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Abstract

The performance of shipping companies greatly depends on reduced berthing times. The

trend towards bigger ships and shorter berthing times places severe stress on container ter-

minals, which cannot simply increase the available cranes indefinitely. Therefore, the focus is

on optimizing existing resources. An effective way of speeding up the loading/unloading op-

erations of ships at the container terminal is to use the idle time before the arrival of a ship for

sorting the stored containers in advance. The pre-marshalling problem consists in rearrang-

ing the containers placed in a bay in the order in which they will be required later, looking

for a sequence with the minimum number of moves. With sorted bays, loading/unloading

operations are significantly faster, as there is no longer a need to make unproductive moves

in the bays once ships are berthed. In this paper, we address the pre-marshalling problem

by developing and testing integer linear programming models. Two alternative families of

models are proposed, as well as an iterative solution procedure that does not depend on a

difficult to obtain upper bound. An extensive computational analysis has been carried out

over several well-known datasets from the literature. This analysis has allowed us to test

the performance of the models, and to conclude that the performance of the best proposed

model is superior to that of previously published alternatives.
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1. Introduction

Nowadays, international maritime transport is considered to be the lifeblood of world

trade, with over 80% of freight worldwide being carried by sea. In 2016, according to

UNCTAD (2017), 16.7% of the total tonnage was transported on container ships, which

carry all their load in standard-size intermodal containers. This enables goods to be moved

from manufacturers to customers using different modes of transport (ships, railroads, trucks)

with standardized handling equipments that makes re-handling unnecessary.

The growth in container shipping has put strong pressure on container terminals, whose

main functions are the transshipment of containers from one transportation mode to an-

other and their temporary storage. Due to the fierce competition in this sector, container

terminals have to continuously improve their performance. Efficiency concerns are focused

on minimizing the berthing time of ships and providing adequate infrastructure for all ship

types and sizes. To avoid long berthing times, terminals can use the time before the arrival

of a ship, when the workload at the terminal is at a minimum, to sort the containers located

in the yard, so as to reduce later container retrieval times.

Storage yards occupy a large space at terminals, where inbound containers are stored

before being transferred to the hinterland and outbound containers are also stored before

being loaded onto ships. Basically, this area should ensure rapid loading and unloading of

ships, and it has become the bottleneck of container port terminals. Hence, its management

is very important for the terminals to achieve a competitive advantage. It is usually divided

into several blocks, which are composed of parallel bays. A bay is formed by a set of

stacks where containers are piled up vertically without exceeding a maximum height. This

maximum height varies between terminals depending on the type of yard cranes used, but

for safety reasons it rarely exceeds 4-5 tiers. Only in ports like Hong Kong, where space is

at a premium, are stacks higher (up to 12 container tiers). As a consequence of stacking,

to reach a specific container it may be necessary to rehandle containers on top of it. When
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containers need to be relocated, it must also be decided to which stack each one is moved.

If the stowage planning of the ship is known beforehand, two types of activities in the

container yard can be carried out before the ship arrives, re-marshalling and pre-marshalling.

The aim in both cases is to relocate containers in order to reduce the number of relocations

while the ship is being loaded, and therefore its berthing time. Their main feature is that no

containers leave the yard, that is, containers are not allowed to be temporarily stored outside

the yard. On the one hand, the re-marshalling problem consists of rearranging containers

into bays within the same block. On the other, the pre-marshalling problem consists of

rearranging containers within the same bay.

The subject of this study is the pre-marshalling problem. Given an initial bay configura-

tion, the pre-marshalling problem looks for a working sequence that minimizes the number

of moves required to obtain a final configuration in which containers will be located in the

bay having no blocking containers. This can lead to drastic reductions in loading time which

result in shorter berthing times, thus helping terminals to achieve higher efficiency.

In this paper, we focus on mathematical formulations for solving the pre-marshalling

problem. Besides the conceptual advantage of providing a deeper understanding of the

problem, integer models are useful for three main reasons: they are easy to implement

by practitioners, they can be solved by commercial solvers, which have shown a dramatic

increase in performance in the last decades, often by five or even more orders of magnitude

(Bixby, 2002), and are constantly improving at a constant rate, and they are very flexible,

allowing constraints to be added or removed to meet the requirements of the specific problem

being solved. Other sophisticated exacts methods can be more efficient nowadays, but are

difficult to implement, results are hard to reproduce without access to the source code,

cannot take advantage of the advances obtained by commercial solvers, to the point that

they might even be surpassed in performance by new solver versions, and are tailored to the

problem, making it difficult to accommodate new constraints.

Our study of integer models for the pre-marshalling problem has two phases. In a

first phase, we develop a series of models in which, besides the variables describing the

configuration of the bay, the moves required to rearrange the bay are described by just one
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type of variables. The developed models are increasingly complex, improving the relationship

of the variables and the linear relaxation at the expense of enlarging the set of variables.

In a second phase, variables describing the moves are split into two types, one indicating

the origin of the move and another indicating the destination of the move. This alternative

strategy is shown to be much more efficient, in terms of the number of optimal solutions

obtained and running times, in an extensive computational study on several datasets from

the literature. The computational study also shows that the best of these new models

outperforms the previously published models proposed by Lee and Hsu (2007), and the

recent model presented by de Melo da Silva et al. (2018).

The remainder of the paper is as follows. Section 2 reviews the relevant literature for

the pre-marshalling problem. A formal description of the problem is presented in Section

3. Sections 4 and 5 describe the developed mathematical models and Section 6 the iterative

procedure used to solve them. Models are thoroughly computationally tested and compared

with existing models in Section 7. Finally, Section 8 considers possible extensions of the

models to cope with more realistic conditions and Section 9 highlights the conclusions and

suggests future lines of research.

2. Previous work

Achieving a good yard plan has become a primary objective of many container port

terminals. This is the main reason why academic work in this field has been intense in recent

years. Lehnfeld and Knust (2014) identified various problems in storage areas arranged in

stacks, including pre-marshalling, re-marshalling, and relocation problems. All of them

are post-stacking problems that deal with minimizing the future loading time of the ship.

While in the pre-marshalling and re-marshalling problems the number of containers remains

constant during the reshuffling, in the relocation problem the number of containers decreases,

i.e., containers are retrieved at the same time. In other words, the relocation problem deals

with the management of the bay once the ship has berthed and while it is being loaded.

The three problems are surveyed by Caserta et al. (2011a). The re-marshalling problem is
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also studied by Kang et al. (2005); Kang et al. (2006); Choe et al. (2011), and the relocation

problem by Caserta et al. (2011b); Caserta et al. (2012); Petering and Hussein (2013).

Several papers related to pre-marshalling propose heuristic methods for solving the prob-

lem. Lee and Chao (2009) present a neighborhood search process based on a combination

of improvement moves. An extension of this research is proposed by Huang and Lin (2012),

who also include another version of the pre-marshalling problem in which at the end of the

reshuffling each type of container should be located in pre-defined cells. Hence, the objec-

tive is to find the minimum sequence of moves for sorting the containers in a specific way.

Caserta and Voß (2009) propose a metaheuristic approach using the paradigm of the corridor

method developed by Sniedovich and Voß (2006). Bortfeldt and Forster (2012) develop a

tree search procedure and an algorithm to obtain a lower bound for the problem. In addition

to a multi-start technique for the problem using the heuristic called Lowest Priority First

(LPFH), Expósito-Izquierdo et al. (2012) propose an instance generator able to construct in-

stances with different difficulty levels. More recently, Jovanovic et al. (2017) have presented

an extension of the LPFH whose main idea is to provide different heuristics for each stage of

the initial algorithm and mix them in a multi-heuristic approach. Target-guided algorithms

are proposed by Wang et al. (2015) and by Wang et al. (2017). Wang et al. (2015) also

present an extension of the problem that considers a dummy stack next to the bay where

containers can be temporarily stored during the reshuffling of the bay. Finally, a genetic

approach is proposed by Gheith et al. (2016) and a biased random-key genetic method by

Hottung and Tierney (2016).

