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VECTOR VALUED INFORMATION MEASURES AND INTEGRATION

WITH RESPECT TO FUZZY VECTOR CAPACITIES

E. A. SÁNCHEZ PÉREZ AND R. SZWEDEK

Abstract. Integration with respect to vector-valued fuzzy measures is used to define and

study information measuring tools. Motivated by some current developments in Information

Science, we apply the integration of scalar functions with respect to vector-valued fuzzy mea-

sures, also called vector capacities. Bartle-Dunford-Schwartz integration (for the additive

case) and Choquet type integration (for the non-additive case) are considered, showing that

these formalisms can be used to define and develop vector-valued impact measures. Exam-

ples related to existing bibliometric tools as well as to new measuring indices are given.

1. Introduction

Classical Lebesgue integration of scalar functions has provided some fundamental tools in

several areas of the Information Science, including the definition of indices for measuring some

aspects of information items. For instance, a great part of mathematical definitions of impact

indices for scientific journals can be modeled by means of integrals. Some current research

has also pointed out that a natural vector-valued integration of scalar functions with respect

to vector measures —the so called Bartle-Dunford-Schwartz integration— may be used to

generalize some scalar theoretical settings (scalar-valued impact measures) to vector-valued

settings (multi-valued impact measures). Vector-valued integration theory has appeared in

the context of pure mathematics and until now this theory has found a lot of applications

in Mathematical Analysis and Operator Theory. However, it can be used as an adequate

framework for the analysis of problems in other scientific disciplines, since it provides a

natural way of representing multi-valued mean properties of scalar functions by the simple

rule of “putting each value in a different direction of the space” —that is, vector-valued

integration— [4, 12].

In this paper we are concerned with suitable applications of the non-additive extensions

of this integration theory to some open investigations in Information Science. An exhaustive

study of the spaces of integrable functions that are integrable with respect to a vector-valued

Choquet type integration theory has recently been published in [7]. The present paper can be

considered a continuation of this line of research. Our aim now —after establishing a general

framework of theoretical results—, is to give examples and concrete definitions of new indices

with detailed explanations of several models for information measures.
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2 E A. SÁNCHEZ PÉREZ AND R. SZWEDEK

There are two facts that must be taken into account in relation with the definition and

application of new impact parameters for measuring the tandem quantity/quality of scientific

publications. On the one hand, and in the context of the new non-standard measures of

information that are called altmetrics [24], there is increasing interest in the design of multi-

valued indices. Indeed, decision making on research assessment based on several indices is an

outstanding challenge in Information Science (see [1, 10, 12, 32] and references therein). The

scientific community agrees on the fact that several (scalar) indices must be jointly used for

research evaluation: the suitable mathematical setting for representing this idea is to consider

vector-valued impact indices.

On the other hand, impact measures that are not defined by additive functions appear in

almost all aspects of measurement of research activity. A relevant example is the h-index

which measures a rate among the number of publications with a certain number of citations,

and is not given by the usual integral. Integration with respect to (scalar) fuzzy measures is

being used nowadays as a standard measure in information science (see for instance [3, 13,

17, 29]). As we said, we will analyze a vector-valued version of these integrals in order to

enrich our knowledge about the design of new information measures.

Several matters appear immediately. A non-linear integral of scalar functions with respect

to non-finitely additive set functions is needed. In the scalar case, the Choquet integral pro-

vides such a tool, although much of the examples recently introduced are not Choquet inte-

grals [13, 17, 29]. However, it seems to be the first natural generalization, and so vector-valued

Choquet integrals and related spaces of integrable functions for vector-valued capacities has

recently been studied from the formal point of view by several authors [16, 30, 31], including

some of the authors of the present paper [7]. Applications of this theory to other fields are

also being currently developed (see for example [5]). Thus, we are interested in analyzing

vector-valued information measures —impact indices— using this theory, since this is the

better-known integration with respect to non-additive measures in the scalar case. This may

show the way to a general analysis of non additive vector-valued information measures. In

a sense, the present paper must be understood as a continuation of the research of one of

the authors of the present paper, who presented a complete theory of the spaces of Choquet

integrable functions with respect to a fuzzy capacity in the article [7]. The main theoretical

results and the framework of the present work can be found in this paper [7]. However, it

must be said that in [7] the problem of integration with respect to a vector-valued capacity is

studied in its full generality, and so we have changed notation and consider more restricted

types of integrals in the present paper for the aim of simplicity. Roughly speaking, in the inte-

gration model for impact measures in Information Science, each integrable function provides

such an index. This relation will become clear in the present article.

Let us present now a picture of the “state of the art” regarding the subjects involved

in this article. Integration with respect to general set functions has become a very active

current research topic, mainly due to its potential applications —not only in Information

Science—. Concepts such as fuzzy (scalar) measures, pseudo-additive measures, null-additive

set functions and non-monotonic measures cover different aspects of this nonlinear theory.

The interested reader can find information about these integration theories in a lot of classical
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and current sources; see for example [6, 8, 19, 20, 22, 23, 28] and references therein. Several

authors have also recently paid attention to the second aspect that we want to point out in

the paper —the vector-valued generalizations—; we may mention here the papers by Kawabe

(see for example [14, 15, 16] and references therein), as well as by some other authors [30, 31]).

For this vector measure case, the relation between integrable functions and weakly integrable

functions with the Bocher, Dunford and Pettis integrability of the corresponding distribution

functions have recently been studied in the interesting paper [11] by Fernández, Mayoral and

Naranjo. Though we will assume some strong requirements on the vector-valued capacity,

countable additivity is not one of them. Of course, some assumptions must be made on the

vector-valued fuzzy measure for assuring a reasonable behavior of the integrals (see [14, 16]

and references therein). Essentially, integration with respect to a Riesz space valued monotone

capacity is defined and analyzed in these papers and the ones to which they refer. Our aim is

to use a Lebesgue type integral being free of the order structure of the Banach space in which

the capacity takes its values. In [26], such a kind of Bartle-Dunford-Schwartz integral for

vector measures on quasi-Banach spaces is considered, but in this case the order properties

of quasi-Banach lattices are also strongly used. In the case of the present paper, we do not

take into account any lattice order in the Banach space where the capacity takes its values

for the construction of our Choquet-Lebesgue type integral. Of course, Banach-lattice-valued

capacities will be considered in examples and applications.

2. Preliminaries

Through this section and in the rest of the paper, let (Ω,Σ, µ) be a σ-finite measure space

and E a Banach space. Consider a measurable function f : Ω→ R+. The Choquet integral of

f with respect to a scalar capacity c : Σ → R+ —i.e. a monotone set function that satisfies

c(∅) = 0— is given by ∫
Ω
f dc :=

∫ ∞
0

c({f > t}) dt.

We use the standard notation {f > t} = {w ∈ Ω : f(w) > t}. Since c({f > t}) is decreasing,

this integral is defined in the Lebesgue sense, although it may of course be ∞.

We will also use the notion of the Pettis integral, an integral of a vector-valued function

with respect to a scalar measure, which is sometimes called a weak integral. Consider a

function φ acting in a set Ω with values in the Banach space E and a countably-additive

measure µ on a sigma algebra Σ of subsets of Ω. The function φ is called weakly measurable

if for any x∗ ∈ E∗ the scalar function x∗ ◦ φ(·) = 〈φ(·), x∗〉 is measurable. The function φ

is Pettis integrable over a measurable subset A if for each x∗ ∈ E∗ and A ∈ Σ the function

x∗ ◦ φ is integrable on A and there exists an element (P )−
∫
A φdµ ∈ E such that〈

(P )−
∫
A
φdµ, x∗

〉
=

∫
A
x∗ ◦ φdµ =

∫
A
〈φ(t), x∗〉 dµ(t).

(P )−
∫
A φdµ is called the Pettis integral of φ with respect to µ. The Dunford integral, which

is defined in a similar way, is given when the integral is not necessarily in E; notice that the

requirement of integrability of all the functions x∗ ◦ φ is enough for φ to have an integral in

E∗∗, that is the case of Dunford integrable functions.
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Let us define now the Bartle-Dunford-Schwartz integral with respect to a Banach-space-

valued countably additive vector measure m : Σ→ E for scalar measurable functions. Let f

be a scalar-valued measurable function. Such a function f is said to be integrable with respect

to m if the following two requirements are satisfied. The first one is that |f | is integrable with

respect to all measures |〈m,x∗〉|, where 〈m,x∗〉 := x∗ ◦m is a (non necessarily positive) scalar

measure and | · | is the variation. The second one is that a vector-valued integral must exist:

for each A ∈ Σ there exists an element
∫
A fdm ∈ E such that 〈

∫
A fdm, x

∗〉 =
∫
A fd〈m,x

∗〉,
x∗ ∈ E∗. The space of all equivalence classes of integrable functions is denoted by L1(m); it

is a σ-order continuous Banach lattice with the natural order and the norm

‖f‖L1(m) := sup
x∗∈BE∗

∫
Ω
|f |d|〈m,x∗〉|, f ∈ L1(m).

For fundamental notions and results on vector measures, Banach lattices and Banach function

spaces we refer to [2, 9, 18, 21, 27]. If X(µ) is a σ-order continuous Banach function space over

a finite measure µ and T : X(µ)→ E is an operator, the expression mT (A) := T (χA), A ∈ Σ,

provides a canonical way of defining vector measures which was shown to be a powerful tool

in functional analysis (see i.e. [21, Ch.3]).

Let us introduce the main concept used in this paper. A set function C : Σ→ E is a vector

capacity —also called a fuzzy capacity or a fuzzy measure— if C(∅) = 0. Sometimes —as

in the definition of the Choquet integral in the scalar case given above— the monotonicity

property is also required, that is, ‖C(A)‖ ≤ ‖C(B)‖ whenever A ⊂ B, A,B ∈ Σ. This

requirement is not needed in the general case but is useful when defining an integral with

respect to a Riesz-space-valued capacity (see [14]).

Fundamental examples of vector-valued capacities in classical analysis are easy to find.

