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ABSTRACT Micro-combined heat and power systems (µ-CHP) based on proton exchange membrane fuel
cell stacks (PEMFC) are capable of supplying electricity and heat for the residential housing sector with a
high energy efficiency and a low level of CO2 emissions. For this reason, they are regarded as a promising
technology for coping with the current environmental challenges. In these systems, the temperature control
of the stack is crucial, since it has a direct impact on its durability and electrical efficiency. In order to design a
good temperature control, however, a dynamic model of theµ-CHP cooling system is required. In this paper,
we present a model of the cooling system of a PEMFC-based µ-CHP system, which is oriented to the design
of the temperature control of the stack. The model has been developed from a µ-CHP system located in the
laboratory of our research team, the predictive control and heuristic optimization group (CPOH). It is based
on first principles, dynamic, non-linear, and has been validated against the experimental data. The model is
implemented in Matlab/Simulink and the adjustment of its parameters was carried out using evolutionary
optimization techniques. The methodology followed to obtain it is also described in detail. Both the model
and the test data used for its adjustment and validation are accessible to anyone who wants to consult them.
The results show that the model is able to faithfully represent the dynamics of the µ-CHP cooling system,
so it is appropriate for the design of the stack temperature control.

INDEX TERMS Micro CHP, PEM fuel cell, cooling system, modeling, dynamic, control.

LIST OF SYMBOLS
The following list includes all the symbols of the model. The
list is ordered alphabetically. In the description of each sym-
bol, besides its meaning and its units, it is indicated whether
it represents a variable (V), a constant (C) or a parameter
adjusted by the genetic algorithm (P).

ca Specific heat of air, C, J/(kg·K ).
calTaout Correction coefficient of the calibration error

of Taout , P, K .
calTp4out Correction coefficient of the calibration error

of Tp4out , P, K .
calTwout Correction coefficient of the calibration error

of Twout , P, K .
Cfc Stack heat capacity, C, J/K .

The associate editor coordinating the review of this manuscript and
approving it for publication was Mouloud Denai.

cw Specific heat of water, C, J/(kg·K ).
1T̄ts Logarithmic mean temperature difference in

the heat exchanger, V, K .
1Ttsin Temperature difference between heat

exchanger inlets (tube-shell), V, K .
1Ttsout Temperature difference between heat

exchanger outlets (tube-shell),V, K .
Fa Air flow rate, V, m3/s.
Famax Maximum value of Fa, C, l/min.
Famin Minimum value of Fa, C, l/min.
Fw1 Water flow rate (primary circuit), V, m3/s.
Fw1max Maximum value of Fw1 , C, l/min.
Fw1min Minimum value of Fw1 , C, l/min.
Fw2 Water flow rate (secondary circuit), V, m3/s.
Fw2max Maximum value of Fw2 , C, l/min.
Fw2min Minimum value of Fw2 , C, l/min.
ha Air side heat transfer parameter in the stack,

V, W/K .
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hamax Value of ha at Famax , P, W/K .
hamin Value of ha at Famin , P, W/K .
haw Water-air

interface heat transfer parameter in the stack,
P, W/K .

he Conduction heat transfer parameter in the
heat exchanger (wall), C,W/K .

hfcloss Stack-ambient
heat transfer parameter, P,W/K .

hfc1 Overall water-air heat transfer parameter in
the stack, V,W/K .

hfc2 Water-housing
heat transfer parameter in the stack, V,W/K .

hfc2max Value of hfc2 at Fw1max , P, W/K .
hfc2min Value of hfc2 at Fw1min , P, W/K .
hp1loss Water-ambient

heat transfer parameter in pipe 1, P,W/K .
hp4loss Water-ambient

heat transfer parameter in pipe 4, P,W/K .
hr Water-ambient

heat transfer parameter in the radiator,
V, W/K .

hrOFF Value of hr at R = 0, V, W/K .
hrOFFmax Value of hrOFF at Fw2max , P, W/K .
hrOFFmin Value of hrOFF at Fw2min , P, W/K .
hrON Value of hr at R = 1, V, W/K .
hrONmax Value of hrON at Fw2max , P, W/K .
hrONmin Value of hrON at Fw2min , P, W/K .
hs Convection heat transfer parameter in the heat

exchanger (shell side), V,W/K .
hsmax Value of hs at Fw2max , P, W/K .
hsmin Value of hs at Fw2min , P, W/K .
ht Convection heat transfer parameter in the heat

exchanger (tube side), V,W/K .
htmax Value of ht at Fw1max , P, W/K .
htmin Value of ht at Fw1min , P, W/K .
hts Overall heat transfer parameter in the heat

exchanger (tube-shell), V,W/K .
hw Water side heat transfer parameter in the

stack, V,W/K .
hwmax Value of hw at Fw1max , P, W/K .
hwmin Value of hw at Fw1min , P, W/K .
i Electric current supplied by the stack, V, A.
ka Product ρaca, P, J/(m3

·K ).
kw Product ρwcw, C, J/(m3

·K ).
nc Number of cells in the stack, C, ud .
nch Number of channels in the heat exchanger, C,

ud .
1Qa Heat difference (stack air), V,W .
Qfcloss Heat flow rate (stack-ambient), V,W .
Qheat Heat flow rate generated by the reaction in the

stack, V,W .
1Qp1 Heat difference (pipe 1), V,W .
Qp1loss Heat flow rate (pipe 1-ambient), V,W .
1Qp2 Heat difference (pipe 2), V,W .
1Qp3 Heat difference (pipe 3), V,W .

1Qp4 Heat difference (pipe 4), V,W .
Qp4loss Heat flow rate (pipe 4-ambient), V,W .
Qre Heat flow rate (radiator-ambient), V,W .
1Qr Heat difference (radiator), V,W .
1Qs Heat difference (heat exchanger shell side),

V, W .
1Qt Heat difference (heat exchanger tube side),

V, W .
Qts Heat flow rate (tube-shell), V,W .
1Qt1 Heat difference (tank 1), V,W .
1Qt2 Heat difference (tank 2), V,W .
Qwa Heat flow rate (water-air, in the stack), V,W .
Qwfc Heat flow rate (water-housing, in the stack),

V, W .
1Qw Heat difference (stack water), V,W .
R Radiator activation signal (ON/OFF), V, −.
ρa Air density, C, kg/m3.
ρw Water density, C, kg/m3.
T̄a Average air temperature in the stack, V, K .
Tain Air temperature (stack air inlet), V, K .
Tamb Ambient temperature, V, K .
Tambr Ambient temperature for the radiator, P, K .
Taout Air temperature (stack air outlet), V, K .
Tfc Stack housing temperature, V, K .
T̄p1 Average water temperature in pipe 1, V, K .
Tp1in Water temperature (pipe 1 inlet), V, K .
Tp1out Water temperature (pipe 1 outlet), V, K .
Tp2in Water temperature (pipe 2 inlet), V, K .
Tp2out Water temperature (pipe 2 outlet), V, K .
Tp3in Water temperature (pipe 3 inlet), V, K .
Tp3out Water temperature (pipe 3 outlet), V, K .
T̄p4 Average water temperature in pipe 4, V, K .
Tp4in Water temperature (pipe 4 inlet), V, K .
Tp4out Water temperature (pipe 4 outlet), V, K .
T̄r Average water temperature in radiator, V, K .
Trin Water temperature (radiator inlet), V, K .
Trout Water temperature (radiator outlet), V, K .
Tsin Water temperature (heat exchanger shell

inlet), V, K .
Tsout Water temperature (heat exchanger shell out-

let), V, K .
Ttin Water temperature (heat exchanger tube

inlet), V, K .
Ttout Water temperature (heat exchanger tube out-

let), V, K .
Tt1 Water temperature (tank 1), V, K .
Tt1in Water temperature (tank 1 inlet), V, K .
Tt2 Water temperature (tank 2), V, K .
Tt2in Water temperature (tank 2 inlet), V, K .
T̄w Average water temperature in the stack, V, K .
Twin Water temperature (stack water inlet), V, K .
Twout Water temperature (stack water outlet), V, K .
v Stack voltage, V, V .
Va Volume of air in the stack, P, m3.
Vp1 Volume of pipe 1, P, m3.
Vp2 Volume of pipe 2, C, m3.
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Vp3 Volume of pipe 3, C, m3.
Vp4 Volume of pipe 4, P, m3.
Vr Volume of water in the radiator, P, m3.
Vs Volume of the heat exchanger shell, C, m3.
Vt Volume of the heat exchanger tube, C, m3.
Vt1 Volume of tank 1, P, m3.
Vt2 Volume of tank 2, P, m3.
Vw Volume of water in the stack, P, m3.

NOTE: In this paper, the symbol h (W/K ) is named ‘‘heat
transfer parameter’’ and denotes the product of the overall
heat transfer coefficientU inW/(K ·m2) and the heat transfer
area A in m2, i.e. h = UA.

I. INTRODUCTION
Currently, there are serious environmental problems: global
warming, air pollution and depletion of fossil fuel reserves.
Governments are aware of it and they are taking measures
to address them. New technologies in the energy sector can
help to achieve these objectives. One of these technologies is
µ-CHP systems [1]–[4].

