remaining sale bids. This price, known as the market clearing price or spot price,
is the price to be paid by all quantities of electricity traded, no matter what the original bid was.
Therefore, all accepted purchase bids (with an initial bid higher than the market clearing price) will
have to pay the same quantity per each energy unit (currently given in MWh) bought, and all sale
bids (with an initial bid lower than the market clearing price) will receive the same quantity per each
energy unit sold. The finer details of the price coupling algorithm can be consulted on the website of
the OMIE [48].

4.2. Analysis of Historical Data

The system operator, Red Eléctrica de Espafa (REE), publishes daily forecasts for wind and
solar generation, alongside a demand forecast for the next day. We hypothesize that these forecasted
variables will be very useful to our goal of developing an EPF model sensitive to renewable energies.
Forecasts of wind and solar are of particular significance as their historical data are less reliable due to
the intermittent nature of these energy sources. The purpose of this analysis is to gain some insight on
the suitability of these forecasts for our EPF model. To this end, our first step is to verify whether a
relationship between solar and wind generation, demand, and electricity price actually exists along
the historical data.

The figures presented in this section aim to analyze the correlation between hourly
generation/demand and electricity price. If a positive or negative trend is identified, it means
that a relationship exists between the two correlated variables, with stronger correlations being
represented by more clearly identifiable trends. A positive correlation indicates that both variables
increase/decrease in the same direction, while a negative correlation means that when one variable
increases the other decreases.

We start the analysis by looking at our two sources of renewable energy, solar and wind.
The correlation analysis between wind generation and electricity price (Figure 2 (top)) shows a negative
trend, meaning that more wind generation is usually accompanied by lower prices. This correlation is
of particular significance given that wind generation represents an important share of the electricity
generation, and so the impact is bigger. Solar generation, on the other hand, represents a very
small share of the energy generation in the Spanish market. Comparing Figure 2 (top, bottom),
we can see that the maximum solar generation is about one third of the maximum wind generation.
Furthermore, the highest concentration of hotspots are between 0 and 1000 MWh, meaning that there
is a very small amount of solar generation or there is no generation at all (this corresponds to hours of
the day with very little sunlight or night hours). Despite all this, it is still surprising that no correlation
between the solar production and the electricity price is found.
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Figure 2. Renewable energy sources generation. (top): wind generation. (bottom): solar generation.

Apart from power generation, another important factor that affects the price of electricity is the
demand. The correlation analysis of Figure 3 shows that, as expected, a higher demand entails higher
prices. We find, however, that this is not a particularly strong correlation.

The obtained results led us to consider the definition of a new variable to better capture the
dynamics of the offer and demand system in the day-ahead market. Bearing this in mind, we defined a
new variable, which we will refer to as ratio of renewable energy production, using the aforementioned
studied variables. The ratio is computed by adding the wind and solar generation and dividing the sum
by the demand. The correlation for this derived variable (Figure 4) shows a stronger correlation than
the correlation previously identified for the single variables. This result indicates that the electricity
price is more affected by the composition of the energy generation than by the amount of energy
being generated.
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Figure 3. Correlation between electricity demand and price.
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Figure 4. Correlation between ratio of renewable energy production and price.

Having confirmed the influence of these variables on the electricity price, we now proceed to
verify that the forecasted variables provided by REE display a similar behavior. Figure 5 shows a
comparative analysis between the real historical data (left) and their forecast counterparts (right).
We can see in the figure that the plots are mostly identical, so the conclusions we have drawn from the
historical data also apply to the forecasts. Therefore, we conclude that the forecasted variables will be
useful input explanatory variables for our EPF model.
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Figure 5. Comparison between real (left) and forecasted (right) generation and demand.
5. Methodology

In this section, we present our proposed model for electricity price forecasting. Prior to this,
we introduce the dataset from the Spanish day-ahead market that will be used.

5.1. Dataset

We collected a number of explanatory variables to be used as input for our forecasting model.
Each entry in the dataset corresponds to an hour # in the two year period for the years 2014 and 2015.
The variables collected, summarized in Table 1, are the following:

¢ Day-ahead prices: the hourly prices of previous days are the basic input of almost all electricity
forecasting systems. Various works have identified correlations between the prices of day d and
the previous prices of daysd — 1,d — 2 and d — 7, reason why time lagged prices are regularly used
in the EPF models presented in the literature [49,50]. Therefore, in order to predict the electricity
price for a given hour #, pj,, we used the lagged prices pj,_4, pPy—4s and pj,_168. This information
was published each day after the day-ahead auction by the market operator, OMIE [4].

