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17 ABSTRACT

18 Hydrothermal (60 min, 180ºC) extracts and cellulose fibres from coffee and rice husks 

19 were obtained to be incorporated into corn starch films, in order to improve the film 

20 functional properties as food packaging material and confer them active properties. 

21 Extracts exhibited antioxidant properties (EC50: 5.37-5.29 mg extract solids/mg DPPH) 

22 and antibacterial activity against Listeria innocua and Escheriquia coli (MIC values: 

23 35-45 and 34-35 mg extract solids/mL, respectively). The active extracts improved 

24 tensile properties of the starch films; elastic modulus increased by about 350% and 

25 films become less stretchable. The cellulosic fibres from both residues were more 
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26 effective as reinforcing agents in films containing extract solids than in net starch films. 

27 Extracts also provoked 30 % reduction in the WVP of starch films and 50-85 % 

28 reduction in the oxygen permeability, depending on their amount in the films, but no 

29 effect of cellulose fibres was observed on barrier properties. 

30 Keywords: Active compounds, rice husk, coffee husk, cellulose fibres, thermoplastic 

31 starch, composites.

32

33 1. Introduction

34 In food packaging, the development of adequate packaging materials for the purposes of 

35 prolonging the shelf life of food represents a challenge. Oxidative reactions and 

36 microbiological alteration are the main processes that cause undesirable changes in the 

37 quality and safety attributes of foodstuffs (Talón, Trifkovic, Vargas, Chiralt, & 

38 González-Martínez, 2017a), and the use of active packaging materials with 

39 antimicrobial and/or antioxidant properties can control these deterioration processes, 

40 helping to extend the product shelf life. 

41 Lignocellulosic agro-waste, such as rice or coffee husk, is rich in polyphenols linked to 

42 the hemicellulose or lignin fractions, which exhibit active properties for controlling 

43 microbial or oxidative processes (Aguiar, Estevinho, & Santos, 2016; Balasundram, 

44 Sundram, & Samman, 2006; Wanyo, Meeso, & Siriamornpun, 2014). Different kinds of 

45 polyphenols, such as lignans, stilbenes, flavonoids or phenolic acids have been 

46 classified  on the basis of their structure or phenol units (Cong-Cong, Bing, Yi-Qiong, 

47 Jian-Sheng, & Tong, 2017; Shavandi et al., 2018). The antioxidant and antimicrobial 

48 properties of natural polyphenols have been widely studied. They are biosynthesised 

49 naturally by plants, and have been isolated from different plant products, such as spices 

50 or aromatic herbs, plant-food by-products and agro-waste (Balasundram et al., 2006; 
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51 Talón et al., 2017a). Phenolic compounds have been successfully extracted from thyme 

52 (Talón et al., 2017a), garlic waste (Kallel et al., 2014), guarana seeds, boldo leaves, 

53 cinnamon barks, rosemary leaves (Bonilla & Sobral, 2016), rice hulls, almond hulls, 

54 buckwheat hulls or oat hulls (Balasundram et al., 2006), among others. The antioxidant 

55 character of polyphenols is associated with their ability to act as free radical scavengers, 

56 to inhibit lipoxygenase enzyme activity and to chelate metals (Talón, Trifkovic, Vargas, 

57 Chiralt, & González-Martínez, 2017b). The antimicrobial nature of polyphenols is 

58 associated with their capacity to inhibit extracellular microbial enzymes, to destabilise 

59 the cytoplasmic membrane and to provoke a deficit of the substrates required for 

60 microbial growth (Guil-Guerrero et al., 2016). In phenolic acids, the protonated form 

61 spreads across the membrane, which produces the acidification of the cytoplasm and, 

62 usually, cell death. Guil-Guerrero et al. (2016) reviewed the antimicrobial behaviour of 

63 several polyphenols (simple phenolic acids, flavonoids, tannins) extracted from plant-

64 food by-products, and  reported effective antibacterial  action against pathogens like E. 

65 coli, Lactobacillus spp., Staphylococcus aureus, P. aeruginosa, and Listeria spp. 

66 strains, among others.

67 Lignocellulosic wastes, such as rice and coffee husk, are potential sources of active 

68 compounds, as well as cellulosic fractions that can be exploited as reinforcing agents 

69 (Collazo-Bigliardi, Ortega-Toro, & Chiralt, 2018a). Rice husk is one of the main 

70 renewable by-products of rice milling operations, and coffee husk (endocarp of coffee 

71 beans) is the residue obtained after de-hulling in coffee dry processing,  both of them 

72 being rich in cellulosic (~55-57%) and lignin (~22-35%) components (Collazo-

73 Bigliardi, Ortega-Toro, & Chiralt, 2018b). These kinds of lignocellulosic wastes have 

74 been used to extract polyphenols, which have been mostly evaluated as to their 

75 antioxidant activity, mainly using organic solvents such as ethanol or methanol (Kallel 
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76 et al., 2014; Vadivel & Brindha, 2015). Nevertheless, the polyphenol extraction by 

77 hydrothermal treatments is a better option because hot-water high-pressure extraction is 

78 an environmentally-friendly process, with a low cost, non-toxic solvent. During this 

79 treatment, a better preserved fraction of hemicelluloses and linked phenols can be 

80 obtained (Piñeros-Castro & Otálvaro, 2014) while a part of the lignin is degraded 

81 providing a great variety of phenolic compounds, such as cinnamic, benzoic, ferulic, 

82 gallic, syringic or vanillinic acids,  tannins, syringaldehyde or flavonoids (Piñeros-

83 Castro & Otálvaro, 2014; She et al., 2012). 

84 Thermoplastic starch (TPS) has been widely studied for food packaging applications 

85 because of its biodegradability, low cost, abundance and suitability for food contact. 

86 TPS exhibits excellent filmogenic properties with high barrier capacity to oxygen and 

87 gases (Collazo-Bigliardi et al., 2018b; Ortega-Toro, Bonilla, Talens, & Chiralt, 2017). 

88 However, TPS films have some drawbacks, such as their high water sensitivity, 

89 retrogradation phenomena throughout time and low barrier capacity to water vapour. 

90 Different strategies have been used to improve these properties (Ortega-Toro et al., 

91 2017), such as the addition of plasticisers the compatibilised blending with other 

92 polymers, the incorporation of cross-linking agents (Ortega-Toro, Collazo-Bigliardi, 

93 Talens, & Chiralt, 2016) or of different kinds of fillers (Brinchi, Cotana, Fortunati, & 

94 Kenny, 2013; Ng et al., 2015). The incorporation of cellulose micro-fillers and active 

95 extracts coming from lignocellulosic by-products could improve the starch film 

96 properties, while the use of these components allows for the valorisation of these 

97 residues in the context of circular economy.  

98 The aim of this work was to improve the properties of thermoplastic starch films by 

99 incorporating active fractions, extracted from rice and coffee husk using a hydrothermal 

100 method, and cellulose fibres, also coming from these by-products, incorporated as 
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101 reinforcing agents. The aqueous extracts were characterized as to their antioxidant and 

102 antimicrobial properties. The effect of the incorporation of active extracts and 

103 reinforcing agents on the mechanical, thermal, barrier, optical and microstructural 

104 properties of thermoplastic corn starch matrices was analysed. 