For instance, let m : Σ → E be a vector measure and Φ: E → E a norm bounded function

(i.e. supx∈BE
‖Φ(x)‖ < ∞), with the requirements as are needed in each special case. The

composition of these functions C(A) := Φ
(
m(A)

)
, A ∈ Σ, gives an example of a class of

vector-valued capacities. This is of particular interest if Φ is given by a classical non-linear

positive operator, as the Hardy-Littlewood maximal operator. Thus, in the same way that

linear operators acting in Banach function spaces provide vector measures, non-linear maps

in these spaces give vector-valued capacities in a natural way.

2.1. Basics on integration with respect to vector-valued capacities. Let us give now

the mathematical motivation for the definition of an integral with respect to a vector-valued

capacity. It follows the lines of the characterization obtained in [11] in the case of vector

measures using the distribution function, which makes sense in the general case of vector-

valued capacities. It also coincides with the natural representation of simple functions and the

corresponding integrals for the case of an order based integral having values in Riesz spaces

(see [14, Proposition 2.14]). Consider a Σ-simple function f ≥ 0 represented as follows: there

are sets A1, ..., An ∈ Σ such that An ⊆ An−1 · · · ⊆ A1 and positive real numbers α1, ..., αn

such that

f =

n∑
i=1

αiχAi .
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Notice that this representation always exists for a positive simple function and is unique

(µ-a.e.). We call it the decreasing representation of f . We can define the integral of such a

function f over A ∈ Σ with respect to the capacity C by∫
A
f dC := (P )−

∫ ∞
0

C({fχA > t}) dt =
n∑
i=1

αiC(A ∩Ai). (2.1)

This Choquet-type definition and the particular formula of the integral for simple functions

provides an interesting framework for the general definition of impact indices in bibliometry

(see for example Definition 3 in [29]). The reader can find a complete explanation of this

relevant application in [13] (see all the paper, but mainly §4.). Actually the ideas laid out

there were the main motivation for our research, since vector-valued capacities allow us to

define a broader class of aggregation functions including the ones appearing in multi-indices

based research evaluation (see also e.g. [25]).

Notice that the function Cf : [0,∞)→ E given by

Cf (t) := C({f > t}),

whenever f is a positive simple function as above, is always well defined and —since it takes

only a finite set of different values on E— it is also Pettis integrable. In fact, notice that we

can define the integrals with respect to the scalar components 〈C, x∗〉 of C as∫
A
f d〈C, x∗〉 :=

∫ ∞
0
〈CfχA

(t), x∗〉 dt =

∫ ∞
0
〈C({fχA > t}), x∗〉 dt

=
n∑
i=1

αi〈C(A ∩Ai), x∗〉.

With these definitions, notice that for every positive simple function f , A ∈ Σ and x∗ ∈ E∗,〈∫
A
f dC, x∗

〉
=

∫
A
f d〈C, x∗〉.

This motivates the following general definition, which almost coincides with the characteri-

zation of Bartle-Dunford-Schwartz integrable functions in terms of distribution functions in

the case when C is a vector measure (see Theorem 2.7 in [11]). Note that C|f | can be defined

as above for every measurable function f : we will call it the distribution function of f .

Definition 2.1. Consider a measurable capacity C : Σ→ E, that is, such that its distribution

function is strongly measurable. We say that a measurable function 0 ≤ f : Ω → E is

integrable with respect to the capacity C if and only if for every A ∈ Σ, the function CfχA
:

[0,∞)→ E is Pettis integrable. In this case,∫
A
f dC = (P )−

∫ ∞
0

CfχA
dt,

and, by the properties of the Pettis integral,〈∫
A
f dC, x∗

〉
=

∫ ∞
0
〈CfχA

(t), x∗〉 dt =

∫
A
fd〈C, x∗〉, x∗ ∈ E∗.
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Section 5, and mainly Section 7 in [7] provide the technical requirements which are needed

for this integral to extend to a complete space of integrable functions. The reader can find

there all the information required for a general measurable function to belong to the natural

completion of this space. The integration map IC associates each simple function to its

integral in E, that is

IC(f) =

∫
Ω
fdC, f simple,

where the integral is defined using formula (2.1). The main properties of this operator can

be found in [7] (see Lemma 4, Proposition 8 and other related results in Section 6 of this

paper).

Remark 2.2. Let us compare the different norms which can be given to a space of (classes of)

integrable functions —using the vector measure integration as a reference— with the Bochner

and Pettis norms of the associated distribution functions. The relevance of these formulas

is that each of them provide a different way of defining an information impact measure, as

will be shown in the remainder of the paper. A total description of the relations between

these norms can be found in [11]. Let us look at the case of a simple function f . Consider an

ordered representation
∑n

i=1 aiχAi of |f |, where An ⊂ An−1 · · · ⊂ A1 are measurable sets and

a1, ..., an are real numbers. Let C : Σ→ E be a measurable capacity whose semivariation is

equivalent to a measure µ in the sense that they have the same null sets. Then we can define

the following norm for the space of (classes of µ-a.e.) simple functions using the Bochner

norm of the distribution function C|f |,

‖f‖C :=

∫ ∞
0
‖C|f |(t)‖ dt, f simple.

In the case when C is a vector measure m, the computation gives

‖f‖C = ‖f‖m =

∫ ∞
0
‖m|f |(t)‖ dt =

n∑
i=1

ai‖m(Ai)‖.

This formula does not provide the norm of f in L1(m). In the general case of C being

just a capacity, we will call this norm —which in fact can be extended to the function space

that is the completion of the space of simple functions— the strong norm for the space of

integrable functions with respect to the capacity C.

However, assume now that C = m, a positive vector measure, that is, a countably additive

vector measure having values in the positive cone of a Banach lattice. If we consider the

Pettis norm for the Pettis integrable function C|f | : [0,∞)→ E given by

‖f‖P := sup
x∗∈BE∗

∫ ∞
0
|〈C|f |(t), x∗〉| dt,

for C being the positive vector measure m, we obtain

‖f‖P = sup
x∗∈B+

E∗

∫ ∞
0
|〈m|f |(t), x∗〉| dt = sup

x∗∈B+
E∗

∫ ∞
0
|〈

n∑
i=1

aim(Ai), x
∗〉| dt.

= ‖
n∑
i=1

aim(Ai)‖E = ‖
∫

Ω
|f | dm‖E .
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This coincides with the norm of f in L1(m) (see for example Lemma 3.13 in [21]) for any

integrable function f ∈ L1(m). We have that

‖f‖P = sup
x∗∈BE∗

∫ ∞
0
|〈m|f |(t), x∗〉| dt ≤ sup

x∗∈BE∗

∫ ∞
0
〈m|f |(t), |x∗|〉 dt

= sup
x∗∈B+

E∗

∫ ∞
0
〈m|f |(t), x∗〉 dt ≤ sup

x∗∈BE∗

∫ ∞
0
|〈m|f |(t), x∗〉| dt.

Then

‖f‖P = sup
x∗∈B+

E∗

∫ ∞
0
〈m|f |(t), x∗〉 dt = sup

x∗∈B+
E∗

〈
∫

Ω
|f | dm, x∗〉,

and so

‖f‖P = sup
x∗∈B+

E∗

〈
n∑
i=1

aim(Ai), x
∗〉 = ‖

∫
Ω
|f |dm‖ = ‖f‖L1(m).

Summing up, we obtain that the definition of integrability with respect to a vector-valued

capacity which fits in better with the notion of integrability with respect to a countably

additive vector measure is the Pettis integral of the distribution function, at least in the case

of positive vector measures. This is the natural framework of this paper, since all reasonable

vector-valued impact measures are defined by positive capacities, as we will show later on.

2.2. Semivariations of capacities and scalar variations. Variations and semivariations

for vector measures provide natural norms for vector spaces so that they can be made into Ba-

nach spaces. Thus, it seems reasonable to ask for convenient adaptations of these notions in

the case of vector-valued capacities in order to obtain something that could be considered as

the natural topological structure for these spaces. Due to our interest in integration, the main

properties that we need are associated to the behavior of capacities regarding the uniform

limits of their evaluations on sequences of disjoint sets. As the last remark of the previous

section indicates, it seems natural to associate, on the one hand, variation/Bochner inte-

grability/strong integration of scalar functions, and on the other hand, semivariation/Pettis

integrability/Bartle-Dunford-Schwartz integration of scalar functions. This is the reason why

our first step consists in analyzing the notions of variation and semivariation for vector-valued

capacities and the relations between them. So, in this section we introduce some fundamental

definitions and analyze some properties of vector-valued capacities. We also prove a “capacity

version” of one of the main results concerning vector measures, which provides an equiva-

lence between the weak convergence properties and the norm convergence: the Orlicz-Pettis

Theorem for vector measures.

Let (Ω,Σ) be a measure space. Consider a vector-valued capacity C : Σ → E and an

element x∗ ∈ E∗. Consider the scalar (signed) capacity 〈C, x∗〉 given by

〈C, x∗〉(A) := 〈C(A), x∗〉, A ∈ Σ.

Notice that the expression |〈C(·), x∗〉| also defines a scalar capacity, in this case positive. We

define the variation |〈C, x∗〉| of this capacity in a set A ∈ Σ by

|〈C, x∗〉|(A) := sup
(Ai)ni=1⊂Σ partition of A

n∑
i=1

|〈C(Ai), x
∗〉|;
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it is also a positive capacity. We say that the capacity C is scalar bounded if

sup
x∗∈BE∗

|〈C, x∗〉|(B) <∞

for every B ∈ Σ.

The semivariation of a vector capacity C on a set A ∈ Σ is given by

‖C‖(A) := sup
x∗∈BE∗

|〈C, x∗〉|(A).

We say that the vector capacity C is of bounded semivariation if for every A ∈ Σ, ‖C‖(A) <

∞.

Let us give now some definitions regarding convexity/concavity type inequalities for scalar-

valued capacities. We say that a scalar capacity c : Σ→ R is superadditive if for every couple

of disjoint sets A,B ∈ Σ, c(A ∪ B) ≥ c(A) + c(B). We say that c is subadditive if for every

couple of disjoint sets A,B ∈ Σ, c(A ∪ B) ≤ c(A) + c(B). These notions will be generalized

and extended for vector-valued capacities in different manners later on in the paper.

