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Abstract

Climate change is likely to strongly affect both the qualitative and quantitative characteristics of water
resources. However, while potential impacts of climate change on water availability have been widely
studied in the last decades, their implication for water quality have been just poorly explored since now.
Accordingly, an integrated assessment based on Bayesian Networks (BNs) was implemented in the Zero
river basin (Northern Italy) to capture interdependencies between future scenarios of climate change with
water quality alterations (i.e. changes in nutrients loadings). Bayesian Networks were used as integrative
tool for structuring and combining the information available in existing hydrological models, climate
change projections, historical observations and expert opinion producing alternative risk scenarios to
communicate the probability (and uncertainty) of changes in the amount nutrients (i.e. NOs’, NH4*, PO;%)

delivered from the basin under different climate change projections (i.e. RCP 4.5 and 8.5)
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The model predictive accuracy and uncertainty were evaluated through a cross comparison with existing
observed data and hydrological models’ simulations (i.e. SWAT) available for the case study and, in
addition, sensitivity analysis was performed to identify key input variables, knowledge gaps in model
structurers and data. Simulated scenarios show that seasonal changes in precipitation and temperature
are likely to modify both the hydrology and nutrient loadings of the Zero river with a high probability of
an increase of freshwater discharge, runoff and nutrient loadings in autumn and a decrease in spring and
summer with respect to the current conditions 1983-2012. Greater increase for both river flow and
nutrients loadings are predicted under the medium and long term RCP8.5 scenarios. Diffuse pollution
sources play a key role in determining the amount of nutrients loaded: both NH4* and PO4* loadings are
mainly influenced by changes in hydrological variables (i.e. runoff) while NOs™ loadings, despite being
highly dependent on flow conditions, are also influenced by agronomic practices and land use (i.e.
irrigation, fertilization). Highlighting key components and processes from a multi-disciplinary perspective,
BN outputs could support water managers in tracking future trends of water quality and prioritizing
stressors and pollution sources thus paving the way for the identification of targeted typologies of
management and adaptation strategies to maintain good water quality status under climate change

conditions.

Introduction

Climate change, in combination with other anthropogenic stressors (i.e. urbanization, agriculture,
population growth), may affect the availability and quality of water in multiple ways (Jiménez Cisneros et
al., 2014). However, while potential impacts of climate change on water availability have been widely
studied in the last decades (Molina et al., 2013; Marcos-Garcia et al., 2017; Ronco et al., 2017; Zabel,
2016), their implication for water quality and their interaction with other drivers of change have been just
poorly explored (Bussi et al., 2016; Huttunen et al., 2015; Lu et al., 2015; Pulido-Velazquez et al., 2015;

Whitehead et al., 2008).
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In Mediterranean climate regions, the high seasonal variability alternating dry and wet period is likely to
have profound effects on those hydrological processes (e.g. runoff, river flow, water retention time,
evapotranspiration) that regulate the mobilization of nutrients and other kinds of pollutants from land to
water bodies (Alam and Dutta, 2013; Culbertson et al., 2016; El-Khoury et al., 2015; Ockenden et al., 2016).
Likewise, increased temperature can accelerate the mineralization of organic matter in the soil (Eghball
et al.,, 2002). Despite the fact that all these alterations are likely to affect nutrients availability and
loadings, the magnitude, timing and seasonality of these changes are still largely unknown (Jiménez
Cisneros et al., 2014).

A major challenge of understanding processes governing water quality under multiple stressors conditions
is primarily represented by the need to combine and translate knowledge from many different disciplines
and sources, into a single, logically consistent integrated framework. In fact, while some processes may
be clearly described by deterministic or process-based models (e.g. hydrological models), other
biophysical and socio-economic processes impacted by climatic and management changes are still not
well understood, thus are inherently subjected to uncertainty. As a consequence, deterministic
approaches relying solely on quantitative data, while having the advantage of providing a strong
guantitative modelling of impacts, could not be useful when there is limited information about the effect
of human decisions on the system. Moreover, when dealing with natural resource management,
understanding the average processes is not always sufficient: decision-makers are increasingly more
interested in having a realistic picture of all possible outcomes (Burgman, 2005; Power and McCarty, 2006)
and associated uncertainties (O’Hagan, 2012).

It is therefore clear that some open questions still remain for a complete understanding of the uncertain
impacts of climate change on water quality. These include how to quantitatively assess the conjoined

effect of multiple stressors on the same endpoints; and how to develop integrative tools able to explicitly
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deal with the uncertainty in climate change projections, accounting for the effect of anthropic changes
and of different policy and adaptation measures (Sperotto et al., 2017; Terzi et al., 2019).

In order to fill these gaps, in this study we propose an integrated assessment procedure based on BNs to
assess the potential implication of climatic changes (i.e. changes in precipitation and temperature,
irregularities in water regime) and anthropogenic activities (i.e. land use, agronomic practices) on the
quality of waters in the Zero river basin, one of the main tributaries of the Venice Lagoon (Italy).
Bayesian Networks (BNs) represent widely applied tools in environmental and water resources
management (Aguilera et al., 2011; Landuyt et al., 2013; McCann et al., 2006; Newton, 2009; Phan et al.,
2016), with great potentials of application also in the context of climate change impact assessment
(Catenacci and Giupponi, 2010; Franco et al., 2016; Molina et al., 2013; Sperotto et al., 2017) thanks to
their capability of capturing uncertainty and comparing the casual power of multiple stressors on the
valued resource (Carriger et al., 2016; Landis et al., 2013).

Main aims of the work are to demonstrate the potentials of BNs (i) to understand future dynamics of
nutrients loadings at river basin scale; (ii) to assess the interactive impacts of multiple stressors on water
quality indicators); (iii) to develop alternative “what-if” risk scenarios to communicate the probability of
changes in nutrients (i.e. NOs, NH4*, PO,>) delivered from the basin into the Venice lagoon, given a set of
plausible future climate projections.

BNs were thus used as integrative tool for structuring and combining the information available from
previous hydrological model simulations (i.e. SWAT) (Pesce et al., 2018), climate change projections,
current land use and agronomic practices and historical observations, thus providing a valuable operative
decision support tool directly usable by decision makers, water managers and non-experts to: i)
understand and explore climate change impacts on water quality; ii) identify and prioritize most effective

management and adaptation strategies to maintain good water quality status, in line with the
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requirement of Water Framework Directive and other national legislation, under climate change
conditions.

After a brief introduction to the case study area (Section1) the paper describes the methodological steps
and input data used to implement the risk assessment procedure (Section 2) and finally, discusses the

scenarios developed for the Zero river basin case study (Section 3).

1. Case study area

The Zero river basin (ZRB) (Figure 1, Table 1), it is located within the Venetian floodplain (Northern Italy)
and it is a sub-basin of the Venice Lagoon Watershed (Figure 1a). The Zero river (Figure 1b), which is 47
km long, originates near “San Marco di Resana”, and along its way, it collects the waters of numerous
tributaries (e.g. Brenton del Maglio, Scolo Vernise, Rio Zermason). Then it merges with the Dese river

about 2 kilometres upstream the discharge into the Venice Lagoon.
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Figure 1 The Zero river basin case study



10

11

12

13

14

15

16

17

18

19

20

Overall, the Dese and Zero rivers together provide the greatest contribution of freshwater (21% of the
total) to the lagoon of Venice (Zuliani et al., 2005). Thanks to its transitional position the basin features a
Mediterranean climate but with typical traits of more Continental climates (Guerzoni and Tagliapietra,
2006) (Table 1). Thus, this climate is characterized by cold winters and generally well distributed
precipitation throughout the year, with peaks in spring-autumn and minimums during the winter-summer
periods Summers are frequently characterized by intense storms of short duration (Guerzoni and
Tagliapietra 2006). The region features a marked inter-annual climate variability, which can originate years

climatologically very different from each other.

Table 1 Main climatic, environmental and socio-economic features of the Zero river basin

Location Latitudes 45°28’N-45°48’N, longitudes 11°54’E-12°25'E;

Extension | 140 km?;

Average annual precipitation=1000 mm (period 2007-2012);

Average annual temperature of 14 °C (period 2004-2013);

= Agricultural areas (73%): corn (45%) (i.e. Zea mays L.), soy (9%) (i.e. Glycine max L.),
autumn-winter cereals (13%) (i.e. Triticum aestivum L., Hordeum vulgare L.);

Land use = Artificial areas (24%): housing areas (54%), industrial businesses (32%),
transportation and services (14%);

= Semi-natural and forested areas (4 %)

Climate

The environmental and the hydrological characteristics of the ZRB are heavily influenced by natural
phenomena and human activities that together had shaped a complex hydrologic network. The basin, in
fact, is characterised by several hydraulic infrastructures and artificial channels developed to reclaim land
for agricultural purposes and to regulate the flow discharging into the lagoon of Venice (CVN, 2006).
Furthermore, spring waters originated and risen in the surrounding areas influence the hydrology of the
Zero river with the main contribution coming from an unconfined aquifer system located on the high plain
(Servizio Acque Interne, 2008).

Main socio-economic activities insisting in the ZRB is are represented by agriculture, housing and industry

(Table 1).
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Moreover, three waste water treatment plans (i.e. Morgano, Zero-Branco and Castelfranco Veneto)
(Figure 1b) with capacities ranging from 2500 to 32000 of Population Equivalents (P.E.) directly discharge
into the Zero river.