A significantly smaller group of papers address the problem using exact methods. An A*

algorithm is presented by Expósito-Izquierdo et al. (2012) in which a simple lower bound,

counting the number of blocking containers, is used. Tierney et al. (2016) present an A*

technique that includes branching rules, symmetry breaking, and the tighter lower bound

proposed by Bortfeldt and Forster (2012). Zhang et al. (2015) propose a branch and bound

whose branching procedure is guided by a heuristic algorithm and Tanaka and Tierney (2018)

propose an improvement branch and bound algorithm that is also guided by a heuristic algo-

rithm and a tighter lower bound together with dominance rules that allow a greater number
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of branches to be cut, obtaining better results. A different exact method is introduced by

van Brink and van der Zwaan (2014) who develop a branch and price approach based on

column generation.

Despite the recent increase in the number of contributions related to the pre-marshalling

problem, to the best of our knowledge there are only two papers that provide a mathematical

formulation. Lee and Hsu (2007) developed an integer programming model based on a

multi-commodity flow formulation. In this model, time is discretized into time segments

separated by time points. The slots in the bay are represented by nodes in the network and

the possible moves for each container by arcs, with the moves of containers in each time

segment being represented by flows in the network. They illustrate the behaviour of their

model on one layout, including several extensions of the basic formulation. More recently,

de Melo da Silva et al. (2018) propose a unified model for the pre-marshalling and the

container relocation problem (CRP). They also discretize time into time segments separated

by time points and consider two types of variables: variables describing the state of the bay

and variables defining the movements. In this paper, we study the performance and limits

of the mathematical formulations for the pre-marshalling problem through an exhaustive

computational analysis of the models proposed by Lee and Hsu (2007), by de Melo da Silva

et al. (2018), and of the several formulations we have developed.

3. Description of the problem

The pre-marshalling problem considered here consists in determining a minimal sequence

of moves to transform the initial layout of a bay into a final layout without containers that

block the removal of others. All containers are of the same size and the crane can only move

one container at a time, without considering the distance between stacks.

The bay can be seen as an H × S matrix, where H represents the highest tier of stacks

and S the number of stacks. Obviously, the bay can accommodate at most H×S containers.

However, if the bay is at 100% occupancy, intra-bay moves of containers are not possible,

so the occupancy level will always be lower than the total capacity. For each container c

its position is described by the tuple (s, h) where s ∈ {1, . . . , S} and h ∈ {1, . . . , H} are
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respectively the stack and the tier in which container c is currently placed. Note that pair

(1, 1) refers to the container located on the bottom tier of the leftmost stack. A number

is assigned to each container indicating the order in which it has to be retrieved in order

to be loaded onto a ship (export containers) or a truck or train (import containers). In

this way, each container c located in some position (s, h) is assigned a priority pc such that

pc ∈ {1, . . . , P}, 1 being the highest priority and P the lowest priority. It is possible that

more than one container may share the same priority, that is, within a set of containers with

the same priority the loading sequence is irrelevant. We denote np as the total number of

containers of priority p in the bay.

Given an initial layout of the bay, if there is a container c in position (s, h) and there is

a container c′ in a higher tier h′ > h on the same stack s (container c′ is located in position

(s, h′)), such that pc′ > pc, this container and all the containers placed above it are referred

to as blocking containers and they will need to be moved so as to achieve a correct final

layout. Pre-marshalling looks for a final layout without any blocking containers.

(2, 1)

6 11 12 9

5 3 10 1

4 7 2

8

(a)

(3, 2)

6 11 12 9

5 10 1

4 7 2

3 8

(b)

(4, 2)

6 11 12 9

5 8 10 1

4 7 2

3

(c)

6 11 12 9

5 8 10 1

4 2 7

3

(d)

Figure 1: Example solution to the pre-marshalling problem.

A solution is a sequence of moves of the form (s, k) : s 6= k ∈ {1, . . . , S} where s is the

origin stack to which the topmost container to be moved belongs and k is the destination

stack where the container will also be placed at the top. An empty column will never be

an origin and a full column will never be a destination. Figure 1a shows a bay with 4 tiers,

4 stacks, and 12 containers. Each container is represented by a box and the number in the

box is its priority. This layout is not ordered in such a way that containers can be retrieved

without any reshuffling. Containers with priorities 2 and 8 block containers with higher
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priorities. An optimal solution for this instance is the sequence of moves (2, 1), (3, 2), (4, 2).

Figures 1b and 1c show the intermediate layouts associated with a solution that reaches the

final layout of Figure 1d without any blocking container.

4. Integer programming models

In our models, time is discretized into time segments separated by T time points with

the assumption that at most one move can be made in each time segment. Each time point

corresponds to a layout of the bay. If the layout at time t is different from that at time t+1,

a move has taken place in the time segment between t and t + 1 with t ∈ {1, . . . , T}. The

first time point corresponds to the initial layout of the bay, and at the last time point T the

bay should be arranged, needing no further moves. The value of T has to be strictly greater

than the optimal number of moves necessary to order the bay. Otherwise, the problem will

be unfeasible. The way in which we set this value is discussed in Section 6.

In this section we describe a first set of integer models, based on the use of two types of

variables. Variables x describe the layout of the bay at each period and variables y describe

the move of one container from one stack to another, defining the transition from one time

point to the next. Different ways of defining variables y define different models. According

to the notation proposed in Section 3, the total number of stacks in the bay is represented by

S and the slots in each stack will be numbered from 1 to H, H being the highest tier (equal

for all the stacks in the bay). In the same way, priorities are numbered from 1 (the highest

priority) to P (the lowest priority). We consider sets S = {1, . . . , S}, H = {1, . . . , H},

P = {1, . . . , P}, and T = {1, . . . , T} to simplify notation.

4.1. An integer linear model with 3-indexed y variables (IP3)

The two types of binary variables involved in the first integer programming model (IP3 )

are:

xshpt =

 1, If at time point t there is a container in stack s, tier h, whose priority is p

0, Otherwise

∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T
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yskt =

 1, If in the time segment between t and t+ 1 a move from stack s to k takes place

0, Otherwise

∀s ∈ S; ∀k ∈ S \ {s}; ∀t ∈ T \ {T};

Variables yskt represent the simplest way of describing a move between stacks at a given

time segment.