A µ-CHP system produces electricity and heat (cogenera-
tion) for the energy supply in the residential sector. The main
advantage of these systems over traditional power generation
systems is that they take advantage of the heat which is
produced during the process of electrical energy generation,
which results in a total energy efficiency that can exceed
90%, much higher than that of conventional systems, which
is around 40%. Their high efficiency means lower fuel con-
sumption, which leads to a reduction in the operating cost
and a reduction in the amount of greenhouse gases emitted
into the atmosphere [5]–[7].

There are several types of µ-CHP systems, depending on
the technology on which they are based: internal combus-
tion engine, Stirling engine, turbines or fuel cells [8], [9].
Among them, the one based on proton exchange membrane
fuel cell (PEMFC) is a promising option, because this first
mover has some advantages over the rest: 1) high electrical
efficiency, 2) low heat-to-power ratio, 3) low level of noise
and 4) low level of CO2 emissions [5]–[7], [10].
There are already some commercial µ-CHP systems based

on PEMFC and the trend is upwards, but mass production has
not been reached yet, because their prices are high [6], [7].
In order to overcome this frontier, it is necessary to advance in
several technical aspects, with the aim of improving the per-
formance of these systems and reducing their costs [10], [11].
One of the most important work areas and where there is a
greater opportunity for improvement is the temperature con-
trol of the PEMFC. In effect, the correct design of the stack
cooling system, which includes its control, plays a crucial
role in the durability, cost, reliability and energy efficiency of
the stack [11]–[18]. However, to design a good temperature
control of the stack, it is necessary to have a good model of
the cooling system.

In the literature, there are several models of the cooling
system of a PEMFC-based µ-CHP system [19]–[26], [31].
There are also thermal models of PEMFCs which are inter-
esting in the context of this work, although they do not belong
to µ-CHP applications [13], [27]–[30], [32], i.e. they do not
contemplate a heat recovery subsystem, which is an essential
unit of a µ-CHP system [7]. However, most of the models
of the first group are static, not dynamic, and to develop a
temperature control a dynamic model is needed. Moreover,
few have been validated against test data from a real system.
Therefore, there is a need for dynamic models that have been
experimentally validated [5], [33]. For example, Ahn and
Choe [13] developed a control-oriented model of a PEMFC
stack cooling system. This model is dynamic and based on
first principles, but it was not empirically validated. Coz-
zolino et al. [19] obtained a model of the cooling system of
a PEMFC-based µ-CHP system and they validated it experi-
mentally against a real system. However, their model is static,
not dynamic. Barelli et al. [20] presented a dynamic model
of a complete PEMFC-based µ-CHP system, including the
cooling system. They used it to analyze the behavior of their
µ-CHP system in response to variable electrical and thermal
demands, but it is a linear model that represents the system
only around an operating point and it was not validated exper-
imentally. Asensio et al. [21] proposed a control-oriented
model of the cooling system of a 600W PEMFC stack. The
stack is cooled by water and is integrated into a laboratory
equipment that emulates a real µ-CHP system. This model
is able to provide the stack temperature as a function of
the water flow rate, the stack inlet water temperature and
the electric current demanded, but this model is static, not
dynamic, and it was experimentally validated only for a value
of the water flow rate (1 l/min), i.e. at an operating point. For
an overview of the thermal models found in the literature and
their main characteristics, see Appendix B.

In this paper, we present a model of the cooling system
of a PEMFC-based µ-CHP system, which includes both the
stack and the heat recovery unit. The purpose of this model
is to be useful for the design of the temperature control of
the PEMFC stack. The model is based on a real system
which is located in our laboratory. It has been adjusted by
means of an evolutionary optimization algorithm, in partic-
ular a genetic algorithm (GA). It is a first principles model,
non-linear, dynamic and has been experimentally validated.
Amodel of these characteristics (dynamic and experimentally
validated) is helpful for the design of the stack temperature
control and, according to the bibliographic evidence supplied
in this introduction and in Appendix B, it represents a relevant
contribution to the existing body of knowledge in the subject
area of µ-CHP Modeling.

The rest of the article is structured as follows: In Section II,
we present the complete µ-CHP system that we have in our
laboratory. In Section III, we describe the part of the µ-CHP
system that is going to be modeled (the cooling system),
the modelingmethodology, the tests performed for the adjust-
ment and validation of the model, the genetic optimization
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FIGURE 1. The µ-CHP system. The PEMFC stack is fed with hydrogen and air, and generates electricity and heat. The electronic
load emulates electrical energy demands and the fan-cooled radiator emulates thermal energy demands. The hot water tank
serves as a buffer where heat can be stored. The whole system is controlled by a control unit, which is based on a CompactRIO
from National Instruments.

algorithm used for its adjustment, and the equations of the
model. In Section IV, we present the results and discuss them.
Finally, in Section V, we conclude.

II. DESCRIPTION OF THE MICRO-CHP SYSTEM
In this section, we describe the µ-CHP system on which the
tests were carried out and whose cooling system we model.
Fig. 1 shows the complete system. The core of the µ-CHP
system is the PEMFC stack, which is from the company
Nedstack, model 2.0HP. The stack consumes hydrogen and
oxygen, and produces power and heat. It is able to produce up
to 2 kW of electrical energy and 3.3 kW of thermal energy.
The electrical energy is consumed by an electronic load and
the thermal energy is removed from the stack by means of a
water cooling system and then transferred, through the heat
exchanger, to a hot water tank that serves as a buffer of heat.
This is the part of the system that we model, the cooling
system (i.e. the stack and the heat recovery unit, see Fig. 3),
and will be described in detail in Section III-A.

The supply of oxygen comes from an external air compres-
sor and the supply of hydrogen from a pressurized bottle.
A mass flow meter and a proportional valve are installed
in each supply line. By means of these devices the supply
flow rates can be measured and varied depending on the
electrical energy demanded by the electronic load. Both air
and hydrogen must enter the stack under certain conditions

of temperature and humidity. In order to condition them,
the equipment includes a heating and humidification system.
This system takes part of the humidity and heat present in
the air at the stack air outlet and transfers them to the supply
gases.

The electronic load demands electrical energy from the
stack, by requiring an electrical current (i). In order to gen-
erate this current the stack must be fed with hydrogen and
oxygen (which is taken from the air supply). The amount of
these gases to be supplied to the stack depends on the electri-
cal current demanded. The hydrogen supply flow rate is FH2,
which enters the stack at a temperature of TH2in ; the air supply
flow rate is Fa, which enters the stack at a temperature of
Tain . Both flows enter the stack at a relative humidity of 40%
(calculated at stack temperature). Periodically, the circuit of
hydrogen is purged, in order to remove impurities inside the
stack and avoid its flooding. This is done by a valve which
is activated by the signal UH2purge . The exhaust air from the
stack leaves the stack at a temperature of Taout and at a relative
humidity of 100%.

It is possible to program profiles of electrical demand in the
electronic load and, in this way, to emulate the electrical con-
sumption of a house (lighting and appliances). The equipment
also has a fan-cooled radiator through which it is possible
to emulate the thermal energy consumption (heating and hot
water). This radiator, however, works only in two states,
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FIGURE 2. Main screen of the SCADA implemented in LabView for the monitoring and operation of the µ-CHP system.

on and off. When on, it extracts heat from the secondary
circuit of the cooling system.

Several magnitudes have to be controlled to ensure the
correct operation of the system: inlet and outlet water tem-
perature of the stack, air supply flow rate, hydrogen pres-
sure at the stack anode inlet, and the relative humidity and
the temperature of air and hydrogen supply flows. For this,
the equipment includes several sensors and actuators, which
are connected to a control unit based on a CompactRIO from
National Instruments. The controllers of thesemagnitudes are
implemented within this control unit. There are a total of six
control loops.

The CompactRIO communicates with a PC via Ethernet.
A Supervisory Control and Data Acquisition (SCADA) sys-
tem runs on the PC, by which it is possible to monitor the
process, to log its signals, to change the set point of any
control loop and to parameterize the controllers. Fig. 2 shows
its main screen. The SCADA and the control system that runs
on the CompactRIO have been implemented in LabView.

The facility that has been described (µ-CHP system,
SCADA and control unit) is an open system and, conse-
quently, very flexible when it comes to making modifications
in it or performing tests. The system has been conceived so
that research and development activities aimed at optimizing
the performance of µ-CHP systems can be conducted, with
an emphasis on energy efficiency improvement, and this in
two areas: control and energy management. The model that
we present in this article is the first result of this line of work.

III. MODELING
In this section we describe, first, the part of the µ-CHP
that we model, i.e. the stack cooling system (Section III-A),

the modeling methodology (Section III-B), the tests con-
ducted to obtain the model and to validate it (Section III-C),
and the optimization algorithm used to adjust the parameters
of the model (Section III-D). Then, we introduce the four sub-
models that together constitute the complete model, as well
as their equations and the assumptions assumed in their
conception (Sections III-E, III-F, III-G and III-H). Finally,
we present the complete model (Section III-I).