The intensive agriculture, characterized by an elevated level of fertilization, and the dense urbanization
are considered significant pollution sources for the area; especially for what concern nutrients (i.e.
phosphorous, nitrogen) loadings. Diffuse and point nutrients pollution has become a major concernin the
area since late 1980s when eutrophication reached its peak in the Venice Lagoon (Facca et al., 2014). Since
then several national and regional policies, legislation and measures have been implemented to support
investments for pollution control. Furthermore, good agricultural practice in concert with the Common
Agricultural Policy (CAP) and other European regulations and directives has been implemented. In fact,
the area has been identified as a Nitrate Vulnerable Zone (NVZ) according to the Nitrate European
Directive (1991/676/CEE), with the aim of regulating and controlling the input of fertilizers from
agricultural activities. At the same time, limits for the Maximum Admissible Load of nutrients discharged
into the lagoon from the drainage basin were fixed at 3000 t/year for nitrogen and 300 t/years for

phosphorous by the national competent law (DM 09/02/1999).

2. Material and methods

The risk assessment framework proposed in this work aims to assess the interactive effect of climate and
anthropogenic changes on nutrients loadings. To do so, we adopt a multi-disciplinary approach to which
different knowledge domains (i.e. environmental and social science, agronomy, hydrology, climate
change) contribute. Also, quantitative and qualitative data, coming from multiple information sources,
are integrated in a harmonic manner trough BNs. Accordingly, the proposed risk assessment approach is
made upon different integrated components in communication through a dynamic exchange of

information (Figure 2).
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Hydrological simulations:
Water flow
Runoff
N and P in runoff
Nutrients loadings (NO3, NH4, PO4)

ArcSWAT Model

Climate change projections:

Temperature
Precipitation

CMCC-CM/COSMO-CLM Model
1983-2100
RCP4.5-RCPB.S

—> Input data

Time-frame:2004-2013

Time step: seasonal

Model conceptualization

Model training

Model evaluation

Scenario analyisis

-=%» Data for validation

Expert judgment:
Fertilizers management
Agronomic practices
Irrigation

Observations:
Meteorological data (T, P, Etp)
Nutrient concentrations (NO3, NH4, PO4)
Point source pollution
Current land-use and crop distribution

Figure 2 General risk assessment framework applied to evaluate the interactive effect of climate and

The core is the BN, which is used as meta-modelling tool for structuring and combining, into a probabilistic
form, information provided by hydrological models, climate change projections, historical observations
and expert judgment. Different information types populate the BN at different level of implementation.
Qualitative information elicited from experts is used to develop the conceptual model of the network and
to train socio-economic and agronomic variables of the model for which quantitative data are not
available. Historical observations are used as input for the training of the network together with some
hydrology and nutrient loadings variables provided by the hydrological simulation with the Soil and Water
Assessment Tool (SWAT) (Arnold et al., 2012) for current conditions (Pesce et al., 2018). In addition, an
independent set of observations is used for validation. After the training, climate change projections are

employed as input for scenarios analysis to simulate the effect of future climate change on nutrients

loadings.

anthropogenic changes on nutrients loadings
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Main outputs of the risk assessment approach are the values of key state and management variables for
alternative risk scenarios, developing taking into account both projected climatic and not climatic
conditions and that could be useful to support the identification of appropriate adaptation strategies at

the local scale.

2.1 Input data

The capacity of the BN to correctly represent hydrological and water quality processes of the case study
area strongly depends on the quality and completeness of input data. Accordingly, Table 2 summarizes
the data collected for the implementation and evaluation of the risk assessment framework in the Zero
river basin case study including three main typologies of data: observations, SWAT simulations and climate
change projections.

Observations regarding the main climatic parameters (i.e. precipitation, temperature and
evapotranspiration) and point-source pollution sources (i.e. wastewater treatment plants (WWTP) and
industrial discharges) together with SWAT model simulations (i.e. runoff, river discharge (Q)) for the
current conditions developed by (Pesce et al., 2018) for the case study were used for the training of the
network for the period 2004-2013. More details about the calibration and validation processes applied to
develop the SWAT model simulations used as input in this study can be found in Pesce et al., (2018).
Additional observed hydrologic data (i.e. river discharge (Q), nutrient concentrations (i.e. NOs’, NH4",
PO4*) were only available for the period 2007-2012 and, therefore, were used to evaluate the
performance of the model under current conditions.

Future daily precipitation and temperature projections were obtained by General Circulations
Model/Regional Climate Model (GCM/RCM) nested simulations. Given the small extent of the study area

and in order to represent correctly the spatial variability of climate conditions the CMCC-CM/COSMO-CLM
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simulations were selected among those available with the highest spatial resolution. Specifically,
precipitation and temperature simulations were obtained coupling the GCM CMCC-CM (Scoccimarro et
al., 2011), with a spatial resolution of 0.75° x 0.75°, with the RCM COSMO-CLM (Rockel et al., 2008) under
the configuration adapted to the Italian territory (Bucchignani et al., 2016; Cattaneo et al., 2012) with a
spatial resolution of 0.0715° x 0.0715° (=8km x 8km). CMCC-CM/COSMO-CLM simulations were evaluated
using different independent set of observations (i.e. E-OBS, EURO4M-APGD and regional precipitation
stations data) providing a good agreement with observed data and thus allowing a satisfactory
representation of the Italian climate for both temperature and precipitation. A detailed description of
COSMO-CLM evaluation results over the whole Italian domain can be found in Bucchignani et al. (2016)
and Cattaneo et al. (2012) and in the Supplementary Material (SM) (Annex VI).

According with the purpose of the study, simulations developed using two different Representative
Concentration Pathways (RCPs) (IPCC, 2013), respectively the RCP4.5 and RCP8.5 were considered. The
RCP4.5, often referred as the “moderate” emission scenario which predicts an increase in radiative forcing
up to 4.5 W m-2 by 2100 and a stabilization of the emissions (i.e. 650 ppm) shortly after 2100 (Thomson
et al., 2011). RCP8.5, the “extreme” emission scenario, in which the GHGs emissions and concentrations
increase considerably over the 21st century, leading to a radiative forcing of 8.5 W m-2 by 2100 (Riahi et

al., 2011) thus describing a future without any specific climate mitigation target.

Table 2 List of input data used for the application of the risk assessment model in the Zero river basin

Data type Description Time scale Resolution Source

Observations

Regione del Veneto — Infrastruttura

Land cover . dati territoriali
map = Land use map of the Veneto region 2006 1:10.000 (http://idt.regione veneto.it/app/meta
catalog/)
= Daily precipitation 3 stations (i.e. Castelfranco,
Climatic Data | = Max/min daily temperature 2004-2013 Veneto, Zero Branco, | ARPAV —Servizio Meteorologico
= Daily evapotranspiration Mogliano Veneto) (Fig.1)

10
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Water = Observed daily river discharge 2 stations (i.e. Manual
uantity and = Observed nutrients’ (NOs, NH4*, PO43) 2007-2012 station (Code 122), | ARPAV —Servizio Acque Interne
g . v concentrations in the lagoon Automatic station (Code: | MAV — Magistrato Acque Venezia
quality data -
B2q) (Fig.1)
Point-source = Monthly N and P loadings from 3 stations (i.e. Morgano,
) WWTP and Industrial discharges 2004-2013 Zero-Branco, Castelfranco ARPAV — Servizio Acque Interne
pollution .
Veneto) (Fig.1)
Hydrological simulations
= Simulated runoff . .
Water = Simulated N and P load in the runoff 2004-2013 River basin . .
. - - - - SWAT simulations (Pesce et al., 2018)
quantity and = Simulated river discharge Simulated 1 station (ie. Manual
. A ) ) N 3 ) .e.
quality data nutrient loadings (NOs’, NH4*, PO4*) in | 2004-2013 station (Code 122)
the lagoon
Climate change projections
= Temperature CMCC-CM/COSMO-CLM simulations
Climatic data = Precipitation 1976-2100 8 km (Cattaneo et al., 2012; Scoccimarro et
al., 2011)

2.2 Bayesian Network development

BNs are probabilistic graphical models that represent a set of random variables and their
interdependencies via conditional probability distributions (Nielsen

and Jensen, 2009). BNs consist of three main elements: (i) a set of variables that represent the factors
relevant to a particular environmental system (i.e. nodes); (ii) the relationships between these variables
that quantify the links between variables (i.e. arcs); iii) Conditional Probability Tables (CPTs), indicating
the strengths of the links in the graph by denoting the likelihood of the state of a ‘child’ node given the
states of its ‘parent’ nodes (Landuyt et al., 2013). The DAG consists of a set of nodes that can take on a
number of pre-defined discrete “states”, which are mutually exclusive and exhaustive (Borsuk et al.,
2004).

Bayesian Networks rely on Bayes’ theorem of probability theory to propagate information between nodes
allowing to update or revise the beliefs of the probabilities of system states taking certain values, in light
of new evidences. Accordingly, in Bayes’ theorem, a prior probability represents the likelihood that an
input variables will be in a particular state; the conditional probability calculates the likelihood of the state
of a variable given the states of input variables affecting it; and the posterior probability is the likelihood
that variable will be in a particular state, given the input parameters, the conditional probabilities, and

11



10

11

12

13

14

15

16

17

18

19

20

21

22

the rules governing how the probabilities combine. The network is solved when all nodes posteriori

probabilities have been calculated using Bayes’ Rule:

P(B|A) p(a)

P(AIB) = PE)

(Equation 1)

where P(A) is the prior distribution of parameter A; P(A|B) is the posterior distribution, the probability of
A given new data B; P(B|A) the likelihood function, the probability of B given existing data A. The BN for
the Zero river basin was implemented and run using the software HUGIN Expert, version 8 (Bromley et al.,
2005; Madsen et al., 2005). The development of a BN is an iterative and adaptive process which consist in
four major steps: i) the development of the conceptual model of the system; ii) the training of the model
with data; iii) the evaluation of model performances; and finally, iv) scenario analysis (Kragt, 2009) (Figure
2). Accordingly, the following Sections describe how the different BNs development phases have been

implemented in the Zero river basin case study.