105

106 2. Materials and methods

107 2.1. Materials

108 Rice and coffee husks were provided by the Universidad Jorge Tadeo Lozano (Bogotá, 

109 Colombia). Maltodextrin (MD) 18 DE used in spray drying of extracts was from Tecnas 

110 S.A., Colombia. 

111 For the characterization of active compounds (±)-6-Hydroxy-2,5,7,8-

112 tetramethylchromane-2-carboxylic acid (Trolox), 2,2-Diphenyl-1-pikryl-hydrazyl 

113 (DPPH), Folin-Ciocalteu reagent, gallic acid and methanol was obtained from Sigma-

114 Aldrich (Madrid, Spain). For the antimicrobial activity analysis, stock cultures of 

115 Escherichia coli (CECT 101) and Listeria innocua (CECT 910) were supplied by the 

116 Spanish Type Culture Collection (CECT, Burjassot, Spain). Tryptone Soy Broth and 

117 agar bacteriological were provided by Scharlab (Barcelona, Spain)

118 Corn starch was purchased from Roquette (Roquette Laisa, Benifaió, Spain). Glycerol, 

119 sodium hydroxide, sodium carbonate, phosphorus pentoxide and magnesium nitrate-6-

120 hydrate were obtained from Panreac Química, S.A. (Castellar del Vallès, Barcelona, 

121 Spain). Sodium chlorite and acetate buffer were provided by Sigma Aldrich (Madrid, 

122 Spain). All chemicals used were reagent grade and underwent no further purification. 

123

124 2.2. Extraction of active compounds 
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125 Rice and coffee husks were ground in a bladed mill (Model SK100, Retsch, Germany) 

126 until 0.75mm in size to promote the extraction, which was performed in a 5L pilot scale 

127 reactor (A2423 model, Amar Equipment, India) by pressurized hot water. To this end, 

128 750g (rice husk) or 650g (coffee husk) and 3L of distilled water were used and the 

129 operation was carried out for 60 min at 180°C, 9.5 bar, according to previous studies 

130 (Piñeros-Castro & Otálvaro, 2014). Then, the extracts were separated from the solid 

131 fraction, which was dried for the purposes of subsequently extracting the cellulose 

132 fibres. Rice and coffee extracts were concentrated at 90°C under continuous stirring, 

133 obtaining about 6.5 and 7g ss/mL extracts, respectively. To obtain a powdered product, 

134 the aqueous extracts were spray dried  by using a Vibrasec pilot dryer model Pasalab 

135 1.5 (Universidad Nacional de Colombia, Medellin), operating at 180ºC and 90ºC outlet 

136 temperature, with atomizer disk speed of 24,000 rpm. Maltodextrin (18 DE) at 32.1 and 

137 29.8 wt% was added to the rice and coffee extracts, respectively, as drying coadjuvant.  

138

139 2.2.1. Measurement of antioxidant activity, EC50 parameter, total phenolic content 

140 and antimicrobial activity

141 The antioxidant capacity of the extracts was determined by using a 2,2-Diphenyl-1-

142 pikryl-hydrazyl (DPPH) reduction method (Brand-Williams, Cuvelier, & Berset, 1995). 

143 To this end, 30µL of water diluted samples (1:5 for the aqueous extract or 1:10 for the 

144 powdered samples) were mixed with 1mL of a 0.1 mM DPPH in methanol. The mixture 

145 was vortexed and left to stand at room temperature in darkness (40 min) before reading 

146 the absorbance at 517 nm. The results were expressed as mg Trolox equivalents per g of 

147 extract solids (mg TE/g extract solids) by using the corresponding calibration curve for 

148 Trolox.
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149 Likewise, the EC50 parameter corresponding to the amount of sample required to reduce 

150 the DPPH concentration by 50%, once the stability of the reaction has been reached (t= 

151 40 min), was determined following the methodology described by Talón et al. (2017a).  

152 The water-diluted samples (0.025 to 0.175 mL) were mixed with the 0.1 mM DPPH 

153 methanol solution to a final volume of 1mL. The DPPH concentration (mM) in the 

154 reaction medium was calculated from the calibration curve, determined by linear 

155 regression of DPPH concentration vs Absorbance at 517 nm. The EC50 values were 

156 obtained by plotting %[DPPH]R versus the mass ratio of solid extract to DPPH (mg 

157 extract solids/mg DPPH), where %[DPPH]R = ([DPPH]t=40/ [DPPH]t=0)x100; [DPPH]t=40 

158 is the concentration of DPPH when the reaction was stable and [DPPH]t=0 is the 

159 concentration at the beginning of the reaction. 

160 Total phenolic content was analysed using Folin-Ciocalteu reagent, as described by 

161 Singleton & Rossi (1965) with some modifications. For this purpose, 0.05 mL of Folin-

162 Ciocalteu reagent was mixed with 1 mL of Na2CO3, 0.5 mL of diluted sample (solids-

163 water ratio was 1:20), at 37ºC. After 50 minutes of incubation in darkness, the 

164 absorbance at 765nm was measured. The total phenolic content was determined 

165 applying the equation fitted to the standard curve prepared with gallic acid. The results 

166 were expressed as mg of gallic acid equivalents (GAE)/ g extract solids.

167 To determine the antimicrobial activity of the active powdered extracts against E. coli 

168 and L. innocua, an aliquot of each culture was transferred to a tube with 10mL of TSB 

169 and incubated at 37°C for 24h. Then, 10 µL aliquots were taken from these cultures and 

170 transferred to new 10 mL tubes of TSB, which were incubated at 37ºC for 24h. In this 

171 way, work cultures in exponential growth phase were obtained, which were diluted to a 

172 concentration of 105 colony forming units (CFU)/mL. From this bacterial suspension, 

173 aliquots of 100μL were deposited in each well of the plate. Then, different 
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174 concentrations of the active compound diluted in water were added to each well and 

175 completed up to 100μL with TSB. The whole plate was incubated at 37°C for 24h. After 

176 24h of incubation, the MTT reagent was reconstituted in PBS (5 mg/mL) and 10μl was 

177 incorporated in each well of the plate. The plate was re-incubated for 4h at 37ºC and the 

178 visual colour of the wells was registered. Those wells in which change of colour from 

179 yellow to purple is observed, indicate the presence of viable bacteria. In this sense, the 

180 MIC (minimum inhibitory concentration) of each active extract was considered as the 

181 lowest concentration at which no change in colour in the well was observed.

182

183 2.3. Extraction of cellulose fibres 

184 The extraction process of cellulose fibres from rice and coffee husks was carried out 

185 according to the methodology reported by Collazo-Bigliardi et al. (2018a). Rice or 

186 coffee husks (solid residue from the hydrothermal treatment) was alkali treated with 4 

187 wt% of NaOH at 80ºC for 3h, at 1:15 solid:liquid ratio under continuous stirring. The 

188 samples were washed with distilled water until the alkali solution was removed. 

189 Following alkali treatment, the bleaching process was completed by adding equal parts 

190 of acetate buffer solution, sodium chlorite (1.7 wt%) and distilled water mixed with the 

191 alkali treated solid (at 1:15 solid:liquid ratio) and submitted to reflux temperature (about 

192 100ºC) for 4h under mechanical stirring. This process was repeated as many times as 

193 necessary (3 and 4, respectively for rice and coffee husks) until the samples were 

194 completely white. Then, the samples were washed with distilled water several times, 

195 dried and ground, in a Moulinex grinder DJ200031 350W, to be incorporated in the 

196 films. 

