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Abstract

Handwritten Text Recognition is a important requirement in order to
make visible the contents of the myriads of historical documents residing in
public and private archives and libraries world wide. Automatic Handwritten
Text Recognition (HTR) is a challenging problem that requires a careful com-
bination of several advanced Pattern Recognition techniques, including but
not limited to Image Processing, Document Image Analysis, Feature Extrac-
tion, Neural Network approaches and Language Modeling. The progress of
this kind of systems is strongly bound by the availability of adequate bench-
marking datasets, software tools and reproducible results achieved using the
corresponding tools and datasets. Based on English and German historical
documents proposed in recent open competitions at ICDAR and ICFHR con-
ferences between 2014 and 2017, this paper introduces four HTR benchmarks
in order of increasing complexity from several points of view. For each bench-
mark, a specific system is proposed which overcomes results published so far
under comparable conditions. Therefore, this paper establishes new state of
the art baseline systems and results which aim at becoming new challenges
that would hopefully drive further improvement of HTR technologies. Both
the datasets and the software tools used to implement the baseline systems
are made freely accessible for research purposes.

Keywords: Historical Handwritten Text Recognition, Hidden Markov
Models, Convolutional Neural Networks, Recurrent Neural Networks,
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1. Introduction

Off-line Handwritten Text Recognition (HTR) is a fundamental require-
ment to unveil the substance of billions of historical manuscripts residing in
archives and libraries. Many of these documents are digitized, but the access
to their contents is very limited since they are just raw images. HTR systems
aim at transcribing these documents in order to make their textual contents
accessible and searchable.

HTR has progressed enormously in the last two decades due mainly to
two reasons: first, the use of holistic training and recognition concepts and
techniques which were previously developed in the field of Automatic Speech
Recognition (ASR); and second, the existence of an increasing number of
publicly available datasets for training and testing the HTR systems.

The need for holistic techniques in HTR has been known for many years
given that the processes of handwriting and speech share many similar prop-
erties and challenges [1l 2, 3, 4, [5]: i) in both cases the production process is
sequential through time; ii) the resulting images or signals are often largely
distorted and severely contaminated with different kinds of noise; iii) due to
the sequential production process, it is not possible in general to accurately
recognize isolated words or characters/phonemes because none of these units
can be reliably and consistently segmented or isolated; and iv) handwriting
images and speech signals typically exhibit similar forms of lexical and syn-
tactical regularity and ambiguity. Because of these similarities it is not sur-
prising that the same basic Pattern Recognition techniques which had proved
successful in ASR also become successful in HTR. To name a few: hidden
Markov models (HMM) and recurrent neural networks (RNN) for optical
character/phoneme modeling and statistical N-gram models for language
modeling. These models are trained both in ASR and HTR with identical
machine learning techniques based on the use of annotated data. The avail-
ability of sufficiently large amounts of annotated data is currently one of the
bottlenecks to move forward in HTR since the annotation is generally per-
formed by human experts and is, therefore, expensive and time-consuming.

Currently, several freely available datasets exist which are commonly used
in HTR experimentation. We now mention just a few. One of the earliest
and best known is [AM [G]EI It is often considered “semi-artificial” in that
it consists of short fragments of modern English printed (electronic) text,

Lyww. fki.inf.unibe. ch/databases/iam-handwriting-database
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copied by hand (i.e., handwritten) by volunteers on clean, white paper. The
best Word Error Rate (WER) for the standard evaluation (test) images of
this dataset is 9.3% [7]. Another well-know dataset is RIMES} composed
of handwritten letters written by more than 1300 people. The best word
error rate WER with this dataset is 11.2% [5]. One of the first historical
handwritten datasets used for HTR was the so called George Washington
(GW)E], although most results reported with this dataset are related to Key
Word Spotting. In a different language, the Esposalles dataseﬂz_f] [8] is a rela-
tively small set of page images from a marriage register book written in old
Catalan by a single hand, which belongs to a large XVII century collection.
The best WER for the evaluation partition in this dataset is 10.1% [9]. On
the other hand, the Rodrigo datasetf’|is the result of digitizing and annotat-
ing a full manuscript dated 1545. It is completely written in old Castilian
(Spanish) by a single author. The best WER for the evaluation partition in
this dataset is 14% [10]. A historical Arabic dataset is referred to in [I1], but
it is quite recent and no WER results are provided in the reference. There
exists other handwritten text corpora for different languages like Chinesd,
although some of them are not historical documents.

In recent years several projects have been supporting research in HTR,
both at national and at European level. Among several important projects
which have contributed to the advance of HTR, it is worth to mention the
series of HisDoc projectd’} funded by the Swiss National Science Foundation
since 2009. In the present work, we focus on two specific European projects,
TRANSCRIPTORIUM® and READPl The involvement of archives and libraries
in these projects has been crucial to allow learning first-hand what are the
most important HTR challenges associated with the historical documents
residing in these organizations. Many medium- and large-size manuscript
collections have been processed in the framework of these projects and parts
of some of them have been used in HTR competitions organized in the context
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of the ICDAR and ICFHR conferences in the last few years. The goals of
these competitions were to bring together researchers to share and compare
new techniques and ideas on HTR. These competitions have actually been
successful in promoting a great, fast progress in HTR.

The main contributions of this paper are: i) to describe the datasets used
in these HTR competitions; ii) to summarize the main challenges raised by
them and the results obtained for the corresponding datasets; iii) to present
the details of new up-to-date baseline systems and results for these datasets,
based on the prevalent technologies that allow obtaining competitive results;
and iv) to provide freely available tools, specific code and corresponding
scripts which allow full reproductivity of the baseline results reported here.

The article is organized as follows: Section [2] summarizes the prevalent
technology used nowadays for HTR. The baseline systems have been devel-
oped with this technology. Section {4| explains the relation among projects
and the datasets used in the competitions. Then, Sections [} [6] [7] and [§] de-
scribe each dataset and the corresponding baseline system and results. These
systems are freely accessible through GITHUB[")

2. HTR technologies

The most traditional approaches to HTR are based on N-gram language
models (LM) and optical modeling of characters by means of HMMs with
Gaussian mixture emission distributions (HMM-GMM) [3] [5]. However, sig-
nificant improvements in optical modeling were demonstrated by approaching
emission probabilities with multilayer perceptrons (HMM-MLP) [5] and also
by training the HMM-GMMs with discriminative training techniques [12].
More recently, notable improvements in HTR accuracy have been achieved
by using RNNs for optical modeling.

Optical models are trained with pairs of line images and their correspond-
ing transcripts. If transcripts exactly follow the text written in the images,
they are usually called “diplomatic”. In the cases considered in this paper,
diplomatic transcripts are assumed.

Language Models, on the other hand, are usually trained using only train-
ing text, typically just the transcripts of the training images.