¢ Time and calendar: the hour corresponding to each entry in the dataset was registered using
an integer variable 1 € [0,23]. Additionally, we provided two other variables with calendar



Energies 2019, 12, 2082 11 of 20

information, an integer d € [0, 6] for the day of the week, and a boolean holiday € {0,1} to
identify the existence or non-existence of a national holiday that day.

e  Forecasted generation and demand: as a result of the findings of Section 4.2, we includeD
the hourly forecast solar and wind power generation, as well as the hourly forecast demand.
The methodology used for the demand forecast was explained in [51]. All three forecasts were
provided by the system operator, REE, and can be obtained through its information system,
e-sios (Sistema de Informacién del Operador del Sistema https://www.esios.ree.es/es).

Additionally, we include as input the forecast ratio of renewable energy computed using the
forecasts for wind and solar generation, and demand:

forecasted wind generation + forecasted solar generation
forecasted demand

®)

Table 1. Summary of explanatory variables for a given hour 5.

Variable Category Description Range

Vi Day-ahead prices Ph—24 0-110 €/MWh
V2 Day-ahead prices Ph—a8 0-110 €/MWh
V3 Day-ahead prices Ph—168 0-110 €/ MWh
V4 Time and calendar Hour 0-23

V5 Time and calendar Week day 0-6

Vo Time and calendar National holiday 0-1

V7 Forecasted generation and demand  Forecasted solar generation for /1 0-3650.2 MWh
V8 Forecasted generation and demand  Forecasted wind generation for 277-17,385 MWh
\% Forecasted generation and demand  Forecasted demand for 17,599-40,050 MWh
V10 Derived variable forecasted ratio of renewable energy for iz 0-1

5.2. Proposed Model

The proposed model assumes that the price for a certain hour pj, can be defined as the addition
of two terms, p, = pj, + €5, where py, is an estimation of the price, and ¢, is the error. Following this
assumption, we can approximate p; by estimating €, i.e., p, = pj, + €,. Our forecasting model
followed this approximation and used two artificial neural networks to compute these two terms
(see Figure 6).

The main network was a RNN with a hidden layer of 128 LSTM cells, which was used to compute
py- The input for this network was modeled as a sequence of 24 vectors x"=23),. .. x("), where each
vector x(") contains explanatory variables for that one-hour period 4. The secondary network, a FENN
with a single hidden layer of 64 neuros, used past residuals of the recurrent network to compute €j,.
The residuals were computed as €, = pj, — pj,- This network took as input a vector €,_p4, ..., €168
with the last seven residuals corresponding to the same period of the day. The forecast price p;, can
then be expressed as:

pr = fran ("2, x M)+ frenn(enoa - en16s)- 4)

The addition of the output of these two networks went through a filter that ensured the forecast
price fell within the limits established by the electricity market. In the case of the Iberian market,
the applied filter was defined as follows:

0 if pp, +€, <0
pp=1{ 110  ifp,+8&, > 110 G)
Pn+ €, otherwise.
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x(h=23) () €n—24/---,€L—168

RNN FFNN

Pn €n

Filter

Pn
Figure 6. Proposed model.

The two-network architecture of our proposed model was inspired by the ARIMA model,
an univariate forecasting method where the forecast was given by a linear combination of historical
data and a linear combination of past prediction residuals. ARIMA models have a proven track record
in time-series forecasting, but are known to struggle in electricity price forecasting. The main reasons
behind this behaviour is that ARIMA models do not support time series with a seasonal component,
and they are also limited to linear dependencies in the data. Our proposed model addresses the
shortcomings of ARIMA models in the following ways:

*  Exogenous variables: the proposed model supported an arbitrary number of exogenous variables,
i.e., data outside the price time series. This allowed the inclusion of other explanatory variables,
such as the ones presented in Section 5.1.

*  Non-linearity: neural networks were able to learn nonlinear dependencies between variables.

®  Seasonality: LSTM cells were particularly suitable for learning the order dependence of
seasonal data.

All these advantages came at the cost of a far more complex system, which required more training
data to learn all the additional parameters. Fortunately, EPF datasets contain full years of sampling
data available.