2.2.1 Development of the conceptual model of the system

The phase of model conceptualization aims at developing an influence (i.e. “box and arrow”) diagram
providing a graphical representation of the system under consideration. The network conceptualization,
therefore, includes the identification of the main system variables (i.e. nodes) as well as the links between
them (i.e. directed arcs). The identification of relevant variables and links can be typically based on a
literature review, expert knowledge and consultation with local stakeholders. For each variable,
appropriate indicators as much as possible measurable, observable and predictable have to be identified.
Once the variables and relative indicators are defined, the links between them are identified and
represented as unidirectional arrows as BNs do not permit feedback loops. Figure 3 provides a

representation of the influence diagram developed for the Zero river case study which was developed

12
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based on expert consultation following the DPSIR (Driving forces, Pressures, States, Impacts and
Responses) framework (EEA, 1999; Kristensen, 2004). The DPSIR here was adopted to conceptualize the
system identifying the main cause-effect relationships and interactions between climatic changes, actual

land use and the quality of water resources.

Climate
Change
Scenario

Crop
distribution
3

S e

orivers

Figure 3 Conceptual model of the system developed for the Zero river basin

Accordingly, different kind of nodes representing the different nature of variables involved have been

included in the BN (Figure 3):

= Driver nodes (grey), consist in the input or parent nodes of the network and include

environmental and socio-economic factors representing the main drivers of water quality

alterations. Accordingly, in this study, driver nodes include climate change scenarios, agricultural

13
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land scenario (i.e. alternative agricultural land extension) and crop distributions (i.e. alternative

combination of different percentage of crop typologies).

Pressures nodes (violet), represent the variables which are influenced by the identified drivers.

Precipitation, temperature and potential evapotranspiration’s will depend on the climate change
scenario, inducing certain pressures on the system, including alternations in water needs for the
different crops which, together with a reduced effective rainfall, will mostly lead to an increased
water demand for irrigation. On the other hand, regarding anthropogenic drivers, crop typology
distributions will drive irrigation demand but also the quantity and timing of fertilizer application
(i.e. N and P fertilizer application), affecting the loading of nitrogen and phosphorous entering in
the system through diffuse (i.e. N and P diffuse sources) and non-diffuse sources (i.e. N and P

point sources).

States nodes (blue), representing the characteristics (i.e. states) of water resources that can be

altered by the aforementioned pressures both in quantitative and qualitative terms. Quantitative
alterations include, in this study, the alteration of river flow and runoff as results of changes in
precipitation and temperature under different climate change scenarios. Qualitative alterations
are instead represented by the change of N and P loadings in the runoff and in the increase of the
total loading of N and P into the river resulting from the interaction between multiple climatic and

anthropogenic pressures.

Impact nodes (green), consist in the output or child nodes of the network and are represented by

the increase of nutrients loadings (i.e. NOs, NHs*, PO4*) discharged by the Zero river basin into

the Venice Lagoon which can have severe impacts on the environment and human activities.

2.2.2 Model training

14
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The second step regards models training and involves assigning states, prior and conditional probabilities
to all nodes of the networks, thus translating the conceptual model developed in Section 2.2.1 (Figure 3)
into probabilistic results. For each node a certain number of states must be identified. States represent
potential values or conditions that the variable can assume in the analysed system (Kragt, 2009) and can
be featured in different way, representing Boolean functions (e.g. true, false), categorical definitions (e.g.
low, medium, high), continuous or discrete numeric intervals (de Santa Olalla et al., 2005).

Once the type and number of states have been defined, the prior probability associated to each state of
the node have to be calculated based on available information and knowledge (Pollino et al., 2007). Prior
probability is the likelihood that a node will be in a particular state before some evidence is taken into
account and thus represent the best rational assessment of the probability of an outcome based on the
current knowledge (Pollino and Henderson, 2010). Accordingly, the prior probability distribution describes
the starting point for each node in the network and thus the expectation of the node being in a certain
condition given current knowledge and data.

Finally, to operationalize the network, Conditional Probabilities (CPs) of nodes have to be specified for all
combinations of states of its parent nodes. Specifically, CPs of an event B is the probability that the event

will occur given the knowledge that an event A has already occurred and is calculated using Equation 2:

P(B|A) = % ..................................................................................................................... (Equation 2)

Where P(B|A) is the conditional probability of B given A, P (A and B) is the probability that both
events A and B occur, P(A) is the probability of A is occurring.
CPs calculated using Equation 2 are represented in the Conditional Probabilities Table (CPTs) of every node

which display conditional probabilities of a single variable with respect to the others (i.e., the probability

15
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of each possible value of one variable if we know the values taken on by the other variables) and thusthe
strength of relationships between the systems’ variables.

If a node has no parents (i.e. input nodes), it can be described probabilistically by a marginal probability
distribution. CPTs for each node can be defined using a range and combination of methods including
observed data, probabilistic or empirical equation, results from model simulation or elicitation from
expert knowledge (Pollino and Henderson, 2010). Within this study, states, prior probability distribution
of nodes as well as the conditional probability distributions have been defined combining different
guantitative and qualitative information available for a training period of 10 years (i.e. 2004-2013) at a
seasonal time-step. Table 3 describes the states of the different nodes of the network and the type of
information and data, which have been used for the definition of prior and conditional probability
distributions. Most nodes present numerical interval type states, which have been identified starting from
existing observed dataset, model simulation or expert judgement. Specifically, for each numeric interval
nodes, continuous numerical dataset (i.e. series of observation or model simulations) have been
discretized into states dividing the range between the maximum and the minimum values of the series
into four intervals of equal amplitude (Table 3). For the labelled node types, instead, states have been
defined based on the alternative conditions the node can assume (i.e. alternative seasons, alternative

climate change scenarios) (Table 3).

Table 3 Overview of nodes and states in the Bayesian Network model for the Zero river basin

Parametrization

Node Description Type States
P P method
Winter
. Sprin .
Season Alternative seasons Labelled pring Expert judgement
Summer
Autumn

Baseline 1983-2012
RCP 4.5 2041-2070
Alternative climate change scenarios Labelled RCP 4.5 2071-2100
RCP 8.5 2041-2070
RCP 8.5 2071-2100

Climate change

scenario simulations

CMCC-CM/COSMO-CLM

Labelled Actual 2004-2013;

16



Node

Description

Type

States

Parametrization
method

Agricultural land

Extension of land (ha) occupied by
agricultural activities under different

Future 2050

Observations-LUISA

scenario scenarios simulations
0-8.37
Temperature Seasonal average temperature (°C) Numeric interval §33;;)15139721 Observations
>19.21
0-201.50;

Precipitation

Seasonal cumulative precipitation (mm)

Numeric interval

201.50-328.73

328.73-455.96

> 455.96

Observations

Potential ET

Seasonal cumulative potential
evapotranspiration (mm)

Numeric interval

0-133.85

133.85-228.3

228.3-322.75

>322.75

Observations

Effective rainfall

Seasonal cumulative effective rainfall
reaching the soil (mm)

Numeric interval

0-64.13

64.13-122.95

122.95-181.77

>181.77

SWAT simulations

Crop water needs

Seasonal water demand for different crop
typology (mm)

Numeric interval

0-109.77

109.77-213.64

213.64-317.50

Equation (Annex |, SM)

>317.50
<-55.29
L Seasonal amount of water applied as . -55.29-101.28 .
Irrigation irrigation pp Numeric interval 101.28-257.86 Equation (Annex |, SM)
>257.86
0-45.74
N fertilizer Nitrogen fertilizer applied for each season Numeric interval 45.74-87.52 Expert judgment
application according to different crop typology (kg/ha) 87.52-129.30
>129.30
Phosphorous fertilizer applied for each (2]:5245114;083
P fertilizer application season according to different crop typology Numeric interval 50.83-76.25 Expert judgment
(kg/ha) - .
>76.25
0-7388.86

N diffuse sources

Seasonal amount of nitrogen coming from
agricultural practices (kg)

Numeric interval

7388.86-13959.99

13959.99-20531.11

>20531.11

Equation (Annex |, SM)

P diffuse sources

Seasonal amount of phosphorous coming
from agricultural practices (kg)

Numeric interval

0-5169.28

5169.28-10221.75

10221.75-15274.21

>15274.21

Equation (Annex |, SM)

N point sources

Seasonal amount of nitrogen coming from
point sources (i.e. Waste Water Treatment
Plans and Industrial discharges) (kg)

Numeric interval

0-9382.64

9382.64-10389.82

10389.82-11396.99

>11396.99

Observations

P Point sources

Seasonal amount of phosphorous coming
from point sources (i.e. WWTPs and
Industrial discharges) (kg)

Numeric interval

0-1143.64

1143.64-1478.99

1478.99-1814.35

>1814.35

Observations

River discharge

Seasonal average river discharge (I/s)