A. THE COOLING SYSTEM
The cooling system of the µ-CHP plant which was presented
in Section II is shown in Fig. 3 and is described in detail
in this section. It consists of two water circuits, the primary
circuit and the secondary circuit, coupled by a heat exchanger.
The water of the primary circuit, which passes through the
stack, is demineralized water, with a conductivity lower than
10 µS/cm.

The stack generates the electrical energy required by the
electronic load and, as a by-product, produces heat within
itself. The stack voltage (v) depends on the electrical current
demanded (i) and on the temperature of the stack, among
other variables, and is determined by the characteristic curve
of the stack. The heat generated by the stack is removed by
the water flow of the primary circuit (Fw1 ) and transferred to
the secondary circuit through the heat exchanger. This heat
finally ends up in the hot water tank (tank 2), which serves as
a heat storage.

Pump 1 propels the water in the primary circuit and oper-
ates in steady state (UP1 = 100%). The water flow that passes
through the stack (Fw1 ) is regulated by the motorized valve
installed after pump 1 (Uv). There is an internal control loop
of Fw1 , so a user (or a controller) can directly assign set points

95624 VOLUME 7, 2019



S. N. Giménez et al.: Control-Oriented Modeling of the Cooling Process of a PEMFC-Based µ-CHP System

FIGURE 3. Diagram of the PEMFC stack cooling system.

to Fw1 without having to worry about the motorized valve.
This water flow rate is measured with a flow meter. By vary-
ing Fw1 it is possible to vary the amount of heat extracted
from the stack. If Fw1 increases, more heat is extracted and
the stack cools down. If it decreases, less heat is removed and
the stack heats up. The outlet water temperature of the stack
(Twout ) is used as a measure of the temperature of the stack.

The radiator emulates the demand of thermal energy. This
radiator is activated by the signal R and has two states,
on and off. When the radiator is on, it extracts heat from
the secondary circuit and evacuates it to the environment,
as a result the water temperature in tank 2 (Tt2) decreases.
When the radiator is off, the heat losses in the system are
residual, although they exist. These residual losses are due
to the transfer of heat from all the elements of the system
to the environment. The ambient temperature is, therefore,
a relevant variable in the process. A temperature sensor is
installed for its measurement (Tamb).
The water flow rate of the secondary circuit (Fw2 ) is varied

by means of the control signal of pump 2 (UP2), which
is driven by a variable-speed drive. Like Fw1 , Fw2 is also
internally controlled. The flow rate Fw2 is estimated from a
measurement of the pressure at the inlet of the heat exchanger
shell (Psin ). If this flow rate decreases, the amount of heat

transferred through the heat exchanger also decreases, as a
result less heat passes from the primary circuit to the sec-
ondary circuit, and this causes the water temperature at the
stack inlet (Twin) to increase; and vice versa, if the flow rate
Fw2 increases, the amount of heat transferred from the pri-
mary to the secondary circuit increases and the temperature
of the water entering the stack decreases.

For the stack to work properly, there must be a temper-
ature control system that maintains Twout and Twin at its set
points, minimizing the effect of the disturbances to which
these signals will be subjected as a result of changes in the
demands of electrical and thermal energy. The set points
of Twout and Twin are, on the recommendation of the stack
manufacturer, 65◦C and 60◦C, respectively. This control sys-
tem will manipulate the flows Fw1 and Fw2 , which, as we
have seen, have an influence on those temperatures and,
consequently, serve as manipulable variables. This temper-
ature control system, as noted in the Introduction, is of great
importance, since the electrical efficiency and lifetime of the
stack depend on it. Currently, a relatively simple temperature
control system is implemented. This control consists of two
proportional-integral (PI) controllers, one for each tempera-
ture, which were adjusted using a linear model of the process.
The non-linear model that we present in this work would
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enable a control engineer to develop a more sophisticated
temperature control and, consequently, to improve the effi-
ciency and lifetime of the stack.

B. MODELING METHODOLOGY
The methodology used for the development of the model
consists of the following stages:

A) To delimit the part of the µ-CHP system that we want
to model (the cooling system), specifying its inputs and
outputs.

B) Definition of the range of validity of the model.
C) Conceptual division of the cooling system into subsys-

tems, specifying the inputs and outputs of each subsys-
tem.

D) Modeling and validation of each subsystem separately.
E) Interconnection of the submodels obtained in the pre-

vious stage to build the complete model.
F) Fine adjustment of the complete model.
G) Validation of the complete model.

The modeling and validation of each subsystem (stage D) is
divided, in turn, into the following steps:

1) Identification of the main elements of the subsystem.
2) Identification of the natural phenomena involved in the

operation of these elements as well as the physical
principles that govern them.

3) Introduction of simplifying hypotheses.
4) Determination of the structure of the submodel (set of

equations) and its parameters, which is based on the
physical principles and simplifying hypotheses.

5) Adjustment of the parameters of the submodel.
6) Evaluation of the results of the adjustment. If OK, val-

idation (step 7); if not OK, revision of the simplifying
hypotheses (step 3).

7) Validation of the submodel. If OK, the submodel
is released; if not OK, revision of the simplifying
hypotheses (step 3).

The part of the µ-CHP plant that we want to model is the
cooling system. This system was described in Section III-A
and is represented in Fig. 3. Note that here we consider this
system as a thermal process. This is important, because the
selection of input and output signals that we detail below can
only be understood in light of that fact. The signals that we
consider as inputs to the system and as outputs are indicated
in Fig. 3, the inputs in red and the outputs in blue. The
electric current (i) and the stack voltage (v) provided by the
stack are, considering the system as a thermal process, inputs,
because the voltage and the current of the stack determine the
amount of thermal energy it produces. The signals FH2 and
TH2in are also, from this point of view, inputs to the system
(UH2purge only affects FH2). However, we decided to ignore
them, because the influence of the hydrogen flow rate and
its temperature on the system turned out to be negligible,
in comparison with the effect of the air flow rate (Fa) and
its temperature (Tain ), which we do take into account. The
signals Fw1 and Fw2 are inputs to the system. In fact, these

are the variables which any temperature control will have
to manipulate to control the temperature of the stack. The
ambient temperature Tamb is also considered as an input,
because it affects the thermal behavior of the system, just like
R, the activation signal of the radiator. The signals chosen as
outputs are: Twout , Twin , Tt2, Taout , Tsin and Tsout .
In general, the range of validity of a model, i.e. the range

of operation within which the model is intended to represent
the process, depends on the purpose of the model. In our
case, the purpose of the model is to serve for the design of
the stack temperature control. By taking into account this
basic consideration, we established that the model had to be
valid for current demands (i) between 140 A and 200 A, and
for water temperatures in tank 2 (Tt2) between 53◦ C and
56 ◦C. Outside these ranges, no controller will be able to
keep Twout and Twin at their set points, because its control
actions (Fw1 and Fw2 ) saturate if these ranges are exceeded.
This is simply a physical restriction of the system. Since our
model is oriented towards control design, further increasing
its range of validity would increase the complexity of the
model without adding any additional value to its purpose.

The cooling systemwas divided into four subsystems: SS1,
SS2, SS3 and SS4 (see Fig. 3). Each of these subsystems was
modeled independently, giving rise to submodels SM1, SM2,
SM3 and SM4 (see Fig. 11).

The adjustments of the parameters of the models, both
those of the submodels (step 5) and the fine adjustment of
the complete model (stage F), were made using the data set
from the test for modeling (setM). The validations (stage G
and step 7) were performed using the data set from the test
for validation (setV). These two tests are described in detail
in Section III-C.
Note that the process of modeling is iterative: if the results

of the adjustment of a submodel (step 6) or its validation
(step 7) are unsatisfactory, one goes back to step 3 to revise the
simplifying hypotheses. This is because it is not always easy
to determine a priori which physical phenomena are relevant
and which are not. In the same way, it is not self-evident to
what extent the equations representing these physical phe-
nomena can be simplified without this entailing a deteriora-
tion in the capacity of the submodel for representing reality.
What we were looking for was a model in first principles,
suitable for the design of a temperature control, but not
unnecessarily complicated. Therefore, in practice, for each
submodel we started with a simple structure and evaluated the
goodness of its adjustment. If it was insufficient, we revised
the simplifying assumptions and incorporated more com-
plexity, until the adjustment and the validation satisfied our
expectations.

For example, when modeling the radiator, we initially
assumed that the heat transfer parameters to the ambient
for the states ON and OFF (hrON and hrOFF ) were con-
stant. Under this hypothesis, the adjustment achieved by the
optimization algorithm displayed an intolerable discrepancy
with respect to the test data. This fact led us to revise that
hypothesis, assuming now that those heat transfer parameters
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depended on the water flow rate of the secondary circuit
(Fw2 ), which is the water flow that passes through the radiator.
The new adjustment improved substantially and, in addition,
this improvement could be quantified.

It is interesting to note that in some cases the opposite
happened, that is, the results of the adjustment indicated that
a certain physical phenomenon that had been considered as
relevant was not. For example, it was initially assumed that
there was a loss of heat between the water in tank 2 and the
environment, and that the corresponding heat transfer param-
eter could be approximated by a constant. When adjusting
submodel SM4, to which tank 2 belongs, the optimization
algorithm returned a value close to 0 W/K for that coeffi-
cient. This informed us that that phenomenon, which we had
assumed as relevant, was in fact negligible.