Ohttps://github.com/PRHLT/htr-contests-exps
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2.1. Convolutional and Recurrent Neural Network Optical Modeling

Current state-of-the-art optical modeling HTR technologies are based on
deeply layered neural network models which consist of a stack of several con-
volutional layers followed by one or more layers of RNNs composed of special
“neurons” called Bidirectional Long Short Term Memory (BLSTM) units [4,
5]. Finally, a softmax output layer computes an estimate of the probabilities
of each character in the training alphabet plus a special “non-character” sym-
bol. The overall architecture is often referred to as Convolutional-Recurrent
Neural Networks (CRNN) [13].

In [I4], a more complex, “multidimensional” version of BLSTM archi-
tecture was introduced, leading to the so called Multidimensional Recurrent
Neural Networks (MDLSTM), which became fairly popular for some years
because of their superior performance. However, a more recent paper [13] has
shown that, by adequately configuring the stack of convolutional and recur-
rent layers, similar HTR accuracy can be obtained using only plain BLSTM
NNs, leading to simpler and much more efficient CRNN architectures.

The baseline results reported in this paper were obtained using this sim-
pler kind of CRNNs for character optical modeling. A CRNN is trained by
stochastic gradient descend with the RMSProp method [13] on mini-batches
to minimize the so called Connectionist Temporal Classification (CTC) cost
function [4]. Dropout techniques are used to reduce training over-fitting,
which has been proved to effectively improve recognition accuracy [5]. In or-
der to decide when to stop the training iterations, a development set (which
may be an excerpt of the training set) is used. Therefore, to take further
advantage of the labeled data contained in this set, the standard training
process is generally finalized by running a few more training iterations with
all the training data available (including the development set). It is worth
noting that all the techniques, associated and software tools required for
this approach are now implemented and readily available in the HTR Laia
Toolkit [13], based on the Torch machine learning platform.

The exact architecture of a typical CRNN is defined through a large
number of hyper-parameters. These include, at least, the size of the input line
image, the number of convolutional layers, the number of filters in each layer,
the kernel sizes and resolution-reduction factors (“max-pooling”) of these
filters, the number of recurrent layers, the type of recurrent units (BLSTM
or other), the number of these units in each recurrent layer, the types of
activation functions used in each layer, and the number of different characters
to be predicted in the output layer. In addition, other hyper-parameters are



needed to specify the CRNN training details including, at least, the size of the
mini-batches, the the rate of dropout, the base learning rate, the convergence
criterion (possibly using a development set) and the number of possible extra
iterations using the development data.

Clearly, optimizing such a large number of hyper-parameters for each
HTR task is an important bottleneck of CRNN character optical modeling.
Aiming to overcome this bottleneck, the Laia Toolkit offers default architec-
ture definitions and corresponding training hyper-parameters which generally
allow in practice to obtain accurate CRNN optical models for typical hand-
written documents in most languages, historical periods and writing styles.
Of course, it is up to the practitioner to adapt the basic, default settings to
the singularities of each document collection considered. Small tweaks of the
basic settings do not generally lead to large performance differences. But in
the current state of the affairs, experience and intuition often allow to achieve
some improvements by tuning some settings taking into account dataset fea-
tures such as image resolution, writing density and average text size, overall
image quality and amount of available training data, among others.

To obtain the baseline results reported in this paper, only small variations
to the default Laia settings were made. In general, unless otherwise stated,
CRNN optical models include a stack of four convolutional layers and three
recurrent layers, each with 256 BLSTM units. Full architecture and training
details are included in the scripts available for each dataset in GrTHUBT®

As previously discussed, for a given text line image, a trained CRNN
estimates a sequence of character posterior probability vectors (often referred
to as “ConfMat”). While raw images can be directly accepted as input,
results can often be improved if images are previously deskewed, deslanted,
cleaned, contrast-enhanced, and/or size-normalized [15] [16] (17, [18].

2.2. Language modeling

CRNNSs have proved able to capture by themselves lexical and linguistic
context to some extent. However, classical LM methods, which explicitly aim
at modeling contextual regularities and constraints, can often help CRNNs
to further improve HTR results. Moreover, these models can be very easily
and efficiently trained using only plain text (i.e., only transcripts, without
images). In this paper, statistical character N-grams, estimated using the



SRILM ToolkitE], are used, with a default N-gram order of N = 8 and
Kneser-Ney back-off smoothing [19].

Trained N-gram contextual constraints can be applied to the CRNN out-
put character probabilities in several ways [5]. Here N-grams are represented
as a stochastic finite-state transducer. The edge probabilities of this trans-
ducer are then obtained by adequately combining the estimated N-gram
probabilities with CRNN output character posteriors, suitably scaled with
character priors [5]. The resulting stochastic transducer, along with the clas-
sical Viterbi decoding algorithm (also known as “token- or message-passing”),
are used to obtain an optimal transcription hypothesis of the original in-
put line image. For these combination and decoding processes, the KALDI
toolkit [20] is used in this paper.

3. Evaluation measures

The most usual evaluation metrics for measuring the performance of an
HTR system are the Word Error Rate (WER) and the Character Error Rate
(CER). WER is defined as the minimum number of words that need to be
substituted, deleted, or inserted to match the recognition output with the
corresponding reference ground truth, divided by the total number of words
in the reference transcripts. CER is defined in the same way but at character
level. See examples in Figure

Generally speaking, WER is fairly well correlated with CER, but this cor-
relation is not always strong or systematic. Therefore, both measures are im-
portant and complementary to assess the quality of an automatic transcript.
A low CER but a relatively high WER reveals that the character errors are
spread among many words. Conversely, a transcript with the same CER as
before but lower WER indicates that errors are concentrated in few words.
A good language model typically helps to achieve greater improvements in
WER than in CER. It is worth mentioning that punctuation symbols, like
commas, are separated from the preceding words. This becomes relevant if
punctuation is frequent and/or when WER is small.

WER tends to be better than CER at indicating how difficult is to un-
derstand a transcript by human beings. Similarly, even if CER is low, a high
WER may dramatically harm the performance of information extraction or

Uhttp://www.speech.sri.com/projects/srilm
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searching systems which rely on automatic transcripts. Figure (1] illustrates
these facts for two samples from the ICFHR-2014 benchmark which exhibit
similar CER but different WER.

7 <“ A Nz e ./%
/ e 7 ) Wﬁ 1 wwf ,-L/ﬂ/»VLm/l ,
Sk L/im/ﬁwzﬁﬂ’/’v Wornre. £ Y / WER:4/7 _ 57%
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% M/%W,j /:;/1) 07/)% 1/‘:‘/7 & M¢¢f?w 5 / 2,
‘ WER=2/9 = 22%
for eomfromiy and employing in hard lebour , Persons CER =8/52 =15%

Figure 1: Two examples of test line images and automatic transcripts, along with the
corresponding WER and CER. While CER is similar in both transcripts, that with higher
WER may be harder to understand. Reference transcripts for the top and bottom line
images are, respectively: “such Penitentiary Houses should be and principally”
and “for confining and employing in hard labour , Persons”.