The initial layout of the bay is given. Then, we initialize variables xshct at time point

t = 1 ∀s, h, c. Thus, they are parameters of the model. The pre-marshalling problem can

be formulated in the IP3 model as follows:

Min
S∑

s=1

S∑
k=1
k 6=s

T−1∑
t=1

yskt (1)

S∑
s=1

H∑
h=1

xshpt = np ∀p ∈ P ; ∀t ∈ T ; (2)

S∑
s=1

S∑
k=1
k 6=s

yskt ≤ 1 ∀t ∈ T \ {T} (3)

S∑
s=1

S∑
k=1
k 6=s

yskt+1 ≤
S∑

s=1

S∑
k=1
k 6=s

yskt ∀t ∈ T \ {T − 1, T}; (4)

P∑
p=1

xs1pt ≤ 1 ∀s ∈ S; ∀t ∈ T \ {1}; (5)

P∑
p=1

xsh+1pt ≤
P∑

p=1

xshpt ∀s ∈ S; ∀h ∈ H \ {H}; ∀t ∈ T \ {1, T}; ; (6)

xshpt +
P∑

k=1

xsh+1kt ≤ 1 + xshpt+1 ∀s ∈ S; ∀h ∈ H \ {H}; (7)

xshpt ≤ xshpt+1 +
S∑

k=1
k 6=s

yskt ∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T \ {T}; (8)

xshpt+1 ≤ xshpt +
S∑

k=1
k 6=s

ykst ∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T \ {T} (9)
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P∑
k=p

xsh+1kT ≤
P∑

k=p

xshkT ∀s ∈ S; ∀h ∈ H \ {H}; ∀p ∈ P ; (10)

S∑
s=1
s6=k

yskt +
S∑

s=1
s 6=k

ykst+1 ≤ 1 ∀k ∈ S; ∀t ∈ T \ {T} (11)

xshpt ∈ {0, 1}, yskt ∈ R+ ∀s, k ∈ S : s 6= k; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T ; (12)

The objective function (1) minimizes the total number of moves between stacks necessary

to arrange the bay. The number of containers of each priority remains constant over time by

constraints (2). Constraints (3) force each time segment to have at most one move. By (4),

moves are assigned to the earliest possible times, so if there are no moves in the time segment

between t and t+ 1, there will be no moves in any later time segment. The assumption that

each slot can contain at most one container is forced by constraints (5) for the lowest tier.

For the remaining tiers, this assumption is forced by constraints (6) and (7). Constraints (6)

also ensure that if tier h+ 1 of a stack s is occupied, all the other slots in lower tiers of stack

s are also occupied. In addition, constraints (7) ensure that containers that do not occupy

the topmost position at a stack cannot be moved between two successive time points. In

order to control topmost containers, we have constraints (8) and (9). On the one hand, if

there was a container with priority p in slot (s, h) at time point t but it is not there at time

point t+ 1, there has been a move whose origin was stack s in the time segment between t

and t+ 1 (constraints (8)). On the other hand, if there is a container with priority p in slot

(s, h) at time point t+ 1 but it was not there at time point t, there has been a move whose

destination was stack s in the time segment between t and t+ 1 (constraints (9)). The bay

is already arranged at time T by constraint (10), otherwise the problem is infeasible.

If in the time segment between t and t+ 1 there is a move from stack s to stack k, in the

following time segment there should not be a move from stack k to another stack r because

these moves are dominated by a single move from s to r. An example can be seen in Figure

2, in which the pair of moves (3, 4), (4, 1) leads to the same layout as the single move (3, 1).

Constraints (11) avoid these cases, which are known in the literature as transitive moves

(Tierney et al. (2016)).
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(3, 4)

(3, 1)

(4, 1)

6 1 3 9

5 7 4

2
6 1 3 9

5 7 4 2

6 1 3 9

5 7 4

2

Figure 2: Transitive moves

Transitive moves that are not directly successive can be avoided by adding constraints

(13). Nevertheless, these relations have more theoretical than practical interest because of

the large number of constraints involved, which render them impractical and therefore are

not included in the model.

yskt +
t′−1∑
i=1

yuvt+i +
S∑

r=1
r/∈{k,u,v}

ykrt+t′ ≤ t′ ∀s ∈ S; ∀k ∈ S \ {s}; (13)

∀u ∈ S \ {s, k}; ∀v ∈ S \ {s, k, u};

∀t ∈ T \ {T − 1, T}; ∀t′ ∈ T \ {1, T − t+ 1, . . . , T};

Although in the definition of variables xshpt and yskt we have declared them as binary

variables, only variables xshpt have to be binary. If these variables, defining the configuration

of the bay at each period, only take 0 − 1 values, variables yskt will also take 0 − 1 values,

even if they are declared as non-negative real variables. The proof is provided in Proposition

1.

Proposition 1. The integrality of yskt variables is inherited from the structure of IP3 model.

Proof. If there is no move at time point t, variables xshpt = xshpt+1 for all s, h, p. In this

case, yskt variables will be zero for all s, k, as the objective function minimizes their sum

and they are declared as positive real numbers.

Otherwise, the move at time point t will involve a container of a given priority p1, initially

placed at stack s1 and tier h1, being moved to stack s2, tier h2. Considering the origin of
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the move: xs1h1p1t = 1 and xs1h1p1t+1 = 0. Since yskt ∈ R+, by constraints (3) and (8) we

obtain the following inequalities:

1
(8)

≤
S∑

k=1
k 6=s1

ys1kt ≤
S∑

k=1
k 6=s1

ys1kt +
S∑

s=1
s 6=s1

S∑
k=1
k 6=s

yskt =
S∑

s=1

S∑
k=1
k 6=s

yskt
(3)

≤ 1 =⇒
S∑

s=1
s 6=s1

S∑
k=1
k 6=s

yskt = 0 (14)

Considering now the destination of the move: xs2h2p1t = 0 and xs2h2p1t+1 = 1. By

constraints (3) and (9):

1
(3)(9)
=

S∑
s=1
s 6=s2

yss2t =
S∑

s=1
s 6=s1
s 6=s2

yss2t + ys1s2t (15)

We can decompose the final equation of expression (14) as follows:

0 =
S∑

s=1
s 6=s1

S∑
k=1
k 6=s

yskt =
S∑

s=1
s 6=s1

S∑
k=1
k 6=s
k 6=s2

yskt +
S∑

s=1
s 6=s1
s 6=s2

yss2t =⇒
S∑

s=1
s 6=s1
s 6=s2

yss2t = 0 =⇒ ys1s2t = 1

If there is a move from stack s1 to stack s2 and variables xskpt take binary variables,

ys1s2t = 1 and the remaining yskt = 0.

4.2. An integer programming model with 4-indexed y variables (IP4)

Variables yskt of Model IP3 do not control the priority of the container being moved at

each time segment. Model IP3 is correct and produces feasible solutions, but in its linear

relaxation the relationship between variables xshpt and yskt is very weak, producing bad lower

bounds and long solution times. One way of strengthening the x−y relationship is to define

y variables with a fourth index indicating the priority of the container being moved. A new

model, IP4, can be defined using the variables:

xshpt =

 1, if at time point t there is a container in the stack s, tier h, whose priority is p

0, otherwise

∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T

yskpt =


1, if in the segment between t and t+ 1, a container with priority p

is moved from stack s to k

0, otherwise

∀s ∈ S; ∀k ∈ S \ {s}; ∀p ∈ P ; ∀t ∈ T \ {T};
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Variables ysk1T−1 turn into parameters because containers with priority 1 will not be

involved in the last move, hence ysk1T−1 = 0,∀s, k. The objective function and constraints

of model IP4 are very similar to that of model IP3, considering that each variable yskt is now

decomposed into P variables yskpt. Constraints (8) and (9) are substituted by constraints:

xshpt ≤ xshpt+1 +
S∑

k=1
k 6=s

yskpt ∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T \ {T}; (16)

xshpt+1 ≤ xshpt +
S∑

k=1
k 6=s

ykspt ∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T \ {T}; (17)

in which variables xshpt and yskpt correspond now to containers with the same priority p,

making their relationship tighter. Besides that, we can now avoid same priority symmetries

by adding constraints (18).

S∑
k=1
k 6=s

yskpt +
S∑

k=1
k 6=s

ykspt+1 ≤ 1 ∀s ∈ S; ∀p ∈ P ; ∀t ∈ T \ {T − 1, T}; (18)

Rules regarding same priority symmetries are introduced in Tanaka and Tierney (2018).

If in the time segment between t and t+ 1, a container of priority p is moved from stack s,

in the following time segment there should not be a move of a container with priority p to

that stack s. An example can be seen in Figure 3, in which the pair of moves (1, 4), (2, 1)

lead to the same layout as the single move (2, 4).