197

198 2.4. Experimental design and film preparation
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199 Thermoplastic corn starch films were obtained with glycerol as plasticiser (1:0.3 

200 starch:glycerol ratio) by melt blending and compression moulding. To incorporate dry 

201 active extracts into the starch films, the total glycerol was partially substituted by the 

202 solid extracts in different proportions (glycerol:powdered extract ratios of: 80:20, 70:30 

203 and 60:40), assuming that the extract compounds could also exert a plasticising effect. 

204 Then, seven film formulations were initially prepared, identified as S (starch-glycerol) 

205 and S-80:20C, S-70:30C, S-60:40C, S-80:20R, S-70:30R, S-60:40R, where C and R 

206 specify the origin of the incorporated extract (coffee (C) or rice (R) husks) and the 

207 figures reflect the glycerol:extract ratios. Since the films with the 70:30 ratio exhibited 

208 the best functional properties, these were selected to incorporate cellulose fibres, at 5% 

209 of the total blend, as reinforcing agents, based on previous studies (Collazo-Bigliardi et 

210 al., 2018b), in comparison with the reinforced S formulation. Therefore, four additional 

211 film formulations were obtained and identified with the label CF (coffee husk fibre) or 

212 RF (rice husk fibre) added to the initial sample code. All materials were hand-blended 

213 before the melt blending process. The mass fractions of each component in the different 

214 film formulations are reported in Table 1.

215 The melt blending process was carried out in an internal mixer HAAKETM PolyLabTM 

216 QC, Thermo Fisher Scientific, Germany) at 130°C, rotor speed 50 rpm, for 12 min. 

217 After processing, blends were cut and conditioned at 25ºC and 53% relative humidity 

218 (RH) for one week. Four grams of the conditioned pellets were put onto Teflon sheets 

219 and preheated for 4 min in a hot plate press (Model LP20, Labtech Engineering, 

220 Thailand). Films were obtained by compressing at 160 ºC for 2 min at 30 bars, followed 

221 by 6 min at 130 bars and a final cooling cycle for 3 min (Ortega-Toro, Contreras, 

222 Talens, & Chiralt, 2015). The obtained films were conditioned at 25ºC and 53% RH for 

223 1 week before their characterisation.
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224

225 2.5. Film characterisation

226 2.5.1. Microstructural properties

227 The microstructural analysis of the surface and cross-sections (fractured samples) of the 

228 films was carried out by using a Field Emission Scanning Electron Microscope 

229 (FESEM Ultra 55, Zeiss, Oxford Instruments, U.K). The film samples were maintained 

230 in desiccators with P2O5 for 2 weeks at 25°C. Film samples were adequately mounted 

231 on support stubs and platinum coated. Observations were carried out at 1.5 kV.

232

233 2.5.2. Physico-chemical properties

234 The mechanical properties were determined using a universal test machine (TA.XTplus 

235 model, Stable Micro Systems, Haslemere, England) according to the ASTM standard 

236 method D882 (ASTM, 2001). Conditioned samples (2.5cm x10cm) were mounted in the 

237 film-extension grips of the testing machine and stretched at 50 mm/min until breaking. 

238 The tensile strength (TS), the elastic modulus (EM), and the elongation at break (ε) of 

239 the films were determined from the stress-strain curves, estimated from the force-

240 distance data obtained for different films. The conditioned film thickness was measured 

241 using a Palmer digital micrometer at six random positions around the film.

242 The water content of conditioned films at 53% RH and 25ºC was determined 

243 gravimetrically by drying for 24h at 60ºC using a convection oven (J.P. Selecta, S.A. 

244 Barcelona, Spain) and their subsequent conditioning in a desiccator at 25ºC with P2O5 

245 (aw=0) for 2 weeks. 

246 The ASTM E96-95 (ASTM, 1995) gravimetric method was used to determine the Water 

247 Vapour Permeability (WVP) of the films, with the modification proposed by McHugh, 

248 Avena-Bustillos, & Krochta (1993). Payne permeability cups, 3.5 cm in diameter 
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249 (Elcometer SPRL,Hermelle/s Argenteau, Belgium) were filled with 5mL of distilled 

250 water (100% RH). Each cup was placed in a cabinet equilibrated at 25ºC and 53% RH, 

251 with a fan placed on the top of the cup in order to reduce the resistance to water vapour 

252 transport. The cups were weighed periodically (±0.0001g), and the water vapour 

253 transmission rate (WVTR) was determined from the slope obtained from the regression 

254 analysis of weight loss data versus time. From this data, WVP was obtained according 

255 to Ortega-Toro et al. (2016).

256 The oxygen permeability (OP) was determined using an OX-TRAN Model 2/21 ML 

257 (Mocon Lippke, Neuwied, Germany), in samples conditioned at 25ºC and 53% RH. The 

258 oxygen transmission values were determined every 10 min until equilibrium was 

259 reached. The film area used in the tests was 50 cm2. The film thickness was considered 

260 in all cases to obtain the OP values.

261 The optical properties were determined by the reflection spectra of the samples from 

262 400 to 700 nm using a spectro-colorimeter CM- 3600d (Minolta Co., Tokyo, Japan). 

263 The transparency was measured by the internal transmittance (Ti), applying the 

264 Kubelka-Munk theory of multiple scattering (Hutchings, 1999), using the film reflection 

265 spectra obtained on both black and white backgrounds. The CIEL*a*b* colour 

266 coordinates were obtained from the reflectance of an infinitely thick layer of the 

267 material by considering illuminant D65 and observer 10º, as reference. The 

268 psychometric coordinates, Chroma (Cab*) and hue (hab*), were also evaluated (Talón 

269 et al., 2017a).

270 The film gloss was determined at an incidence angle of 60º using a flat surface gloss 

271 meter (Multi.Gloss 268, Minolta, Germany), according to the ASTM standard D523 

272 method (ASTM, 1999). The results were expressed as gloss units (GU), relative to a 

273 highly polished surface of black glass standard with a value near to 100 GU.
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274

275 2.5.3. Thermal analysis

276 The thermal stability of the different samples was analysed using a Thermogravimetric 

277 Analyser TGA 1 Stare System analyser (Mettler-Toledo, Inc., Switzerland) under 

278 nitrogen atmosphere (gas flow: 10 mL min-1). Samples (about 4-5 mg) were heated 

279 from 25 to 600ºC at 20ºC/min. Initial degradation temperature (TOnset) and peak 

280 temperature (TPeak) corresponding to the maximum degradation rate, were obtained from 

281 the first derivative of the resulting weight loss curves using the STARe Evaluation 

282 Software (Mettler-Toledo, Inc., Switzerland).

283 A Differential Scanning Calorimeter (DSC 1 Star℮ System, Mettler-Toledo Inc., 

284 Switzerland) was used to analyse the phase transitions in the polymer matrices. Samples 

285 (8-10 mg) were placed into aluminium pans and sealed. The thermograms were 

286 obtained by heating from 25ºC to 160ºC at 10ºC/min; then the samples were cooled 

287 until 25ºC, and heated in a second step to 160ºC at the same rate. In the first scan, the 

288 bonded water in the film was eliminated and in the second heating scan, the glass 

289 transition of starch was analysed.