4. Relations among projects, datasets and competitions

Four HTR competitions have been organized and supported by the TRAN-
SCRIPTORIUM and READ European projects. Organizing these competitions
and making the datasets freely available for research purposes was one of the
goals of these projects. The datasets and the challenges in each competition
were defined according to the needs and the evolution of the projects. The
authors of this paper did not participate in these competitions.

The first two of these competitions were based on parts of the so called
Bentham Papers, handwritten in English by several writers. The whole dig-
itized collection encompasses 100000 page images of text authored by the
renowned English philosopher and reformer Jeremy Bentham (1748-1832)"
[21]. It mainly contains legal forms and drafts in English, but also some
pages are in French and Latin. Documents handwritten by Bentham himself
over a period of sixty years, as well as fair copies handwritten by Bentham’s
secretarial staff, are included. Many images entail important pre-processing
and layout analysis difficulties, like marginal notes, faint ink, stamps, skewed
images, lines with large slope variation within the same page, slanted script,
inter-line text, etc.

2http://www.ucl.ac.uk/Bentham-Project/
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The Bentham Papers were being transcribed following a crowdsourcing
initiative [21]. One of the main objectives of the TRANSCRIPTORIUM project
was to develop interactive-predictive transcription technology [22] and to
adapt it to help the crowdsourcers transcribe more easily and efficiently.

The first HTR competition was organized in 2014 within the “Interna-
tional Conference on Frontiers of Handwriting Recognition” (ICFHR-2014) [23].
The corresponding dataset was a small part of the Bentham Papers contain-
ing only relatively “easy” images, manually selected to avoid the most severe
difficulties entailed by this collection.

Then a second competition was organized in 2015 within the “Interna-
tional Conference on Document Analysis and Recognition” (ICDAR-2015) [24].
The dataset was again a part of the Bentham Papers, but it was significantly
larger than the previous one and contained much more “difficult” images,
including plenty of crossed-out text, marginalia, added interline text, and
more difficult writing styles. In addition to these and other new challenges
(see details in [24]), the following motivation was perhaps most interesting:
A usual HTR scenario is that some (or many) transcripts are available for
some parts of the collection, but they are not aligned with their correspond-
ing line images. These transcripts might be profitably used to better train
both the optical and the language models but, for optical model training,
it is necessary to pair line images with their corresponding transcripts. In
this dataset, the transcripts of a subset of training data were provided at
page level, and the participants had to use their own techniques for detect-
ing the lines and for aligning the detected lines with the corresponding text
of the page transcripts. This challenge was in part motivated by the need of
non-expensive ways to prepare training ground truth (GT).

The third competition was organized within ICFHR-~2016 in the frame-
work of the READ project [25]. This time the RATSPROTOKOLLE collection,
composed of handwritten minutes of council meetings held from 1470 to
1805, was considered. It was considered in READ as a good example of
archive manuscripts written in old German. Thus, a main challenge stated
in this competition was to deal with a language different from English. The
German language is similar in some aspects to English, specially from the op-
tical modeling point of view. But compound words make word-level language
modeling more challenging. One important characteristic of this collection
is that the lines are short, each one containing very few (long) words, which
makes it difficult to take much advantage of using a word LM.

The fourth HTR competition was organized within ICDAR-2017 [26],

9



again in the framework of the READ project. In this case, the dataset was
a part of the Alfred Escher Letter Collection (AEC)H which is composed
of letters handwritten mainly in German but it also has pages in French
and Italian. This collection includes many images whose transcripts are only
provided at the page level; i.e., without any alignment of transcribed text
with image lines. This competition went thus further in the direction initiated
in ICFHR-2014. That is, the problem was to automatically detect the lines
and align them with corresponding text from the training page transcripts
and then use the transcribed line images for training an HTR system. In this
case, it was feasible to proceed in the traditional way for a few pages; i.e.,
accurately detected and (manually supervised) lines and the corresponding
exact transcripts were provided to be used for training an initial HTR system.
This seed system could then be used to automatically align page transcripts
with detected lines, thereby increasing the amount of training material.

The details of the datasets used in these contests and in the benchmarks
of this paper are described in the following sections. The actual datasets are
available for research purpose at ZENODO: Table [1| provides the specific web
addresses from which these datasets can be downloaded. The GT is provided
in PAGE format [27].

Table 1: The datasets described in this paper are publicly available for research purposes
at the following web URLs. All of them are in PAGE format [27].

Dataset Internet address

ICFHR-2014 | http://doi.org/10.5281/zenodo.44519 |
ICDAR-2015 | http://doi.org/10.5281/zenodo . 248733
ICFHR-2016 | http://doi.org/10.5281/zenodo.1164045
ICDAR-2017 | http://doi.org/10.5281/zenodo.835489

For each dataset, a script based on the previously mentioned Laia toolkit
is provided. These scripts, available at GITHUBE], allow to reproduce the
HTR baseline experiments reported in the following sections. Each script
downloads the corresponding dataset, executes the training and recognition
processes and provides the WER and CER results reported in this paper.

3https://www.briefedition.alfred-escher.ch/
“https://github.com/PRHLT/htr-contests-exps
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5. The ICFHR-2014 benchmark

5.1. Dataset description

The dataset for this benchmark was taken from the Bentham Papers. It
is a small sample of so called “easy pages” of this collection. Figure 2| shows
some examples of the images included in this dataset.
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Figure 2: Document samples of the ICFHR-2014 dataset.

Ground truth (GT) line detection and transcription were produced semi-
automatically and registered in PAGE format [27]. Table 2| summarizes the
basic statistics of this dataset. Most of its 433 page images encompass a
single text block each. In total, they contain 11473 lines with nearly 107 000
running words and a vocabulary of more than 9700 different words. The
dataset was divided into three subsets for training, development and test,
respectively encompassing 350, 50 and 33 images. The rows “Running words”
and “Lexicon” show total number of words and number of different words,
respectively. Development Out-Of-Vocabulary (OOV) refers to words that
do not appear in the training set, while Test OOV are words not appearing
in the training or the development sets. The row “OOV Lexicon” shows
numbers of different OOV words. The images and the transcripts of the
training and development data are provided in the dataset both at page level
and at line level. The images of the test data are provided at line level.