Additionally, during the analysis of the adjustment of each
submodel, we paid attention to the values of the parame-
ters provided by the optimization algorithm and we checked
whether these values were plausible or not. We could do
this because the submodels are expressed in first principles,
so their parameters have a direct physical sense. If the value
of any of the parameters was unlikely, this was a clue that
possibly there was some other relevant phenomenon that
we were not considering, whose effect was being absorbed,
incorrectly, by that parameter.

The fact that the model is formulated in first principles rep-
resented still another advantage during the modeling process:
since the parameters of the model have a clear physical sense,
it is simple and intuitive to estimate an initial search range
for each of them. Once again, the analysis of the adjustment
guided us in this task: when the search of a parameter tried to
exit its search range, this suggested an increase in the limits
of the search range of that parameter.

As can be seen, the analysis of the adjustment provided
by the optimization algorithm gives many clues about which
physical phenomena are relevant and are not being consid-
ered, and vice versa, which physical phenomena that were
incorporated into the model are not relevant. For this reason,
it serves as a starting point for the revision of the simplifying
hypotheses. This is a useful help for the modeler, because it
allows them to find, through this iterative process, the desired
trade-off between model complexity and goodness of fit.

The adjustment of the parameters of each submodel (step
5) consists in finding the set of values of these parameters
that provides the ‘‘best’’ fit between the submodel response
and the experimental data from the test for modeling (setM),
which means to solve an optimization problem. To quantify
the goodness of the fit, i.e. what ‘‘best’’ means, we used
an index. The formulation of the optimization problem and
the index will be described in detail in Section III-D. As in
any optimization problem, here there arises the difficulty that
the cost function to be optimized (i.e. the index) presents
local minimums and that the optimization algorithm, instead
of finding the global optimum, is trapped in one of these
local minimums. In our case, since we are dealing with the
adjustment of a non-linear model with a lot of parameters,

the probability that there are local minimums is high. To cope
with this problem we did two things. First, we employed a
genetic algorithm as optimization algorithm, because genetic
algorithms have proven to be effective as global optimizers.
Moreover, our research team has experience in their use.
Second, we launched the algorithm three times (in parallel)
for each adjustment. In this way, since the genetic algorithm
beginswith a randompopulation, if the three executions of the
algorithm returned the same solution, this was a reasonable
proof that this solution was precisely the global optimum.

It should be added that the search space was discretized.
That is, for each parameter, apart from its range of values,
which defines the search space for that parameter, a minimum
step was defined. For example, for a given heat transfer
parameter the range could be from 0 to 10 W/K and the step
0.1 W/K; this would result in a set of 101 possible values
for that parameter. The discretization of the search space
makes optimization more efficient. The determination of the
minimum steps is intuitive, thanks to the fact that the model
is expressed in first principles. In addition, the minimum
steps can be revised if the accuracy of the adjustment is
unsatisfactory.

In order to evaluate the adjustment of each submodel
(step 6), we used, on the one hand, the aforementioned cost
function, which gives an objective measure of the goodness
of the adjustment and, on the other hand, a visual comparison
of the submodel response with the test data. This comparison
allowed an assessment of how well the submodel was able to
capture the dynamics of the plant, regardless of its accuracy,
i.e. regardless of the value of the cost function.

The process of modeling, adjustment and validation of
each submodel ends with a set of values, namely, the values
of the parameters of the submodel that minimize the cost
function. Once the four submodels were adjusted and vali-
dated independently, they were merged to form the complete
model (see Fig. 11). A fine adjustment of the parameters of
the complete model was then carried out (step F), by using
again the optimization algorithm. On this occasion, the set of
values of the parameters of the submodels already adjusted
was included, as a starting solution, in the initial population
of the algorithm. In addition, search ranges were narrowed
and minimum steps were also reduced. This fine adjustment
was launched three times too. In this way, we obtained the
final set of values for all the parameters of the complete
model. Finally, once the complete model was adjusted, it was
validated against the data set from the validation test.

C. MODELING AND VALIDATION TESTS
The tests were conducted on the µ-CHP system by using
the SCADA implemented in LabView (Fig. 2). Two tests
were carried out: 1) one test for the modeling and for the
adjustment of the parameters and 2) one test for the valida-
tion of the model. They were conducted on different days,
the test for modeling on 10/13/2017 and the test for vali-
dation on 10/17/2017, and both have an approximate dura-
tion of 2.5 hours. In both tests, the process was excited by
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FIGURE 4. Signals applied to the inputs of the cooling process during the test for modeling and adjustment of the parameters of the model.

manipulating the variables i, Fw1 , Fw2 and R, that is, the elec-
trical energy demand, the water flow rates of the primary and
secondary circuits, and the thermal energy demand. These
signals are represented in Fig. 4 (test for modeling) and
in Fig. 5 (test for validation). In addition, the following signals
weremeasured and recorded: on the one hand, Twout , Twin , Tt2,
Taout , Tsin and Tsout (which are the output signals of the process
and will be presented in Section IV, where the adjustment and
validation results are displayed) and, on the other hand, Tamb,
v, Tain and Fa. These last signals, remember, are also inputs
to the process, but not manipulable. For reasons of simplicity
and clarity, these last signals have not been included in the
figures.

The tests are step tests. This is relevant for two reasons.
First, because in a real µ-CHP system the electrical and
thermal energy demands (in our system, i and R) have usually
the form of steps. Second, because a temperature controller
may apply also high frequency control actions (in our system,
Fw1 and Fw2 ) in response to disturbances. Therefore, the fast
dynamics of the process must be captured by the model. Both
tests are analogous in nature (step tests), although quanti-
tatively different (they differ in the values of the steps and
in their sequence). The tests were carried out in open loop.
This was done to prevent the PI controllers from attenuating
the mutual effects produced by the programmed steps in the
manipulated variables, which would have partially concealed

the dynamics of the system. For example, a change in Fw1

affects Twout , but also Twin , so the controller of Twin will act
on Fw2 to counteract the disturbance produced by Fw1 ; as
a result the effect of Fw1 on Twin will be attenuated and it
will be difficult to identify. Again, it is important that the
model (since it is a model oriented to control) captures the
dynamics of the process well, because if the control designed
is based on a model that does not satisfy that requirement,
such a control could make the process unstable, especially if
it is an aggressive control.

D. THE OPTIMIZATION ALGORITHM
The parameters of each of the four submodels are adjusted
using the data set from the modeling test (step 5). This
adjustment task is formulated as an optimization problem and
this problem is solved by an optimization algorithm.

Given the mathematical structure of a submodel, expressed
in its general form as a set of non-linear differential equations:

ẋ(t) = f (x(t),u(t), θ ) (1)

y(t) = g(x(t),u(t), θ ) (2)

where u(t) are the inputs, y(t) the outputs, x(t) the state
variables and θ = [θ1, ..., θn] the vector of parameters to be
adjusted, the optimization problem consists in finding the set
of values of θ that minimize a certain cost function (J ), which
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FIGURE 5. Signals applied to the inputs of the cooling process during the test for the validation of the model.

measures the goodness of fit of the model against the real
data. This is to say:

min
θ
J (θ ) (3)

subject to the following restrictions:

θi ≤ θi ≤ θi, i = [1, ..., n] (4)

Basically, these restrictions define the search space, in other
words, θi and θi are the lower and upper limits of the search
range of the parameter θi. Solving that optimization problem
is precisely what the optimization algorithm does.

There are several ways in which the cost function can be
defined. We defined it as:

J =
n∑

k=1

Jk (5)

where:

Jk =
1
T

∫ T

0

∣∣ŷk (t)− yk (t)∣∣ dt (6)

where n is the number of outputs, ŷk (t) is the output k of
the process, yk (t) the output k of the submodel and T is the
duration of the test. That is to say, what is minimized (J ) is
the sum of the average errors in the outputs of each submodel.
Note that, due to the way in which the index has been defined,

all the errors in the submodel outputs have the same relative
importance.

In short, the optimization algorithm takes as inputs: 1) the
mathematical structure of the submodel, 2) the modeling test
(setM), 3) the cost function (J ) and 4) the search space;
and it returns the values of the parameters of the submodel
that minimize the cost function. The optimization algorithm
used is a genetic algorithm. In particular, we use the genetic
algorithm described in [40], available in Matlab Central,
at https://es.mathworks.com/matlabcentral/fileexchange/
39021-basic-genetic-algorithm?s_tid=prof_contriblnk.