(1, 4)

(2, 4)

(2, 1)

6 1 2 5

4 4 1

4 1
6 1 2 5

4 4 1 4

1

6 1 2 5

4 41

4 1

Figure 3: Same group symmetries

Same priority symmetries can be extended to cases in which the stacks are not used during

an intermediate sequence by adding constraints (19). The interest of these constraints is
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just theoretical as in the general case of transitive moves.

yskpt +
P∑

g=1

t′−1∑
i=1

yuvgt+i +
S∑

r=1
r/∈{s,u,v}

yrspt+t′ ≤ t′ ∀s ∈ S; ∀k ∈ S \ {s}; (19)

∀u ∈ S \ {s, k}; ∀v ∈ S \ {s, k, u};

∀t ∈ T \ {T}; ∀t′ ∈ T \ {1, T − t+ 1, . . . , T};

∀p ∈ P ;

4.3. An integer programming model with 5-indexed y variables (IP5)

The relationship between variables xshpt, describing the bay configuration at time t, and

variables yskt, describing the moves in the IP3 model, can be further strengthened if variables

yskt include not only the origin and destination stacks of the move, but also the origin and

destination tiers. A new model, IP5, can be defined using the variables:

xshpt =

 1, If at time point t there is a container in the stack s, tier h, whose priority is p;

0, Otherwise;

∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T ;

yshket =

 1, If in the time segment between t and t+ 1, a move from (s, h) to (k, e) takes place;

0, Otherwise;

∀s ∈ S; ∀k ∈ S \ {s}; ∀h, e ∈ H; ∀t ∈ T \ {T};

An optimal sequence will not include moves from the lowest tier in the last time segment,

hence ys1keT−1 = 0,∀s, k, e. Taking as a reference the initial model IP3, each variable yskt is

now decomposed into H2 variables yshket, where h is the tier in which the container is before

the move and e the tier after the move.

Constraints (5) can be strengthened by adding the moves to the lowest tier (constraints

20). In this way, each slot can contain at most one container and if the slot is occupied in

the time point t, it cannot receive a container.
P∑

p=1

xs1pt +
S∑

k=1
k 6=s

H∑
e=1

ykes1t ≤ 1 ∀s ∈ S; ∀t ∈ T \ {1}; (20)

Constraints (21) ensure the following three assumptions: each slot can contain at most one
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container in the tiers up to tier 1; if one slot is occupied, the slots below it should also be

occupied; and only topmost containers can be moved at each time segment. Therefore, IP5

includes constraints (21), and constraints (6) and (7) are no longer needed.

P∑
p=1

xsh+1pt +
S∑

k=1
k 6=s

H∑
e=1

yshket +
S∑

k=1
k 6=s

H∑
e=1

ykesh+1pt ≤
P∑

p=1

xshpt (21)

∀s ∈ S; ∀h ∈ H \ {H}; ∀t ∈ T \ {T};

Considering the origin and destination tiers of each move, model IP5 can be strengthened

by including constraints (22) to make the relationship between x and y variables stronger.

If two consecutive levels of a stack are occupied at a given time, no container can be moved

to any of these levels and no container can be moved from a lower position of these levels

in the next time segment.
P∑

p=1

xshpt +
P∑

p=1

xsh+1pt +
S∑

k=1
k 6=s

H∑
e=1

yshket +
S∑

k=1
k 6=s

H∑
e=1

ykesh+1pt +
S∑

k=1
k 6=s

H∑
e=1

ykeshpt ≤ 2 (22)

∀s ∈ S; ∀h ∈ H \ {H}; ∀t ∈ T \ {T};

Constraints (2) and (10) involving only xshpt do not change. In the objective function

(1) and in all other constraints involving variables yshket, two more sums, ∀h,∀e ∈ H, have

to be added.

4.4. An integer programming model with 6-indexed y variables (IP6)

An alternative model, IP6, uses a new type of variables y describing completely the move

of a container, including the period t, the origin and destination stacks, s, k, the origin and

destination tiers, h, e, and the priority p. The variables are:

xshpt =

 1, If at time point t there is a container in the stack s, tier h, whose priority is p;

0, Otherwise;

∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T ;

yshkept =


1, If in the segment between t and t+ 1, a container with priority p

is moved from (s, h) to (k, e);

0, Otherwise;
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∀s ∈ S; ∀k ∈ S \ {s}; ∀h, e ∈ H; ∀p ∈ P ; ∀t ∈ T \ {T};

We fix variables yshke1T−1 and ys1kepT−1 to zero because these moves are not possible in

the last time segment. Taking as a reference model IP3, the two inequalities (8) and (9)

controlling the topmost containers of each stack are substituted by the equality:

xshpt +
S∑

k=1
k 6=s

H∑
e=1

ykeshpt = xshpt+1 +
S∑

k=1
k 6=s

H∑
e=1

yshkept ∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T \ {T};

(23)

Constraints (2), keeping fixed the number of containers of each priority at each stack,

are no longer necessary. Moreover, constraints (18) avoiding same priority symmetries are

also included in this formulation.

5. Alternative integer models

The models described in the previous section were progressively strengthening the re-

lationship between bay configurations (variables x) and the moves producing these con-

figurations (variables y) but at the cost of significantly increasing the number of variables.

Therefore, the advantage of tighter relationships, tighter linear relaxations, and tighter lower

bounds can be partially offset by the computational cost of solving much larger models. In

this section we keep the structure of the models described above, but change the definition

of the variables in such a way that tighter relationships between configurations and moves

do not require large increases in the number of variables. Each model of the previous section

will have its counterpart in this new approach.

5.1. An integer programming model with split 2-indexed variables (IPS3)

Variables xshpt, describing the configuration of the bay at each period are maintained.

However, former variables yskt describing the move are split into two variables, one variable

wst indicating the stack origin of the move, and another variable zkt indicating the destina-

tion. Instead of S× (S−1)×T variables for the moves, the new IPS3 model has 2×S×T .
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The definition of the variables is:

xshpt =

 1, If at time point t there is a container in the stack s, tier h, whose priority is p;

0, Otherwise;

∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T ;

wst =

 1, If in the segment between t and t+ 1, a container is moved from stack s;

0, Otherwise;

∀s ∈ S; ∀t ∈ T \ {T};

zst =

 1, If in the segment between t and t+ 1, a container is moved to stack s;

0, Otherwise;

∀s ∈ S; ∀t ∈ T \ {T};

Using these variables, the model IPS3 inherits the constraints of IP3, replacing
∑S

k=1
k 6=s

yskt by

wst, and
∑S

k=1
k 6=s

ykst by zst. The objective function can be expressed in terms of either variables

wst or variables zst, because at each time t the number of containers leaving their initial stacks

equals the number of containers arriving to a new stack. By including constraints (24), a

stack will not be origin and destination of a move at one time segment.

zst + wst ≤ 1 ∀s ∈ S; ∀t ∈ T \ {T}; (24)

5.2. An integer programming model using priorities to define split 3-indexed variables (IPS4)

The relationship between variables xshpt and variables wst, zst is reinforced if these vari-

ables include the reference to the priority p of the container being moved. An integer model

IPS4, mirroring the IP4 model but splitting variables yskpt into wspt and zspt can be defined

using variables:

xshpt =

 1, If at time point t there is a container in the stack s, tier h, whose priority is p;

0, Otherwise;

∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T ;

wspt =


1, If in the segment between t and t+ 1, a container with priority p

is moved from stack s;

0, Otherwise;

∀s ∈ S; ∀p ∈ P ; ∀t ∈ T \ {T};
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zspt =


1, If in the segment between t and t+ 1, a container with priority p

is moved to stack s;

0, Otherwise;

∀s ∈ S; ∀p ∈ P ; ∀t ∈ T \ {T};

The model IPS4 is very similar to IP4, considering that expressions
∑S

k=1
k 6=s

yskpt are now

substituted by wspt, and
∑S

k=1
k 6=s

ykspt by zspt. We also strengthen the formulation by adding

constraints (25).