In the ICFHR 2014 competition, the so called restricted track was estab-
lished in order to allow fair comparison of HTR techniques under identical
training data conditions. In this track, participants were allowed to use just
the data provided by the organizers for training and tuning their systems. In
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Table 2: Main statistics of the ICFHR-2014 dataset. The images were scanned at 300
dots per inch (dpi). The exact number of writers is unknown, but it is believed to be
about 20 writers.

Number of: Training Development Test Total
Pages 350 50 33 433
Lines 9198 1415 860 | 11473
Running words 86075 12962 7868 | 106 905
Running OOV (%) - 6.6 5.3 -
Lexicon 8658 2709 1946 9716
Lexicon OOV - 681 377 -
Character set size 86 86 86 86
Running characters | 442336 67400 40938 | 550674

addition an unrestricted track was also considered, where participants were
free to train their systems with any (amount of) data of their choice.

5.2. Summary of results obtained with the ICFHR-201/ dataset

This dataset has been used in several HTR research works. Table [l
summarizes the most relevant results obtained in the Restricted track.

Table 3: Results obtained with the test set of the ICFHR-2014 dataset in the Restricted
track. CER & WER are, respectively, character and word error rate percentages. The row
marked with “}” corresponds to the winner of the competition.

’ References  Approach \ CER(%) WER(%) ‘
23] CRNN + regex/lexicon LM [2§] 5.0 14.6
[5] CRNN + word 2-gram 5.0 14.1
[12] Discriminative HMMs + word 2-gram 6.7 17.2
This paper CRNN (Laia) 6.2 12.7

+ character 7-gram 5.0 9.7

The first row corresponds to the winner of the ICFHR 2014 competi-
tion [23]. In that work, usual pre-processing techniques, as described in
Section [2| were used and the line images were scaled to a height of 96 pixels.
State-of-the-art (as of 2014) CRNN technology, was used for optical model-
ing. The same architecture defined in [14] was adopted, but rather than a
MDLSTM architecture MDLeaky cells were used because, according to this
participant, these cells were more stable. In addition, a lexicon (roughly
equivalent to a 1-gram LM) derived from the training transcripts, was used
to finally obtain excellent results.

12



A similar CRNN approach, with some variations in the architecture, was
used in [5]. In this case, however, rather than a plain lexicon, a standard
word 2-gram LM was used. This PhD work contains several interesting com-
parisons, such as using the raw line image pixels as input, versus extracting
handcrafted line image features; or relative improvements achieved different
variants of MDLSTM architectures, etc. Moreover, combinations of some
of these alternatives, by means of word lattices obtained as byproducts of
Viterbi decoding, were also studied. The WER reported in the second row
of Table [3]is the best system-combination result achieved in [5].

Finally, the third row of Table |3| shows results achieved in a work that
did not use CRNN optical modeling; instead, traditional HMM modeling was
enhanced by means of (also traditional) HMM discriminative training tech-
niques [12]. The reported WER was obtained through conventional Viterbi
decoding using a word 2-gram LM.

The baseline system proposed in the present work for the ICFHR-2014
dataset is based on the CRNN technology described in Section Pre-
processing applied to this dataset includes line image scaling, contrast en-
hancement and noise removal, as in [29]. Both the training data and the test
data are pre-processed in this way.

The CRNN architecture and training process for optical modeling were
as discussed in Sec.2.1] Details can be seen in the scripts provided for this
specific dataset in GITHUB™ Given the relatively scarce text data available
in the training transcripts, a character 7-gram was used in this case.

The most relevant differences between our proposed baseline and the sys-
tems described in [23] and [5] is that we adopt plain a BLSTM (rather than
MDLSTM) architecture, with the improved architecture discussed in [13],
and use a relatively high-order character N-gram, rather than a simple lexi-
con, or the more traditional word 2-gram LM.

5.8. Analysis of results and summary of pending challenges

A main conclusion in this first benchmark is that using CRNN for optical
modeling and character N-grams for LM is currently the best approach for
this dataset. In a more detailed analysis of the results, we observed that
although the CER was fairly low for all the systems based on RNN optical
modeling, there are important differences in WER. For the benchmark system
here proposed, it is important to remark that including a character N-gram
for LM resulted in a decrease of CER from 6.2% to 5.0% (17% relative) and
WER from 12.7% to 9.7% (24 % relative). A comparison of these results with
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the others shown in Table |3| suggests that our WER, improvement is due to
the use of a character N-gram for LM.

Looking at the results in further detail reveals that, in contrast with
the most traditional 2-gram word LMs, a long-span character LM permits a
simpler and more effective treatment of OOV words in the decoding phase.
Using a character LM leads to output text where characters tend to be con-
catenated according to the regularities observed in the training transcripts.
This also applies to the blank-space and the punctuation signs, which act as
“word” separators. However, in contrast with using a word LM (which en-
sures that output words do belong to a fixed lexicon), the “words” obtained
using a character LM are by no means ensured to be real English words.

To better understand this issue, we analyzed the amount of output “words”
that were not really English words. First we applied an English speller to the
test reference transcripts and observed that 1.5% of the running words were
not English. Most of them were actually parts of hyphenated words and a
few were GT mistakes. Some examples are: ar, gued, effec, tive, compleat,
enquiries, tioned, etc. Then, we did the same for the automatic transcripts
provided by our baseline systems. Without any LM, the corresponding value
was 5.9%, but using the character 7-gram for LM, this value decreased to
3.0%. So, we conclude that the character LM not only decreases the WER,
but also definitely helps making the transcripts more readable.

In order to shed further light into possible causes of errors, we studied
how the WER depends on two features of the words involved in the errors.
The left plot in Figure [3| shows the WER for different relative positions of
the words along the recognized text lines. Most of the errors stockpile at
both ends of the lines. A likely cause of this effect is the lesser linguistic
context available in these line positions. This happens both with the raw
CRNN output and also when a LM is used, but the gain of using a LM is
generally greater towards the middle of the lines. Clearly, the capability of
the LM to help avoiding errors is greater in the middle of the lines, where
more context is available.

The right plot in Figure [3| shows how the WER depends on the length of
the considered words. For each word length, the box shows the percentage
of words of this length and the vertical lines represent percentages of errors
in words of the corresponding lengths. It can be observed that about 16%
of words consist of single-character words (11.6% are punctuation marks
and 4.4% are normal words. About 23% of the 12.7% erroneous words (see
Table |3) are produced in these single-character words. Results are similar
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Figure 3: ICFHR-2014 benchmark. Left: WER for different relative positions of the words
within the line. Right: normalized word length histogram, along with the the percentage
of word errors for each specific length. Results with and without using a LM are shown.

using a LM, with error frequency picking at 28% for single-character words.
The WER on punctuation symbols is 2.9% without LM and 2.6% with LM.
Much in the same way as the context is more or less helpful depending on
the word position, it is clear here that the error-avoiding capability of the
(character) LM is lesser for single-character words or symbols, and becomes
greater for longer words.