290

291 2.5.4. Antioxidant activity

292 The antioxidant capacity of the films was determined using a 2,2-Diphenyl-1-pikryl-

293 hydrazyl (DPPH) reduction method, following the methodology described in section 

294 2.2.1. In this case, films (~1.5g) were dissolved in 100 mL of distilled water under 

295 continuous stirring in dark bottles. A final volume of 1mL was obtained by mixing 

296 samples (0.05 to 0.35 mL) with methanol solution of 0.1 mM DPPH. The EC50 

297 parameter was determined as described in section 2.2.1. 

298
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299 2.6. Statistical analysis

300 Statgraphics Plus for Windows 5.1 (Manugistics Corp., Rockville, MD) was used for 

301 carrying out statistical analyses of data through analysis of variance (ANOVA). Fisher’s 

302 least significant difference (LSD) was used at the 95% confidence level.

303

304 3. Results and discussion

305 3.1. Properties of coffee and rice husk extracts

306 Rice and coffee husks were used to extract active compounds with potential antioxidant 

307 and antimicrobial activity through the hydrothermal process; the high temperatures and 

308 pressures modify some physical properties of the water that give it particular 

309 characteristics as solvent (subcritical water extraction). The aqueous extract, the 

310 subsequent concentrate and the powdered form obtained by spray-drying were analysed 

311 to know how the process steps affected phenolic content or antioxidant capacity (Table 

312 2). The antioxidant activity was quantified in terms of Trolox equivalent (TE) of the 

313 extract solids, as well as the EC50 values (amount of extract solids necessary to reduce 

314 the initial DPPH concentration by 50%).

315 The total phenolic content of rice and coffee husk extracts ranged between 60-67 mg 

316 GAE/g extract solids, this being slightly affected by the process steps. After the 

317 concentration step, an increase in the quantified phenolic compounds was observed for 

318 both samples, whereas a decrease in this content was determined after the spray drying 

319 step.  The increase after the concentration step could be due to the partial hydrolysis of 

320 some linked phenols, which could contribute to the increase in the spectrophotometric 

321 response. The reduction in the value of the powder samples, in comparison with the 

322 concentrated extract, could be associated with the partial oxidation of some components 

323 during the spray-drying process. The obtained contents referred per mass unit of dry 
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324 husks ranged between 10.7-17.3 mg GAE/g dry husks and were higher than that 

325 reported for other lignocellulosic waste. Kallel et al. (2014) reported 2.97 mg GAE/g 

326 dry husk for garlic husk treated with boiling water for 45 min. Other authors (Wanyo et 

327 al., 2014) reported that the phenolic content of rice husk was affected by different pre-

328 treatments such as hot air drying at 120ºC for 30 min (1.70 mg GAE/g dry husk), Far-

329 Infrared Radiation at FIR intensity of 2 kW/m2 (3.14 mg GAE/g dry husk) or enzyme 

330 hydrolysis (2.21 mg GAE/g dry husk). The main phenolic acids found in rice husk 

331 aqueous extract were gallic, protocatechuic, vanillic and ferulic acids, although 

332 chorogenic, caffeic, syringic, p-coumaric and ferulic acids were also found in small 

333 quantities (Piñeros-Castro & Otálvaro, 2014; Wanyo et al., 2014). In contrast, caffeic 

334 and chlorogenic acids were the main phenolic compounds of coffee husk, and vanillic, 

335 gallic, tannic and protocatechuic acids were found in minor proportion (Aguiar et al., 

336 2016; Andrade et al., 2012).

337 The evaluation of the antioxidant activity by DPPH assay has been widely used. DPPH 

338 is a stable free radical compound used to determine the free radical scavenging ability of 

339 different kinds of samples, such as pure compounds, plant extracts, fruit, vegetables, 

340 cereals, or lignocellulosic agro-waste (Dorta, Lobo, & Gonzalez, 2012; Lapornik, 

341 Prosek, & Wondra, 2005; Meneses, Martins, Teixeira, & Mussat, 2013). Coherently 

342 with the determined phenol content, the antioxidant activity in terms of TE (Table 2) 

343 slightly increased in the concentrated extract (30-40 % with respect to the initial extract) 

344 and decreased in the dried extract (5-8 % with respect to the concentrated extract). In 

345 contrast, the EC50 parameter revealed a slight increase in the antioxidant capacity (lower 

346 EC50 values) for both concentrated and dried samples, for both coffee and rice husk 

347 extracts. In this sense, it is remarkable that, although the antioxidant activity increases 

348 as the amount of phenolic compounds rises, other compounds present in the extracts 
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349 may also affect this capacity.  Thus, γ-oryzanol and tocopherol (Butsat & Siriamornpun, 

350 2010; Wanyo et al., 2014), HMF (hydroxymethylfurfural) resulting from the 

351 decomposition of hexoses and pentoses derived from cellulose and hemicellulose 

352 (Piñeros-Castro & Otálvaro, 2014), or some proteins and peptides, could be present in 

353 the extracts at different concentrations (Narita & Inouye, 2012), affecting the total 

354 antioxidant activity. 

355 The values of the EC50 parameter expressed in terms of the total solids of powdered 

356 extracts (also containing MD) that were used for the film production were 7.66 and 7.76 

357 mg powder/mg DPPH for coffee and rice husk extracts, respectively. Andrade et al. 

358 (2012) reported similar antioxidant activity for coffee husk extracts obtained by 

359 supercritical fluid extraction with CO2 and 8% of ethanol (5.25 mg extract solids/mg 

360 DPPH), and soxhlet extraction with dichloromethane (5.70 mg extract solids/mg 

361 DPPH). Other authors also reported antioxidant activity for the rice husk extracts in 

362 terms of the % inhibition of DPPH, with a wide range of values, depending on the 

363 extraction method and solvent used. For instance, 74.3-87.7% of DPPH inhibition was 

364 reported for rice husk treated with hot air, cellulase and FIR (Wanyo et al., 2014), about 

365 25% for 25:75 water:ethanol extraction, about 78% for alkali extracts with NaOH or 

366 about 76% by acid hydrolysis with 2% of H2SO4  (Vadivel & Brindha, 2015).

367 Plant extracts containing polyphenols have been widely studied as to their antimicrobial 

368 activity against different Gram-positive and Gram-negative bacteria, yeast, fungi, and 

369 moulds (Guil-Guerrero et al., 2016). Some phenolic acids, flavonoids and tannins can 

370 destabilise the cytoplasmic membrane of the microorganisms, provoking the inhibition 

371 of microbial growth and cell death (de Oliveira et al., 2015; Guil-Guerrero et al., 2016; 

372 Sánchez-Maldonado, Mudge, Gänzle, & Schieber, 2014). The use of lignocellulosic 

373 waste as a source of potentially antimicrobial extracts is of great interest in order to 
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374 exploit these kinds of by-products while providing them with potential food 

375 applications. This is in response to the growing interest in the use of natural 

376 antibacterial products for food preservation. In this sense, Kallel et al. (2014) found 

377 antimicrobial activity against S. aureus and B. subtilis for the 50:50 methanol:water 

378 extract from garlic. Likewise, Bonilla & Sobral (2016) found that the boldo leaf extract 

379 was effective against E. coli and S. aureus.