E. SUBMODEL 1 (SM1)
The subsystem (SS1) corresponding to this submodel (SM1)
consists of a single element, the PEMFC stack (see Fig. 3).
The inputs of this submodel are Fa, Tamb, Tain , v, i, Twin
and Fw1 ; and its outputs are: Twout and Taout (see Fig. 11).
The parameters to be adjusted in this submodel are: Vw,
Va, ka, hfc2max , hfc2min , hfcloss , hamax , hamin , hwmax , hwmin , haw,
calTwout and calTaout . These signals and parameters will be
explained below, as the equations of this submodel are intro-
duced. But first, a clarifying note: In this section and in the
three that follow, we describe the equations of each element
of the submodels. The binding equations, i.e. the equations
that model the connections between elements within a sub-
model or between submodels within the complete model,
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for example Twin = Tp1out , we do not specify them, since
they are trivial just by looking at Fig. 11, where they are
represented by arrows. Moreover, since a lot of the equations
are based on the same modeling principles, we have included
the Appendix A’, where the five most common modeling
principles are numbered and summarized in a table (Table 5).
In order to simplify the introduction of the equations and to
avoid unnecessary repetitions, wewill refer to thesemodeling
principles (MP) throughout the following four sections.

The PEMFC stack working principle diagram that we have
assumed is displayed in Fig. 6. It shows the physical phenom-
ena that have been considered as relevant, as well as the main
variables, constants and parameters involved.

FIGURE 6. Thermal phenomena assumed in the PEMFC stack. Part of the
heat generated by the electrochemical reaction (Qheat ) is evacuated by
the water flow running through the primary circuit of the cooling system,
the rest is transferred to the air (Qwa) and to the shell of the stack (Qwfc ).

Two electrochemical reactions take place at each cell of the
stack. At the anode:

H2→ 2H+ + 2e− (7)

At the cathode:

1
2
O2 + 2H+ + 2e−→ H2O (8)

The maximum electrical energy that a cell can produce is
given by the Gibbs free energy:

We = −1G (9)

And the ideal potential of the cell is:

Ec =
−1G
nF

(10)

where n is the number of electrons released in the reac-
tion (two) and F is Faraday’s constant (96485 As/mol).
At 25 ◦C and atmospheric pressure Ec = 1.23 V (ideal stan-
dard potential). Therefore, the maximum electrical energy
that the stack can generate, assuming that there are no losses
of any kind (ideal situation), is:

Pemax = nc·Ec·i(t) (11)

where nc is the number of cells of the stack (16 cells) and i
is the electric current generated. However, the electric power
actually available between the terminals of the stack is lower
and it is given by:

Pe(t) = v(t)i(t) (12)

where v is the voltage between the terminals of the stack.
The difference between the ideal electrical energy and the
electrical energy actually available corresponds to the energy
that the stack produces in the form of heat, which is

Qheat (t) = i(t)
[
1.23−

v(t)
nc

]
nc (13)

Both signals v and i are inputs to this submodel and they
were measured during the tests. Part of this heat is extracted
by the water flow of the primary circuit, another part passes
to the air that runs through the stack (Qwa) and the rest is
transferred to the stack shell (Qwfc). Thus, the evolution of
the water temperature at the stack outlet can be expressed as:

kwVw
dTwout (t)

dt
= 1Qw(t)+ Qheat (t)

−Qwfc(t)− Qwa(t) (14)

The constant kw is the product cwρw; cw is the specific
heat of the water and ρw the density of the water, both of
them for a water temperature of 60◦C, which we assume
as a representative value of the water temperature in both
the primary and the secondary circuits. The values of these
two parameters were taken from [39] and their product gives
kw = 4112120.21 J/m3K . The volume Vw is the volume of
water inside the stack and it is a parameter to be adjusted by
the optimization algorithm.

The heat difference 1Qw is calculated according to MP2
(F = Fw1 , Tin = Twin , Tout = Twout , k = kw) and corresponds
to the amount of heat that is removed from the stack by the
water flow of the primary circuit.

The amount of heat transferred from the water to the stack
shell is:

Qwfc(t) = hfc2 (t)[T̄w(t)− Tfc(t)] (15)

which depends, on the one hand, on the temperature gradient
between the temperature of thewater inside the stack (T̄w) and
the temperature of the stack shell (Tfc), and on the other hand,
on the heat transfer parameter hfc2 . As a representative value
of the temperature of the water inside the stack, we chose the
average temperature between the temperature of the water
at the stack inlet and the temperature of the water at the
stack outlet (MP4: Tin = Twin , Tout = Twout ). The heat
transfer parameter hfc2 is assumed to depend on the water
flow, according to MP5 (hmin = hfc2min , hmax = hfc2max ,
Fmin = Fw1min , Fmax = Fw1max , F = Fw1 ). That is to say,
it has been assumed (as an approximation) that there is a
linear relationship between the water flow rate Fw1 and the
heat transfer parameter hfc2 , i.e. the higher the water flow
rate, the more heat will be transferred from the water to the
stack shell, for a given temperature gradient. Note that this
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relation between hfc2 and Fw1 is the result of a trial and
error process, as we explained in Section III-B. Fw1min and
Fw1max are the minimum and the maximum values of Fw1 ,
2.9005·10−5m3/s (1.74 liters/minute) and 1.1657·10−4m3/s
(6.99 liters/minute), respectively. The constants hfc2min and
hfc2max are the minimum and the maximum values of hfc2 ,
and they are parameters to be adjusted by the optimization
algorithm.

The heat flow rate transferred from water to air is given by:

Qwa(t) = hfc1 (t)[T̄w(t)− T̄a(t)] (16)

which depends, on the one hand, on the temperature gradient
between the temperature of the water inside the stack (T̄w)
and the temperature of the air inside the stack (T̄a), and on
the other hand, on the heat transfer parameter hfc1 . Here also,
a representative value of the temperature of the air inside the
stack (T̄a) is calculated after MP4 (Tin = Tain , Tout = Taout ).

The overall heat transfer parameter between the water and
the air (hfc1 ) is calculated from three independent heat trans-
fer parameters (hw, ha and haw), according to the following
equation:

hfc1 (t) =
1

1
hw(t)

+
1
haw
+

1
ha(t)

(17)

It is also assumed, as an approximation, that the heat transfer
parameter ha depends linearly on the air flow rate (Fa),
according to MP5 (hmin = hamin , hmax = hamax , Fmin = Famin ,
Fmax = Famax , F = Fa). Famin and Famax are the minimum and
the maximum values of Fa, 0.0020 m3/s (120 liters/min) and
0.0027 m3/s (162 liters/minute), respectively. The constants
hamin and hamax are the minimum and maximum values of
ha, and they are parameters to be adjusted by the optimiza-
tion algorithm. Similarly, we assume that the heat transfer
parameter hw is linearly dependent on the water flow rate
(MP5: hmin = hwmin , hmax = hwmax , Fmin = Fw1min , Fmax =
Fw1max , F = Fw1 ). The constants hwmin and hwmax are the
minimum and maximum values of hw. Both are parameters
to be adjusted by the optimization algorithm. Finally, the heat
transfer parameter haw is assumed to be constant, and it is also
a parameter to be adjusted.

The heat flow rate transferred from the water to the air
(Qwa) will increase the temperature of the air volume within
the stack. Thus, the air temperature at the stack outlet (Taout )
can be calculated by the following expression:

kaVa
dTaout (t)

dt
= 1Qa(t)+ Qwa(t) (18)

The constant ka is the product caρa; ca is the specific heat of
the air and ρa the density of the air inside the stack. Since the
air density within the stack depends on the pressure, it is not
easy to estimate ka theoretically, as we did for kw. For this
reason, it will be adjusted by the optimization algorithm. The
volume Va is the volume of air inside the stack and is also a
parameter to be adjusted.

The heat difference 1Qa is calculated according to MP2
(F = Fa, Tin = Tain , Tout = Taout , k = ka).

The heat transferred from the water to the stack shell (Qwfc)
will cause the temperature of the stack shell (Tfc) to increase,
according to the following expression:

Cfc
dTfc(t)
dt
= Qwfc(t)− Qfcloss (t) (19)

Cfc is the stack heat capacity. This constant is calculated
theoretically as the product of the mass of the stack, 14.3 kg,
and the specific heat of aluminum, 905 J/kg ·K (value taken
from [39]). That product gives Cfc = 12941.5 J/K . The heat
flow rate Qfcloss is the amount heat that is transferred from
the stack shell to the environment, that is, the heat lost to the
environment due to natural convection. It is given by:

Qfcloss (t) = hfcloss[Tfc(t)− Tamb(t)] (20)

That is to say, it depends, on the one hand, on the temperature
gradient between the temperature of the stack shell (Tfc) and
the ambient temperature (Tamb), and on the other hand, on the
heat transfer parameter hfcloss , which is assumed to be constant
and is a parameter to be adjusted.

During the adjustment of this submodel, when compar-
ing its output Twout with the output of the real system,
we observed that their dynamics were very similar, but there
was a constant difference between the two signals. From
this fact, we inferred that this discrepancy could be due to a
calibration error in the temperature sensor that measures the
water temperature at the stack outlet. Although that sensor
was calibrated before it was assembled, the assembly itself
could have caused a slight decalibration. We also thought
that the same problem could be taking place in the temper-
ature sensor that measures the air temperature at the stack
outlet, although with a less noticeable effect. So, in order
to model these hypothetical calibration errors, we included
two additional parameters in the submodel, i.e. two correction
coefficients of the calibration errors. These coefficients are
calTwout and calTaout , they are constant and are added to the
outputs of the submodel. These two parameters were adjusted
by the optimization algorithm together with the rest of param-
eters. Their search space was set between −2◦C and 2◦C.
Note that if the hypothesis were incorrect, the optimization
algorithm would have returned null values for these coef-
ficients. In a subsequent test, we confirmed that there was
indeed a calibration error in the measurement of the water
temperature at the stack outlet and the value of this error
corresponded approximately to the value provided by the
optimization algorithm for the parameter calTwout .