Numeric interval

0-1458.96

1458.96-2360.53

2360.535-3262.102

>3262.10

SWAT simulations

Runoff

Seasonal cumulative runoff (mm)

Numeric interval

0-49.90

49.90-90.15

90.15-130.40

>130.40

SWAT simulations

N in runoff

Numeric interval

0-0.63

SWAT simulations
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Parametrization

Node Description Type States method

0.63-1.19
1.19-1.75
>1.75

Seasonal amount of nitrogen loaded in the
runoff (kg/ha)

0-0.44
Seasonal amount of phosphorous loaded in .. 0.44-0.87 . .
the runoff (kg/ha) Numeric interval 0.87-1.30 SWAT simulations

>1.30

P in runoff

0-17031.20
. . . . L 17031.20-24401.92 .
Total N loading Seasonal nitrogen load in the river (kg) Numeric interval 21401.92-31772.64 Equation (Annex |, SM)

>31772.64

0-5405.76
. . . L. 5405.76-9710.91 .
Total P loading Seasonal phosphorous load in the river (kg) Numeric interval 9710.91-14016.07 Equation (Annex |, SM)

>14016.07

0-28047.50
i i 28047.50-48615.00
Seasonal loading of l(\lk(;; reaching the lagoon Numeric interval s SWAT simulations

>69182.50

Loading NOs™ lagoon

0-3224.52
i + i 224.52- .
Seasonal loading of l\(lli-:) reaching the lagoon Numeric interval 2009;_6382?13 SWAT simulations

>6794.17

Loading NH* lagoon

0-1978.90
Loading PO4* lagoon Seasonal loading of PO4* reaching the lagoon .. 1978.90-2954.00 . .
(kg) (kg) Numeric interval 2954.00-3929.10 SWAT simulations

>3929.10

As described in Table 3 for most nodes prior probability and conditional probability distributions have
been extrapolated directly from the observed frequencies of the corresponding variable. For nodes
associated with climatic variables (i.e. temperature, precipitation, evapotranspiration), probabilities have
been learned from the frequencies of observations of weather monitoring stations available in the case
study (Section 2.1. Probabilities distribution of hydrological variables (i.e. runoff, river flow, nutrients
loadings, N and P in the runoff), instead, have been calculated based on the frequency analysis of the
results of hydrological simulations performed with the SWAT model (Section 2.1). Finally, for nodes
describing agronomic practices (i.e. water needs, irrigation, P and N fertilizer application), due to the lack
of quantitative information in the case study, the CPs were calculated through expert elicitation and
applying empirical equations. An exhaustive description of assumption and information used to

parametrize CPs of such nodes can be found in Annex | (SM). Figure 111 Annex Il (SM) show the
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configuration of the BN for the Zero river basin once states, prior and conditional probabilities of each

node have been parametrized.

2.2.3 Model evaluation

A fundamental aspect in BNs developed to support risk assessment and decision making is model
evaluation. This steps is crucial as it allows to quantify the performance of the model and to assess the
achievement of the purposes for which it was designed (Kragt, 2009). According to Pollino and Henderson
(2010), two main form of model evaluation should be performed on BNs including the model predictive

accuracy assessment and sensitivity analysis.

2.2.3.1 Predictive accuracy and uncertainty analysis

Predictive accuracy refers to the quantitative evaluation of the BN results, comparing model predictions
with observed data. Within this study, the ability of the BN to correctly predict instances on independent
data was investigated comparingBN simulations with observations from water quality monitoring stations
available for the case study (Section 3.2). Accordingly, for each output node (i.e. NO3, NH4 and PO4
loadings) Correctly Classified Instances (CCl) were assessed as the percentage of cases correctly predicted
divided by the total number of cases, providing the measures of how many instances the model predicts
correctly when tested against know cases outcomes (i.e. observations). Error rates, used as evaluation
criteria, were then computed and depicted in the so-call confusion matrices as suggested in (Marcot,
2012).

In addition, the Receive Operating Characteristics (ROC) curves (Hand, 1997) were calculated using
HUGIN. ROC curves plot the percent true positive as a function of their complement, percent false

positive, and accordingly the area under the ROC curve (AUC), ranging from 0 to 1, can be used as metric

19



10

11

12

13

14

15

16

17

18

19

20

21

22

23

to judge the performance of predictive models where 1 denotes no error while 0.5 denotes totally random

models (Marcot, 2012).

Since the probability distribution of each node is a depiction of uncertainty itself, the uncertainty in BN

outputs was captured analyzing the Variance (02) and the Entropy (H(X)) of the probability distribution of

output nodes. While the Variance represent the dispersion or spread of the outcomes around the mean,
and can be quantitively expressed using the Standard Deviation (SD), the Entropy can be seen as a score
of a variable richness (i.e. how much information is within the data for that particular variable) (Pearl,
1988; Pollino et al., 2007).Entropy expresses the measures of the associated uncertainty of the random
process that a particular probability distribution describes (Molina et al., 2016) and is calculated using the
function:

H(x)=-3 P(x) log P(x) (Equation 3)
Reducing entropy by collecting information, in addition to the current knowledge about the variable x is
interpreted as reducing the uncertainty about the true state of x. Accordingly, the entropy function
enables an assessment of the level of uncertainty/certainty about the state of output node and of the

additional information required to specify a particular alternative.

2.2.3.2 Sensitivity analysis

Another form of evaluating the developed model consist in the sensitivity analysis which allow to test the
sensitivity of model outcomes to variations of model parameters (Kragt, 2009). In the context of BN
sensitivity analysis help in exploring the behaviour of the system and assessing the model sensitivity to
different input variables. Through sensitivity analysis, in fact, it is possible to detect how the variation in

the output of a model can be apportioned to different variations in the inputs and thus track relevant
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causal pathways between variables. Accordingly, sensitivity to parameters was analysed to identify the
most influential set of variables (i.e. those have the greatest influence on the model endpoints), as well
as to rank the relevance and strength of inputs nodes on model output (i.e. nutrients loadings).

The analysis was performed adopting an empirical approach in which the input parameters were modified
one by one and the related changes in the output parameters were observed (Coupé et al., 1999; Pollino
et al., 2007; Stelzenmdiller et al., 2010). Results of data-based evaluation and sensitivity analysis for the

developed BN are described and discussed in Sections 3.1.

2.2.4 Scenario analysis

Once the BN was trained, the resulting model can be used to analyse the performance of the system under
different scenarios. This allows to assess the relative changes in the posteriori probabilities of output
nodes (e.g. nutrient loadings) when altering the probability distribution of one or more input nodes (e.g.
climate change scenarios). A common manner to develop scenarios using BNs is to “set evidence” for one
or more nodes (e.g. assigning 100% probability for one state) and thereby, let the information propagating
through the nodes that are linked by CPTs in the network (Kragt, 2009).

In this study, we were interested in assessing the effect of future climate change scenarios on nutrient
loadings and therefore, five 30-year scenarios were developed, including a control period (1983-2012), a
mid-term (2041-2070) and long-term (2071-2100) scenarios under two different representative
concentration pathways (i.e. RCP4.5-RCP8.5).

Accordingly, for each climate change scenario the probability distribution of temperature and
precipitation was calculated based on the respective CMCC-CM/COSMO-CLM model simulations (Section

2.1.2) and set as evidence in the input nodes. Figure 12 Annex Il (SM) provide an example of scenario
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analysis using the BN while a quantitative discussion of the results of BN simulations with other climate

change scenarios is provided in Section 3.1.

3. Results
3.1 Model evaluation
3.1.1 Data-based evaluation and uncertainty analysis

As described in Section 2.2.3.1 a data-based evaluation was performed to assess the ability of the model
to correctly predict instances on independent dataset. Accordingly, BN predictions were tested against
observations from water quality monitoring stations available from ARPAV for the case study (Table 1,
Section 2.1) generating confusion matrixes representing the percentage of CCls and consequently the
error rates. Unfortunately, observations were available only for 2007-2012 and therefore the evaluation
was conducted only for this period.

. Actual ) Actual : Actual
Loading PO4 Loading NO3 Loading NH4

State 1 State 2 State 3 Stated State 1 State 2 State 3 State 4 State 1 State 2 State 3 Stated

State 1 10.0 0.0 0.0 State 1 - 20.0 0.0 0.0 State 1 H 5.6 22.2 5.6

State2 333 0.0 0.0 State2 200 - 0.0 0.0 State2  25.0 500 0.0 25.0

— 60
State3 0.0 0.0 - 0.0 State3 00 | 455 l @I‘};‘I 0.0 State3 0.0 0.0 - 0.0 .
Stated 0.0 0.0 0.0 - State4 0.0 0.0 0.0 - State4 0.0 0.0 0.0 -

Figure 4 Confusion matrixes for outputs nodes of BN model tested against observed dataset (2007-
2012). The cells lying on the leading diagonal of the matrices represent correctly predicted instances
while off diagonal are incorrect predictions. Colors bar represent classification rates in percentage.