380 The antibacterial activity of the powdered extracts from coffee and rice husks against L. 

381 innocua and E. coli are shown in Table 2, in terms of their minimal inhibitory 

382 concentration (MIC, mg/mL). The coffee sample exhibited the greatest inhibitory effect 

383 against E. coli, which could be due to the expected presence of caffeic and chlorogenic 

384 acids, which are highly effective against this pathogen, as reported by Kallel et al. 

385 (2014). This action has been attributed to the diffusion of the undissociated acid through 

386 the membrane causing the acidification of the cytoplasm. However, no significant 

387 differences were observed in the MIC values of rice and coffee husk extracts against L. 

388 innocua, both being equally as active against this bacterium, at the same level as coffee 

389 husk extract against E. coli. 

390

391 3.2. Properties of starch-based films containing active extracts and cellulosic fibres

392 This section discusses the effect of the incorporation of different proportions of coffee 

393 and rice husk extracts on the properties of the starch films, by substituting a determined 

394 fraction of the plasticizing glycerol. Likewise, the effect of adding cellulosic fibres, 

395 obtained from coffee or rice husk residue, to the best film formulation containing extract 

396 solids was analysed.

397

398 3.2.1. Microstructural analysis 
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399 This analysis allows for a better understanding of the differences in the physical 

400 properties of the films, since the microstructural arrangement of the film components 

401 greatly determine the final physical and functional properties of the material (Talón et 

402 al., 2017a). Fig. 1 shows the FESEM micrographs of the surface and cross section of the 

403 starch films containing or not extract solids and/or cellulosic fibres from coffee or rice 

404 husks. The net starch films showed the typical smooth structure, which was not 

405 apparently altered when the extract solid was incorporated at different proportions. In 

406 fact, the appearance of both the surface and cross section of the films containing 

407 extracts was even more homogenous. The ability of these kinds of active compounds to 

408 contribute to the formation of a more compact, homogeneous and ordered matrix has 

409 previously been observed in other studies (Montero, Rico, Rodriguez-Llamazares, 

410 Barral, & Bouza, 2017; Talón et al., 2017a). 

411 The cellulose fibres can be clearly observed at the film surface in all formulations when 

412 these were incorporated. In these films, the quasi-parallel distribution of the fibres at 

413 surface level is remarkable, mainly in starch films without extract solids. This was also 

414 previously observed in these kinds of films (Collazo-Bigliardi et al., 2018b), which 

415 indicates a certain tendency of fibres to adsorb at the film surface, principally the finest 

416 ones. This was less marked in the films containing extract solids, where a smoother 

417 surface was observed, with the fibres better embedded in the matrix. This could be 

418 associated with the contribution of the extract compounds to the overall interactions in 

419 the matrix, which favoured the fibre integration within the polymer. In the film cross 

420 section, individualised uncoated fibres and infiltrated fibres are observed in all cases, 

421 but once again the presence of extract solids seems to enhance the fibre integration into 

422 the starch matrix. No notable differences at microstructural level could be observed 

423 between samples containing components from rice or coffee husks. Kargarzadeh, Johar, 
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424 & Ahmad (2017) also showed that starchy materials can be infiltrated inside the fibre 

425 bundles when cellulose fibres from rice husk were incorporated into cassava starch 

426 films. 

427

428 3.2.2. Tensile properties

429 Table 3 shows the tensile properties of the films (EM: Elastic Modulus; TS: Tensile 

430 Strength and E: Elongation at break point) conditioned at 53% RH and 25ºC for 1 week. 

431 The elastic modulus of the films increased as the ratio of extract solids grew. Thus, 

432 although the presence of these components in starch matrices allowed more 

433 homogeneous and stiffer matrices to be obtained, they were more brittle because the 

434 elongation at break was considerably reduced in comparison with the control sample 

435 (96 and 92 %, respectively, for samples with 60:40 glycerol:extract solid ratio from 

436 coffee and rice samples). The larger the amount of glycerol substituted by the extract 

437 solids, the greater the enhancement of the film’s stiffness and brittleness. This could be 

438 caused by the weak plasticizing effect of the different extract solids, but also by the 

439 formation of crosslinking effects between the starch hydroxyl groups and phenol or 

440 other groups of the extract compounds. The equilibrium moisture content, and thus its 

441 plasticising effect, also changed as a consequence of the incorporation of both extracts 

442 and fibres, ranging from 9.56 g/100 g dry film in S sample to 7.24-7.28 in samples with 

443 the highest amount of extracts, and 7.76-8.22 in samples with extracts and fibres.

444 The tensile strength at break (film resistance), also increased in proportion with the level 

445 of extract solids in the films, but was limited by the increase in the film’s brittleness. 

446 Thus, films with a glycerol:extract solid ratio of 60:40 were the least resistant due to 

447 their very low degree of stretchability. Other authors (Bonilla, Talón, Atarés, Vargas & 

448 Chiralt, 2013) also obtained an increase of more than 15% in the EM with the addition 
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449 of phenols from basil essential oil in starch-chitosan matrices. However, Talón et al. 

450 (2017a) incorporated thyme extract into pure starch films, obtaining a decrease of ~30% 

451 in stiffness. 

452 On the basis of the tensile behaviour of the films with extract solids, the best 

453 formulation was selected as that containing a 70:30 glycerol:extract solid ratio, since the 

454 films in which a higher of glycerol was substituted were excessively brittle. Then, the 

455 reinforcing effect of cellulosic fibre on these films was analysed and compared with its 

456 reinforcing effect on the net starch films. The addition of cellulose fibres also increased 

457 the EM of the material, mainly when extract solids were present in the films. In this 

458 sense, it is remarkable that rice husk fibres have a greater reinforcing capacity than 

459 coffee husk fibres in both the net starch matrix and the starch matrix with extract solids. 

460 When both components were incorporated, the EM increased, with respect to the control 

461 sample (S), by 600% for rice husk solids and 400% for coffee husk solids. Similar 

462 behaviour was observed by other authors after the incorporation of cellulose fibres into 

463 starch films (Kargarzadeh et al., 2017; Montero et al., 2017; Zainuddin, Ahmad, 

464 Kargarzadeh, Abdullah, & Dufresne, 2013). Some authors explain this increase in 

465 stiffness as the result of the interaction between the amylopectin chains and the 

466 cellulose in the matrix, while others relate it to the crystallinity associated with the 

467 hydrogen bonds of the cellulosic fraction (Montero et al., 2017; Zainuddin et al., 2013). 

468 The greater reinforcing capacity of both kinds of fibres (CF and RF) in the starch matrix 

469 containing extract solids (12 against 8 % EM increase for CF and 57 against 35 % for 

470 RF) revealed the better integration of fibres into the matrix containing extracts, as 

471 deduced from the qualitative FESEM observations. On the other hand, fibre (CF and 

472 RF) incorporation reduced the film’s stretchability by about 50% in the net starch films, 

473 as previously reported by Kargarzadeh et al. (2017) for cassava starch films with rice 
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474 husk cellulose fibres, but did not have a significant effect on this property for matrices 

475 containing extracts. In contrast, CF slightly enhanced the film’s resistance to break in 

476 the matrices containing extracts, whereas there was no significant impact of fibre 

477 addition on this parameter for the other cases. Then, the reinforcing of starch matrices 

478 containing extracts with cellulosic fibres was more effective than that of net starch 

479 matrices, which could be associated with a compatibilizer effect of the extract 

480 compounds in the matrix. This supposes additional advantages in the formulation of 

481 active films, since better mechanical properties were obtained when cellulosic fibres 

482 were added.