P∑
p=1

zspt +
P∑

p=1

wspt ≤ 1 ∀s ∈ S; ∀t ∈ T \ {T}; (25)

The IP4 model had S× (S−1)×P ×T variables for the moves, while the new IPS4 model

only needs 2× S × P × T

5.3. An integer programming model using tiers to define split 3-indexed variables (IPS5)

The IP5 model using 5-index variables yshket can also be substituted by a model using

split 3-index variables wsht and zket. The variables of IPS5 are:

xshpt =

 1, If at time point t there is a container in the stack s, tier h, whose priority is p;

0, Otherwise;

∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T ;

wsht =

 1, If in the segment between t and t+ 1, a container is moved from (s, h);

0, Otherwise;

∀s ∈ S; ∀h ∈ H; ∀t ∈ T \ {T};

zsht =

 1, If in the segment between t and t+ 1, a container is moved to (s, h);

0, Otherwise;

∀s ∈ S; ∀h ∈ H; ∀t ∈ T \ {T};

Taking as a reference the IP5 model, expressions
∑S

k=1
k 6=s

∑H
e=1 yshket are now simplified to

wsht, and
∑S

k=1
k 6=s

∑H
e=1 ykesht to zsht. Constraints avoiding a stack to be origin and destination

at the same time segment are no necessary because it is already considered by the equivalent

of constraints (22) in IPS5.
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5.4. An integer programming model using tiers and priorities to define split 4-indexed vari-

ables (IPS6)

Similarly, variables yshkept of the IP6 model can be decomposed into split 4-indexed

variables wshpt and zkept, defining a new model, IPS6. Its variables are:

xshpt =

 1, If at time point t there is a container in the stack s, tier h, whose priority is p;

0, Otherwise;

∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T ;

wshpt =


1, If in the segment between t and t+ 1, a container with priority p

is moved from (s, h);

0, Otherwise;

∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T \ {T};

zshpt =


1, If in the segment between t and t+ 1, a container with priority p

is moved to (s, h);

0, Otherwise;

∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T \ {T};

This approach cuts the number of variables down from S(S − 1)H2PT to 2SHPT . For

completeness, we present the whole IPS6 model which is our best proposal for solving the

pre-marshalling problem.

Min
S∑

s=1

H∑
h=1

P∑
p=1

T−1∑
t=1

zshpt (26)

S∑
s=1

H∑
h=1

wshpt =
S∑

s=1

H∑
h=1

zshpt ∀p ∈ P ; ∀t ∈ T \ {T}; (27)

S∑
s=1

H∑
h=1

P∑
p=1

wshpt ≤ 1;
S∑

s=1

H∑
h=1

P∑
p=1

zshpt ≤ 1 ∀t ∈ T \ {T}; (28)

S∑
s=1

H∑
h=1

P∑
p=1

wshpt+1 ≤
S∑

s=1

H∑
h=1

P∑
p=1

wshpt ∀t ∈ T \ {T − 1, T}; (29)

P∑
p=1

xs1pt +
P∑

p=1

zs1pt ≤ 1 ∀s ∈ S; ∀t ∈ {2, . . . , T}; (30)
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P∑
k=p

xsh+1kT ≤
P∑

k=p

xshkT ∀s ∈ S; ∀h ∈ H \ {H}; ∀p ∈ P ; (31)

xshpt + zshpt = xshpt+1 + wshpt ∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T \ {T};

(32)

P∑
p=1

xsh+1pt +
P∑

p=1

wshpt +
P∑

p=1

zsh+1pt ≤
P∑

p=1

xshpt

∀s ∈ S; ∀h ∈ H \ {H}; ∀t ∈ T \ {T}; (33)

P∑
p=1

xshpt +
P∑

p=1

xsh+1pt +
P∑

p=1

wshpt +
P∑

p=1

zsh+1pt +
P∑

p=1

zshpt ≤ 2

∀s ∈ S; ∀h ∈ H \ {H}; ∀t ∈ T \ {T}; (34)

H∑
h=1

P∑
p=1

zshpt +
H∑

h=1

P∑
p=1

wshpt+1 ≤ 1 ∀s ∈ S; ∀t ∈ T \ {T − 1, T}; (35)

H∑
h=1

wshpt +
H∑

h=1

zshpt+1 ≤ 1 ∀s ∈ S; ∀p ∈ P ; ∀t ∈ T \ {T − 1, T}; (36)

wsh1(T−1) = 0; zsh1(T−1) = 0; ∀s ∈ S; ∀h ∈ H; (37)

ws1p(T−1) = 0; ∀s ∈ S; ∀p ∈ P \ {1}; (38)

xshpt ∈ {0, 1}, wshpt, zshpt ∈ R+ ∀s ∈ S; ∀h ∈ H; ∀p ∈ P ; ∀t ∈ T ; (39)

Taking again as a reference the IP6 model, the main difference is that constraints (2)

are substituted by constraints (27). It allows a tighter relation between w and z variables.

6. An iterative procedure for solving the integer models

All models described in the previous sections require to determine a value of T , the

maximum number of moves needed to rearrange the bay, plus one, because at the last

period the bay must be completely ordered. While the lower bound proposed by Tanaka

and Tierney (2018) is available and can be used in the models, the use of an upper bound

provided by any of the heuristics developed so far is not clear. On the one hand, the number

of variables and constraints, and therefore the performance of the models, depend directly
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on the value of T . Using the upper bound provided by a heuristic will make the performance

of the model dependent on the performance of the heuristic. On the other hand, there is

the unsolved question of deciding whether a pre-marshalling instance has a feasible solution

or not. It is a difficult question, because it depends not only on the dimensions of the

bay and the number of containers, but also on the positions of the containers. The vast

majority of heuristic algorithms avoid the question by adding extra tiers to the instance,

sometimes at the beginning of the procedure, sometimes when they are needed to allow

further movements to be made. However, in a real situation, the maximum tier H of the

bay is imposed by the height of the crane, and adding additional levels to the bay may

not be possible. Moreover, a value obtained by modifying the original instance cannot be

considered a valid upper bound. Heuristic algorithms that do not increase the bay size, as

that used by de Melo da Silva et al. (2018), do not guarantee that a feasible solution will

be found in all kind of instances. In de Melo da Silva et al. (2018), they test their PMPm1

model on the CV dataset from Caserta and Voß (2009). CV instances are filled up to the

same height and have two empty tiers on top of each stack. These two empty tiers make the

heuristic algorithm proposed by de Melo da Silva et al. (2018) work. Nonetheless, it fails on

instances with a different structure, for example, instances with a fill percentage 75% on the

EMM dataset from Expósito-Izquierdo et al. (2012), going into a loop and not providing a

value for T .

Therefore, we have developed an iterative procedure that does not require the use of an

upper bound. Initially, we set T = LB + 1. If the model gives a feasible solution using

this value of T , it is optimal. Otherwise, we set T = T + 1 and solve the model again.

The procedure is repeated for increasing values of T until a feasible solution is obtained,

producing an optimal solution. When we solve the models using this iterative procedure,

constraints that assign the moves to the earliest possible times are no longer necessary.