Predicted
Predicted
Predicted

In addition, in order to make the outcome of the evaluation comparable, the probabilistic results have
been translated into deterministic form (i.e. numerical value) and expressed using the Expected Value of

the Probability distribution (Annex Ill, SM).
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Loading NO3 (kg) Loading NH4 (kg)
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Loading PO4 (kg) Winter Spring Summer  Autumn
- n 530505 419445 24267.8] 535307
; _— SD 145945 187617 154919 132665
» Sl v 617033 336567 25554.2] 588988
/’ SD 260822 156717 17353.8 205675
ot VY 2 n 31801 28215  1818.8 3697.8
1 TS~ 4 BN o 19519 16031 8321 21541
“'-“..N/ NH4 prcsT =
10X Obs H 3459.5 2327.2 2447.2 57218
" SD 19407 15986  1180.7 24820
- n 18341 14469 10124 2204.7
. SD 957.8 8798 2113 1300.0
. 18905 14818  1012.4 2461.6
e sD 957.8 696.3 211.3 1096.6

Figure 5 Expected Value of the probability distributions of nutrient loadings (NOs,, NH,*, P0,*) of observed data

(black) and of Bayesian Network outputs (red) for the period 2007-2012.

Overall, the BN was able to reproduce the observed nutrients dynamics with loadings closely replicated

for most seasons. The evaluation produced very good results phosphorous (PO43") while for ammonium
(NH4*) and nitrate (NOs’) the correlation between observed and predicted nutrient loadings was slightly
worse. Indeed, overall the BN was able to classify correctly the 87.50% of instances for PO43", the 63.64%
for NHs* and the 66.67% for NO3", when tested against the observed dataset (Figure 4).

BN overpredicts the decrease of ammonium and nitrate loadings between spring and summer while

underestimates the autumn loadings (Figure 5) for all the three nutrients species (i.e. PO43>", NH4*, NO3)

and the winter loadings of NH4* and NO; . Good performance of BN model was also confirmed when
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investigating ROC curves: also in this case PO present the better performance (ROC=0.88) followed by

NOs (ROC=0.81) and NH4* (ROC=0.73).

In general, observed and simulated probability distributions are similar and characterized by comparable
Variance and Standard Deviations (Figure 5). Autumn and winter distributions present a higher spread
around their expected value denoting a higher uncertainty in the outcome respect to summer.

Entropy results showed that “NOs” Loading” is the output node presenting the less informative probability
distribution (Figure V1, Annex V (SM)) being characterized by the highest total entropy values (i.e. 1.24)
and thus by the highest level of uncertainty. Higher value of entropy resulted for autumn season for
NHs*and PO43 loadings and for spring for NOs™ loadings while very low values of entropy are associated

with summer probabilities distributions for all nutrients.
Uncertainty analysis confirmed the linear correlation between variance and entropy: probabilities
distributions described by larger variance and SD are those of outputs nodes characterized by higher

entropy and larger uncertainty.

3.1.2 Sensitivity Analysis-ldentification of most influencing variables

Sensitivity analysis considering the sensitivity to parameters was performed to identify and prioritize
variables that have the greatest influence on model outputs (i.e. nutrients loadings). Based on the
empirical approach proposed by Pollino et al. (2007), each node was alternatively maximized by setting
the probability of its higher state equal to 100% and, consequently the relative change in each of the other
nodes was analysed. Magnitude of change was measured calculating the Percent Change of the Expected
Value of the probability distribution of output nodes (i.e. NOs’, NH4*, PO;* loadings) according with the
Equation IV.l (Annex IV (SM)) (Molina et al., 2016). Results (Table 1V1, Annex IV (SM)) have been

normalized into a 0-1 interval based on the minimum and maximum values obtained to make outcomes
24
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immediately understandable and comparable. Results, summarized in the Figure 6, allowed to develop a
ranking of input variables according with their relevance in the BN and consequently in the system. A

higher Percent Change value denotes that the analysed variable has a high influence on the output

variables (i.e. nutrient loadings), by contrary a lower value suggests a negligible effect.

NO3 Loading NH4 Loading PO4 Loading

= X E " o o - 1 1 4

- o 5 Py a & £ 3 2 -1
2 ] i -] - > 4 5 % 2 = =

2 4 = 2 = A £ 3 2 s - < 3

B

z

vange (0-1)

Figure 6 Graphical representation of the results of the sensitivity analysis, represented as the normalized (0-1)

percentage change of output variables (i.e. NO3, NH,*, PO,* loadings).

According to sensitivity analysis outcomes, NOs™ loadings are mainly driven by agronomic practices
including irrigation, fertilizers application and water needs of crops which, in turn, is strictly related to
crop potential evapotranspiration. All these variables, in fact, induced the higher percent change in the
NOs loading node ranging from the 0.46 (51% change, Table IV1, Annex IV (SM)) for irrigation to the 0.41
(46% change, Table IV1, Annex IV(SM)) for N fertilizer application. Also, the river flow moderately
influences the loading with 0.46 of percent change correspondent to 47% (TablelV1, Annex IV (SM)).

Despite not being directly linked through the network, irrigation is the variable that mostly influence the
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NOs loading. NOs™ is highly soluble in water and therefore is likely to be rapidly washed out by the water
applied trough irrigation and to be transported in dissolved form through the river when the river flow is
regular. The application of nitrogen fertilizers is usually higher during spring and summer, when higher
are also water needs for summer crops (i.e. maize). Consequently, it could explain the concomitant
influence of these agronomic variables in increasing NOs™ loadings.

The runoff is the variable that more strongly influence the NHa* loading, inducing a 0.68 % change with a
change of 76% of the Expected Value in the output node. Ammonium (NH4*) is not very soluble, however,
the portion adsorbed to soil colloids can be transported into surface water during water erosion process
induced by extreme runoff. River flow, being directly linked with the NH4* loading in the network, have a
moderate influence (i.e. 0.64 correspondent to 71% change (Table IV1, Annex IV (SM))

PO4* loading, instead, is strongly affected by the runoff, the loading of phosphorous into the runoff and
consequently, by the intensity of diffuse pollution sources. In particular, the runoff causes the maximum
variation (i.e. 1) corresponding with a percent change of 111% while the phosphorous in the runoff and
phosphorous diffuse sources contribute respectively for the 102% and 101% percent of change (Table IV1,
Annex IV, (SM)). High runoff intensity, mainly related to intense precipitation is recognized as one of the
main factor influencing the transport of phosphorous from agricultural areas to water bodies (Lundekvam

et al., 2003).

3.2 Quantitative assessment of seasonal nutrient loadings under climate change scenarios

Once trained and evaluated, the BN was used to perform scenario analysis to assess the effect of future
climate change on nutrients loadings and hydrological variables. This was done by forcing the model with

the 30-year seasonal distribution of temperature and precipitation for mid-term (2041-2070) and long-
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term (2071-2100) projections under two different representative concentration pathways (i.e. RCP4.5-
RCP8.5) according with the projections provided by the CMCC-CM/COSMO-CLM (Section 2.1).

Future projections of the CMCC-CM/COSMO-CLM show a general increase of temperatures in every
season with the probability of medium (i.e. 8.36-13.76 °C), high (13.76-19.21 °C) and very high (>19.21 °C)
temperature states that increase in all seasons and scenarios respect to the baseline 1983-2012 (Figure
7a). Maximum increases are reached by the RC8.5 2071-2100 scenario with a 76% probability of very high
temperature state in spring and 50% probability of medium temperature state in autumn.

Differently, for precipitations, projections show a general decrease in spring and summer (Figure 7a). The
probability of lower precipitation states (0-201 mm), in fact, increases across scenarios reaching the 90 %
in the RCP8.5 2071-2100 in summer with an increase of 50% respect to the baseline 1983 (i.e. 43%).
Despite the decrease, for scenario RCP8.5 2041-2070 in spring the probability of very high (i.e. >455 mm)
and high (i.e. 328-455) precipitation states is remarkable (i.e. 8% and 10% respectively), denoting an
increase in the probability of occurrence of extreme precipitation events during this season. In winter,
future scenarios project a decrease in precipitation in the mid-term period follow by an increase over
long-term and by the end of the century for both RCPs. The highest increase however will be registered
in autumn with the probability of higher precipitation states (i.e. 328-455, >455 mm) that increase in all

the scenarios and up to 30% in the long-term period for both RCPs.
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Figure 7 Probability distribution of temperature (a) and precipitation (b) for different seasons across climate

2

change scenarios
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1  Changes in precipitation and temperature associated with different climate change scenarios induce
2 changes in the main hydrological variables of the systems (e.g. river flow, runoff, N and P in the runoff).
3 Figure 8 show the changes in the probability distribution of river discharge and runoff respect to the
4 baseline (1983-2012) considering multiple climate change projections. In order to make the outcome of
5 each simulated scenarios more understandable, the probabilistic results (Figure 8, left) have been also
6  translated into deterministic form (i.e. numerical value) (Figure 8, right) and expressed using the Expected

7  Value of the Probability distribution (Annex Ill, (SM)).

10X IIIIIIII I I -_ ___IIIII a. RIVER DISCHARGE (I/s)

PROBABILITY

14 14582360 = 23603262 W > 3262 ACPA.S 2071-210 2071-216¢
I | "'__-_"'I.II b. RUNOFF (mm]

PROBABILITY
R

8
9 Figure 8 Probabilistic (left) and deterministic (right) results for river discharge (a) and runoff (b) for different
10 seasons across climate change scenarios

11 BN predictions show an increase in both the runoff and river discharge in autumn and a clear decrease in

12 spring and summer across different scenarios (Figure 8a, left).
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In winter, instead, for both variables, the BN predicts a general decrease in the mid-term period follow by
an increase over long-term and by the end of the century (Figure 8), strongly reflecting the changes in
precipitation distribution (Figure 7a). Despite revealing a similar behaviour over future scenarios, the
runoff presents the higher variation across all seasons respect to the baseline (Figure 8b, right) accordingly
with its stronger dependency on precipitations (Figure 7a).