483

484 3.2.3. Barrier properties

485 The water vapour permeability and oxygen permeability of the films are shown in Table 

486 3. The addition of extract solids into starch matrices caused a significant decrease in the 

487 WVP and in OP. In comparison with the control film (S), the WVP of films containing 

488 extracts was reduced by near 30% regardless of the extract and its ratio in the film. In 

489 contrast, the reduction in the OP values was dependent on the amount of extract solids, 

490 ranging from 50 to 85% respect to the value of the S films, this being similar for both 

491 kinds of extracts (C or R). The lower degree of plasticization of the films with extract 

492 solids, due to the lower total glycerol content, could also contribute to the improvement 

493 in WVP, as well as the previously commented on crosslinking effect in the matrix. The 

494 great reduction in the OP values can be associated with the oxygen scavenging effect of 

495 the compounds with antioxidant capacity, in addition to the lower degree of 

496 plasticization of the films and the increase in the tortuosity factor associated with the 

497 crosslinking effect, which hinders mass transport. Similar behaviour (~50% reduction in 
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498 OP) was found by Bonilla et al. (2013) in starch-chitosan matrices when 11% of α-

499 tocopherol was added as antioxidant.  

500 The incorporation of cellulose fibres did not have a significant effect on the water 

501 vapour and oxygen permeabilities. Although an increase in the tortuosity factor in the 

502 matrix could be expected from the dispersion of the fibres, the high water affinity of the 

503 cellulose could enhance the transport of water molecules through the polymer matrix. 

504 However, Wattanakornsiri, Pachana, Kaewpirom, Traina, & Migliaresi (2012) showed a 

505 reduction of ~63% in the WVP of cassava starch films after the addition of 8% cellulose 

506 fibres from recycled paper. This could be attributed to the differences in the 

507 amylose:amylopectin ratio, which could play a key role in the nanostructure of the 

508 matrix, producing a different effect of the fillers on the WVP of the films.

509

510 3.2.4. Optical properties

511 Table 4 presents the values of lightness (L*), chroma (C*), hue (h*) and gloss of the 

512 different film formulations, as well as their internal transmittance (Ti) values  at 460nm. 

513 Likewise, the Ti spectra for the different film formulations are shown in Fig. 2. The 

514 lightness value of the matrix decreases when fibres are added, especially after the 

515 addition of the extract solids. The presence of immiscible compounds generates 

516 heterogeneity in the refractive index in the samples, which causes greater light 

517 dispersion and opacity. The incorporation of coloured components (extract solids) 

518 causes the selective absorption of light and the reduction of the transmission at low 

519 wavelengths. This also caused changes in the chromatic attributes, chroma and hue. The 

520 colour saturation (chroma) increased as with the extracts were incorporated, but 

521 decreased when their ratio rose in the films. Likewise, the hue values fell as the extract 

522 ratio rose in the formulation. These changes differed depending on whether they were 
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523 coffee or rice extracts, the latter provoking a greater decrease in hue and less colour 

524 saturation, according to the colour difference of the extracts. Films containing rice husk 

525 extract also exhibited lower lightness values than those containing coffee husk extract. 

526 Fibre addition reduced the film transparency in both films (net starch and those 

527 containing extracts) and slightly modified the colour attributes, especially in coloured 

528 films with extracts. In general, fibre addition reduced the lightness, chroma and hue of 

529 the films, more markedly for films containing extracts due to the overlapped effect of 

530 light scattering. Therefore, films containing both solid extracts and fibres exhibited the 

531 lowest values of lightness and Ti, while presenting a brown coloration associated with 

532 the coloured extracts, with differences between coffee and rice husk extracts. Talón et 

533 al. (2017a) observed similar behaviour when thyme extracts were incorporated into 

534 starch matrices.

535 As regards the gloss, a decrease of about 40-60% with respect to the net starch film was 

536 observed when fibres and extract solids were incorporated into the films. However, fibre 

537 only led to a gloss reduction of about 27 % compared to the respective film containing 

538 extracts, because extract solids also reduced the film’s gloss.  This effect can be 

539 attributed to the changes in the roughness of the surface of the films because of a 

540 heterogeneous distribution of the non-miscible components (Ortega-Toro et al., 2016).

541

542 3.2.5. Thermal behaviour

543 The temperature values of onset thermal degradation (Tonset) and maximum degradation 

544 rate (Tpeak), obtained from TGA, as well as glass transition temperature (Tg; second 

545 heating scan), obtained from DSC analyses, are shown in Table 5. The Tg of starch was 

546 about 100ºC, similar to that reported by other authors for glycerol-plasticized corn 

547 starch films (Ortega-Toro et al., 2015 and 2016). When extract solids from rice or 
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548 coffee husk were incorporated in different ratios, the Tg of the starch did not exhibit 

549 notable changes, which suggests the extract solids exert a similar plasticizing effect to 

550 that of the glycerol, since the latter was partially substituted to a different extent by the 

551 extracts in the different formulations. As expected, the addition of cellulose fibres did 

552 not provoke any notable changes in the starch Tg either, when compared with the 

553 control sample, since they are non-miscible in the polymer. Wattanakornsiri et al. 

554 (2012) report that the small variations in the starch Tg in cellulose composites could be 

555 attributed to the interaction between fibres and plasticizer, the composites becoming less 

556 plasticized than the pure matrix. 

557 As regards the thermogravimetric analysis, Fig. 3 shows the TGA and DTGA curves of 

558 the different formulations. A small weight loss occurred in every case at between about 

559 70-150ºC, which can be attributed to the evaporation of bonded water in the polymer. 

560 This peak in the DTGA curves was slightly more marked in films containing fibres, 

561 according to the greater water binding capacity of cellulosic material. Likewise, a 

562 progressive, slow weight loss was observed until the start of the main degradation peak 

563 (mainly associated with the polymer degradation), which can be attributed to the 

564 thermal degradation of glycerol (Valencia-Sullca, Vargas, Atarés, & Chiralt, 2018) 

565 and/or the extract solids. In this sense, a more marked shoulder was detected at a 

566 temperature lower than the onset of the main thermo-degradation step for film 

567 formulations containing extract solids, both from coffee and rice husk products. This 

568 was reflected in the values registered for the onset temperature of the main peak, which 

569 notably decreased with respect to the films without extracts.  However, no marked 

570 differences were observed for the main peak temperature, due to the addition of extracts 

571 or fibres. The main peak occurred at about 300°C and it is associated with the division 

572 of the main chains of starch (Zainuddin et al., 2013). The thermal degradation of 
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573 cellulose fibres occurred at between 290-360ºC (Collazo et al. 2018a), and the small 

574 shoulder exhibited by the main peak at the higher temperature edge in samples 

575 containing fibres can be attributed to their final degradation. No remarkable differences 

576 can be observed for the thermal behaviour of coffee or rice husk products; however, 

577 coffee husk extracts seemed slightly more unstable than rice husk products (onset of 

578 degradation at a lower temperature).