These results suggest possible ways to reduce the WER; namely: i) accu-
racy at line boundaries might be improved by concatenating the line images
(per page or paragraph) and training the LM at page or paragraph level.
Note that this will require a special treatment of hyphenated words; and ii)
develop specific techniques to improve the recognition of punctuation marks.

A general lesson that was learned from the organization of the ICFHR-
2014 competition was that preparing the GT for training a good HTR system
is very time-consuming and expensive. This suggested that future challenges
should involve a semi-automatic or fully automatic use of existing transcripts,
with minimal supervision. Another important challenge suggested for up-
coming competitions was to include more difficult page images, including
crossed-out words, marginalia, faint text and bleed-trough, as well as pro-
moting the use additional text to help training better LMs.

6. The ICDAR-2015 benchmark

6.1. Dataset description

The ICDAR-2015 dataset contains more difficult pages from a layout
analysis point of view, drawn again from the Bentham collection. The im-
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ages have marginal notes, fainted writing, stamps, skewed images, lines with
different slope in the same page, variable slanted writing, inter-line text, etc.
Figure [4] shows some examples of these images.
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Figure 4: Document samples of the ICDAR-2015 dataset.

The dataset was divided into four subsets as shown in Table[d} Train-B1,
with line images aligned with their line transcripts, was intended for training
(this is the whole ICFHR-2014 dataset); Train-B2, also intended for training,
was provided only with page-level transcripts, i.e., without alignment of line
images with line transcripts; Test, to be used for evaluating the HTR results.

Table 4: Main statistics of the ICDAR-2015 dataset. The images were scanned at 300
dpi. The exact number of writers is unknown, but it is believed to be about 20 writers.

Number of: Train-B1 Train-B2 Training Test Total
Pages 433 313 746 50 796
Lines 11473 8947 20420 1332 | 21752
Running words 106 905 70447 177352 9440 | 186792
Running OOV (%) - - - 124 -
Lexicon 9716 11152 16881 2493 | 17948
Lexicon OOV - - - 1067 -
Character set size 86 87 87 84 87
Running characters 550674 357672 908346 47286 | 955632

The same tracks defined in the ICFHR 2014 competition were defined in
this dataset: a Restricted track and an Unrestricted track.
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6.2. Summary of results obtained with the ICDAR-2015 dataset

Table [ shows a some of the most relevant results obtained in the Re-
stricted track. The third row corresponds to the winner team of the ICDAR
2015 competition [24], which was also the winner of the previous HTR com-
petition (ICFHR 2014) and used the same system described in the previous
section. They did not provide any information about the way of detecting
the lines in Train-B2. The first and the second rows of Table [ are taken
from [30], which provides further results and details which allow better com-
parison with our benchmark results, reported in the last two rows.

Table 5: Test set CER & WER for the ICDAR-2015 dataset in the restricted track. The
row marked with “}” corresponds to the winner of the competition.

| References  Approach | CER(%) WER(%) |
30] CRNN B1&B2 20.0 51.2
[30] + regexp/lexicon 15.1 33.8
[30, 24] 1 + ROVER combination 15.5 30.2
This paper CRNN B1&B2 (Laia) 15.2 39.3
+ char 8-gram 12.8 30.0

The image pre-processing and baseline system used for this dataset are
similar to those of Section [5.2] The CRNN general architecture and train-
ing process for optical modeling were as discussed in Sec.[2.1], with details
available in the scripts provided for this specific dataset in GITHUBM Given
the larger amount of text data available in this dataset, the default N-gram
order (8) was used for the character LM in this case.

Additional training data for optical modeling were obtained from Train-
B2 as follows: First text lines of Train-B2 images were automatically detected
using the well known open source system TESSERACT "’} Also, a first CRNN
model was trained on Train-B1 only, and used to recognize all the detected
lines. Then, each of these automatic line transcripts was aligned with its
best-matching GT line transcript from the same page. Finally, 4328 pairs
of image-lines and GT transcripts with sufficiently high matching score were
selected as additional training data.

5https://hub.docker.com/r/mauvilsa/tesseract-recognize/
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6.3. Analysis of results and summary of pending challenges

All the results on this dataset evince that it is notably more difficult
than that used in the ICFHR-~2014 benchmark. This is what was expected,
given the much more complex and noisy (and realistic!) images considered.
For the proposed benchmark systems, the present CER is more than 2.5
times higher (from 5.0% to 12.8%) than that achieved with the ICFHR-2014
dataset, and the WER is more than three times worse (from 9.0% to 30.0%).
The comparison is similar if we consider the results of the winner systems of
the ICFHR-2014 and ICDAR-2015 HTR competitions.

The best results for this dataset are also achieved by the proposed base-
line system, in this case both in terms of CER and WER. The impact of
using a LM is also significant here, with a relative improvement of 24% of
WER. However, in this case, the difference of using a long-span character
N-gram, with respect to the simple lexicon used by the ICDAR-2015 winner
system, is only minor. This is in sharp contrast with the important differ-
ence observed for the ICFHR-2014 dataset and it might be explained by the
ROVER combination of results from different systems used in [30] (and [24])
which was not used in [28] (and [23]).

As in the previous experiments, Fig.[5|shows how the errors are distributed
with respect to word positions and lengths. While the tendencies observed in
Fig.[p| are similar to those observed for the ICFHR-2014 dataset in Sec.[5.3]
here the WER variations with word position are somewhat less pronounced.
It can be observed that about 18.0% of words consist of just one character,
where 11.0% are punctuation symbols and 7.0% are normal words. The WER
on punctuation symbols is 5.1%, and goes slightly down to 5.0% with LM.

To finish this section we suggest that in order to improve the word (and
also the character) recognition accuracy in this benchmark, the same ap-
proaches hinted at the end of Sec.[5.3| apply.

7. The ICFHR-2016 benchmark

7.1. Dataset description

The ICFHR-2016 benchmark was based on a small part of the Ger-
man RATSPROTOKOLLE collection. The dataset for this benchmark is com-
posed of 450 page images, each encompassing of a single text block in most
cases, but also with many marginal notes and added interlines. These pages
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Figure 5: ICDAR-2015 benchmark. Left: WER for different relative positions of the words
within the line. Right: normalized word length histogram, along with the percentage of
word errors for each specific length. Results with and without using a LM are shown.

entail several line detection and transcription difficulties, including signifi-
cant amounts of bleed-through. The corresponding GT was produced semi-
automatically, with final manual revision. Figure [6] shows some images of
this dataset.

These 450 pages contain 10550 lines with nearly 43 500 running words
and a vocabulary of more than 8000 different words. The last column in
Table [6] summarizes the overall statistics of these images.