6. Experimental Results

In this section we validate the proposed EPF model in the real-world dataset presented in
Section 5.1. We are also interested in measuring the improvement that a forecasting model sensitive
to renewable energies poses over one that is not, if any. With that aim, we defined three models
according to the inputs used: M1 uses only lagged prices and chronological variables, M2 incorporates
forecasts of generation and demand, and M3 adds the forecasted ratio of renewable energy. The input
configurations of each model are summarized in Table 2.
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Table 2. Input configurations.

Variable  Description M1 M2 M3
V1 Ph—24 \/ \/ V
V2 Ph—48 \/ \/ V
V3 Pr—168 v v Vv
V4 Hour v’ v’ v’
V5 Week day v’ 4 v’
V6 National holiday v v Vv
V7 Forecasted wind generation for - v’ v
V8 Forecasted solar generation for h - v’ v’
V9 Forecasted demand for h - v’ v’
V10 Forecasted ratio of renewable energy for i - - v

The models were tested on four sample weeks, one for each season in the year 2015. The periods
for each week are detailed in Table 3. Models were trained using a 16-week rolling window. This means
that models were trained once for each day in the testing week, using the prior 16 weeks as training set.
Training was stopped for the three models after 200 epochs.

Table 3. Sample testing weeks used for the evaluation.

Week Period Season
W1 2 February-8 February Winter
W2 4 May-10 May Spring
W3 3 August-9 August Summer
W4 2 November-8 November  Autumn

The error of the forecasted prices for the sample weeks achieved by each model was analyzed
using the mean absolute percentage error (MAPE) metric, defined as:

@% |phi7ﬁh,’|

MAPE =
N = Ph;

(6)

where py,, is the real price, py, is the forecasted price, and N is the number of forecasted values (N = 168
if we are forecasting one week).

The results of this error analysis, Table 4, show that both M2 and M3 provide a significant
improvement with respect to M1 across all weeks. These results evidence the usefulness of the
forecasted variables (V7-V9) in the EPF models. We also find that the inclusion of V10 (forecasted ratio
of renewable energy) helps in reducing the error, thus highlighting the importance of knowing the
composition of the generation of energy when forecasting prices.

Table 4. MAPE results.

Week M1 M2 M3

Wi 2422 999 9.83
W2 2472 993 913
W3 7.51 507 5.01
W4 1217 723 6.69

In order to better understand how the additional inputs are helping the EPF models, we have
plotted the prices forecasted by each model for the sample weeks (Figures 7-10). Starting out with W1
(Figure 7), we found that M2 and M3 usually adjust better than M1, with M3 providing a slightly better
refinement over M2. M1 seems to have a harder time forecasting peaks and valleys in the price curve.
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Figure 7. Results for week W1.

In contrast with the fairly uniform price curve of W1, we find a very different picture in Figure §,
where each day is very different from the day before. This heterogeneous curve highlights the
limitations of M1 to adapt to sudden changes. M2 and M3, on the other hand, are still able to react and
reproduce a price curve that fits much better with the real one.

60

50

30

20

2015-05-04 2015-05-05 2015-05-06 2015-05-07 2015-05-08 2015-05-09 2015-05-10 2015-05-11

Figure 8. Results for week W2.

In W3 (Figure 9), we found a very stable behavior during the weekdays with a sudden drop
starting Saturday. It was of no surprise then, that this was the week where all models were able to
obtain their best results. In this case, we saw that even M1 can reproduce the behavior of the price
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curve, but still falls short of M2 and M3. Once again, most of the errors of M1 corresponds to peaks

and valleys in the curve.
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Figure 9. Results for week W3.
In the last sample week, W4 (Figure 10), we verified what we have been observing so far. While

M2 and M3 mostly overlapped with the price curve, we found M1 often forecasting below or above
the real price during the daily maximums and minimums.

70
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€/MWh

30

20

2015-11-02 2015-11-03 2015-11-04 2015-11-05 2015-11-06 2015-11-07 2015-11-08 2015-11-09

Figure 10. Results for week W4.

Overall, we found that M1 expected a more uniform behavior in the prices and has trouble
adapting to changes. M1 also shows difficulties in forecasting prices in the peaks and valleys of the
price curve. On the other hand, the EPF models sensitive to renewable energies, M2 and M3, were able
to exploit the additional data to react faster to sudden changes and provide a more accurate forecast.
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7. Discussion

As our analysis points out, there is a lack of correlation between electricity spot prices and solar
PV gross electric energy generation, as shown in Figure 2 (bottom). In contrast, the electricity generated
by wind is much more clearly related to prices. It is furthermore clear from the figures that the total
amount of wind energy produced is significantly higher than solar, and therefore its expected impact
on the markets.