Almost all the properties of semivariations of a vector capacity are consequences of the

behavior of its scalar-valued components. The main properties of the semivariation of scalar-

valued capacities we need in the present paper can be found in Lemma 2 of [7]. For definitions

of semivariation type set functions and quasi-variations for vector-valued capacities, see Sec-

tion 5 in [7]. In what follow we give some related results that will be used in the following

sections.

Lemma 2.3. Let C : Σ→ E be a Banach-space-valued capacity. Then

(1) The variation of a scalar capacity is a superadditive (and so monotone) scalar capac-

ity.

(2) C is scalar bounded if and only if

‖C‖(Ω) := sup
x∗∈BE∗

|〈C, x∗〉|(Ω) <∞.

(3) For every A ∈ Σ,

‖C‖(A)

= sup
{∥∥ n∑

i=1

εiC(Ai)
∥∥ : |εi| = 1, (Ai)

n
i=1 ⊂ Σ partition of A

}
.

(4) For every A ∈ Σ,

sup
B⊆A, (Bi)ni=1⊂Σ partition of B

‖
n∑
i=1

C(Bi)‖

≤ ‖C‖(A) ≤ 2 sup
B⊆A, (Bi)ni=1⊂Σ partition of B

‖
n∑
i=1

C(Bi)‖.

Consequently, a vector capacity C is of bounded semivariation if and only if the set{∑n
i=1C(Bi) : B1, ..., Bn ∈ Σ disjoint

}
is norm bounded.
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Proof. (1) Fix a functional x∗ ∈ BE∗ , a couple of disjoint sets A,B ∈ Σ, and measurable

partitions (Ai)
n
i=1 of A and (Bi)

m
i=1 of B in Σ. Then (Ai)

n
i=1 ∪ (Bi)

m
i=1 define a partition of

A ∪B, and
n∑
i=1

|〈C(Ai), x
∗〉|+

m∑
i=1

|〈C(Bi), x
∗〉| ≤ |〈C, x∗〉|(A ∪B).

This obviously implies the superadditivity of |〈C, x∗〉|, and the monotonicity |〈C, x∗〉| since

this variation is always nonnegative.

(2) is an obvious consequence of (1). For (3) just take a measurable partition (Ai)
n
i=1 of A

and x∗ ∈ BE∗ . Then there are εi ∈ {+1,−1} such that

n∑
i=1

|〈C(Ai), x
∗〉| =

n∑
i=1

εi〈C(Ai), x
∗〉 ≤ ‖

n∑
i=1

εiC(Ai)‖,

which implies (3). The converse inequality also holds using the same kind of straightforward

calculation. To see (4), just take into account that for every A ∈ Σ, every partition (Ai)
n
i=1 ⊂

Σ of A and every choice of signs εi, i = 1, ..., n, we can reorder (Ai)
n
i=1 in a way that∑n

i=1 εiC(Ai) =
∑n0

i=1C(Ai)−
∑n

i=n0+1C(Ai), 0 ≤ n0 ≤ n, and so by (3)

‖
n∑
i=1

εiC(Ai)‖ ≤ ‖
n0∑
i=1

C(Ai)‖+ ‖
n∑

i=n0+1

C(Ai)‖

≤ 2 sup
B⊆A, (Bi)ni=1⊂Σ partition of B

‖
n∑
i=1

C(Bi)‖ = ‖C‖(A).

For the first inequality in (4), just take a partition (Bi)
n
i=1 ⊂ Σ of B ⊆ A, a functional

x∗ ∈ BE∗ and consider the inequalities

〈
n∑
i=1

C(Bi), x
∗〉 ≤

n∑
i=1

|〈C(Bi), x
∗〉| ≤ ‖C‖(A),

where the last inequality is a consequence of the monotonicity of |〈C, x∗〉|. Then the result

holds just taking the supremum with respect to every x∗ ∈ BE∗ , every measurable B ⊆ A

and every partition on the left-hand side. �

From now on we will write ‖C‖0(A) for the function

‖C‖0(A) := sup
B⊆A, (Bi)ni=1⊂Σ partition of B

‖
n∑
i=1

C(Bi)‖,

that is defined for every A ∈ Σ.

Throughout the rest of the paper, we assume that the capacity C is bounded, i.e. ‖C‖(Ω) <

∞. After Lemma 2.3, this is equivalent to ‖C‖0(Ω) <∞.

In order to get better properties of the associated integration, we require stronger properties

of the vector-valued positive capacities, which will be the case in most of the examples and

models presented in the paper. Recall that we say a Banach-lattice-valued capacity is positive

if C : Σ → E+, and monotone if A ⊆ B implies C(A) ≤ C(B) in the lattice order. Recall

also that C(∅) = 0. Notice that if C is superadditive and positive, then for each couple of

disjoint sets A,B ∈ Σ, 0 ≤ C(A) ≤ C(A) + C(B) ≤ C(A ∪ B), and so C is monotone. In

particular, positive vector measures are always monotone.
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A set N ⊆ BE∗ is norming for C if ‖x‖ := supx∗∈N |〈x, x∗〉|, x ∈ Sum(R(C)), the set of

finite sums of products of elements of R(C) and positive scalars. The same definition makes

sense for families of vector measures: N is norming for a set {Cτ : τ ∈ T} it is such for each

Cτ .

Definition 2.4. We say that a vector-valued capacity C is scalar subadditive with respect

to a norming set N for C if for all disjoint A,B ∈ Σ and x∗ ∈ N ,

|〈C(A ∪B), x∗〉| ≤ |〈C(A), x∗〉|+ |〈C(B), x∗〉|,

i.e. the scalar capacity |〈C(·), x∗〉| is subadditive for every x∗ ∈ N .

Example 2.5. (1) Let ([0, 1],B, µ) the Lebesgue measure space and consider the vector capacity

C1/2 : B → L1[0, 1] given by

C1/2(A) = χ(A∩[0,1/2])∪(t−1/2(A∩[1/2,1])),

where t−1/2 is the linear transformation t−1/2(r) = r − 1/2, r ∈ [1/2, 1]; that is t−1/2(A ∩
[1/2, 1]) = A ∩ [1/2, 1])− 1/2. Clearly, C1/2 is not a vector measure, since it is not additive:

for example, C1/2([0, 1]) = χ[0,1/2], but C1/2([0, 1/2]) + C1/2([1/2, 1]) = 2χ[0,1/2]. However,

it is subadditive when considered as a function having values in L1[0, 1], and so it is scalar

subadditive with respect to the positively norming set N = (BL∞[0,1])
+ = (BE∗)

+.

(2) Every positive vector measure is scalar subadditive with respect to the positive cone

of E∗. In fact, it is enough that for each pair of disjoint measurable sets A and B, the vector

capacity C having values in the Banach lattice E satisfy 0 ≤ C(A ∪ B) ≤ C(A) + C(B) in

the lattice order. Since all the elements are positive, we have that for each x∗ ∈ N = (E∗)+

and disjoint A,B ∈ Σ,

|〈C(A ∪B), x∗〉| = 〈C(A ∪B), x∗〉

≤ 〈C(A), x∗〉+ 〈C(B), x∗〉 = |〈C(A), x∗〉|+ |〈C(B), x∗〉|.

Lemma 2.6. If C is a scalar subadditive vector capacity and N is a norming set for C, then

the variations of the scalar capacities 〈C, x∗〉, x∗ ∈ N , are finitely additive measures.

It is just a consequence of the definition of a scalar subadditive capacity and Lemma 2.3.

In what follows we shall often assume that each scalar capacity |〈C, x∗〉|, x∗ ∈ N , is a finite

(finitely additive) measure. In particular the lemma above shows that this happens if C is

scalar subadditive with respect to N .

Definition 2.7. A family of E-valued capacities C = {Cτ : Σ→ E |τ ∈ T} is uniformly count-

ably additive if for any sequence (An)∞n=1 of pairwise disjoint sets of Σ, limn ‖
∑∞

m=nCτ (Am)‖ =

0 uniformly in τ ∈ T .

Notice that we are not assuming that the capacities are additive. That is, countable ad-

ditivity of a capacity does not imply additivity, as is natural in the non-additive context we

are working in. The next theorem is the main result on semivariations of capacities in this

paper. It can be understood as an extension to vector-valued capacities of some classical

fundamental results on summability in Banach spaces and vector measures: the Orlicz-Pettis

Theorem ([9, Cor. I.4.4]) and the Vitali-Hahn-Sacks Theorem ([9, Cor. I.5.6]).
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Theorem 2.8. Let C = {Cτ : τ ∈ T} be a family of E-valued capacities and let N be a

norming set for C. Then the following are equivalent.

(1) C is uniformly countably additive.

(2) The set {〈Cτ , x∗〉 : τ ∈ T, x∗ ∈ N} is uniformly countably additive.

(3) If (An) is a sequence of pairwise disjoint elements of Σ and (Ajn)mn
j=1 is a partition of

An for each n, then

lim
n
‖
mn∑
j=1

Cτ (Ajn)‖ = 0

uniformly in τ ∈ T .

(4) If (An) is a sequence of pairwise disjoint elements of Σ, then

lim
n
‖Cτ‖0(An) = 0

uniformly in τ ∈ T .

(5) If (An) is a sequence of pairwise disjoint elements of Σ, then

lim
n
‖Cτ‖(An) = 0

uniformly in τ ∈ T .

(6) The set {|〈Cτ , x∗〉| : τ ∈ T, x∗ ∈ BE∗} is uniformly countably additive.

Proof. Clearly, (1) implies (2). To see that (2) implies (3), take ε > 0 and consider a sequence

(An) with the corresponding partitions (Ajn), and define the sequence of disjoint sets ordered

by n putting consecutively the elements of each partition of An, (Ajn)∞,mn

n=1,j=1. Then there

is an n0 such that for every x∗ ∈ BE∗ and τ ∈ T , |〈
∑∞,mk

k=n0,j=1Cτ (Ajk), x
∗〉| ≤ ε, and so

‖
∑∞,mk

k=n0,j=1Cτ (Ajk)‖ ≤ ε. Since this holds for every ε, this gives (3).