The dataset was divided into three subsets for training, development and
testing, respectively encompassing 350, 50 and 50 page images. The GT
in both training and development sets is in PAGE format and it is fully
annotated at line level. On the other hand, the PAGE files of the test set
only contain the line regions, but not the transcripts. Table [6] shows the
details of these partitions.

The same tracks defined for the ICFHR 2014 and ICDAR 2015 competi-
tions were defined with this dataset: a Restricted track and an Unrestricted
track, the former allowing to use just the material provided by the organizers.

7.2. Summary of results obtained with the ICFHR-2016 dataset

Table[T shows some of the most relevant results obtained with this dataset
in the Restricted track. The first row corresponds to the winner of the HTR
ICFHR 2016 competition. This participant applied usual pre-processing
techniques to line images, which were fed to a neural network of five lay-
ers of CNNs followed by MDLSTMs. A character 10-gram was used for LM
in the final decoding phase [25].
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Figure 6: Document samples of the ICFHR-2016 dataset.

Main statistics of the ICFHR-2016 dataset. Image resolution is 300 dpi. The

pages were written by several writers but the exact number of writers is unknown.

Number of: Train Development Test Total
Pages 350 50 50 450
Lines 8367 1043 1140 | 10550
Running words 35169 3994 4297 | 43460
Running OOV (%) - 16.8  14.7 -
Lexicon 6985 1526 1656 8120
Lexicon OOV - 574 563 -
Character set size 92 80 83 92
Running characters | 208 595 26654 25179 | 260428

The baseline system presented here is also based on the general setup
described in Section [2, including the character 8-gram LM. The CRNN ar-
chitecture and training details for optical modeling are available in the scripts
provided for this specific dataset in GrTHusM

7.8. Analysis of results and summary of pending challenges
The proposed baseline system achieves the best CER and WER results

also in

this case, with a WER relative improvement of 16.3% with respect to

the winner of the ICFHR-2016 competition.

As in the previously considered datasets, here we computed how the er-
rors are distributed with respect to word positions and lengths. The results
are shown in Figure[7] The right plot reveals some of the specifies of the Ger-
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Table 7:

CER & WER obtained with the ICFHR-2016 dataset in the Restricted track.
The row marked with “{” corresponds to the winner of the competition.

| References  Approach | CER(%) WER(%) |
25]7 CRNN + char 10-gram 4.8 20.9
This paper CRNN (Laia) 4.8 19.0
+ char 8-gram 4.5 17.5

man language mentioned above: words are generally longer and very short
words are now very scarce. In this case, punctuation symbols in the Test
represent 15.4% of the single-character symbols. However it is important to
remark that the number single-character words is really small as it is shown
in Figure [, However, error rates for single-character words are similar or
even higher than in the previous benchmarks. In this case the WER on
punctuation symbols is 1.8% without LM and decreases to 1.6% with LM.
Issues related with the language might also explain the behavior observed in
the left plot. Here, in contrast with previous benchmarks, the WER without
a LM is almost invariable with the position of the words in the line. When a
LM is used, the overall WER improves 8% relative, but the WER for words
towards the right end of the line does increase very significantly, as in the
ICFHR-2014 benchmark. Rather surprisingly, though, now this increase does
not happen for words at the left end of the line. Further studies are thus
needed to try to better understand this unexpected behavior.
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Figure 7: ICFHR-2016 benchmark. Left: WER for different relative positions of the words
within the line. Right: normalized word length histogram, along with the percentage of
word errors for each specific length. Results with and without using a LM are shown.

According to Table[f], the running OOV rate of this dataset is significantly
higher than for the other datasets considered in this work. Longer German
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words may contribute to this fact. While using a character N-gram for
LM quite nicely deals with OOV words, it may also allow producing output
character strings that are not really German words. To shed light into this
issue, we used a German speller to evaluate the number of words that were
really German words. First, the percentage of non-German words in the
GT was 17.5%. We think that this is mainly due to the abbreviations and
hyphenated words. The percentage of non-German words when the line
images were recognized without a LM was 20.3%, while when a LM was used
the percentage of non-German words was 18.3%, which is close to the GT
rate.

As in the previous benchmarks, we think that recognition accuracy may
be improved by concatenating line images and training a LM at page level
without line breaks. In the ICFHR-2016 benchmark, this strategy might be
even more rewarding, given the much shorter length of the lines involved.

8. The ICDAR-2017 benchmark

8.1. Dataset description

Most of the images used in the ICDAR-2017 benchmark were taken from
the AEC collection, but handwritten text images from other German collec-
tions of the same period were also included. Many of these extra images are
of poor quality and/or low resolution. The text considered in this bench-
mark has been written by several hands, but the precise number of writers is
unknown. Overall, the writing styles are quite heterogeneous in this dataset.
Fig.[§]shows examples of these images. The dataset encompasses 10 172 page
images, divided into four subsets: two for training (Train-A and Train-B)
and two for testing (Test-A and Test-B2). Table |8 provides basic statistics
of this dataset and partitions.

Train-A consists of 50 page images, each including one or more text
blocks, making a total of about 1000 lines. These pages entail several line
detection and transcription difficulties and the corresponding, fully detailed,
GT was produced semi-automatically and manually reviewed at line level.
The second training subset (Train-B) has 10000 images with around 200 000
lines. In this subset, no geometric information about the location of the text
lines in the images is provided, but the corresponding transcripts do have
correct line breaks according to how lines appear in the images. Note that
this information is relevant since it can be exploited to improve line detection
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Figure 8: Document samples. The image on the left belongs to the Alfred Escher Letter
Collection and the two images on the right belong to different collections.

Table 8: Main statistics of the ICDAR-2017 dataset. The resolution of the images is
variable and ranges from 75 dpi to 300 dpi. The precise number of writers is unknown.

Number of: Train-A  Train-B  Total Train Test-A  Test-B2
Pages 50 10000 10050 65 57
Lines 1386 204775 206161 1573 1412
Running words 15169 1754026 1769195 14880 14 460
Running OOV (%) - - - 5.5 6.0
Lexicon 4637 98993 99530 4635 4648
OOV Lexicon - - - 739 771
Character set size 102 168 168 104 104
Running characters 70268 8290607 8360875 81626 80568

which, in turn, can help to automatically obtain more transcript-aligned line

images for training.

Finally, the subsets Test-A and Test-B respectively contain 65 and 57
page images. Images in the first subset are annotated with baselines, while
those in second include only rough geometry of regions where lines may be
detected and recognized. Two challenges are defined for this benchmark:

e Traditional challenge: The images from Test-A, annotated with base-
lines, are provided for usual transcription and evaluation.

e Advanced challenge: The Test-B2 images are provided without GT
baselines. Text lines must be detected and then transcribed and sub-
mitted to evaluation. Clearly, this setting is more realistic and difficult.
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The evaluation metrics used in the Traditional challenge are the WER
and the CER, as usual. For the Advanced challenge, the Bilingual Evaluation
Understudy (BLEU) metric was additionally proposed. However, a clear cor-
relation of BLEU with WER and CER has been observed in this dataset [20]
and, for homogeneity with previous sections, we will report only WER and
CER also for the Advanced challenge in this paper.