The comparatively lower shares of solar photo-voltaic electricity in Spain has its origin in the
unstable regulatory framework that has been a key market factor during the last decade. Before year
2009, the initiative to foster solar PV electricity generation led to a paramount increase in installed
capacity—with Spain being no 1 in the EU during several years in this regard. The incentive scheme
chosen by the central government, based on a favourable feed-in-tariff for PV, led to a bubble effect,
which in year 2008 was retroactively stopped by means of a Royal Decree [52]. This caused a complete
stop in new installations and even the shut down of existing plants. In the case of wind, the regulatory
framework was more stable, the technology was at that time comparatively more mature and the
largest projected plants were in operation at the time regulation stopped new developments. One of the
arguments held by responsible officials to justify the Royal Decree was the observation that renewable
energies increased electricity prices. Our study shows that this is indeed not the case. Even more,
with about 80% energy dependence from foreign fossil fuel sources (gas, petroleum, ...) what is clear
is that Spain benefits from the price lowering effect of the already installed RES electricity producing
infrastructure.

Recently, the government has embarked a new regulation that establishes a simplified mechanism
for compensation of self-produced energy and non-used energy [53], thus putting an end to the
so-called ‘sun tax’. Since the new Royal Decree approves the collective self-consumption to favour
both households and small businesses, a positive effect such as lower prices of the electricity bill are
expected. Boosting self-consumption will also benefit the electrical and energy system by augmenting
the production of solar energy. Ultimately, we envision that the evolution of the electricity price could
show a trend similar to that of the wind generation in Figure 2 (top) once there is a significant increase
in net solar PV electricity production.

Apart from the regulation policy of the energy market, our study clearly confirms that the higher
the ratio of renewable energy production per demand is, the lower the price of the electricity is,
even considering the irregular production of solar energy. When the ratio variable is included in the
EPF model, we observe a dramatic improvement in the results of the predictor over a model that
disregards the forecast renewable energy production and demand. The conclusions of our study will
serve to encourage governments to emit the forecasts of renewables so as to be included in the price
forecasting models.

As stated in the Introduction, there is a vast body of literature on the exploration of different
approaches for forecasting of electricity prices. EPF models are relevant as they allow participants of
the energy market and power pools to maximize profit and make decisions on accurate risk measures.
What we put in value in this paper is the role of renewable energies in the electricity price forecasting in
the Iberian Market. Our study reveals that the inclusion of such energies not only outputs a significant
reduction in the forecast price error but also shows the accuracy of the forecast curves to capture
seasonality and price spikes. It is certainly true that the position of the energy markets of different
countries on the inclusion of iRES production in the EPF is different, and that not all the markets issue
the forecasts of renewable energy production. Nevertheless, the revolution toward the so-called green
industry is pushing forward a market demand for renewable energy, aiming to lower energy prices
and mitigate the climate change effects.
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8. Conclusions

Electricity price forecasting is a key component for making short-term decisions in markets where
the production of energy tends to be more local, renewable and economically efficient. This works
focuses on the role that renewable energies play in the electricity price, a crucial factor in understanding
and enabling the next phase of the energy transition. First, a strong correlation between the generation
of renewables, particularly wind energy, as well as electricity demand with the electricity price was
found. Additionally, our findings also show an almost identical correlation with the forecast values of
renewables production and demand. This led us to hypothesize that using the forecast renewables
in the prediction of electricity price would exhibit a good performance. To this end, we designed a
NN-based EPF model that relies upon a two-network architecture, a RNN to process the input vectors
of explanatory variables and a FFNN that uses the residuals of the RNN to estimate the error. Our work
features one of the first attempts in the use of a combination of predicted wind generation, predicted
solar generation and predicted demand of electricity to improve the EPF performance.

The results are highly conclusive as to the influence of the renewable energies in the forecasted
price. We observed an error reduction of up to 14 points when the forecasted renewables are
considered in the model. Moreover, the predictor yields even even slightly better results when
using a derived variable that represents the ratio of renewable energy production. All in all, our study
reveals that the composition of the energy production plays a crucial role in the determination of
the electricity price. We believe the analysis presented in this paper will help decision makers in the
planning and transformation of their local energy markets. We must though also point out that the
performance of our EPF model is subject to the quality of the forecasted variables, which gives an
indication of the importance that governments include robust estimates of renewable energies in their
periodic issuances.
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