For (3) implies (4), suppose that (4) does not hold. Then there is a sequence (An) of

pairwise disjoint elements of Σ such that supτ∈T ‖Cτ‖0(An) ≥ 2δ > 0 for every n. Then there

is a sequence of disjoint measurable sets (Bj
n)mn
j=1 such that ∪mn

j=1B
j
n ⊂ An and

sup
τ∈T
‖Cτ‖0(An) ≤ sup

τ∈T
‖
mn∑
j=1

Cτ (Bj
n)‖+ δ.

This contradicts (3).

By Lemma 2.3, (4) and (5) are equivalent. To see (5) implies (6), suppose that {|〈Cτ , x∗〉| :
τ ∈ T, x∗ ∈ N} is not uniformly countably additive. Then we find a disjoint sequence (An)

and a sequence of positive numbers mj such that

(∗) = sup{
mj+1∑

n=mj+1

|〈Cτ , x∗〉|(An) : τ ∈ T, x∗ ∈ N, } > δ > 0.

But by Lemma 2.3(1), we have

sup{‖Cτ‖(∪
mj+1

n=mj+1An) : τ ∈ T}

≥ sup{|〈Cτ , x∗〉|(∪
mj+1

n=mj+1An) : τ ∈ T, x∗ ∈ N} ≥ (∗) > δ > 0.

This contradicts (5) and gives the result. Obviously (6) implies (1). �

In the case of a single vector capacity, this result gives the following equivalences.
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Corollary 2.9. Let C be an E-valued capacity and let N be a norming set for C. Then the

following statements are equivalent.

(1) C is countably additive.

(2) The set {〈C, x∗〉 : x∗ ∈ N} is uniformly countably additive.

(3) If (An) is a sequence of pairwise disjoint elements of Σ and (Ajn)mn
j=1 is a partition of

An for each n, then

lim
n
‖
mn∑
j=1

C(Ajn)‖ = 0.

(4) If (An) is a sequence of pairwise disjoint elements of Σ, then

lim
n
‖C‖0(An) = 0.

(5) If (An) is a sequence of pairwise disjoint elements of Σ, then

lim
n
‖C‖(An) = 0.

(6) The set {|〈C, x∗〉| : x∗ ∈ N} is uniformly countably additive.

The following definitions will be used later on. They allow us to give easy conditions under

which some of the requirements of the previous results are fulfilled.

Definition 2.10. A vector capacity is said to satisfy the Fatou property if

This is the natural extension of the notion of Fatou capacity [6, p. 2] to the vector-valued

case.

Moreover, a vector capacity is said to satisfy the weak Fatou property if for every x∗ ∈ E∗

and An, A ∈ Σ, if An ↑ A, then 〈C(An), x∗〉 → 〈C(A), x∗〉.
Finally, a vector-valued capacity is absolutely continuous with respect to a measure λ if

and only if ‖C(A)‖ → 0 whenever λ(A)→ 0.

Notice that if C is scalar subadditive and absolutely continuous with respect to a finite

measure λ, then it is Fatou, and then weakly Fatou.

3. The first model: C-integrable functions of Bochner type

In this section we will explain the basics of one of the types of integration with respect to

capacities —the strongest one— which we propose as models for impact measuring tools. We

will use the symbol L1
B(C) for this space in the present paper. The B in this notation refers

to “Bochner”, since we use the vector-valued integration for the distribution function in the

definition. The space L1
B(C) can be identified with the space L1(‖Λ‖) studied in Section 5

of [7], and is also related to the spaces S‖Λ‖ and w − L1
v(Λ) appearing there. Let Σ be a

σ-algebra of subsets of an abstract set Ω, E a Banach space and C : Σ → E a set function

satisfying C(∅) = 0. Sometimes, monotonicity of the set function C is also required in the

definition of scalar capacities, specially in the setting of Information Science (see for example

[29]). The reason is that it is difficult to find a reasonable meaning for an impact measure

which would not increase when the set of information items increases. The vector-valued

version of monotonicity involves the evaluation of the norm of the corresponding vectors, and

will be considered latter together with subadditivity.
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Denote by M the space of all Σ-measurable functions f : Ω → R. For every 0 ≤ f ∈ M,

we denote by Cf the map Cf : [0,∞)→ E defined as

Cf (t) = C
(
{ω ∈ Ω : f(ω) > t}

)
.

Consider a simple function ϕ : Ω → [0,∞). If ϕ = 0 then we have Cϕ = 0. In other case,

we always can write ϕ =
∑n

j=1 αjχAj with (Aj)
n
j=1 being a disjoint sequence of measurable

sets and α0 = 0 < α1 < · · · < αn, and so

Cϕ =

n∑
k=1

C
( n⋃
j=k

Aj

)
χ[αk−1,αk).

Hence, Cϕ is an E-step function (see [2, p. 423]) considering the Lebesgue measure m on

[0,∞), and its integral with respect to m is given by∫
Ω
Cϕ dm =

n∑
k=1

C
( n⋃
j=k

Aj

)
(αk − αk−1).

Note that if C is finitely additive then
∫

ΩCϕ dm =
∑n

j=1 αj C
(
Aj
)
, i.e. the integral of ϕ with

respect to C.

We define the integral of ϕ with respect to the set function C as∫
Ω
ϕdC :=

∫
Ω
Cϕ dm.

Assume now that C is Fatou. Then Cf is strongly m-measurable for every 0 ≤ f ∈M ([2,

Definition 11.36]). Indeed, taking a sequence (ϕn) of simple functions such that 0 ≤ ϕn ↑ f ,

for each fixed t ∈ [0,∞) we have that {ω ∈ Ω : ϕn(ω) > t} ↑ {ω ∈ Ω : f(ω) > t} and so by

(2.10), Cϕn(t)→ Cf (t) in E and Cϕn is an E-simple function.

Definition 3.1. We will say that f ∈ M is (strongly) integrable with respect to C —in

symbols, f ∈ L1
B(C)— if C|f | : [0,∞) → E is Bochner integrable with respect to m ([2,

Definition 11.42]).

Assume that

A,B ∈ Σ with A ⊂ B ⇒ ‖C(A)‖E ≤ ‖C(B)‖E . (3.1)

This is the vector-valued version of the notion of the monotonicity of capacity (see [6, p.98])

in the vector-valued case.

This result can be found in Proposition 15 (c) in [7], taking into account that here we

say that f is (strongly) integrable if it belongs to the Choquet space L1(‖C‖) of the scalar

capacity ‖C‖ (L1(‖Λ‖) in the notation of [7]).

From now on, we assume that the vector-valued capacity has the Fatou property (condi-

tion (2.10) in what follows); although not always needed, it provides suitable conditions for

structures with good properties. Notice that it is not needed for the capacity C for a simple

function to be (strongly) integrable with respect to C, since for these functions the next result

always holds.

Lemma 3.2. Let C be a vector capacity with the Fatou property. A measurable function

f ∈ M is (strongly) integrable with respect to C —that is, f ∈ L1
B(C)— if and only if∫∞

0 ‖C|f |(t)‖E dt <∞.
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Proof. If f ∈M is integrable with respect to C then, C|f | : [0,∞)→ E is Bochner integrable

with respect to m (by definition). So, there exists a sequence (ψn) of E-step functions on

[0,∞) such that
∫∞

0 ‖C|f |(t)− ψn‖E dt→ 0 and thus,∫ ∞
0
‖C|f |(t)‖E dt ≤

∫ ∞
0
‖C|f |(t)− ψn‖E dt+

∫ ∞
0
‖ψn‖E dt <∞.

Conversely, suppose that f ∈M satisfies
∫∞

0 ‖C|f |(t)‖E dt <∞. Taking a sequence of simple

functions (ϕn) such that 0 ≤ ϕn ↑ |f | by (2.10) it follows that

‖C|f |(t)− Cϕn(t)‖E → 0 pointwise for t ∈ [0,∞).

Since, by (3.1),

‖C|f |(t)− Cϕn(t)‖E ≤ ‖C|f |(t)‖E + ‖Cϕn(t)‖E ≤ 2‖C|f |(t)‖E

and the function t→ ‖C|f |(t)‖E is in L1[0,∞), applying the Dominated Convergence Theo-

rem, ∫ ∞
0
‖C|f |(t)− Cϕn(t)‖E dt→ 0.

Hence C|f | is Bochner integrable as Cϕn are E-step functions. Therefore f belongs to L1
B(C),

the space of integrable functions with respect to C. �

Let ‖ · ‖L1
B(C) be the positive map defined for every function f ∈M by

‖f‖L1
B(C) =

∫ ∞
0
‖C|f |(t)‖E dt ≤ ∞.

Lemma 3.3. The following assertions hold.

a) ‖f‖L1
B(C) = 0 if and only if f = 0 C-a.e. (i.e. except on a set Z of null capacity in the

natural sense: for every A ⊂ Z we have C(A) = 0, or equivalently (by (3.1)), C(Z) = 0.)

b) ‖λf‖L1
B(C) = |λ| · ‖f‖L1

B(C) for all λ ∈ R and all f ∈M.

c) If f, g ∈M are such that |f | ≤ |g| pointwise, then ‖f‖L1
B(C) ≤ ‖g‖L1

B(C).

Proof. a) Suppose f = 0 C-a.e., that is, there exists Z ∈ Σ of null capacity such that f = 0

in Ω\Z. Then, for every t ∈ [0,∞), we have that {ω ∈ Ω : |f | > t} ⊂ Z and so C|f |(t) = 0.