Specifically, in spring the probability of the lowest states (i.e. 0-49.90 mm) increase from the 10% of the
baseline to the almost 50% in the in the baseline RCP8.5 long-term period (i.e. 2071-2100) while in
summer from 64% to 92%. In autumn, greater increase in the runoff is predicted for the RCP8.5 2041-
2070 scenario (Figure 8b, left) with a probability of 50% of being in the higher runoff states against the
20% of the baseline. For river discharge, instead, maximum increase is projected for the RCP8.5 2041-
2070 in autumn (Figure 8a) with the probability of the highest river discharge state (i.e. >3263 I/s)) that
increase from the 27% of the baseline (i.e. 1983-2012) to the 50% according with the maximum increase
of precipitation in the same scenario (Figure 7a).

The climate, runoff and river discharge control the capability of the river basin to export nutrients and
therefore their changes affect the amount of nutrients seasonally loaded in the lagoon.

The BN predicts changes in the seasonal distribution of NOs™ loadings respect to the current condition (i.e.
1983-2012) (Figure 9). Specifically, for future scenario it can be notice a shift in high NOs™ loadings with
greater loadings occurring in autumn rather than in winter (Figure 9a). Both RCP4.5 and RCP 8.5 scenarios
show a clear increase in autumn loads and a small decrease in both spring and summer loads. In autumn,
in fact, the probability of high (i.e. 90.15-130.40 kg/season) and very high (i.e. >130.40 kg/season) loadings
states increase across scenarios reaching respectively the 62% and 11% in the RCP4.5 2071-2100 scenario
and the 67% and 10% in the RCP8.5 2041-2100 scenario (Figure 9a). Accordingly, in autumn, the greatest
increase in NOs™ loadings is predicted under the long-term scenarios RCP4.5 2071-2100 and the medium-

term scenarios RCP8.5 2041-2070 (Figure 9a) in correspondence with the greater increase in river flow
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(Figure8a). In spring and summer greater reduction in NOs™ loading are predicted for scenario RCP8.5
2071-2100, the one also characterized by the greatest decrease in river flow (Figure 8a).

Regarding ammonium (i.e. NH4*), the projections show a slight decrease of loadings in spring and summer
and an increase in autumn (Figure8b). Specifically, in autumn the probability of low loading state
decreases gradually across scenarios followed by an increase in the probability of very high loadings (i.e.
>6794 kg/season), which reaches a 22% under the RCP8.5 2041-2070 (Figure 9b). High loadings occur in
correspondence with the highest projected runoff (Figure 8b), suggesting that this variable could play a
major role in controlling the transport of NH4".

Finally, seasonal changes in the phosphorous (i.e. PO4%) loading have been also observed (Figure 9c).
Results indicate a marked increase in autumn loads and a general decrease in spring and summer loads
across scenarios. An exception is for the scenario RCP8.5 2041-2070, for which a slight increase in spring
is predicted. In autumn, in fact, the probability of low loadings state decreases gradually followed by an
increase in the probability of high loadings which reach the 28% under the RCP8.5 2041-2070 (Figure 9c).
These changes can be attribute to the predicted increase in runoff (Figure 8b) caused by increasing in

precipitations in the autumn-winter period.
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Future nutrients loading scenarios developed through the BN, were also compared with those obtained
using the SWAT model, forced with the same climate change scenarios (i.e. 1983-2012, 2041-2070, 2070-
2100), in a previous analysis for the case study (for details see Pesce et al., (2018) (Table 1, Section 2.1)).
Specifically, the percentage of instances where BN and SWAT simulations agreed on resulting outcome
states resulted always more than 57% and 61% for PO4> and NH4 loadings respectively, while, for NOs’
loadings, the agreement was lower (i.e. between 58% and 44% depending on the scenarios). In general,
the best agreement can be found for medium term periods (i.e. 2041-2070) (Figure V5, Annex V (SM)).

Figures 10 compares the Expected Value of the probability distributions of PO4> of SWAT simulation
across different scenarios (blue) with BNs outputs (red) depicting a similar seasonal trend especially for

medium term periods (Figure 9).

Loading P04 (kg/season)-RCP4.5 2041-2070 Loading P04 (kg/season)-RCP4.5 2071-2100

Loading P04 (kg/season)-RCP8.5 2041-2070 Loading P04 (kg/season)-RCP8.5 2071-2100

Figure 10 Expected Value of the probability distributions of PO,* loading of SWAT model simulation across
different scenarios (blue) and of Bayesian Network outputs (red), obtained by fixing the states of precipitation
and temperature according with the same climate change projection.
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In general, major discrepancies between SWAT and BN simulation are found Winter and Autumn seasons

(Figure 10, Figure V2 Annex V (SM), Figure V3 Annex V (SM)) for all the nutrients species.

SWAT and BN seasonal probability distributions are similar and characterized by comparable Variance and
Standard Deviations (Figure V4, Annex V (SM)). While for PO4> and NH4* SD is quite small, for NOs
loadings and especially in autumn and winter distributions present a higher spread around their expected

value denoting a higher uncertainty in the outcome respect to summer and spring.

4. Discussion

Scenarios obtained through BN simulations confirms that climate change will drive changes in both the
hydrology and nutrient loadings as suggested by previous studies (Dunn et al., 2012; El-Khoury et al., 2015;
Shrestha et al., 2017; Whitehead et al., 2009).Specifically, results indicate a high probability of an increase
of freshwater discharge and nutrient loadings in autumn, and a slightly decrease in spring and summer
with respect to the current conditions. Others Authors (Panagopoulos et al., 2011; and Bouraoui et al.,
2002) reached similar conclusions analysing climate change and diffuse pollution effects at catchment
level respectively in Greece and United Kingdom.

Climate change scenarios for the Zero river basin indicate that increase in temperatures combined with
decreasing precipitation will increase evapotranspiration and consequently induce dry and low flow
conditions in summer. These effects could be significantly greater than those experiences at the current
conditions and could impact on the autumn hydrological responses of the basin.

Processes responsible for the reduced load in the summer season are mainly related with the increase of
temperature which enhance the mineralization of organic matter during dry period followed then by the

washing out of the accumulated nutrients during subsequent extreme precipitation events. This,
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combined with reduced summer flow rates, could explain the increase loads in autumn months as
suggested by others Authors (Whitehead et al., 2006 and Wilby et al., 2006).

Results also highlight that the processes governing nutrients losses from the basin to surface water under
climate change scenarios are different depending on nutrients species. In fact, while NOs™ loadings
resulted strongly dependent on river flow and temperature, runoff resulted the factors playing the
greatest role in driving NH4* loadings in the case study. In spring and summer, in fact, NO;" and NH4* are
commonly applied as fertilizers amendments. In dry and warm conditions NHa*, however, is readily
adsorbed to clay mineral and therefore is scarcely prone to movements. Its load is decreasing in summer
and spring under projected climate change while increase, in autumn, drive up by runoff and extreme
precipitation events. NOs;, on the other side, is highly soluble and thus suitable to be transported by
hydrological flow (Lapp et al., 1998). In autumn, the elevated temperature and wet conditions projected
will enhance nitrification process making NOs™ highly available. This, combined with the seasonal increase
in the river flow, could explain the great increase of NOs™ load during autumn season respect to current
scenarios. In the soil, soluble form of phosphorous (PO43) are mobile and can be transported by diffusion
or by surface water flow. At elevated temperature and in dry condition, however, PO43" is easily adsorbed
to clay particles or immobilized by organic matter accumulating in the upper soil layers (Lapp et al., 1998).
This characteristic makes phosphorous available for transport to surface water, primarily by surface runoff
(Weldehawaria, 2013). Accordingly, decrease of summer load can be attributed to the increase
temperature and decrease precipitation enhancing PO43" immobilization and the reduction of sediment
transport due to low flow conditions. In autumn, an increase in runoff, following the enrichment of the
topsoil of phosphorous occurred during the summer, increase PO4> transport and thus its loads in the
river. In addition, the projected increase of dry prolonged conditions in summer might speed up soil

erosion phenomena and, consequently, enhance the runoff of adsorbed mineral forms of phosphorus
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trough the basin leading to peak of PO43" load in autumn as soon as the drought breaks. Accordingly,

strong relationships between phosphorous and the runoff magnitude have been reported by (Molina-

Navarro et al., 2014; Shrestha et al., 2017) in Mediterranean catchments.

Conclusions

The integrated assessment based on BNs proposed provides a mean to capture the dependencies
between climate change and non-climatic drivers and their effect on water quality alterations. Simulated
scenarios show that seasonal changes in precipitation and temperature are likely to modify both the
hydrology and nutrient loadings of the Zero River. Both NH4*and PO43 loadings are mainly influenced by
changes in hydrological variables (i.e. runoff) while NOs™ loadings, despite being highly dependent on flow
conditions, are also influenced by agronomic practices and land use (i.e. irrigation, fertilization). These
findings confirm that climate change, will play a significant role in exacerbating the risk of water quality
degradation especially considering that most dramatic changes (e.g. increase in precipitation and runoff)
will happen during periods characterised by intensive agricultural activities (e.g. manure application in the
fields during the autumn). Scenarios developed through the BN resulted to be consistent with
observations from water quality monitoring stations and simulations produced by Pesce (2018) in the

same case study area and for the same climate change scenarios using a hydrological model (i.e. SWAT).