Although Proposition 1 proves that variables describe the movements can be defined as

real variables, we keep them as binary variables because that helps to identify unfeasible

instances faster.
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7. Computational experiments

To test the performance of the mathematical models, exact solutions were obtained using

CPLEX version 12.7 considering 2 threads and a time limit of 3600 seconds. We conducted

all computational experiments on virtual machines with 4 virtual processors and 8 GBytes

of RAM running Windows 10 Enterprise 64 bits. Virtual machines are run in an OpenStack

virtualization platform supported by 12 blades, each with four 12-core AMD Opteron Abu

Dhabi 6344 processors running at 2.6 GHz and 256 GBytes of RAM, for a total of 576 cores

and 3 TBytes of RAM.

7.1. Test instances

We have used instances from four datasets of the literature:

EMM dataset. The original instances from Expósito-Izquierdo, Melián-Batista, and Moreno-

Vega (2012) were lost, but they were generated again by Tierney, Pacino, and Voß (2016),

using the same distributions. There are several categories of instances, with 4 tiers; 4, 7

or 10 stacks; and container fill percentages of 0.50, 0.75 and 1. In this study we use the

instances with fill percentages 0.50 and 0.75, without adding any additional tier. Instances

with fill percentage 1 cannot be solved unless some tiers are added on top of each stack,

thus changing the fill percentage, and have not been considered here.

ZJY dataset. Zhang, Jiang, and Yun (2015) generated 100 instances, divided into 5 cate-

gories of 20 instances each, containing 6, 7, 8 or 9 stacks and 4 tiers, and 6 stacks and 5 tiers.

Although generation details are not provided, it can be observed that there may be several

containers with the same priority, and the stacks are usually filled up to |H| − 1 tiers.

CV dataset. In this dataset from Caserta and Voß (2009), all containers have different

priorities, all stacks are filled to the same height, and there are two empty tiers on top of

each stack. The instances used in this study range in size from 3 stacks and 5 tiers up to 7

stacks and 6 tiers, totalling 400 instances.
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BZ dataset. These instances from van Brink and van der Zwaan (2014) range in size from 3

stacks and 4 tiers up to 9 stacks and 6 tiers, filled 50% or 70% with containers with 2, 3, or

6 different priorities, with a total of 960 instances.

7.2. Performance of the proposed IP models

Results on the EMM dataset. Table 1 shows the number of optimal solutions obtained by the

models described in Sections 4 and 5 on the 450 instances of the EMM dataset. Concerning

the initial models, their performance increases from IP3 to IP6. Looking at the models

using split variables, their performance also increases from IPS3 to IPS6. The IPS6 model

is clearly better with a moderate increase in the number of variables. All the models solve

well the instances with a low fill percentage, but there are significant differences between

them when solving larger ones. The first row in Table 2 completes the information by

showing the average running time in seconds computed on the set of instances optimally

solved by all the models on the EMM dataset. IPS6 is faster that the other split-variable

models and they are in turn faster than the corresponding IP3-IP6 models.

Table 1: Number of optimal solutions obtained by the proposed models on the EMM dataset from Expósito-
Izquierdo et al. (2012) grouped by number of stacks (S) and fill percentage (f).

S f # IP3 IP4 IP5 IP6 IPS3 IPS4 IPS5 IPS6
4 0.50 75 75 75 75 75 75 75 75 75
4 0.75 75 50 50 50 75 50 75 75 75
7 0.50 75 75 75 75 75 75 75 75 75
7 0.75 75 31 36 40 44 31 40 42 51

10 0.50 75 72 75 75 75 75 75 75 75
10 0.75 75 11 17 18 24 12 24 23 40

Total 450 314 328 333 368 318 364 365 391

Table 2: Average running time in seconds only on the instances (O) of the studied dataset optimally solved
by the eight proposed models.

Dataset # O IP3 IP4 IP5 IP6 IPS3 IPS4 IPS5 IPS6
EMM 450 312 94.58 20.38 21.52 9.29 52.78 7.82 6.51 1.10
ZJY 100 15 575.78 95.32 75.17 39.89 243.68 41.29 28.04 8.10
CV 400 64 496.42 214.92 118.51 46.08 138.98 54.18 41.68 17.00
BZ 960 745 106.42 41.84 27.96 16.81 65.96 15.48 10.86 1.92

Average 131.34 46.40 31.92 16.70 68.80 15.90 11.63 2.63
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Results on the ZJY dataset. Table 3 contains the number of optimal solutions obtained by

the eight models on the 100 instances of the ZJY dataset. The table exhibits two main

characteristics. On the one hand, instances with 5 tiers are harder for all the models. On

the other hand, the performance of the models in the other four categories follows the same

pattern of the previous subsection. Again split-variable IPS3-IPS6 models are increasingly

better, outperforming IP3-IP6 models. Concerning running times, included in the second

row of Table 2, the differences between models are even larger than in the previous dataset.

Models IPS3-IPS6 are much faster than the other models, with IPS6 being again the fastest

alternative. IPS6 cuts the CPU time down on average by 99% and 80% with respect to IP3

and IP6, respectively.

Table 3: Number of optimal solutions obtained by the proposed models on the ZJY dataset from Zhang
et al. (2015), grouped by number of tiers (H), and number of stacks (S).

H S # IP3 IP4 IP5 IP6 IPS3 IPS4 IPS5 IPS6
4 6 20 6 9 11 16 9 12 12 20
4 7 20 2 9 12 14 4 13 14 17
4 8 20 4 8 10 13 7 12 12 18
4 9 20 3 3 6 11 3 6 7 17
5 6 20 0 1 1 3 0 1 2 9

Total 100 15 30 40 57 23 44 47 81

Results on the CV dataset. Table 4 shows the number of optimal solutions obtained by the

models on the CV instances. These instances are considered particularly difficult, because

containers must be handled several times (Tanaka and Tierney (2018)). They are really

difficult for the integer linear models tested, especially with a higher number of tiers. It is

worth noting that, unlike previous tests, IPS4 outperforms IPS5. Apart from that, a clear

trend among IP3-IP6 and IPS3-IPS6 models is again observed looking at average running

times on the third row of Table 2.

Results on the BZ dataset. Table 5 shows the number of optimal solutions obtained by the

eight models tested on the BZ instances. As in previous tests, instances with fewer tiers

are easier to solve even when the number of stacks increases. Comparing the models, we

observe that IPS4-IPS6, the split-variable models from IP4-IP6, obtain the largest number
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Table 4: Number of optimal solutions obtained by the models on the CV dataset from Caserta and Voß
(2009) grouped by number of stacks (S) and number of tiers (H).

H S # IP3 IP4 IP5 IP6 IPS3 IPS4 IPS5 IPS6
5 3 40 33 34 38 40 35 39 39 40
5 4 40 20 29 29 36 23 34 33 38
5 5 40 7 15 18 25 12 26 24 32
5 6 40 3 5 6 12 3 12 9 23
5 7 40 0 2 1 5 1 2 3 11
5 8 40 0 1 1 2 0 1 1 7
6 4 40 1 2 3 5 2 5 5 9
6 5 40 0 0 0 1 0 1 0 2
6 6 40 0 0 0 0 0 0 0 1
6 7 40 0 0 0 0 0 0 0 0

Total 400 64 88 96 126 76 120 114 163

of optimal solutions. Nevertheless, IP3 outperforms IPS3. For the subset of instances with

6 tiers, the number of optimal solutions ranges from 320-352 for IP4-IP6, and 337-413 for

IPS4-IPS6. Table 2 shows the average running times in seconds for the 745 instances solved

by all the models. The IPS3-IPS6 models are the fastest and IPS6 is the fastest of them

all.

Table 5: Number of optimal solutions obtained by the proposed models on the BZ dataset from van Brink
and van der Zwaan (2014), grouped by number of stacks (S), number of tiers (H), and fill percentage (f).