In the Advanced challenge, the lines are not provided and therefore an
automatic detection method has to be used in advance. The regions where
the lines are located are provided. If an automatic line detection/extraction
method is used, then some lines can be lost, and also their transcripts. There-
fore, all lines detected and transcribed are concatenated for each region and
the WER is computed with this concatenated string.

8.2. Summary of results obtained with the ICDAR-2017 dataset

Table [0 shows a summary of the most relevant results obtained with this
dataset in ICDAR 2017 in the Traditional challenge. The first row corre-
sponds to the winner of the ICDAR 2017 competition [26]. This participant
used optical modeling consisting of 7 CNN layers and 2 layers of BLSTM,
along with a character 10-gram for decoding. An initial optical model was
trained using the provided segmented line images of Train-A. Then, lines of
Train-B were automatically detected and recognized using the models trained
with Train-A. Finally line images and GT transcripts were aligned using edit-
distance methods. The optical model was re-trained with Train-A and these
automatically aligned lines. This strategy was iterated a few times in order
to improve the alignments and increase the total amount of training lines
obtained. See all the available details in [26]. The second row corresponds
to a system that used 13 CNN layers and 3 layers of BLSTM, along with a
word 2-gram for decoding [31].

Table 9: CER and WER obtained for Test-A in the Traditional challenge of ICDAR-2017.
The row marked with “i” corresponds to the winner of the competition.

| References  Approach | CER(%) WER(%) |
[26]T CRNN + char 10-gram 7.0 19.1
[31] CRNN + word 2-gram 7.7 21.6
This paper CRNN 6.7 21.6
+ char 8-gram 5.8 17.6
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The results of the here proposed baseline system are also shown in Table[9]
To take full advantage of both training sets available, a procedure similar to
that adopted by the winner of this competition was followed. To this end, a
basic HTR system was trained with Train-A using the provided segmented
line images and the default CRNN and language modeling settings described
in Section 2

Then, lines of Train-B were automatically detected using the approach
presented in [32] and then recognized using the models trained with Train-A.
Given that both line detection and recognition were error-prone, a dynamic
programming alignment between the GT line transcripts and the hypothe-
sized transcripts was carried out [33]. Pairs of line-images and transcripts
aligned with high confidence were used to train a new optical model on both
Train-A and Train-B. About 114 300 additional lines out of 200 000 lines in
the 10 000 pages were used to train this new optical model. Unlike the winner
of the ICDAR 2017 competition, in our case, this process was not iterated.

The writing style and other variabilities exhibited by the images in this
collection are much larger than in the previous benchmarks considered in this
paper. However, in this case a much larger amount of data is also available
to afford the training of larger CRNNs which hopefully can to cope with
these variabilities. Therefore, in this case a significant departure form the
default CRNN settings discussed in Section [2.1] was adopted. Specifically,
the number of convolutional and recurrent layers was increased from 4 to to
5, and from 3 to 4, respectively. In addition, the number of BLSTM units
in each recurrent layer was increased from 256 to 512. As in the previous
benchmarks, full architecture and training details for optical modeling are
available in the scripts provided for this specific dataset in GITHUBI Finally,
a standard 8-gram character LM was trained using the transcripts of both
Train-A and Train-B.

Regarding the Advanced challenge, we performed experiments using the
same models trained with Train-A and Train-B. The text lines of Test-B2
were detected using the advanced line detection tool of the TRANSKRIBUS
text image processing platformB which proved more robust than the one we
used in our training process. The quality of the detected lines has been as-
sessed using the algorithm proposed in [35], obtaining a F-mesure of 97.0%.
Table [10] shows the results obtained, along with those achieved by the win-

160penly available at https://transkribus.eu/Transkribus|/— see details in [34].

25


https://transkribus.eu/Transkribus

ner of this Challengﬂ in ICDAR 2017 (also the winner of the Traditional
challenge).

Table 10: Comparative results obtained in the Advanced challenge in the ICDAR-2017
benchmark with Test-B2. All values were computed at region level by concatenating the
line transcripts. The row marked with “{” corresponds to the winner of the competition.

’References ‘ Approach ‘ CER(%) WER(%) ‘
[26] CRNN + char 10-gram 6.4 16.8
This paper | CRNN, char 8-gram, automatic line detection 7.0 20.0

Same, but error-free line detection 6.3 18.5

8.8. Analysis of results and summary of pending challenges

As we commented in the previous section, German has some singularities
that complicate handwritten text recognition. While both are in German
language, there are two main factors which make the ICDAR-2017 dataset
clearly more difficult than that used in ICFHR-2016: first, the quality of the
ICDAR-2017 test-set images is very variable and generally worse; second, the
number of different characters involved is significantly larger (168 vs. 92).
These differences likely account for the 40% and 14% worse CER and WER
respectively achieved in ICFHR-2016 with respect to ICDAR-2017, using our
benchmark systems without a LM (from 4.8% to 6.7%, see tables [7] and [9)).

The difficulties of the ICDAR-2017 dataset are partially overcome when
a LM is used: using our benchmark systems the CER is now only 29% worse
and almost the same WER is finally achieved in both datasets. These results
clearly indicate that the LM has a larger impact in ICDAR~2017, which rather
obviously due to the much larger amount of characters (8360 875) available
for character N-gram training in this dataset, with respect to ICFHR-2016
(only 235 249).

Regarding the Traditional challenge (see Table@, all the systems achieved
reasonably good results. Without using a LM, our baseline system achieves
a slightly lower CER, which can be explained by differences in the CNNN
architecture. However our WER results are comparatively worse. This can
be due by two likely causes: First, our baseline system was less accurate at
detecting punctuation marks. And second the character errors committed

1"No information was given by the winner about how the lines were detected.
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by our system are more uniformly spread among words than those of the
winner system. As mentioned in Sec.[3], this generally leads to a higher WER
with respect to output transcripts with character errors more concentrated
within individual words. By using a LM, both our CER and WER  results
improved significantly and the proposed baseline system achieves the best
HTR accuracy published so far for the ICDAR-2017 Traditional challenge.

Concerning the Advanced challenge (see Table , the accuracy of the
winner system was excellent. This result confirmed that the currently tech-
nology for detecting and extracting line images in a completely automatic
way is mature enough for achieving excellent recognition results. As opposed
to all the other benchmarks discussed in this paper, in this challenge our
results were not the best ones. A visual analysis revealed that many of our
errors were caused by incorrectly detected lines. In order to provide an ob-
jective confirmation of this observation, in Table we also report results
after manually fixing all the line detection errors. It is worth noting that in
this case we achieve practically the same CER as the ICDAR 2017 winner,
but somewhat worse WER.