Hence ‖f‖L1
B(C) = 0. Conversely, suppose that ‖f‖L1

B(C) = 0. Since{
ω ∈ Ω : |f | > 1

n

}
↑ Z := {ω ∈ Ω : |f | > 0},

by (2.10), we have C|f |(
1
n)→ C(Z). On the other hand, by (3.1) and since{

ω ∈ Ω : |f | > 1
n

}
⊂ {ω ∈ Ω : |f | > t}

for all t ≤ 1
n , we have

0 = ‖f‖L1
B(C) =

∫ ∞
0
‖C|f |(t)‖E dt ≥

∫ 1
n

0
‖C|f |(t)‖E dt ≥ 1

n ‖C|f |(
1
n)‖E .

So ‖C|f |( 1
n)‖E = 0 for all n, and thus C(Z) = 0, that is, f = 0 C-a.e.
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b) Let f ∈M and λ ∈ R\{0}. It follows that

‖λf‖L1
B(C) =

∫ ∞
0
‖C|λf |(t)‖E dt =

∫ ∞
0
‖C|f |( t

|λ|)‖E dt

= |λ|
∫ ∞

0
‖C|f |(s)‖E ds = |λ| ‖f‖L1

B(C).

c) If f, g ∈M are such that |f | ≤ |g| pointwise, then {ω ∈ Ω : |f | > t} ⊂ {ω ∈ Ω : |g| > t}
for every t ∈ [0,∞) and so, by (3.1), ‖C|f |(t)‖E ≤ ‖C|g|(t)‖E for every t ∈ [0,∞). Then

‖f‖L1
B(C) ≤ ‖g‖L1

B(C). �

In what follows we assume that C is norm subadditive. Let us explain this concept.

Definition 3.4. A vector-valued capacity C : Σ→ E is said to be quasi-subadditive if there

is a constant Q ≥ 1 such that

‖C(A ∪B)‖E ≤ Q (‖C(A)‖E + ‖C(B)‖E) for all A,B ∈ Σ. (3.2)

If Q = 1, we simply say that it is subadditive. This is a natural extension of quasi-subadditive

capacity [6, p.2] to the vector-valued case; all the cases we will consider will in fact be

subadditive.

Remark 3.5.

(1) Recall that a vector-valued capacity C is monotone if ‖C(A)‖ ≤ ‖C(B)‖ whenever

A ⊆ B, A,B ∈ Σ (see Equation (3.1)). This assumption, together with the previous

one, are usually adopted for the aim of obtaining reasonably good properties for

Choquet integration. This is not a strong restriction for the construction of impact

measures, since the usual ones can be modeled by means of Choquet integrals with

respect to capacities that satisfy these properties.

(2) All the vector-valued impact measures that we are analyzing are positive —that is,

take values in the positive cone of a Banach lattice, usually Rn with the canonical

order.

(3) The corresponding capacities are also monotone, and this makes it easier to verify

some of the results on subadditivity. Although we have written the definition of

subadditivity considering all pairs of sets, for monotone capacities the definition for

only disjoint sets also works. To see this, note that obviously if C is subadditive for

any pair of sets A,B ∈ Σ, then it is so when only disjoint A and B are considered.

Conversely, if C is monotone and A and B are any pair of subsets in Σ, then we have

that

‖C(A ∪B)‖ ≤ Q
(
‖C(A \B)‖+ ‖C(B)‖

)
≤ Q

(
‖C(A)‖+ ‖C(B)‖

)
,

and so both definitions coincide.

Example 3.6.
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(1) An easy example of vector-valued additive measure is the one provided by an aggre-

gation of weighted measures. Take a set A of articles that were published in 2010

and the (σ)-algebra Σ of all its subsets. Consider the canonical basis {e1, e2} of R2

endowed with the Euclidean norm ‖ · ‖2, and define the vector measure ν : Σ → R2

by

ν(A) = W (A) e1 + V (A) e2, A ⊆ A.

Here W (A) is the number of citations the papers of the set A had until 2015, where

the sum is weighted by the 2015 Thomson-Reuters 2-year impact factor of the journal

in which each citation appeared. That is,

W (A) =
∑
a∈A

w(a) =
∑
a∈A

( ∑
c∈c(a)

IF (c)
)
, A ⊆ A,

where c(a) is the set of citations of the paper a and IF (c) is the 2-year impact factor

of the journal where the paper which contains the citation c was published. The scalar

measure V is defined in the same way but changing the 2-year impact factor IF (c)

appearing in the definition of W by the 5-year (Thomson-Reuters) impact factor of

the year 2015.

(2) Let us write an easy non-additive scalar case. We start with an example which

is inspired by the number of citations (NC)-index explained as a case of Choquet

integral in [29, Def.5]. Consider a (finite) set of authors R and the algebra Σ of all

its subsets. Define the scalar capacity η(A), A ⊆ R, given by the number of citations

that all the papers of the authors in A have received. This function is not in general

additive but it is subadditive. To see this, suppose first that authors a1 and a2 in R
are not coauthors of any paper. In this case we have that

η({a1, a2}) = η({a1}) + η({a2}).

However, assume now that there is a paper coauthored by both a1 and a2 with at

least one citation. Then we have that

η({a1, a2}) < η({a1, a2}) + 1 ≤ η({a1}) + η({a2}).

since the coauthored paper is considered both in η({a1}) and η({a2}). Actually, it

can be easily seen that subadditivity is satisfied for any pair of disjoint subsets of R.

Therefore, the capacity η is subadditive but not additive.

(3) Finally, we can use the ideas in (1) and (2) to define a 2-dimensional example of a

vector-valued index that is a subadditive capacity but not a vector measure. In the

context of (2), define a new scalar index ρ given by ρ(A) = η(A)
|A| , where |A| is the

number of elements in the set A ⊆ R. This provides the citation author-mean of the

set of authors A, and is subadditive since

ρ(A1 ∪A2) =
η(A1 ∪A2)

|A1 ∪A2|
≤ η(A1)

|A1 ∪A2|
+

η(A2)

|A1 ∪A2|

≤ η(A1)

|A1|
+
η(A2)

|A2|
= ρ(A1) + ρ(A2)

for disjoint A1 and A2.
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Define now a vector-valued function α : Σ→ R2 by α(A) = η(A) e1 + ρ(A) e2. For

every pair of disjoint sets A1, A2 ⊆ A we have

α(A1 ∪A2) = η(A1 ∪A2) e1 + ρ(A1 ∪A2) e2

≤ η(A1) e1 + ρ(A1) e2 + η(A2) e1 + ρ(A2) e2 = α(A1) + α(A2),

where the inequalities are written considering the standard ordering in the lattice

R2. Therefore, ‖α(A1 ∪ A2)‖2 ≤ ‖α(A1)‖2 + ‖α(A2)‖2. This gives an example of a

vector-valued impact measure that is defined by a subadditive —but not additive—

capacity.

Example 3.7. Level indices. Let us show a method for measuring the influence of a set of

papers using not only the number of citations they have, but also the number of citations of

all the papers which cite the items of the first set. We present a recursive construction of

such a vector-valued capacity. Consider a set of papers P and let B ⊂ P.

• First we will define a sequence of n-th level indices LIn of B, where all indices of

this form are scalar capacities. Let us take the set X1 of all the papers which cite

the papers in B0 := B. We define LI1(B) as |B1| where B1 := X1\B0 as we want to

exclude the impact of citations between members of B0. In the second step, we take

the set X2 of all the papers which cite the papers in B1. Then LI2(B) := |B2| for

B2 := X2\(B0∪B1), excluding the citations which were counted in the previous step.

For the n-th step, n ∈ N, we take the set Xn of all the papers which cite the papers

in Bn−1. We set Bn := Xn\
⋃n−1
k=0 Bk and LIn(B) := |Bn|. Each n-th level index LIn

is a scalar capacity. We define the level index LI of B by

LI(B) :=

∞∑
k=1

LIn(Bk)ek.

LI(B) is a vector-valued capacity and ‖LI(B)‖`1 represents the number of all unique

recursive citations of the papers from B. The above motivates our calling of ‖LI( · )‖`1
the total index TI. Clearly, LI(B) cannot be additive in general. To see this, suppose

first that B consists of two papers say p1, p2 which are cited by only one paper p3.

Let assume for simplicity that p3 has no citations. In this case LI1(B) = 1 and

LIn(B) = 0, n > 1, and

LI(B) = e1 6= 2e1 = LI({p1})e1 + LI({p2})e1.

• Having defined the level index LI, we present a scalar variant of the previous con-

struction. Let us take a sequence α := (αn) from [0, 1] (e.g. αn = 1
2n−1 ). We define

the α-combined level index LIα by

LIα(B) := ‖LI(B)‖`1(α) =
∞∑
n=1

αn|Bn|.

By the above, LIα is (merely) a subadditive set function.

• We finish by giving a countably additive version of LI, namely

ALI(B) :=
∑
p∈B

LI(p).
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Example 3.8. A non-additive subadditive impact index. Consider a set of papers P that

satisfies the requirement that each of them has at least one of the members of a group of

authors A among its authors. Define an impact index for the elements of P related to the

authorship following similar ideas as the ones that can be found in the definition of the

interaction index (see [19]). In our case, we define the index IA as follows.

• Let n be the number of authors in the set A. Consider a set {pi : i = 1, ..., n} of

positive real numbers that will be the weight given to each paper which has ai ∈ A
as author as follows. Write Ai for the set of articles in P which have ai among their

authors.

• Let B ⊂ P, and define the index IA for the subset B ⊆ P as

IA(B) :=

n∑
i=1

pi(B),

where pi(B) = 0 if B ∩Ai = ∅, and pi(B) = pi if B ∩Ai 6= ∅.
Let us show that this measure is subadditive. Consider a pair B1 and B2 of disjoint sets

of P. Fix i = 1, ..., n. Then

pi(B1 ∪B2) = 0, if (B1 ∪B2) ∩Ai = ∅,

and

pi(B1 ∪B2) = pi if (B1 ∪B2) ∩Ai 6= ∅.

For the same i, if (B1 ∪ B2) ∩ Ai = ∅ we have pi(B1) = pi(B2) = 0. On the other hand, if

(B1∪B2)∩Ai 6= ∅ we have max{pi(B1), pi(B2)} = pi, but pi(B1)+pi(B2) can be equal to 2pi

if both B1 ∩Ai 6= ∅ and B2 ∩Ai 6= ∅. Summing up, and taking into account that this is true

for every i we get that the scalar capacity IA is subadditive, but not necessarily additive.