Note that our goal is to develop a thermalmodel of the cool-
ing system. Consequently, the modeling of the electrochem-
ical phenomena involved in the functioning of the PEMFC
stack does not belong to the scope of this work.Moreover, this
kind of modeling have already been thoroughly studied in the
existing literature. In particular, note that the submodel of the
PEMFC stack (SM1) does not include the typical polarization
curve (which provides the stack voltage (v) as a function of
the electric current (i)), because this polarization curve would
be part of an electrical model, not a thermal one. For this
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reason, the stack voltage (v) is considered as an input to the
model and it is measured. This measured signal (v) is used
in (12) and (13) to calculate Pe and Qheat , respectively.

F. SUBMODEL 2 (SM2)
The subsystem (SS2) that corresponds to this submodel
(SM2), consists of a single element, pipe 4 (see Fig. 3). The
inputs of this submodel are Tp4in , Fw2 and Tamb; and its output
is: Tp4out (see Fig. 11). This submodel is quite simple and has
only three parameters to be adjusted: Vp4, hp4loss and calTp4out .
A diagram with the thermal phenomena assumed in pipe 4 is
shown in Fig. 7.

FIGURE 7. Thermal phenomena in pipe 4. Part of the heat flow that goes
through the pipe is lost to the environment.

The heat difference in pipe 4 (1Qp4) is calculated accord-
ing to MP2 (F = Fw2 , Tin = Tp4in , Tout = Tp4out , k = kw),
where Tp4in is the water temperature at pipe 4 inlet, Tp4out is
the water temperature at pipe 4 outlet, the constant kw was
explained in the previous section and Fw2 is the water flow
rate of the secondary circuit. It is assumed that there is a loss
of heat from the water to the environment, which is given by:

Qp4loss(t) = hp4loss[T̄p4(t)− Tamb(t)] (21)

hp4loss is the heat transfer parameter from the water within
the pipe to the environment, which is assumed to be constant
and is a parameter to be adjusted. The temperature T̄p4 is
the average value between the inlet water temperature and
the outlet water temperature (MP4: Tin = Tp4in , Tout =
Tp4out ), value that is assumed to be representative of the water
temperature in the pipe.

By considering the incoming and outgoing heat flow rates
in pipe 4, the variation of the water temperature at its outlet
is given by:

kwVp4
dTp4out (t)

dt
= 1Qp4(t)− Qp4loss (t) (22)

where Vp4 is the volume of the pipe and a parameter to be
adjusted. Also in this submodel, as we did in submodel 1,
in order to correct a possible calibration error in the measure-
ment of the outlet water temperature, a correction coefficient
was included (calTp4out ). This coefficient is constant and a
parameter to be adjusted. Its search range is [−2◦C, 2◦C].

G. SUBMODEL 3 (SM3)
The subsystem (SS3) that corresponds to this submodel
(SM3) consists of three elements: heat exchanger, tank 1 and
pipe 1 (see Fig. 3). The inputs of this submodel are Ttin , Tsin ,
Fw1 , Fw2 and Tamb; and its outputs are: Tsout and Tp1out (see
Fig. 11). The parameters to be adjusted are: Vt1, htmin , htmax ,

hsmin , hsmax , Vp1 and hp1loss . A working principle diagram of
the heat exchanger is shown in Fig. 8 and of tank 1 in Fig. 9.
The diagram of pipe 1 is identical to pipe 4’s, which was
introduced in the previous section.

Let us begin with the heat exchanger. The transfer of heat in
the heat exchanger takes place from the tube side to the shell
side. The water flow of the primary circuit (Fw1 ) circulates
through the tube and the water flow of the secondary circuit
(Fw2 ) circulates through the shell. Thus, the heat is transferred
from the primary circuit to the secondary circuit. The heat
exchanger is configured in a parallel-flow arrangement.

The primary water flow enters the tube at a temperature Ttin
and leaves it at a temperature Ttout . Similarly, the secondary
water flow enters the shell at a temperature Tsin and leaves it at
a temperature Tsout . The heat difference in the tube side (1Qt )
and the heat difference in the shell side (1Qs) are calculated
after MP2 for F = Fw1 , Tin = Ttin , Tout = Ttout , k = kw, and
F = Fw1 , Tin = Tsin , Tout = Tsout , k = kw, respectively.
The amount of heat transferred from the tube side to the

shell side is given by:

Qts(t) = hts(t)1T̄ts(t) (23)

where hts is the overall heat transfer parameter of the heat
exchanger and 1T̄ts the temperature gradient between tube
and shell. The coefficient hts depends on three heat transfer
phenomena: 1) forced convection in the tube side, 2) conduc-
tion through the wall between tube and shell and 3) forced
convection in the shell side. It can be calculated as:

hts(t) =
nch

1
ht (t)
+

1
he
+

1
hs(t)

(24)

where nch is the number of channels in the heat exchanger
(9 channels), ht is the heat transfer parameter due to forced
convection in the tube side, he is the conduction heat transfer
parameter, which is constant, and hs is the heat transfer
parameter due to forced convection in the shell side. ht is
assumed to depend linearly on Fw1 according toMP5 (hmin =
htmin , hmax = htmax , Fmin = Fw1min , Fmax = Fw1max , F = Fw1 ),
where htmin and htmax are the minimum and maximum values
of ht . Both are parameters to be adjusted by the optimization
algorithm. Similarly, the coefficient hs is assumed to depend
linearly onFw2 according toMP5 (hmin = hsmin , hmax = hsmax ,
Fmin = Fw2min , Fmax = Fw2max , F = Fw2 ), where Fw2min

and Fw2max are the minimum and maximum values of Fw2 ,
4.2137·10−5m3/s (2.53 liters/minute) and 1.5493·10−4m3/s
(9.29 liters/minute), respectively. hsmin and hsmax are the min-
imum and maximum values of hs. Both are parameters to be
adjusted. he was calculated theoretically from the technical
data of the heat exchanger (area, thickness and thermal con-
ductivity of the plates), its value is he = 216.72W/K .
On the other hand, the temperature gradient 1T̄ts in (23)

is the so-called logarithmic mean temperature difference
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(LMTD) [39], which is calculated according to:

1T̄ts(t) =
1Ttsout (t)−1Ttsin (t)

ln
1Ttsout (t)
1Ttsin (t)

(25)

where, for a parallel-flow configuration:

1Ttsout (t) = Ttout (t)− Tsout (t) (26)

and

1Ttsin(t) = Ttin (t)− Tsin (t) (27)

By considering the incoming and outgoing heat flow rates
in tube and shell sides, it follows that their outlet water
temperatures have to satisfy:

kwVt
dTtout (t)
dt

= 1Qt (t)− Qts(t) (28)

and

kwVs
dTsout (t)
dt

= 1Qs(t)+ Qts(t) (29)

where Vt is the volume of water in the tube side and Vs
is the volume of water in the shell side. These volumes
were calculated theoretically from the dimensions of the heat
exchanger, both resulting in 1.8 · 10−4 m3 (0.18 liters).
Now let us look at the equations of tank 1. The heat

difference in tank 1 (1Qt1) is calculated afterMP2 (F = Fw1 ,
Tin = Tt1in , Tout = Tt1out , k = kw), where Tt1in is the
temperature of the water entering the tank and Tt1 is the
temperature of thewater leaving the tank. It was not necessary
to assume any lost of heat to the environment, so the water
temperature at tank 1 outlet is given by:

kwVt1
dTt1(t)
dt

= 1Qt1(t) (30)

whereVt1 is the volume of water in the tank, which is constant
and is also a parameter to be adjusted.

Finally, the equations that model pipe 1 are exactly the
same as those of pipe 4 (see Section III-F). The heat differ-
ence in pipe 1 (1Qp1) is based onMP2 (F = Fw1 , Tin = Tp1in ,
Tout = Tp1out , k = kw), where Tp1in is the water temperature at
pipe 1 inlet and Tp1out is the water temperature at pipe 1 outlet.
The loss of heat to the ambient is:

Qp1loss (t) = hp1loss[T̄p1(t)− Tamb(t)] (31)

where hp1loss is the heat transfer parameter to the environment
and T̄p1 is calculated after MP4 (Tin = Tp1in , Tout = Tp1out ).
So, the balance of heat flows in the pipe 1 results:

kwVp1
dTp1out (t)

dt
= 1Qp1(t)− Qp1loss (t) (32)

where Vp1 is the volume of pipe 1, which is unknown and,
therefore, a parameter to be adjusted.

FIGURE 8. Thermal phenomena assumed in the heat exchanger. Heat is
transferred from tube side (t) to shell side (s).