However, discrepancies between observed and simulated scenarios exist especially for NOs~ loadings
which is also the node characterized by highest level of uncertainty in the predicted outcomes in both
baseline and future scenarios: this lack of fit suggest where improvements in model structure and
accuracy of data collection should be oriented. Model performance, in fact, is strongly dependent on the

quality and accuracy of data used for BN training. Our sensitivity analysis suggests that uncertainty in NOs
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loadings could be attributed to low quality of the information used to train nodes related with agronomic
practices (i.e. fertilizer applications, irrigation), which are those mainly influencing NOs™ loadings. Due to
data constraints, in fact, fertilizer application and irrigation have been considered uniform across the
whole catchment while they both could vary considerably, both spatially and temporally, across the same
season. Improving the accuracy of input data throughout the catchment and involving a higher number
of experts in the model calibration would improve BN structure and its performance, reducing the

uncertainty of future simulations.

In conclusion, the BN approach proposed was able to represent the effect of climate change and land use
on water quality attributes in a policy-relevant manner, demonstrating the suitability of this method to
supplement traditional process-based models (e.g. SWAT) commonly applied in water resources
management, improving the treatment and communication of uncertainty and translating the
information provided by deterministic analysis in a way which is directly usable and understandable also

for non-expert users.

By identifying key components and processes affecting flow and water quality BNs could help in
identifying knowledge gaps that need to be addressed, selecting variables of the system that should be
targeted by adaptation strategies and the opportune typology of responses to implement. Being highly
flexible, as new data and projections become available the developed BN can be easily revised updating
evidences and uncertainty, thus increasing the robustness of the risk assessment outcomes (Failing et al.,

2004), and contributing to the adaptive management process (Pollino and Henderson, 2010).

Finally, land use (i.e. agricultural land extension, crop typologies distribution) and agricultural
management practices (i.e. amount of fertilizer application) changes, that in this BN version have been
kept constant over future scenarios, should be accounted in future model improvements to provide a

realist picture of future risks and allow their prioritization (Mantyka-Pringle et al., 2014). As this BN will
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keep continuously updated, upcoming advances will overtake these current technical limitations.
Moreover, further improvements of the proposed approach could consider the implementation of a
dynamic version of the BN (Molina et al., 2013) to better handle temporal dynamics and the development
of new scenarios, considering land use changes projections or assuming that specific management

measures have been put in place.
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Annex I-Information and assumptions used to calculate node’s states and probabilities in

the BN

Annex | provides an extensive description of the information and assumptions used to
characterize states, prior and conditional probabilities of nodes in the BN developed for the
Zero river basin (Figure 3). As described in Section 2.2.2, for most nodes, prior probability and
conditional probability distributions have been extrapolated directly from the frequencies of
observations or simulations available for the corresponding variables. For other nodes, they

have been calculated as follows.

N and P fertilizer application

Nodes related with the nitrogen and phosphorous fertilizer application, describe respectively
the amount (kg/ha) of P and N fertilizers applied for each season according to different crop
typology.

Accordingly, their parametrization was based on the seasonal needs of N and P for the three
main crops of the case study (i.e. Corn, Soy, Winter Wheat) (Table 11). This information was
obtained from both literature (Carpani and Giupponi, 2010) and interviews with experts of

Veneto Agricoltura (Bonetto, 2012; Regione Veneto, 2014).

Table 11 Seasonal amount of N and P fertilizers (kg/ha) applied to different crop typologies in the case study

Fertilizer application . .
Winter Sprin, Summer Autumn
(kg/ha) pring
N 0 50 230 0
Corn
P 0 120 0 0
Wi Wh N 50 100 0 30
inter eat P 0 0 0 100
So N 0 30 0 0
v P 0 100 0 0

Water needs

The node “Water needs” represent the depth (mm) of water needed from different crop s to
meet the water loss through evapotranspiration and thus the amount of water needed to
grow optimally. Accordingly, node states and probabilities have been calculated based on the

empirical Equation I.I proposed by FAO ((Brouwer and Heibloem, 1986) :

Water Needscrop = Etp x K¢ Equation I.1



where:

Water Needs crop is the crop water needs (mm/season);
K¢ is the crop factor;

Etp is the reference evapotranspiration (mm/season).

The Kc for the three types of crops, incorporating crop characteristics and effects of

evaporation from the soil, have been selected according with FAO (Allen et al., 1998) (Table

12).
Table 12 Kc for different crop typologies in the case study
Kc Winter Spring Summer Autumn
Corn 0 0.3 1.2 0.6
Winter Wheat 1.15 0.25 0 0.7
Soy 0 0.4 1 0.5
Irrigation

The node “Irrigation” represents the amount of water applied as artificial irrigation (mm) for
each season and, in the BN, it is directly dependent on the water needs and the effective
rainfall (i.e. the amount of precipitation that is stored in the soil and thus available for the
plant). Accordingly, its probability distribution has been calculated based on Equation LIl

(Brouwer and Heibloem, 1986):

Irrigation = Water needs rop-ER Equation 1.1l

where:

Irrigation is the amount of water applied as irrigation (mm/season);
Water Needs crop is the crop water needs (mm/season);
ER is the effective rainfall (mm/season).

Total N and P loadings

The nodes “Total N loadings” and “Total P loadings represent the total amount of N and P that
are discharged from the river basin into the river seasonally. They are the results of the sum
of the loadings apportioned to point and non-point sources and, accordingly, their probability

distributions were calculated based on Equation L1ll (here presented for N):

N total loading= N point sources+ N diffuse sources Equation L1



where:

N total loading is the loading of nitrogen in the river (kg/season);

N point sources is the amount of nitrogen coming from point sources (i.e. WWTPs and
Industrial discharges) (kg/season);

N diffuse sources is the amount of nitrogen coming from agricultural practices
(kg/seasons)



Annex lI-Bayesian Network Configurations
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Figure 111 Configuration of the Bayesian Network for the Zero river basin trained with the information for the period 2004-2013
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Figure 112 Configuration of the BN for the Zero river basin used for scenario analyisis simulating the nutrients loadings (kg/season) under the COSMO-CLM RCP8.5 2071-
2100 climate change scenarios and current land use in summer season
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Annex llI- Expected Value of the Probability distribution

The Expected Value of the probability distribution of a discrete random variable represents
the probability-weighted average of all possible values the variable can assume. In other
words, each possible value of random is multiplied by its probability of occurring, and the
resulting products are summed to produce the expected value. For a finite discrete random

variable X the Expected Value E(X) is defined as (Equation IlL.I):

E(X)= x1*p1 + x2*p2 + ----- + xk*pk Equation Il.I

where:
E(X) is the expected value of X;
x1,x2,...,xk are the finite number of outcomes of X;

pl, p2,...,pk are the probabilities associated to each outcome of X.

Within the BN developed for the case of study, however each variable is characterized by
multiple states (i.e. intervals) and therefore the Expected Value has been calculated as the
sum of the products of the intermediate value of each interval/state of the variable for its

associated probability (Equation IILII):

E(X)=11*p1 + 12*p2 + ----- + Ik*pk Equation IllL.1I

where:
E(X) is the expected value of X;
11,12,...,Ik are the intermediate value of each interval/state of X;
pl, p2,..,pk are the probabilities associated to each intermediate value of each interval

of X.

Table 1lI1 provide an example of the application of Equation Il.II for the calculus of the

Expected Value for the variable “Loading NO3 in the lagoon” of the BN.

E (Loading NO3) = 14023.67*0.05 + 38331.25*0.32+ 58898.75*0.55 + 83206.25*0.08 = 52284.6



Table 1111 Example of the computation on the Expected Value for the variable “Loading NO3 in the lagoon”

Variable (X) ’ Interval/State ‘ Probabilities (p) ‘ Intermediate value (1)
0-28047 0.05 14023.75

Loading NO3 in the 28047-48615 0.32 38331.25

lagoon 48615-69182 0.55 58898.75

69182-97230 0.08 83206.25



Annex IV Percent change

The Percent change is a measure of the change of a variable intensity, magnitude or extent
over time. In this case, it is used to measure the increase or decrease of the Expected value

of output nodes as consequence of the maximization of input nodes according with Equation
V.

New Expected Value

Percent change= (
Expect Value

) - 100) «100 Equation IV.]

where:

New Expected Value is the Expected Value of the output node after the maximization of
input nodes;
Expected Value is the initial Expected Value of the output node.

Results of the application of Equation V.l to all the nodes of the BN are provided in Table V1.