This provides a proper example of a subadditive capacity.

Lemma 3.9. For every f, g ∈M, we have that ‖f + g‖L1
B(C) ≤ 2K

(
‖f‖L1

B(C) + ‖g‖L1
B(C)

)
Proof. Let f, g ∈M. Since

{ω ∈ Ω : |f + g| > t} ⊂
{
ω ∈ Ω : |f | > t

2

}
∪
{
ω ∈ Ω : |g| > t

2

}
,

by (3.1) and (3.2) we have

‖f + g‖L1
B(C) =

∫ ∞
0
‖C|f+g|(t)‖E dt

≤
∫ ∞

0

∥∥C({ω ∈ Ω : |f | > t
2

}
∪
{
ω ∈ Ω : |g| > t

2

})∥∥
E
dt

≤ K
(∫ ∞

0
‖C|f |( t2)‖E dt+

∫ ∞
0
‖C|g|( t2)‖E dt

)
= 2K

(∫ ∞
0
‖C|f |(s)‖E ds+

∫ ∞
0
‖C|g|(s)‖E ds

)
= 2K

(
‖f‖L1

B(C) + ‖g‖L1
B(C)

)
.

�

Lemma 3.10. Let f, g ∈M be such that |f | ≤ |g| C-a.e. Then, ‖f‖L1
B(C) ≤ K‖g‖L1

B(C).
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Proof. Take a C-null set Z such that |f | ≤ |g| in Ω\Z. Since,

{ω ∈ Ω : |f | > t} =
(
{ω ∈ Ω : |f | > t} ∩ Ω\Z

)
∪
(
{ω ∈ Ω : |f | > t} ∩ Z

)
⊂

(
{ω ∈ Ω : |g| > t} ∩ Ω\Z

)
∪
(
{ω ∈ Ω : |f | > t} ∩ Z

)
,

by (3.1) and (3.2) we have that

‖f‖L1
B(C) =

∫ ∞
0
‖C|f |(t)‖E dt

≤
∫ ∞

0

∥∥C(({ω : |g| > t} ∩ Ω\Z) ∪ ({ω : |f | > t} ∩ Z)
)∥∥
E
dt

≤ K

∫ ∞
0

∥∥C({ω ∈ Ω : |g| > t} ∩ Ω\Z)
∥∥
E

+ K

∫ ∞
0

∥∥C({ω ∈ Ω : |f | > t} ∩ Z))
∥∥
E
dt

= K

∫ ∞
0

∥∥C({ω ∈ Ω : |g| > t} ∩ Ω\Z)
∥∥
E

≤ K

∫ ∞
0
‖C|g|(t)‖E dt = K ‖g‖L1

B(C).

�

Let us denote by L1
B(C) the set of functions in M which are integrable with respect to C

(i.e. f ∈M such that ‖f‖L1
B(C) <∞), where functions which are equal C-a.e. are identified.

Then L1
B(C) is a vector space and ‖ · ‖L1

B(C) is a quasi-norm, as a consequence of the previous

lemma. We call it the space of C-integrable functions of Bochner type. Moreover it is an

ideal of M.

Proposition 3.11. The space L1
B(C) has the Fatou property, i.e. if (fn) ⊂ L1

B(C) is such

that 0 ≤ fn ↑ f C-a.e. and sup ‖fn‖L1
B(C) < ∞, then f := sup fn ∈ L1

B(C) and ‖fn‖L1
B(C) ↑

‖f‖L1
B(C).

Proof. Let us suppose first that (fn) ⊂ L1
B(C) is such that 0 ≤ fn ↑ pointwise and sup ‖fn‖L1

B(C) <

∞. Note that for the measurable function f = sup fn : Ω → [0,∞] we can consider the map

Cf (t) = C
(
{ω ∈ Ω : f(ω) > t}

)
∈ E for t ∈ [0,∞), which is strongly m-measurable just as

in the finite-valued function case. Since, for every t ∈ [0,∞),

{ω ∈ Ω : fn(ω) > t} ↑ {ω ∈ Ω : f(ω) > t},

by the previous arguments and (2.10) and (3.1), ‖Cfn(t)‖E ↑ ‖Cf (t)‖E . Then, applying the

Monotone Convergence Theorem in L1[0,∞), we obtain ‖fn‖L1
B(C) ↑ ‖f‖L1

B(C). In particular,

‖f‖L1
B(C) < ∞, that is, f ∈ L1

B(C). Note that
∫∞

0 ‖Cf (t)‖E dt < ∞ implies f < ∞ C-a.e.,

and since

{ω ∈ Ω : f(ω) =∞} ⊂ {ω ∈ Ω : f(ω) > t} for all t ∈ [0,∞),

then, by (3.1),

‖C
(
{ω ∈ Ω : f(ω) =∞}

)
‖E ≤ ‖Cf (t)‖E for all t ∈ [0,∞),

and so it must be C
(
{ω ∈ Ω : f(ω) =∞}

)
= 0.
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When 0 ≤ fn ↑ C-a.e., we only have to take a C-null set Z such that 0 ≤ fnχΩ\Z ↑
pointwise and apply the previous result (have in mind that if f = g C-a.e. then ‖f‖L1

B(C) =

‖g‖L1
B(C)). �

Remark 3.12. From (3.2) with K = 1 and (2.10), it follows that

‖C(∪nAn)‖E ≤
∑
n

‖C(An)‖E .

Indeed, ‖C(∪nj=1Aj)‖E ≤
∑n

j=1 ‖C(Aj)‖E ≤
∑

j≥1 ‖C(Aj)‖E . On the other hand, Bn =

∪nj=1Aj ↑ B = ∪j≥1Aj , hence C(Bn)→ C(B) in E and consequently ‖C(Bn)‖E → ‖C(B)‖E .

Proposition 3.13. The space L1
B(C) endowed with the quasi-norm ‖ · ‖L1

B(C) is complete.

Consequently, L1
B(C) is a quasi-Banach space.

Proof. Let (fn) be a Cauchy sequence in L1
B(C). There exists a strictly increasing sequence

(nj) such that ‖fnj+1 − fnj‖L1
B(C) ≤ 1

22j
. Taking gk =

∑k
j=1 |fnj+1 − fnj | ∈ L1

B(C) and

g =
∑

j≥1 |fnj+1−fnj |, we have that 0 ≤ gk ↑ g pointwise. Moreover, since for each t ∈ [0,∞),

we have that

{ω ∈ Ω : gk(ω) > t} ⊂ {ω ∈ Ω : g(ω) > t} ⊂
⋃
j≥1

{ω : |fnj+1 − fnj |(ω) > t
2j
},

by (3.1) and Remark 3.12, it follows that

‖gk‖L1
B(C) =

∫ ∞
0
‖Cgk(t)‖E dt ≤

∑
j≥1

∫ ∞
0
‖C|fnj+1−fnj |(

t
2j

)‖E dt

=
∑
j≥1

2j
∫ ∞

0
‖C|fnj+1−fnj |(s)‖E ds =

∑
j≥1

2j‖fnj+1 − fnj‖L1
B(C)

≤
∑
j≥1

2j
1

22j
< 1.

Hence, sup ‖gk‖L1
B(C) < ∞. Then, by Proposition 3.11, g ∈ L1

B(C). Consider now h =∑
j≥1(fnj+1−fnj ). Since |h| ≤ |g| and L1

B(C) is an ideal, we have that h ∈ L1
B(C). Note that{

ω ∈ Ω : |
∑
j≥k

(fnj+1 − fnj )|(ω) > t
}
⊂

{
ω ∈ Ω :

∑
j≥k
|fnj+1 − fnj |(ω) > t

}
⊂

⋃
j≥k

{
ω ∈ Ω : |fnj+1 − fnj |(ω) > t

2j

}
,

by (3.1) and Remark 3.12, it follows∥∥∥∑
j≥k

(fnj+1 − fnj )
∥∥∥
L1
B(C)

=

∫ ∞
0
‖C|∑j≥k(fnj+1−fnj )|(t)‖E dt

≤
∑
j≥k

∫ ∞
0
‖C|fnj+1−fnj |(

t
2j

)‖E dt

=
∑
j≥k

2j‖fnj+1 − fnj‖L1
B(C) ≤

∑
j≥k

1

2j
.

Therefore, fnk
→ h+ fn1 in L1

B(C) and so does (fn) as it is a Cauchy sequence. �
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Remark 3.14. Let ϕ be a positive simple function. Then,∥∥∥∫ ϕdC
∥∥∥
E
≤ ‖ϕ‖L1

B(C).

Indeed, as a direct consequence of the definition of the Bochner integral of the distribution

function Cϕ we have∥∥∥∫ ϕdC
∥∥∥
E

=
∥∥∥∫ ∞

0
Cϕ(t) dt

∥∥∥
E
≤
∫ ∞

0
‖Cϕ(t)‖E dt = ‖ϕ‖L1

B(C).

Consequently, the integration operator with respect to C is continuous from the set of positive

simple functions endowed with ‖ · ‖L1
B(C) into E. These inequalities will be useful when

comparing different norms of functions appearing in the models of impact measures, which

provide evaluations of such indices.

We finish the section with a characterization of one of the most relevant lattice properties of

the spaces of integrable functions. If the space is σ-order continuous, in Information Science

modeling it means that the evaluation of an impact measure given by a function f can be

successfully approximated by means of an increasing sequence of simple functions converging

pointwise to f .

It must be pointed out that this is not necessarily the case: condition (3.3) appearing

below does not hold for every vector capacity. For example, consider Lebesgue measure

space ([0, 1],B([0, 1]), µ) and the vector capacity C0 : B([0, 1])→ E given by C0(A) = x0 6= 0

if µ(A) 6= 0 and C0(A) = 0 if µ(A) = 0, where E is a nontrivial Banach space and x0 is a

fixed vector in it.