FIGURE 9. Thermal phenomena in tank 1.

FIGURE 10. Working principle diagram of the radiator. When the
activation signal R is ON, the fan turns on and the transfer of heat to the
environment takes place by forced convection. When R is OFF, the fan is
stopped and heat is transferred to the environment by natural
convection.

H. SUBMODEL SM4
The subsystem (SS4) corresponding to this submodel (SM4)
consists of four elements: pipe 2, radiator, pipe 3 and tank 2
(see Fig. 3). The inputs of submodel are Tp2in , Fw2 and R;
and its output is: Tt2 (see Fig. 11). The parameters to be
adjusted are: hrOFFmin , hrOFFmax , hrONmin , hrONmax , Vt2, Vr and
Tambr . The diagrams of pipes 2 and 3 are similar to that of
pipe 4, which has already been introduced in Section III-F,
with the only difference that for pipes 2 and 3 it was not
necessary to model the losses of heat to the environment,
because they are negligible compared to the amount of heat
that the radiator extracts from the secondary circuit, in both
states, on and off. The diagram of tank 2 is identical to that of
tank 1, presented in Section III-G. The diagram of the radiator
is shown in Fig. 10.
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FIGURE 11. Block diagram of the complete model. The complete model is formed by the
interconnection of four submodels (SM1, SM2, SM3 and SM4), each of which was adjusted and
validated independently. The outputs of the complete model are marked in blue and its inputs in red.

Let us begin with pipes 2 and 3. The heat difference in
pipe 2 (1Qp2) is calculated after MP2 (F = Fw2 , Tin = Tp2in ,
Tout = Tp2out , k = kw), where Tp2in is the water temperature
at the pipe inlet and Tp2out is the water temperature at the
pipe outlet. Since there are no heat losses to the environment,
the temperature of the water leaving the pipe is given by:

kwVp2
dTp2out (t)

dt
= 1Qp2(t) (33)

where Vp2 is the volume of pipe 2. This constant is calculated
theoretically from the length and the cross-section area of
the pipe, its value is 7.0686 · 10−4 m3 (0.7069 liters). The
heat difference in pipe 3 (1Qp3) is calculated after MP2
(F = Fw2 , Tin = Tp3in , Tout = Tp3out , k = kw), where
Tp3in is the water temperature at the pipe inlet and Tp3out is
the water temperature at the outlet of the pipe. Thus, the water
temperature at the outlet of the pipe is given by:

kwVp3
dTp3out (t)

dt
= 1Qp3(t) (34)

where Vp3 is the volume of pipe 3. Also theoretically calcu-
lated, its value is 3.5343 · 10−4 m3 (0.3534 liters).

Regarding tank 2, the heat difference 1Qt2 is calculated
after MP2 (F = Fw2 , Tin = Tt2in , Tout = Tt2out , k = kw),

where Tt2in is the water temperature at the tank inlet and Tt2
is the water temperature of the tank. As heat losses to the
environment are not considered, Tt2 is given by:

kwVt2
dTt2(t)
dt

= 1Qt2(t) (35)

where Vt2 is the volume of water in tank 2 and a parameter to
be adjusted.

Finally, we address the radiator, which is the most impor-
tant element of this submodel. The water flow of the sec-
ondary circuit (Fw2 ) circulates through the radiator. It enters
the radiator at a temperature Trin and leaves it at Trout . The
heat difference in the radiator (1Qr ) is calculated after MP2
(F = Fw2 , Tin = Trin , Tout = Trout , k = kw). The amount of
heat transferred from the hot water within the radiator to the
environment depends on whether the fan is on (R = ON )
or off (R = OFF), since in the first case the transfer of
heat occurs by natural convection, whereas in the second by
forced convection. This results in two different heat transfer
parameters, hrON and hrOFF , one for each state (ON, OFF).
Therefore, the heat transfer parameter of the radiator can be
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FIGURE 12. Results of the adjustment of the complete model with the modeling test data. Both the accuracy and the ability of the model to represent
the dynamics of the process are good.

expressed as follows:

hr (t) =

{
hrON (t), for R(t) = 1 (ON )
hrOFF (t), for R(t) = 0 (OFF)

(36)

Each of these coefficients depends, in turn, on the water flow
rate Fw2 . As we did before, we also assume here that these
dependencies are linear. hrON is calculated according to MP5
(hmin = hrONmin , hmax = hrONmax , Fmin = Fw2min , Fmax =
Fw2max , F = Fw2 ), where Fw2min and Fw2max are the minimum
and themaximum values ofFw2 andwere given in Section III-
G. hrONmin and hrONmax are the minimum and the maximum
values of hrON and both are parameters to be adjusted by the
optimization algorithm. Similarly, hrOFF is calculated accord-
ing to MP5 (hmin = hrOFFmin , hmax = hrOFFmax , Fmin = Fw2min ,

Fmax = Fw2max , F = Fw2 ), where hrOFFmin and hrOFFmax are
the minimum and the maximum values of hrOFF and also
parameters to be adjusted.

The amount of heat transferred to the environment
depends, as we said, on the heat transfer parameter hr , but
it also depends on the temperature gradient between the tem-
perature of the water within the radiator and the temperature
of the air that surrounds it:

Qre (t) = hr (t)[T̄r (t)− Tambr ] (37)

T̄r is the average value of the water temperatures at the inlet
and outlet of the radiator, and it is the value that has been
assumed as representative of the water temperature inside the
radiator, calculated after MP4 (Tin = Trin , Tout = Trout ).
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FIGURE 13. Results of the validation of the complete model. The accuracy of the model deteriorates when it is tested with the validation test data, but
it still represents the dynamics of the process faithfully.

Tambr is the temperature of the air surrounding the radiator.
This temperature is different from the temperature assumed
as ambient temperature for the rest of submodels (Tamb), for
whose measurement a sensor was installed. The reason for
this difference is that the radiator is mounted next to a window
that is partially open (it can not be closed because through it
the purge of hydrogen is evacuated). Thus, the temperature
of the air surrounding the radiator is not the one inside the
laboratory (Tamb), but, presumably, a weighted average of
two variables, the temperature inside the laboratory and the
temperature outside the building (considerably lower than the
former, since the tests were conducted in October). As we
had not installed any sensor to measure the air temperature
surrounding the radiator (Tambr ), we decided to estimate it.
We assumed for this temperature a constant and unknown
value, a valuewithin the temperature range between the inside

temperature (Tamb) and the outside temperature, and then we
adjusted its value as one more parameter of the model, with
the data set from the modeling test (that is why Tambr is listed
as a parameter of submodel SM4 at the beginning of this
section). Moreover, since the validation test was performed
only four days after the modeling test and during the same
time span, we initially considered that it would be plausible
to assume that the ambient temperature of the radiator (Tambr )
on that day was approximately equal to the one on the day
of the modeling test. We will return to this hypothesis in
Section IV-B, when we comment the results of the model
validation.

Lastly, the balance of heat flows in the radiator determines
the water temperature variation at the radiator outlet:

kwVr
dTrout (t)
dt

= 1Qr (t)− Qre (t) (38)
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where Vr is the volume of water within the radiator and a
parameter to be adjusted.

I. THE COMPLETE MODEL
The complete model results from interconnecting the four
submodels that have been introduced so far (SM1, SM2,
SM3 and SM4), once they were adjusted and validated inde-
pendently, and from carrying out a final fine adjustment of
its parameters (this is explained in the last paragraph of
Section III-B). The completemodelmodels thewhole cooling
system (see Fig. 3) and is shown, in the form of a block
diagram, in Fig. 11. The inputs of the complete model are Fa,
Tamb, Tain , v, i, Fw1 , Fw2 and R (in red in the figure mentioned)
and its outputs are Twout , Twin , Tt2, Taout , Tsin and Tsout (in
blue). Thismodel has 30 parameters, which have already been
described during the presentation of the submodels.

The general formulation of the optimization problem
described in Section III-D can now be particularized for
the complete model. The mathematical structure of the
model (1)-(2) is formed by the equations introduced in the
four preceding sections (13)-(38). The vector of parameters
to be adjusted (θ ) is the set of the 30 parameters of the
model (which are listed in Table 1). The cost function that
is minimized (5) is:

J = J1 + J2 + J3 + J4 + J5 + J6 (39)

where:

J1 =
1
τ

∫ τ

0

∣∣∣T̂wout (t)− Twout (t)∣∣∣ dt (40)

J2 =
1
τ

∫ τ

0

∣∣∣T̂win (t)− Twin (t)∣∣∣ dt (41)

J3 =
1
τ

∫ τ

0

∣∣∣T̂t2(t)− Tt2(t)∣∣∣ dt (42)

J4 =
1
τ

∫ τ

0

∣∣∣T̂aout (t)− Taout (t)∣∣∣ dt (43)

J5 =
1
τ

∫ τ

0

∣∣∣T̂sin (t)− Tsin (t)∣∣∣ dt (44)

J6 =
1
τ

∫ τ

0

∣∣∣T̂sout (t)− Tsout (t)∣∣∣ dt (45)

The variables with a cap denote the process outputs and the
variables without cap denote the model outputs. The constant
τ is the total time of the modeling test (setM), 8087 seconds.