579

580 3.2.6. Antioxidant capacity

581 The antioxidant activity of the films containing different ratios of glycerol:extract 

582 solids, expressed in term of EC50 values, are shown in Table 6. As expected, the 

583 increase in the amount of active extracts added to the formulations led to films with 

584 better antioxidant capacity, associated with lower EC50 values. Formulations with coffee 

585 husk extracts presented greater antioxidant activity than samples with rice husk extracts, 

586 which was more clearly evidenced when the EC50 values were referred as mg of extract 

587 solids per mg DPPH (Table 6). In this case, a constant value would be expected for 

588 films with different extract solid ratios, which was observed for films with rice husk 

589 extract, but not for films with coffee husk solids. The decrease in the EC50 values, in 

590 terms of mg of solids, in line with the increase in the extract solid ratio, reveals that a 

591 part of the minor antioxidant compounds could be degraded during the thermal 

592 processing of the films. This would exert a milder effect on the total antioxidant 

593 capacity when a greater proportion of extract solids was present in the films. Likewise, a 

594 greater antioxidant activity was obtained for films with coffee husk extract than that 

595 expected from the values obtained for the isolated extract (Table 2). This suggests 

596 changes in the extract composition during the film processing which enhanced the 

597 overall antioxidant activity of the extract in the films.
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598 Several authors analysed the antioxidant capacity of starch films incorporating active 

599 extracts. Starch-chitosan matrices with thyme extract or tannic acid and thyme extract 

600 showed EC50 values of 3.5 kg film/mol DPPH and 0.9 kg film/mol DPPH, respectively 

601 (Talón et al., 2017a). Cassava starch films with 5, 10 and 20% of rosemary extract 

602 exhibited a DPPH inhibition of 28.6, 54.4 and 81.9%, respectively (Piñeros-Hernandez 

603 et al., 2017). The antioxidant capacity of the films depended on the kind and content of 

604 the different active compounds, since their activity varies widely: e.g. the EC50 values of 

605 tannic acid, resveratrol, ascorbic acid, gallic acid and caffeic acid were 0.0131, 0.7, 

606 0.27, 0.08 and 0.1 mol/mol DPPH, respectively (Talón et al., 2017a).

607

608 4. Conclusions

609 The incorporation of aqueous extracts and cellulose fibres from rice and coffee husks 

610 into thermoplastic starch films leads to improved functional properties as packaging 

611 materials, while exploiting these by-products. Both hydrothermal aqueous extracts 

612 exhibited antioxidant and antibacterial activity against L. innocua and E. coli, which 

613 provide the films with active properties. The active extracts improved the tensile 

614 properties of the starch films, mainly when they were incorporated by substituting 30 % 

615 of the plasticizing glycerol. Although the films became less stretchable, a relevant 

616 reinforcing effect was observed, with the EM increasing by about 350% for rice and 

617 coffee husk extracts. The incorporation of cellulosic fibres from both residues was more 

618 effective in films containing extract solids than in net starch films in terms of the 

619 reinforcing effect (EM increased by 600% for rice husk solids and 400% for coffee husk 

620 solids, respect to net starch films). This can be attributed to a certain compatibilizer 

621 effect of the extract compounds that allows for a better integration of the fibres in the 

622 starch matrices. Likewise, active extracts led to a 30 % reduction in the WVP of starch 
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623 films and a 50-85 % reduction in the oxygen permeability, depending on the amount of 

624 extract. However, cellulose fibres at 5 % were observed to have no effect on barrier 

625 properties. So, the incorporation of extracts and fibres produced films with improved 

626 tensile and barrier properties, which, in turn, were less transparent and brown. Then, 

627 they could have specific applications in the preservation of foods from light induced 

628 oxidation, which may be enhanced by their antioxidant activity. Specific in vivo tests 

629 would be required to assess their antibacterial action in different food matrices.

630
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771 Table 1. Mass fraction (Xi, g compound/g dried film) of the different components 

772 (Starch: S, Glycerol: Gly, Active extract: A, from coffee (C) or rice (R) husks and 

773 cellulose fibres: F, from coffee (CF) or rice husks (RF)) in the different film 

774 formulations.

Formulations XS XGly XA XF

S 0.7692 0.2308 - -

S-80:20C 0.7692 0.1846 0.0462 -

S-70:30C 0.7692 0.1615 0.0692 -

S-60:40C 0.7692 0.1385 0.0923 -

S-80:20R 0.7692 0.1846 0.0462 -

S-70:30R 0.7692 0.1615 0.0692 -

S-60:40R 0.7692 0.1385 0.0923 -

S-CF 0.7308 0.2192 - 0.0500

S-70:30C-CF 0.7308 0.1535 0.0658 0.0500

S-RF 0.7308 0.2192 - 0.0500

S-70:30R-RF 0.7308 0.1535 0.0658 0.0500

775

776

777

778

779

780

781

782

783

784

785

786
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787 Table 2. Mean values and standard deviation of antioxidant activity, in terms of Trolox 

788 Equivalent (TE), EC50 parameter and polyphenol content of the coffee and rice husk 

789 hydrothermal extracts (Extract), after the concentration step (Concentrated) and after 

790 spray drying of the concentrates (Powder). Minimum inhibitory concentrations (MIC) 

791 of coffee and rice husk spray-dried extracts for E.coli and L. innocua were also 

792 included.

Antioxidant 
activity

(mg TE/g 
extract solids)

EC50
(mg extract 
solids/mg 
DPPH)

EC50
(mg powder 
/mg DPPH)

Polyphenol 
content

(mg GAE/ g 
extract solids)

Extract 10.5 ± 0.6b 6.41 ± 0.08c - 62 ± 9ab

Concentrated 13.6 ± 0.9d 5.63 ± 0.03b - 70 ± 2bCoffee 
husk Powder 12.5 ± 0.3c 5.37 ± 0.09a 7.66 ± 0.11a 65 ± 5ab

Extract 9.2 ± 0.5a 6.44 ± 0.02c - 60 ± 3a

Concentrated 13.0 ± 0.2cd 6.36 ± 0.04c 67 ± 7bRice 
husk Powder 12.4 ± 0.4c 5.29 ± 0.04a 7.76 ± 0.05a 66 ± 5ab

MIC
(mg extract solid/mL)

MIC
(mg powder/mL)

E.coli L. innocua E.coli L. innocua
Coffee 35 34 50 48Extract 

powder Rice 45 35 66 52
793 Different superscript letters within the same column indicate significant differences among formulations 
794 (p < 0.05)
795

796

797

798

799

800

801

802

803

804
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805 Table 3. Mean values and standard deviation of tensile properties (Elastic modulus: 

806 EM, tensile strength: TS and elongation at break: E), water vapour permeability (WVP) 

807 and oxygen permeability (OP) of starch films (S) with different ratios of 

808 glycerol:extract solids from coffee (C) or rice (R) husks, or cellulose fibres from coffee 

809 (CF) or rice (RF) husks, conditioned at 53% RH and 25ºC.