H S f # IP3 IP4 IP5 IP6 IPS3 IPS4 IPS5 IPS6
4 3 0.50 60 60 60 60 60 60 60 60 60
4 3 0.70 60 60 60 60 60 60 60 60 60
4 4 0.50 60 60 60 60 60 60 60 60 60
4 4 0.70 60 60 60 60 60 60 60 60 60
4 7 0.50 60 60 60 60 60 60 60 60 60
4 7 0.70 60 55 59 60 60 59 60 60 60
4 9 0.50 60 60 60 60 60 60 60 60 60
4 9 0.70 60 44 49 54 56 47 59 57 60
6 3 0.50 60 60 60 60 60 60 60 60 60
6 3 0.70 60 47 48 54 56 46 52 55 60
6 4 0.50 60 55 58 58 60 53 59 60 60
6 4 0.70 60 25 27 32 35 24 29 35 44
6 7 0.50 60 49 51 52 53 49 54 55 59
6 7 0.70 60 18 21 24 25 16 21 27 37
6 9 0.50 60 40 47 46 48 37 51 52 60
6 9 0.70 60 10 8 15 15 5 11 20 33

Total 960 763 788 815 828 756 816 841 893

In summary, splitting the variables that describe the moves appears to be a very useful

strategy. The relationship between variables describing the configurations and those describ-

ing the moves can be made tighter with a moderate increase in the number of variables, as

can be seen in Table 6.
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Table 6: Number of variables describing the moves involved in the eight new models.

Model Variables Model Variables
IP3 S(S − 1)T IPS3 2ST
IP4 S(S − 1)PT IPS4 2SPT
IP5 S(S − 1)H2T IPS5 2SHT
IP6 S(S − 1)H2PT IPS6 2SHPT

7.3. Comparison with the state-of-the-art

There are several exact methods dealing with the pre-marshalling problem, being the

algorithm TT recently proposed by Tanaka and Tierney (2018) the most competitive. It

solves all the instances tested here in seconds, well below the time limit of one hour per

instance. Nonetheless, as discussed in Section 1, mathematical models are more flexible

and easier to implement which motivates their use as an alternative to sophisticated exact

methods. In this section, we compare the performance of the proposed model with the

state-of-the-art mathematical models proposed by Lee and Hsu (2007) and more recently

by de Melo da Silva et al. (2018). We re-implemented the models proposed by Lee and

Hsu (2007) and by de Melo da Silva et al. (2018) and they have also been tested using the

iterative procedure presented in Section 6.

EMM dataset. The performance of the models proposed by Lee and Hsu (2007) and de Melo da

Silva et al. (2018) and of IPS6 model on the EMM dataset is shown in Table 7. Our model

outperforms state-of-the-art models by solving 33% and 2% more instances to optimality

than Lee and Hsu (2007) model and PMPm1, respectively. Moreover, IPS6 is much faster

than the other models.

ZJY dataset. On the ZJY dataset, while the model proposed by Lee and Hsu (2007) solves

11 instances to optimality, PMPm1 solves 79 and IPS6 solves 81, as shown in Table 8. The

main difference between PMPm1 and IPS6 lies again on the average running times, existing

a clear superiority of model IPS6.

CV dataset. IP6S increases the number of optimal solution on average by 176% with respect

to the model proposed by Lee and Hsu (2007) and by 5% with respect to PMPm1, as shown

in Table 9. Our model finds more optimal solutions on the categories: 5-5, 5-7, 5-8, and 6-4.
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Table 7: Performance of the model proposed by Lee and Hsu, the PMPm1 model from de Melo da Silva
et al. (2018), and IPS6 on the EMM dataset from Expósito-Izquierdo et al. (2012) grouped by number of
stacks (S) and fill percentage (f). CPU(s) represents the average running time (in seconds) on the instances
optimally solved by each model (Opt).

Lee and Hsu PMPm1 IPS6
S f # Opt. CPU(s) Opt. CPU(s) Opt. CPU(s)
4 0.50 75 75 0.03 75 0.01 75 0.01
4 0.75 75 50 15.40 75 47.15 75 27.15
7 0.50 75 74 65.90 75 0.78 75 0.60
7 0.75 75 26 693.73 49 190.05 51 99.85

10 0.50 75 63 241.20 75 3.44 75 1.87
10 0.75 75 7 696.09 35 649.84 40 230.91

Total 450 295 148.32 384 93.52 391 42.33

Table 8: Performance of the model proposed by Lee and Hsu, the PMPm1 model from de Melo da Silva
et al. (2018), and IPS6 on the ZJY dataset from Zhang et al. (2015), grouped by number of stacks (S) and
number of tiers (H). CPU(s) represents the average running time (in seconds) on the instances optimally
solved by each model (Opt).

Lee and Hsu PMPm1 IPS6
H S # Opt. CPU(s) Opt. CPU(s) Opt. CPU(s)
4 6 20 4 777.17 20 692.52 20 323.69
4 7 20 1 3256.73 17 273.00 17 201.91
4 8 20 4 496.86 17 380.08 18 341.26
4 9 20 2 1097.42 17 920.02 17 686.80
5 6 20 0 - 8 1011.21 9 694.39

Total 100 11 958.88 79 616.24 81 419.43

BZ dataset. Table 10 shows the performance of the models on BZ dataset. The Lee and

Hsu model solves 717, PMPm1 solves 888, and IP6S solves 893 out of the 960 BZ instances.

We completely solve two more categories than de Melo da Silva et al. (2018).

We now refer to Figure 4 that shows the running times in seconds for finding an optimal

solution required by the model PMPm1 de Melo da Silva et al. (2018) and by the proposed

model IPS6 on all datasets. Cases in which an optimal solution is not found are assigned

a running time of 3600 seconds. Points below the line indicate instances in which IPS6 is

faster than PMPm1, and points above the line indicate that PMPm1 is faster than IPS6. It

can be seen a clear dominance of IPS6 model on all the studied datasets. Across instances

optimally solved by both models, IPS6 cuts the running times down on average by 68%

on EMM dataset (Figure 4a), by 38% on ZJY dataset (Figure 4b), by 26% on CV dataset

(Figure 4c), and by 39% on BZ dataset (Figure 4d).
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Table 9: Performance of the model proposed by Lee and Hsu, the PMPm1 model from de Melo da Silva et al.
(2018), and IP6S on the CV dataset from Caserta and Voß (2009) grouped by number of stacks (S) and
number of tiers (H). CPU(s) represents the average running time (in seconds) on the instances optimally
solved by each model (Opt).

Lee and Hsu PMPm1 IP6S
H S # Opt. CPU(s) Opt. CPU(s) Opt. CPU(s)
5 3 40 32 559.81 40 63.78 40 85.65
5 4 40 19 846.67 38 236.45 38 125.71
5 5 40 5 1997.08 31 402.37 32 452.33
5 6 40 2 278.40 23 995.09 23 817.05
5 7 40 0 - 10 1075.44 11 960.26
5 8 40 0 - 4 2034.74 7 1194.23
6 4 40 1 517.81 6 530.92 9 1425.93
6 5 40 0 - 2 1681.84 2 1244.29
6 6 40 0 - 1 1827.20 1 444.99
6 7 40 0 - 0 - 0 -

Total 400 59 763.74 155 478.49 163 467.24

Table 10: Performance of the model proposed by Lee and Hsu, the PMPm1 model from de Melo da Silva
et al. (2018), and IP6S on the BZ dataset from van Brink and van der Zwaan (2014), grouped by number
of tiers (H), stacks (S), and fill percentage (f). CPU(s) represents the average running time (in seconds) on
the instances optimally solved by each model (Opt).