IV. RESULTS
In this section, we present, first, the results of the final fine
adjustment of the complete model with the data set from the
modeling test (setM) and, then, the results of the validation
of the model, that is, the testing of the model against the data
set from the validation test (setV).

A. RESULTS OF THE MODEL ADJUSTMENT
Fig. 12 shows the results of the adjustment of the complete
model with the data set from the modeling test. In this figure,

TABLE 1. Results of the adjustment of the parameters of the model.

TABLE 2. Average error of each output of the model with respect to the
outputs of the process after the adjustment.

the six outputs of the model are compared with the six outputs
of the real system, having been both, model and system,
excited with the same input signals (Fig. 4). The values
of the parameters that achieve that adjustment are shown
in Table 1.
As can be seen from these results, the adjustment is satis-

factory. First, the accuracy of the model is good: the overall
average error (the average of the average errors of the six
outputs) is 0.17◦C (see Table 2). Second, the adjustment is
balanced, that is, all the outputs of the model match their
corresponding process outputs approximately equally well
(Tsin is the best adjusted and Tt2 the worst, and there is a
difference of 0.089 ◦C between their average errors). Third,
the model captures the dynamics of the system well. Fourth,
the values of the parameters (Table 1) are realistic, which is a
good evidence that the model remains close to reality, from a
conceptual point of view.
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FIGURE 14. Results of the validation of the complete model after readjusting Tambr with the validation test data (keeping the same values for the
remaining 29 parameters). The accuracy of the fit improves substantially.

B. RESULTS OF THE MODEL VALIDATION
The results of the validation of the complete model are shown
in Fig. 13. In this figure, the six outputs of the model are com-
pared, again, with the six outputs of the real system, having
been both, model and system, excited with the same input
signals, in this case the ones corresponding to the validation
test (see Fig. 5).

The first thing that can be observed is that the response of
the model against the validation test data, in comparison with
the results of the model adjustment (see Fig. 12), deteriorates.
The accuracy (overall average error) achieved in this case is
0.438 ◦C (see Table 3), compared to 0.17 ◦C that was achieved
in the adjustment with the modeling test data. A certain
degree of deterioration in accuracy when validating, with

respect to the adjustment in the modeling phase, is usual and
normal. However, in our case, we think that this deterioration
has an additional cause, namely, that the hypothesis assumed,
according to which the ambient temperature for the radiator
(Tambr ) on the modeling test day was equal to the one on the
validation test day, is false. We believe this for the following
reason. If Tambr is readjusted (maintaing the same values for
the remaining 29 parameters) with the validation test data,
the optimization algorithm returns a new value of Tambr ,
27.86 ◦C (0.75 ◦C higher than the one which resulted from
the adjustment), and when this new value of Tambr is used,
the fit between the model outputs and the real signals of
the validation test substantially improves (see Fig. 14): the
overall average error shifts from 0.438 ◦C to 0.296 ◦C (see
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TABLE 3. Average error of each output of the model with respect to the
outputs of the process when it is tested against the validation test data.

Table 4), whichmeans an improvement of 0.142 ◦C.Note also
that the temperature Tambr represents one of the two reference
points of the thermal process (the other one is Tamb), i.e.
it is something like the ground in an electrical circuit (using
the analogy between thermal and electrical systems). Conse-
quently, it only determines the operating point of the system
in steady state. This is why the responses of the model before
and after the adjustment of Tambr are practically identical in
shape, differing only in their average value (compare Fig. 13
and 14). Certainly, the ideal would have been to dispose, from
the beginning, an additional temperature sensor next to the
radiator, in order to have a real measurement of Tambr on both
days.

A second observation from Fig. 13 is that the model,
despite the aforementioned deterioration in its accuracy, con-
tinues to faithfully capture the dynamics of the process,
exactly the same as it did for the modeling test data (Fig. 12).
This means that, in terms of the ability of the model to
represent the dynamics of the process, there has been no
deterioration.

The ability of a model to faithfully represent the dynamics
of the process is precisely the most important characteris-
tic that a control-oriented model must fulfill, because any
temperature control of a PEMFC stack will always incorpo-
rate an integral action to compensate for errors in steady state
and, therefore, it will absorb any constant difference that may
exist between themodel and the process. Thus, after weighing
up both aspects, accuracy and ability to faithfully represent
the dynamics of the process, and given that the former is not
critical and the latter is crucial, we decided to release the
model, because it fulfills its purpose, which is to be useful
for a subsequent design of a temperature control.

V. CONCLUSION
In this article, we have presented a model of the cooling
process of a µ-CHP system based on a PEMFC stack. The
model has been developed to be used for the design of the
temperature control of the stack. It is based on first principles,
dynamic, non-linear and has been validated empirically. The
results show that the model is able to faithfully represent the
process. Especially, it is remarkable the accuracy with which
the model captures the dynamics of the real process, which
is the most important feature that a control-oriented model

TABLE 4. Average error of each output of the model with respect to the
outputs of the process when it is tested against the validation test data,
after the readjustment of Tambr .

must fulfill. Therefore, the model is useful for a subsequent
temperature control design.

As far as we know, there is no model in the literature
that satisfies these characteristics (see Appendix B) and its
need has been pointed out in several reviews (see [5], [33]).
Therefore, the main contribution of this work consists of
developing and publishing a model of the cooling process of
aµ-CHP system based on a PEMFC stack (i.e. stack and heat
recovery unit) which is dynamic and has been experimentally
validated. The advantage of such a model is that it enables
the design of a more sophisticated temperature control of
the stack and, consequently, with a better performance than
the one that a control based on a simple model (such as, for
example, a First Order Plus Dead Time (FOPDT) model) can
achieve.

The model has been implemented in Matlab/Simulink and
it is accessible, together with the test data that were used
for its development, at http://hdl.handle.net/10251/118336.
Moreover, the methodology employed to develop the model
has been described in detail. This, added to the fact that the
model is expressed in first principles (so it has a close relation
with the structure of the real system and its parameters have
physical meaning), allows other modelers to take our model
as a starting point and, by making the necessary modifica-
tions, to build models of their µ-CHP systems.
In a future work we plan to design, by using the model we

have presented here, a temperature control for the stack of
our µ-CHP system and to validate it experimentally, in order
to improve the performance of the system with respect to the
performance that the current control (based on a linear and
simpler model) offers.

APPENDIX A
COMMON MODELING PRINCIPLES
Table 5 summarizes the main common modeling principles
on which the four submodels (Sections III-E, III-F, III-G
and III-H) are based.

APPENDIX B
THERMAL MODELS IN THE LITERATURE
Table 6 summarizes the main characteristics of the thermal
models found in the literature review that we carried out
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TABLE 5. Common modeling principles.

TABLE 6. Thermal models in the literature.

before developing our model. Our model and its features are
also shown in the last row of the table.

Note that this table refers only to thermal models. In some
of the works listed, the authors develop other models as well
(for example, an electrochemical model of the PEMFC), apart
from a thermal model. In these cases, the attributes ‘‘dynamic
or static’’ and ‘‘experimentally validated’’ refer to the thermal
models exclusively.

As Table 6 shows, there are only three models that satisfy
being dynamic and having been experimentally validated

(Musio et al. [27], Real et al. [28] and SanMartín et al. [29]).
However, in these works 1) the stack is refrigerated by air
(by means of a fan) and 2) the heat removed from the stack
is evacuated to the atmosphere, i.e. the systems that these
authors model do not include a heat recovery subsystem,
which is the feature that makes an energy generator system a
CHP system (cogeneration), (see [7]). In other words, the sys-
tems modelled in these works are substantially different from
the system that we model in our work. Consequently, a direct
comparation is not possible. Nonetheless, it is worth saying
some words about these models.

In Musio et al. [27], the validation results show a dis-
crepancy between real and simulated stack temperatures of
almost 4◦C (maximum error) and the model dynamics do not
represent well the dynamics of the real system. Moreover,
the stack air outlet temperature is not validated. In Real
et al. [28], the validation results are remarkable. The stack
temperature provided by this model follows the real stack
temperature quite well within a wide range of temperatures.
However, the model is validated only for changes in the
electric current demanded to the stack and not for changes in
the manipulable variable (fan voltage), which stays constant
during the validation test. In order to design a dynamic control
of the stack temperature, the model should represent not
only the dynamic relation between the output (stack tem-
perature) and the perturbation (electric current) but also the
dynamic relation between the output and the manipulable
variable, because this manipulable variable will be, once the
control is designed, the control action. The model presented
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in Martín et al. [29] has exactly the same limitation. This
model achieves a satisfactory matching between model and
process for changes in the electric current demanded to the
stack (perturbation), but there is no validation for changes in
the manipulable variable (fan voltage). The reason why these
two last works do not validate their models for changes in
the manipulable variable (fan voltage) may be the following:
in both cases the system modeled is a closed system (Nexa
1200) and, therefore, it probably hinders from accessing to
the fan voltage directly, so that it can be freely manipulated,
and independently from the electric current demanded.
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