As in the previous experiments, for the Traditional challenge, Fig.[9|shows
how the word errors are distributed with respect to word relative positions
and lengths. The tendencies observed are similar to those of the ICFHR-2014
and ICDAR-2015 datasets, but it is in this case where the greater positive
effect of the LM for words towards the middle of the lines is more clearly and
consistently observed. As for single-character symbols, 1.5% are punctuation
symbols and 3.6% are normal symbols. The WER on punctuation symbols
is 1.1% without LM and is 1.0% with LM.

Again, we consider that for improving the WER in this benchmark, the
recognition should be performed at paragraph or page level in order to avoid
the loose of linguistic context caused by breaking the text into lines.

9. Conclusions and outlook

A set of four benchmarks aimed at HTR research for historical and
legacy documents have been introduced. These benchmarks are based on
the datasets and rules previously adopted in well known open HTR competi-
tions. For each dataset, a comprehensive description is given, along with full
details of techniques and corresponding open-source tools required to imple-
ment a state-of-the-art baseline system. The required information to readily
access all the required materials (datasets and tools) is provided. Except
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Figure 9: ICDAR-2017 benchmark. Left: WER for different relative positions of the words
within the line. Right: normalized word length histogram, along with the percentage of
word errors for each specific length. Results with and without using a LM are shown.

in one specific experiment, the proposed baselines overcome all previously
published results, as summarized in Table

Table 11: Summary of the best results achieved in all the benchmarks.

Best so far This paper
Benchmark CER(%) WER(%)  CER(%) WER(%) | 2P
ICFHR-2014 Restricted 5.0 14.6 5.0 9.7 3
ICDAR-2015 Restricted 15.5 30.2 12.8 30.0 g
ICFHR-2016 Restricted 4.8 20.9 4.5 17.5 7
ICDAR-2017 Traditional 7.0 19.1 5.8 17.6 0
ICDAR-2017 Advanced 6.4 16.8 6.3 18.5 10

The increasingly demanding challenges introduced in this series of bench-
marks faithfully aimed to approach the difficulties generally entailed by real
transcription tasks for many kinds of relatively simple historical and archival
document collections. Therefore, even though the results reported in this
paper only qualify as “laboratory results”, they are actually not too far from
what can be achieved in the real world for these kinds of collections. In fact,
projects like READ¥ and its publicly available TRANSKRIBUS platformTd,
have proved very successful at making the technologies which make these
results possible available for practical use in real applications of interest to
archives, libraries and general public. Of course, even for manageable hand-
written documents like those considered in this work, each new collection
needs some preparatory work before it can undergo automatic processing.
Main issues to consider include: analysis of the required alphabet, decid-

28



ing how to deal with (generally frequent) abbreviations and which kind of
transcription is aimed at (diplomatic or modernized), etc. In addition, using
transcribed samples of the documents considered to (re-)train character opti-
cal models and language models, generally leads to significant improvements
over just using existing models that had previously trained on “similar” doc-
uments. Clearly, if a large collection of, say, one million page images is to be
transcribed, the cost of transcribing a few hundreds training images is neg-
ligible, as compared to the overall cost of the project (including document
scanning) and the benefits of obtaining an accurate textual rendering of the
contents of the collection.

Despite these successful steps, further R&D work is much required to
address many important challenges which remain largely unsolved nowadays.

So far, HTR research, including the work presented in this paper, has
mainly dealt with strictly “sequential” recognition of text. That is, by cap-
italizing on line detection, text is assumed to be somehow presented as the
outcome of a kind of uni-dimensional process where characters, words and
sentences are produced in a pure sequential, left-to-right manner. This view
is reminiscent of considering HTR as the same, or a very similar problem as
Automatic Speech Recognition (ASR), from which HTR borrows many fruit-
ful concepts and techniques. However, this view side-skips perhaps the most
challenging and distinguishing (with respect to ASR) aspect of handwrit-
ten documents; namely the intrinsically bi-dimensional nature of the process
actually underlying the production of these documents.

Following this discussion, along with the benchmark results presented in
this paper, the following topics emerge for future research.

Currently, the layout analysis problems entailed by simple documents like
those presented in this paper can be considered practically solved, since the
main (or only) objective is to detect the text lines. Therefore, we think that
more complex historical documents need to be considered to challenge fu-
ture research both in layout analysis itself and in more advanced forms of
HTR which are explicitly aware of the possible layout regions and elements
of the documents to be transcribed. Historical and legacy handwritten doc-
uments of this kind can be counted by the billions: loosely formated tabular
data, birth, marriage and death records, loghooks, minutes, drawings, mixed
printed and handwritten text, etc. Clearly, for many of these documents the
problem can become ill-posed if layout analysis is just based on geometric
reasoning: In most cases, actually reading some text is the only way to re-
liably tell which text elements (e.g, lines) belong to different layout regions.
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Therefore holistic approaches which integrate HTR and layout analysis, such
as that proposed in [36], are interesting ideas to follow.

In all these situations, and many others, a fundamental problem is how
to establish a correct reading order of text lines, even if they may have
been correctly detected and transcribed. Therefore, research in this specific
problem will probably be also important in the coming future.

On a more detailed grain, but also related with the above discussion, it
is important to acknowledge that most errors committed by current, state-
of-the-art systems tend to concentrate on the ends of the text lines. This
has been almost systematically the case in all the benchmarks studied in this
paper. Therefore, we think that an immediate challenge to be considered
in coming research is to find solutions to this problem which, in turn, is
related to problems raised by punctuation marks and hyphenated words.
Throughout this paper we have hinted a default solution to this problem
which consists in concatenating all the lines extracted from a page image or
text region into an elongated image to be processed as a whole, single-line
document. Clearly, this may be appropriate for simple-layout documents
such as those considered in this paper, but it does not seem the right way to
follow to approach the problems discussed above.

In addition to these problems, other foreseen challenges include heavily
deteriorated documents, different acquisition and scanning conditions, differ-
ent character sizes, difficult and/or mixed languages, abbreviations, lack of
(or prohibitive cost of producing) training data, etc. Although many HTR
advances are expected in the future, effective solutions to the many foreseen
problems will likely come slowly and, in the near future, there will be billions
of important documents for which HTR results will just be not good enough.
In particular, for large or very large document collections, perhaps the most
we can expect in the coming years is to make them searchable — as opposed
to get them transcribed. Consequently, we think that scalable techniques for
handwritten text indexing and search such as those presented in [37, [38] will
be an important research topic in the near future.
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