Proposition 3.15. The space L1
B(C) has σ-order continuous norm if and only if the condition

(An) ⊂ Σ with An ↓ ∅ ⇒ C(An)→ 0 in E (3.3)

holds.

Proof. Suppose that L1
B(C) is σ-order continuous. If (An) ⊂ Σ is such that An ↓ ∅, then

χAn ↓ 0 and so χA1\An
↑ χA1 . By σ-order continuity and from Remark 3.14,

‖C(An)‖E ≤ ‖χAn‖L1
B(C) = ‖χA1 − χA1\An

‖L1
B(C) → 0.

Conversely, suppose that condition (3.3) holds. Given f, fn ∈ L1
B(C) such that 0 ≤ fn ↑ f

pointwise, since 0 ≤ f − fn ↓ 0 pointwise, for every t > 0 we have that

{ω ∈ Ω : (f − fn)(ω) > t} ↓
⋂
n

{ω ∈ Ω : (f − fn)(ω) > t} = ∅.

Then, by (3.3), ‖Cf−fn(t)‖E → 0. On the other hand, ‖Cf−fn(t)‖E ≤ ‖Cf (t)‖E ∈ L1[0,∞).

So, by applying the Dominated Convergence Theorem in L1[0,∞), we obtain

‖f − fn‖L1
B(C) =

∫ ∞
0
‖Cf−fn(t)‖E dt→ 0.

Note that if 0 ≤ fn ↑ f C-a.e., we only have to take a C-null set Z such that 0 ≤ fnχΩ\Z ↑
fχΩ\Z pointwise and apply the previous result (have in mind that if f = g C-a.e. then

‖f‖L1
B(C) = ‖g‖L1

B(C)). �
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Note that under condition (3.3) the simple functions are dense in L1
B(C). Indeed, every

0 ≤ f ∈ L1
B(C) is the pointwise limit of simple functions 0 ≤ ϕn ↑ f and by σ-order continuity

of L1
B(C) (Proposition 3.15) we have that ϕn → f in L1

B(C). For a general f ∈ L1
B(C), the

result follows by taking positive and negative parts.

4. The second model: C-integrable functions of Pettis type

Although the integration defined in the previous section would be enough for applications

to impact indices, the definition provided there does not coincide with the one of integrable

functions in the case when C is a countably additive vector measure. Indeed, as we al-

ready explained, the definition is stronger than the one needed for a direct extension of

Bartle-Dunford-Schwartz integrability, and it will provide a different norm for measuring in-

formation, as will be shown in Section 5. The corresponding space of integrable functions can

be identified with the space w − L1
c(Λ) appearing in Section 5 of [7]. In this section we will

show how this integration can be generalized to the case of adequate vector capacities. The

results concerning semivariations and variations of capacities presented in Section 2.2 will be

necessary.

In order to have a nice definition of this kind of integrability, we will require C to be scalar

bounded. Note that in this case we can define the Choquet integral of a measurable function

f ≥ 0 with respect to the scalar capacity |〈C, x∗〉| in the usual way,∫
Ω
f d|〈C, x∗〉| =

∫ ∞
0
|〈C, x∗〉|f dt.

The natural formula for defining the integral of a non-negative function —at least for simple

functions— is the Pettis integral of the distribution function Cf ; that is, if f ≥ 0 is a

measurable function we can define its integral as in the case of Bochner integrable functions,∫
Ω
f dC =

∫ ∞
0

Cf (t) dt.

Definition 4.1. Let N ⊆ BE∗ be a norming set for the N -scalar bounded vector capacity

C : Σ→ E. We say that a measurable function f is weakly C-integrable with respect to N if

(1) C|f | is Pettis integrable, and

(2) the functional ‖f‖L1
P,N (C) defined as supx∗∈N

∫
Ω |f | d|〈C, x

∗〉| is finite.

Remark 4.2. Let us show now that under reasonable requirements and for positive lattice-

valued capacities, it is possible to compare the functional ‖ · ‖L1
P,N (C) with the Pettis norm

of C|f | and with the norm of the integral
∫

Ω |f | dC, if it can be defined in the correct way.

Assume that C is a positive Fatou capacity on the Banach lattice E (see Definition 2.10 in

Section 2.2) and consider the norming set N = B+
E∗ for C. Suppose also that E is reflexive.

Note that in the case ‖ · ‖L1
P,N (C) is a norm, the Pettis norm for the functions Cf is smaller

than this norm, as the following calculations show. Take a simple measurable function f with

a decreasing representation of |f | given by
∑n

i=1 aiχBi , Bi+1 ⊂ Bi. Then for every x∗ ∈ N ,

‖f‖L1
P,N (C) ≥

∫
Ω
|f | d|〈C, x∗〉| =

∫ ∞
0
|〈C, x∗〉||f | dt
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=

n∑
i=1

ai|〈C, x∗〉|(Bi) ≥
n∑
i=1

ai|〈C(Bi), x
∗〉| ≥ |〈

n∑
i=1

aiC(Bi), x
∗〉|

=

∫ ∞
0
|〈C|f |, x∗〉| dt.

This proves that norm ‖ · ‖L1
P,N (C) is stronger than the Pettis norm for simple functions.

Take now a measurable function 0 ≤ f that is integrable with respect to every |〈C, x∗〉|.
Take a sequence of simple functions (fn) such that 0 ≤ fn ↑ f . Assume that we have that

Cfn → Cf pointwise, and so for every x∗ ∈ (E∗)+, 〈Cfn , x∗〉 → 〈Cf , x∗〉 pointwise (use

the Fatou property for C). Then by the Monotone Convergence Theorem all the functions

〈Cf , x∗〉 are integrable, and an easy argument proves that for all x = x+− x− ∈ E∗, 〈Cf , x∗〉
are also integrable. Thus we have that Cf is Dunford integrable and so Pettis integrable,

since E is reflexive. Therefore f is weakly C-integrable with respect to N .

Moreover, ∫ ∞
0
|〈C|f |, x∗〉| dt ≥

∣∣∣ ∫ ∞
0
〈C|f |, x∗〉 dt

∣∣∣ =
∣∣∣〈∫ ∞

0
C|f | dt, x

∗〉
∣∣∣,

and taking sup with respect to all x∗ ∈ BE∗ we obtain that

‖f‖L1
P,N (C) ≥ ‖

∫
Ω
|f | dC‖.

Definition 4.3. Let N ⊆ BE∗ be a norming set for the scalar subadditive (with respect

to N) vector capacity C : Σ → E. Suppose that C is equivalent to a finite measure λ —

that is, for all A ∈ Σ, supB⊂A,B∈Σ ‖C(B)‖ = 0 if and only if λ(A) = 0. Then we define the

space L1
P,N (C) as the subset of L0(λ) of the classes of C-a.e. equal functions that are weakly

C-integrable with respect to N . We will simply write L1
P(C) if N = BE∗ .

Standard arguments as the ones given in the previous sections prove also the next result.

Lemma 4.4. Let N be a norming set for C. Then L1
P,N (C) is a linear space.

In order to get reasonable properties of the space L1
P,N (C), from now on we will assume

that C is scalar subadditive with respect to a norming set N and equivalent to a finite measure

λ.

Lemma 4.5. Suppose that E is reflexive and C : Σ→ E is scalar subadditive with respect to

a norming set N and equivalent to a finite measure λ. Then L1
P,N (C) is an ideal in L0(λ).

Proof. Consider a couple of (classes of λ-a.e.) measurable functions f and g such that |f | ≤ |g|
and g ∈ L1

P,N (C). Then clearly f ∈ L1(|〈C, x∗〉|) for every x∗ ∈ N and supx∗∈N
∫

Ω |f | d|〈C, x
∗〉| <

∞.
On the other hand, since

{ω ∈ Ω : |f |(ω) > t} ⊂ {ω ∈ Ω : |g|(ω) > t},

we have that for every x∗ ∈ N ,
∫∞

0 〈C|f |, x
∗〉 dt ≤

∫∞
0 〈C|g|, x

∗〉 dt, so 〈C|f |, x∗〉 is integrable

with respect to each x∗ ∈ N . This implies that the integrals are uniformly bounded (by

Remark 4.2). In particular, they are Dunford integrable and since E is reflexive they are also

Pettis integrable. �
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Theorem 4.6. Suppose that C is positive, scalar subadditive for positive functionals, Fatou

and such that C is equivalent to a finite measure λ. Assume that E is reflexive. Then the

space L1
P(C) endowed with the quasi-norm ‖ · ‖L1

P (C) is complete. Consequently, L1
P(C) is a

quasi-Banach space.

Proof. First note that we can consider the intersection of the unit ball and the positive cone

as N , since C is a positive capacity. Let (fn) be a Cauchy sequence in L1
P(C). First, notice

that the space of all functions that are integrable with respect to all the measures |〈C, x∗〉|
is complete, so there is a measurable function f that is integrable with respect to every such

measure and ‖f‖ <∞. Let us prove now that the Pettis integral of Cf exists for such an f .

1) Note that there exists a strictly increasing sequence (nj) such that ‖fnj+1−fnj‖L1
B(C) ≤

1
22j

. If we define gk =
∑k

j=1 |fnj+1 − fnj | ∈ L1
B(C) and g =

∑
j≥1 |fnj+1 − fnj |, we obtain that

gk ∈ L1
P(C) by Lemma 4.4 and 0 ≤ gk ↑ g pointwise. Moreover, we have that

{ω ∈ Ω : gk(ω) > t} ⊂ {ω ∈ Ω : g(ω) > t} ⊂
⋃
j≥1

{ω ∈ Ω : |fnj+1 − fnj |(ω) > t
2j
},

for every t ∈ [0,∞).