Lee and Hsu PMPm1 IP6S
H S f # Opt. CPU(s) Opt. CPU(s) Opt. CPU(s)
4 3 0.50 60 60 0.12 60 0.02 60 0.02
4 3 0.70 60 60 8.06 60 0.88 60 0.91
4 5 0.50 60 60 0.82 60 0.08 60 0.07
4 5 0.70 60 58 103.74 60 1.97 60 1.53
4 7 0.50 60 60 10.92 60 0.21 60 0.17
4 7 0.70 60 53 288.35 60 5.91 60 3.73
4 9 0.50 60 59 107.54 60 1.29 60 1.07
4 9 0.70 60 40 108.08 60 94.92 60 22.03
6 3 0.50 60 60 127.78 60 2.62 60 3.00
6 3 0.70 60 47 301.43 59 82.33 60 102.96
6 5 0.50 60 49 134.79 60 11.62 60 18.59
6 5 0.70 60 22 640.10 44 466.39 44 264.09
6 7 0.50 60 43 271.25 59 123.31 59 101.49
6 7 0.70 60 11 182.38 35 404.02 37 234.19
6 9 0.50 60 31 321.56 59 156.63 60 118.95
6 9 0.70 60 4 336.68 32 659.36 33 385.65

Total 960 717 140.40 888 94.94 893 62.02

On the EMM dataset, IPS6 solves 5 more instances of the most challenging category

with 10 stacks and fill percentage of 75%. Moreover, the average running times across

the 34 instances optimally solved by PMPm1 and IPS6 in this category are 580 and 154

seconds, respectively, which means an average reduction by 73%. On ZJY dataset, IPS6

also outperforms PMPm1 in all the categories, cutting the average running time by 44%
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(a) EMM dataset
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(b) ZJY dataset
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(c) CV dataset
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(d) BZ dataset

Figure 4: CPU times necessary for finding an optimal solution on all datasets with IP6S and PMPm1 by
de Melo da Silva et al. (2018). The running times are expressed in seconds and unsolved instances are
assigned a CPU time of 3600 seconds.

in the most difficult category of 6 stacks and 5 tiers. The trend continues on CV and BZ

datasets, solving IPS6 more instances in the most challenging categories and reducing the

average running time in almost all instances. There is just one category in which the average

running time does not decrease with IPS6 model. This is the easiest category of the CV

dataset (5 tiers and 3 stacks) in which the average running time increases from 63 to 85

seconds. In the remainder categories, there is a high reduction of the running times.
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8. Extensions of the model

The integer models developed in this study address the standard pre-marshalling prob-

lem. The objective is to minimize the number of moves required to order the bay and

the constraints ensure that this rearrangement is made through a sequence of valid moves.

However, other constraints could be included to produce solutions that are more useful in

practice. This section outlines some of these possible extensions of the models.

8.1. Balancing the final configuration

The solution of the standard models could have an empty stack adjacent to a stack fully

loaded up to tier H. This configuration is unstable and is avoided in practice. One way of

preventing this type of solution could be to set a parameter κ as the maximum difference in

the number of containers of adjacent stacks. By adding constraints
H∑

h=1

P∑
p=1

xshpT −
H∑

h=1

P∑
p=1

xs+1hpT ≤ κ ∀s ∈ {1, . . . , S − 1} (40)

H∑
h=1

P∑
p=1

xshpT −
H∑

h=1

P∑
p=1

xs+1hpT ≥ −κ ∀s ∈ {1, . . . , S − 1} (41)

we ensure that the difference between adjacent stacks does not exceed κ.

8.2. Avoiding empty or full stacks

Constraints (42) would prevent empty stack is in the final configuration, while constraints

(43) would prevent full stacks.
H∑

h=1

P∑
p=1

xshpT ≥ 1 ∀s ∈ {1, . . . , S}; (42)

H∑
h=1

P∑
p=1

xshpT ≤ H − 1 ∀s ∈ {1, . . . , S}; (43)

8.3. Favouring stable configurations

Among the solutions with the minimum number of moves, a more stable configuration

would be preferred. We could define two new variables hmin and hmax to indicate the

minimum and maximum number of containers in a stack at time T , adding constraints (44)
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and (45) to define the variables and adding the term (hmax−hmin)/(H + 1) to the objective

function. Note that (hmax − hmin)/(H + 1) ≤ H/(H + 1) < 1 and therefore the optimal

solution of the modified model would always correspond to the minimum number of moves.
H∑

h=1

P∑
p=1

xshpT ≤ hmax ∀s ∈ {1, . . . , S} (44)

H∑
h=1

P∑
p=1

xshpT ≥ hmin ∀s ∈ {1, . . . , S − 1} (45)

8.4. Favouring that containers with the same priority share the same stack

It could be useful to have containers of the same priority one on top of the other in the

same stack, making retrieving operations easier. That could be favoured by defining new

variables:

gshp =


1, If a container of priority p located at (s, h) at time T

is on top of other container of priority p

0, Otherwise

∀s ∈ {1, . . . , S}; ∀h ∈ {2, . . . , H}; ∀p ∈ {1, . . . , P};

and subtracting the term
∑

s

∑
h

∑
p gshp/

∑P
p=1 np from the objective function. Note that∑

s

∑
h

∑
p gshp∑P

p=1 np

≤
∑P

p=1(np − 1)∑P
p=1 np

< 1

and therefore the optimal solution would still produce the minimum number of moves.

In order to define adequately the new variables, we would also need to include the

constraints:

gshp ≤ xshpT ∀s ∈ {1, . . . , S}; ∀h ∈ {2, . . . , H} (46)

gshp ≤ 1− (xshpT − xsh−1pT ) ∀s ∈ {1, . . . , S}; ∀h ∈ {2, . . . , H} (47)

9. Conclusions and future work

In this paper we have studied the pre-marshalling problem, which plays an important

role in the efficient management of storage yards, speeding up loading and unloading op-

erations. This problem has been studied by developing integer formulations that can be

easily implemented and adapted by researchers and practitioners. We have first proposed
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an initial model in which the moves are described using 3-indexed variables. As the linear

relaxation was very weak, we developed new models using variables with 4, 5, and 6 indices.

These models were conceptually better, strengthening the relationship between variables

and improving the linear relaxations, but the dramatic increase in the number of variables

offset their potential advantages. In a second phase, we decided to use different types of

variables to describe the moves, separating the information about the origin of the move

from that about its destination. In this case, models were improved with a small increase

in the number of variables. We have proposed a total of eight integer linear models and

we have also designed an iterative procedure to solve them, avoiding the need of an upper

bound to build the model. These eight models have been extensively tested and results show

the superior performance of the increasingly complex split-variable models. We have finally

tested our best proposal, IPS6, and the previously published models by Lee and Hsu (2007)

and de Melo da Silva et al. (2018) over an extended computational analysis that shows the

better performance of our model on several well-known datasets.

Further lines of research will consider in more detail the extensions of the model outlined

in Section 8 and also the possibility of changing the objective function to take into account

the time required by the cranes to make the moves.
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J. W. (Ed.), Handbook of Terminal Planning. Springer New York, pp. 247–269.

Caserta, M., Schwarze, S., Voß, S., 2012. A mathematical formulation and complexity considerations for the

blocks relocation problem. European Journal of Operational Research 219 (1), 96–104.

Caserta, M., Voß, S., 2009. A corridor method-based algorithm for the pre-marshalling problem. In: Gia-

cobini, M., Brabazon, A., Cagnoni, S., Di Caro, G. A., Ekárt, A., Esparcia-Alcázar, A. I., Farooq, M.,
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