Table IV1 Percentage change (%) of output variables (i.e. NO3, NH,, PO, loadings)

NO3 37.0|29.149.2 500|517 13.2 |31.2|476|326| 0.0 (463 | 0.0 | 32.6 0.0 21.7 0.0 | 381 0.0

NH4 28.6|57.6(38.1(383|398| 242 |764|71.1| 05| 00 (36.1]| 00 | O.1 0.0 18.1 0.0 9.5 | 0.0
PO4 27.6 1929 |35.0(350]|37.4| 389 |111.6| 54.5| 0.0 | 102.0| 0.0 | 11.2| 0.0 | 100.1| 0.0 10.8 | 0.0 | 100.0




Annex V-Evaluation results

Winter Spring  Summer Autumn Total
Loading NO3 1.04 1.18 0.76 0.97 1.24
Loading NH4 1.09 0.92 0.2 1.18 0.98
Loading PO4 1.08 0.74 0.22 1.26 0.97

Figure V1 Uncertainty analysis showing seasonal and total entropy values for different BN output nodes
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Figure V2 Expected Value of the probability distributions of NO3 loading of SWAT model simulation across
different scenarios (blue) and of Bayesian Network outputs (red), obtained by fixing the states of precipitation
and temperature according with the same climate change projection



Loading NH4 (kg/season)-RCP4.5 2041-2070 Loading NH4 (kg/season)-RCP4.5 2071-2100

&000 000
% 5500
5000 5000
500 4500
00 4000
31500 3500
3000 3000
2500 2500
2000 2000
1500 1500
1000 1000
500 500
0 0

nter Spring Summer Autumn Winter Spring Summer Autumn

e SWAT === BN G SWAT i BN
Loading NH4 (kg/season)-RCP8.5 2041-2070 Loading NH4 (kg/season)-RCP8.5 2071-2100

6000 6000
5500 5500
S000 S000
00 4500
00 4000
3500 3500
000 3000
2500 2500
2000 2000
1500 1500
1000 1000
S00 S00
0 0

Winter Spring Summer Autumn Winter Sprng Summer Autumn

——SWAT =N ——SWAT =—8==BN

Figure V3 Expected Value of the probability distributions of NH, loading of SWAT model simulation across
different scenarios (blue) and of Bayesian Network outputs (red), obtained by fixing the states of precipitation
and temperature according with the same climate change projection.



Winter  Spring Summer Autumn

BN 11 1682.0 1435.4  1039.5  2484.5
RCPA.5 2041-2070 SD 1438.6 13235 1053.1  1840.8
SWAT 1} 2266.6/ 1268.1  1038.7  3804.8
SD 1802.4  1184.1 1007.1 1724.4
BN 1} 1758.5  1403.6  1040.5 2624.6
RCPA.5 2071-2100 SD 1490.4 1300.3 1054.4 1921.2
SWAT 1] 2610.3  1596.0 1382.4| 4296.1
PO4 SD 1800.6  1271.8 1460.0 1109.0
BN 11 1654.5 1510.6 1083.1  2844.0
RCPS.5 2041-2070 SD 1414.4 13915 1110.9 1867.5
1} 2136.6/ 1399.1  1038.7  3281.9

SWAT
SD 1462.5 1325.0 1007.1  1651.8
BN 1} 1920.7 1398.8  1046.9 2779.1
RCP8.5 2071-2100 SD 1609.1  1298.6 1062.5 1876.0
SWAT 1] 3559.6/ 1268.1 1071.2] 3592.1
SD 1895.4  1198.4  1158.1  1889.6
BN 11 3017.1  2737.6 1691.4  3856.2
RCPA.5 2041-2070 SD 2336.2 2193.6 1672.2  2425.8
SWAT 1} 3078.6  2339.7  1695.8  5460.3
SD 2741.3  1950.5 1645.6  2595.5
BN 1} 3119.0 2704.3  1692.5  3953.6
RCPA4.5 2071-2100 SD 2360.7 2185.3  1672.6  2445.7
SWAT 1] 2887.6  2196.7 1981.7  5686.8
NH4 SD 2420.0 1689.2 2194.0 3101.7
BN 11 2955.0 2830.0 1782.0 3976.0
RCP8.5 2041-2070 SD 2337.6  2225.7 17125 2457.0
SWAT 1} 2005.7/ 2208.2 1612.3] 3090.1
SD 1964.6  2166.1 1612.3  2158.2
BN 1} 33141 2677.6  1698.0 4034.8
RCP8.5 2071-2100 SD 23949 2164.1 1675.2  2411.9
SWAT 11 2482.7  1695.8  1612.3] 2661.1
SD 2182.8 1645.6  1612.3  2549.0
BN 1} 52284.6 39945.3 20861.2 55511.5
RCPA.5 2041-2070 SD 45422.4 35949.9 19025.5 47968.6
SWAT 1} 76724.3 48615.00 14834.0 52292.3
SD 30917.4 40520.9 14440.0 43681.7
BN 1} 52981.4 39283.1 20946.1 56615.1
RCPA4.5 2071-2100 SD 45896.6 35293.3 19076.4 48773.6
SWAT 11 79965.3 53227.2 16454.5 56094.2
NO3 SD 21717.3 39321.7 14995.3 44296.6
BN 1} 52074.1 41172.9 21803.7 56176.7
RCP8.5 2041-2070 SD 45254.3 36474.0 20376.6 49709.5
SWAT 1} 65505.4 38518.2 14834.0 38642.8
SD 49307.9 24585.0 14440.0 21960.9
BN 1} 54281.0 39127.7 20509.7 55642.9
RCPS.5 2071-2100 SD 46833.4 35271.9 19184.6 49243.5
SWAT 1} 72922.3 41260.5 14023.8 38268.8

SD 34459.5 31954.3 14023.8 29133.8

Figure V4 Expected Value (1) and Standard Deviation (SD) of the probability distributions of SWAT and BN
simulation across different scenarios.



Loading PO4
RCP 4.5 2041-2070 68.3 RCP 8.5 2041-2070 70.0
RCP 4.52071-2100 | 60.0 | RCP 8.52071-2100 | 56.7
Loading NH4
RCP 4.52041-2070 | 82.5| RCP8.52041-2070 | 70.0
RCP 4.5 2071-2100 75.8 RCP 8.5 2071-2100 60.8
Loading NO3
RCP 4.5 2041-2070 58.3 RCP 8.5 2041-2070 56.7

RCP 4.52071-2100 | 49.2 RCP 8.5 2071-2100 | 44.1
Figure V5 Percentages (%) of instance where SWAT and BN simulations agree on predicted states for
different outputs nodes




Annex VI-Detail description of the assessmen of COSMO-CLM performances

An assessment of COSMO-CLM performances for historical simulations has been carried out for the
period 1973-2000 using different set of independent observed data as extensively described in
(Bucchignani et al., 2016; Cattaneo et al., 2012).

First, a model evaluation for the whole Italian domain was performed using the E-OBS dataset
(Haylock et al., 2008), an European daily high-resolution (0.25°) gridded dataset for precipitation and
temperature covering the period 1950-2012 and representing a valuable standard reference dataset
for climate research and is widely used for RCM evaluation over Europe. Despite providing huge
advantages in term of spatial and temporal coverage, this dataset is affected by a number of potential
inaccuracies: typical errors include incorrect station location and inhomogeneities in the station time
series. Accordingly, additional high-resolution datasets were also considered in order to perform more
accurate validation in the north-east part of the Italian domain (where case study area is located)
including the gridded EURO4M-APGD dataset (Isotta et al., 2014) covering Northern Italy (resolution
5 km, daily time resolution, period 1971-2008) and a collections of precipitation station data provided
by regional ARPAs and by the Civil Protection for the Veneto region (period 1980-2000).

Integrated results considering all the aforementioned observational dataset agree in confirming that
COSMO-CLM simulations allow a satisfactory representation of the Italian climate with biases being
lower than values that affect ‘state-of-the-art’ regional climate simulations (i.e. EURO-CORDEX data
at 0.11°) with a high detail level.

Specifically, values of mean temperature show a general good agreement with observations: seasonal
evaluation against E-OBS displays a negative bias in winter and a positive one in summer. However,
comparison with regional datasets confirmed that part of the bias might be due to the low quality of
E-OBS and furthermore it was shown that the resolution increase produces a good bias reduction.
With regard to precipitation, the model highlighted good agreement with accurate regional datasets,
but improvements with a resolution increase are visible only in some areas.

For more details about the validation procedure and results please refer to Bucchignani et al. (2016)
and Cattaneo et al. (2012).

References:

Allen, R.G,, Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration-Guidelines for
computing crop water requirements-FAQO Irrigation and drainage paper 56. FAO, Rome
300, DO5109.

Bonetto, C. and L.F., 2012. Gestione Fertilizzanti E Contributi Tecnici Sulla Problematica Dei
Nitrati. 2012.

Brouwer, C., Heibloem, M., 1986. Irrigation water management: irrigation water needs.
Train. Man. 3.

Bucchignani, E., Montesarchio, M., Zollo, A.L., Mercogliano, P., 2016. High-resolution climate
simulations with COSMO-CLM over ltaly: performance evaluation and climate
projections for the 21st century. Int. J. Climatol. 36, 735-756.

Carpani, M., Giupponi, C., 2010. Construction of a Bayesian Network for the Assessment of
Agri-Environmental Measures—The Case Study of the Venice Lagoon Watershed. Ital. J.
Agron. 5, 265-274.



Cattaneo, L., Zollo, A.L., Bucchignani, E., Montesarchio, M., Manzi, M.P., Mercogliano, P.,
2012. Assessment of cosmo-clm performances over mediterranean area.

Haylock, M.R., Hofstra, N., Tank, A.M.G.K., Klok, E.J., Jones, P.D., New, M., 2008. A European
daily high-resolution gridded data set of surface temperature and precipitation for
1950-2006. J. Geophys. Res. Atmos. 113.

Isotta, F.A., Frei, C., Weilguni, V., Percec Tadi¢, M., Lassegues, P., Rudolf, B., Pavan, V.,
Cacciamani, C., Antolini, G., Ratto, S.M., 2014. The climate of daily precipitation in the
Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-
gauge data. Int. J. Climatol. 34, 1657-1675.

Regione Veneto, 2014. Disciplinari Di Produzione Integrata (Tecniche Agronomiche).