Formulation EM 
(MPa)

TS 
(MPa)

E 
(%)

WVP 

(g·mm·kPa-1·h-

1·m-2)

OP x1014

 (cm3·m-1·s-1·Pa-1)

S 77 ± 15a1 5.2 ± 1.6a12 64.9 ± 0.5d4 14.9 ± 0.4c34 10.4 ± 0.1e2

S-80:20C 224 ± 20b 7.0 ± 1.2b 23.5 ± 4.6c 11.3 ± 0.1ab 4.8± 0.1d

S-70:30C 344 ± 21c3 9.2 ± 0.4cd3 14.2 ± 1.1b1 11.6 ± 0.4b1 2.4 ± 0.2b1

S-60:40C 516 ± 25e 4.1 ± 1.2a 2.5 ± 1.8a 11.7 ± 1.0b 1.4 ± 0.1a

S-80:20R 234 ± 18b 10.0 ± 1.0de 24.3 ± 4.7c 10.7 ± 0.2a 4.7 ± 0.1d

S-70:30R 348 ± 5c3 12.1 ± 1.1e4 18.3 ± 3.1bc2 10.9 ± 0.4ab1 2.7 ± 0.1c1

S-60:40R 481 ± 22d 7.6 ± 1.4bc 5.4 ± 1.5a 11.1 ± 0.1ab 1.5 ± 0.2a

S-CF 83 ± 612 4.5 ± 0.21 30.7 ± 2.73 14.8 ± 0.934 11.41± 0.32

S-70:30C-CF 386 ± 254 11.2 ± 1.24 12.9 ± 2.61 13.7 ± 1.723 2.4 ± 0.21

S-RF 104 ± 152 5.8 ± 0.52 29.7 ± 3.53 15.6 ± 0.94 10.5 ± 0.72

S-70:30R-RF 541 ± 164 12.1 ± 0.84 16.4± 3.612 12.2 ± 0.412 2.1 ± 0.91

810 Different superscript letters and numbers within the same column indicate significant differences among 

811 formulations (p < 0.05)

812

813

814

815

816

817

818

819



35

820 Table 4. Lightness (L*), chroma (C*), hue (h*), internal transmittance at 460 nm (Ti) 

821 and gloss (60º) values of the films with different ratios of glycerol:extract solids from 

822 coffee (C) and rice (R) husks and/or with cellulose fibres from coffee (CF) or rice (RF) 

823 husks.

Formulation L* Cab* hab* Ti (460nm) Gloss (60º)

S 73.8 ± 1.8f5 12.7 ± 0.9a1 88.8 ± 1.4f45 0.82 ± 0.01f5 28 ± 2e5

S-80:20C 51.5 ± 0.6e 29.5 ± 0.4f 72.5 ± 0.4e 0.49 ± 0.02e 28 ± 3e

S-70:30C 44.1 ± 0.8d3 27.2 ± 1.0e6 68.1 ± 0.5d3 0.32 ± 0.03d3 22 ± 2d34

S-60:40C 36.3 ± 1.4a 21.9 ± 1.6d 58.0 ± 3.5a 0.13 ± 0.05a 16 ± 2bc

S-80:20R 41.1 ± 1.2c 21.9 ± 1.0d 69.7 ± 1.0d 0.34 ± 0.03d 18 ± 3c

S-70:30R 38.3 ± 3.0b2 19.6 ± 1.9c4 65.0 ± 3.0c2 0.26 ± 0.07c2 15 ± 3b2

S-60:40R 35.1 ± 0.7a 17.0 ± 0.8b 61.6 ± 10b 0.17 ± 0.01b 10 ± 3a

S-CF 70.4 ± 0.64 12.8 ± 0.31 89.3 ± 0.55 0.80 ± 0.0145 24 ± 24

S-70:30C-CF 39.5 ± 1.02 22.9 ± 2.05 65.4 ± 1.42 0.25 ± 0.022 16 ± 22

S-RF 68.9 ± 1.24 14.9 ± 0.42 87.4 ± 0.64 0.78 ± 0.014 20 ± 33

S-70:30R-RF 35.2 ± 1.31 17.4 ± 0.93 63.0 ± 1.91 0.17 ± 0.021 11 ± 21

824 Different superscript letters and numbers within the same column indicate significant differences among 
825 formulations (p < 0.05) 
826

827

828

829

830

831

832

833

834

835

836
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837 Table 5. Mean values and standard deviation of onset and peak temperatures for 

838 thermal degradation of TPS films (conditioned at 53% RH and 25 ºC) with different 

839 ratios of glycerol: solid extract from coffee (C) and rice (R) husks, with cellulose fibres 

840 from coffee (CF) or rice (RF) husks. Mean values and standard deviation of glass 

841 transition temperature (Tg) of dry samples were also shown. 

[40-126]ºC [235-330]ºC Second 
heating scan

Samples Onset (ºC) Peak (ºC) Onset (ºC) Peak (ºC) Tg (ºC)
S 45 ± 2a1 88 ± 3a12 264 ± 2d3 299 ± 4b2 96 ± 4ab1

S-80:20C 71 ± 7b 104 ± 4c 250 ± 2c 297 ± 2b 91 ± 6a

S-70:30C 101 ± 8c2 119 ± 8d3 237 ± 2a1 285 ± 8a1 94 ± 11a

S-60:40C 95 ± 4c 124 ± 2d 247 ± 7bc 294 ± 2b 95 ± 3ab

108 ± 5ab

101 ± 5ab
S-80:20R
S-70:30R
S-60:40R

45 ± 1a

44 ± 1a1

44 ± 1a

93 ± 3ab

92 ± 2ab2

97 ± 1bc

247 ± 5bc

252 ± 2c2

240 ± 2a

295 ± 1b

294 ± 1b12

294 ± 1b 108 ± 12ab

S-CF 42 ± 11 87 ± 212 265 ± 13 297 ± 12 111 ± 102

S-70:30C-CF 48 ± 41 99 ± 82 250 ± 22 295 ± 12 95 ± 81

S-RF 42 ± 11 77 ± 11 263 ± 23 300 ± 12 97 ± 71

S-70:30R-RF 47 ± 31 95 ± 82 244 ± 812 333 ± 73 101 ± 412

842 Different superscript letters and numbers within the same column indicate significant differences among 
843 formulations (p < 0.05)
844

845

846

847

848

849

850

851

852

853

854
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855 Table 6. Antioxidant activity of films containing different ratios of glycerol: extract 

856 solids from coffee (C) and rice (R) husks expressed in terms of EC50 values.

Formulation
EC50 

(mg film
/mg DPPH)

EC50 
(mg extract solids

/mg DPPH)
S - -

S-80:20C 125.1 ± 9.8c 4.7 ± 0.6c

S-70:30C 79.1 ± 6.6b 3.8 ± 0.3b

S-60:40C 48.4 ± 1.3a 3.21 ± 0.09a

S-80:20R 172.5 ± 3.2d 5.7 ± 0.3d

S-70:30R 114.0 ± 0.7c 5.47 ± 0.16cd

S-60:40R 84.8 ± 3.6b 5.3 ± 0.3cd

857 Different superscript letters within the same column indicate significant differences among formulations 
858 (p < 0.05).
859



1 Figure captions

2 Fig. 1. FESEM micrographs of the surface (left, 5.000X) and cross section (right, 500X) 

3 of starch films with extract solids from coffee (S-70:30C) or rice (S-70:30R) husk, 

4 cellulose fibres from coffee (S-CF) or rice (S-RF) husk, or both components (S-70:30C-

5 CF; S-70:30R-RF).

6 Fig. 2. Internal transmittance of studied formulations.

7 Fig. 3. TGA and DTGA curves of TPS films with different ratios of glycerol:extract 

8 solids from coffee (C) and rice (R) husks and with cellulose fibres from coffee (CF) or 

9 rice (RF) husks.
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