2) Fix a positive element x∗ ∈ (E∗)+. Then, by the subadditivity of |〈C(·), x∗〉|, we obtain

〈C({ω ∈ Ω : gk(ω) > t}), x∗〉 ≤ 〈C({ω ∈ Ω : g(ω) > t}), x∗〉

≤
∑
j≥1

〈C({ω ∈ Ω : |fnj+1 − fnj |(ω) > t
2j
}), x∗〉,

for every t ∈ [0,∞). By the positive monotonicity of C and Lemma 2.3(2), it follows that∫ ∞
0
〈Cgk(t), x∗〉 dt ≤

∑
j≥1

∫ ∞
0
〈C|fnj+1−fnj |(

t
2j

), x∗〉, dt

=
∑
j≥1

2j
∫ ∞

0
〈C|fnj+1−fnj |(s), x

∗〉 ds ≤
∑
j≥1

2j
1

22j
< 1.

Hence, supx∗∈BE∗ , k∈N
∫∞

0 〈Cgk(t), x∗〉 dt < ∞. So the functions 〈Cgk(t), x∗〉 define an in-

creasing sequence that converges pointwise to 〈Cg(t), x∗〉 and by the Monotone Convergence

Theorem, 〈Cg(t), x∗〉 ∈ L1(|〈C, x∗〉|) and∫ ∞
0
〈Cgk(t), x∗〉 dt→

∫ ∞
0
〈Cg(t), x∗〉 dt.

This implies that Cg is Pettis integrable. Indeed, it is easy to see that it is Dunford

integrable, so by the reflexivity of E we have that it is Pettis integrable.

Therefore, g ∈ L1
P(C). Since f =

∑
j≥1(fnj+1 − fnj ), |f | ≤ |g| and L1

P(C) is an ideal, we

have that f ∈ L1
P(C).

�

To finish this section, let us note that under the assumptions on C given above if f ∈ L1
P(C)

there exists an integral of f that is
∫

Ω f dC =
∫

ΩCf+ dC −
∫

ΩCf− dC, satisfying, for every

x∗ ∈ E∗, the equality 〈∫
Ω
f dC, x∗

〉
=

∫
Ω
f d〈C, x∗〉.
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This formula is the “vector capacity version” of the equality which is satisfied by integrable

functions with respect to vector measures in the Bartle-Dunford-Schwartz sense.

Example 4.7. Consider the vector-valued capacity given in Example 3.6(3). Suppose that

we want to use this index for evaluating which is the better combination of 2 teams of 3

researchers for developing a particular research program. Write R3 for all the subsets of

3 elements of R. Each team has an initial mark reflecting its “quality” —for example,

evaluating the previous common experience of the members of the group— which is given

by a function q : R3 → R+. Thus, in the model, each option Θ of two teams Θ = {R1, R2}
can be represented by an integrable function fΘ = q(R1)χR1 + q(R2)χR2 . A measure of “how

good” a given option is would be given by the norm of the integral of the function, that is∥∥∫
R
fΘ dα

∥∥.
Comparing the norm of the integrals of all functions defined in this way would give the

solution of the problem.

5. An application: an impact measure for databases

Suppose that there is a —potentially infinite— set of companies S = {ci : i ∈ N}, which

provide databases for business purposes to a given company CO. This company offers them

to individual customers. Consider the set Ω defined as the union of all the sets of information

items Ωi of each databases di provided by each company ci. Assume that the information

items are organized in all of the database di in a collection of subsets that define σ-algebras

Σi; for example, if each set Ωi is finite, we can consider the σ-algebra Σi of all the subsets of

Ωi for each i ∈ N. Consider now the σ-algebra Σ on Ω generated by the countable unions of

the elements of the σ-algebras Σi, i ∈ N. We will assume that all the data in Ω are divided

in a countable class of (disjoint) categories {Dk : k ∈ N} defined as thematic areas.

We will show two suitable constructions of impact measures for the database service Ω

a company in S offers. Consider an information set A that offers; note that the following

definition works for any subset A ∈ Σ if we assume that the total number of searches for any

set A ∈ Σ in a year is finite and all of them refer to information items A that are distributed in

a finite set of thematic areas. Each one of the following definitions would be useful depending

on the use the company CO wants to make of them; note that both of them are naturally

defined for use in the context.

(1) Consider a function N : Σ→ R+ defined as

N(A) = the number of queries about subsets B ∈ Σ of A

in the preceding year, A ∈ Σ.

Notice that this function is not subadditive, but it is increasing. It measures how

relevant a subset A is in view of the queries about the information items contained

in its subsets. Consequently, let us define the vector capacity C1 : Σ→ `2 by

C1(A) :=

∞∑
k=1

N(A ∩Dk) ek ∈ `2, A ∈ Σ.
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(2) Suppose now that we are interested in giving an impact index defined by a subad-

ditive measure based on the numbers of queries about a given information set. We

are interested in producing a measure which rewards the fact that the size of the

information items provided by the companies is as small as possible but with a big

impact. For this aim, define a new function n : Σ→ R+ by

n(A) = the number of queries about sets B ∈ Σ containing A

in the preceding year, A ∈ Σ.

It is easy to see that this function is subadditive, but not increasing. In this case,

we define the vector capacity C2 : Σ→ `2 by

C2(A) :=
∞∑
k=1

n(A ∩Dk) ek ∈ `2, A ∈ Σ.

Because of the assumption on the finite number of searches and thematic areas, both sums

are in fact finite and so both capacities are well defined.

Suppose now that CO is planning a business policy for the next year and it wants to

measure how to what extent the contracts with the companies of S should be preserved.

They need to rank them by measuring their usefulness, taking into account that they have

to reduce expenses both in contracts and in computers for storing data. Both measures

explained above give information about the use of the elements of the databases, but the

second is focused on rewarding frequently used small data sets. Therefore, we center our

attention on C2.

With the aim of ranking the set S we consider an “evaluation function” which will be

computed for all the companies. To define it, all the information in Ω will be classified

in three categories depending on its interest (measured in number of queries, for example):

Cat1 for the most relevant information, Cat2 for the second-order data and Cat3 for the

—still interesting but— only occasionally searched information sets. We have then that

Ω = Cat1 ∪Cat2 ∪Cat3. Since we are interested in saving resources by rewarding important

information as much as possible, we will consider the following testing function

fci(w) := 3χCat1∩Ωi(w) + 2χCat2∩Ωi(w) + χCat3∩Ωi(w), w ∈ Ω,

for each company ci, i ∈ N. The decreasing rearrangement of the function fci is given by

fci = χCat1∩Ωi + χ(Cat1∪Cat2)∩Ωi
+ χ(Cat1∪Cat2∪Cat3)∩Ωi

.

Integration with respect to C2 can be used for ranking the companies. Using the notions

introduced in the paper, two definitions are possible. By the computations explained at the

beginning of the paper, we obtain the following indices.

(a) A ranking index based on Bochner integration. Define the ranking index

IB(ci), i ∈ N, as

IB(ci) :=
∥∥fci∥∥L1

B(C2)
= ‖C2(Cat1 ∩ Ωi)‖E

+‖C2

(
(Cat1 ∪ Cat2) ∩ Ωi

)
‖E + ‖C2

(
(Cat1 ∪ Cat2 ∪ Cat3) ∩ Ωi

)
‖E
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=
( ∞∑
k=1

n(Cat1 ∩ Ωi ∩Dk)
2
)1/2

+
( ∞∑
k=1

n((Cat1 ∪ Cat2) ∩ Ωi ∩Dk)
2
)1/2

+
( ∞∑
k=1

n((Cat1 ∪ Cat2 ∪ Cat3) ∩ Ωi ∩Dk)
2
)1/2

.

(b) A ranking index based on Pettis integration. Other index can be defined with

the aim of comparing the different companies using the (quasi) norm of the space

L1
P(C2). It is more difficult to compute, but it also gives a ranking tool. Define the

ranking index IP(ci), i ∈ N, as

IP(ci) :=
∥∥fci∥∥L1

P (C2)
=

= sup
x∗∈B`2

∫
Ω
|f | d|〈C2, x

∗〉| = sup
x∗∈B`2

∫ ∞
0
|〈C2, x

∗〉||f | dt

= sup
x∗∈B`2

(
|〈C2, x

∗〉|(Cat1 ∩ Ωi) + |〈C2, x
∗〉|(Cat1 ∩ Cat2 ∩ Ωi)

+|〈C2, x
∗〉|(Cat1 ∩ Cat2 ∩ Cat3 ∩ Ωi)

)
,

where the variation of the scalar components of C2 is given by

|〈C2, x
∗〉|(A) = sup[

(Ai)ni=1 partition of A
] n∑
i=1

∞∑
j=1

|λj | |〈C2(Ai), ej〉|

= sup[
(Ai)ni=1 partition of A

] n∑
i=1

∞∑
j=1

|λj |n(Ai ∩Dj),

for A ∈ Σ, where x∗ =
∑∞

j=1 λj ej ∈ B`2 .

(c) A ranking index based on the integral of simple functions. In this case, the

index is just given by the norm of the integral, that is

IC2(ci) :=
∥∥∫

Ω
fci dC2‖

=
( ∞∑
k=1

(
n(Cat1 ∩ Ωi ∩Dk) + n((Cat1 ∪ Cat2) ∩ Ωi ∩Dk)

+n((Cat1 ∪ Cat2 ∪ Cat3) ∩ Ωi ∩Dk)
)2)1/2

.

The reader can notice that the indices given in (a) and (c) are easy to compute and have

a clear meaning. They give measures of how relevant the databases provided by the different

companies ci are regarding the number of consultations of information sets containing their

products. More precisely, they measure how many times a searched subset in a specific

thematic area Dk contains one of the three sets of information of different categories Cat1 ∩
Ωi∩Dk ⊆ (Cat1∪Cat2)∩Ωi∩Dk ⊆ (Cat1∪Cat2∪Cat3)∩Ωi∩Dk offered by a fixed company

ci. Both indices may then be used for ranking the relevance of the companies concerning the

searching of information by the users of the global database provided by the company CO.

And both are constructed using our technique of integration with respect to vector capacities,
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once the selection tool —the vector capacity C2— and the test functions —the functions fci—

are fixed by the managing team of CO following their strategic criteria.

6. Conclusions

The increase in the number of new information measures that have appeared in recent

developments in Information Science suggests the need to clearly establish the mathemati-

cal framework in which these measures should be included. Indeed, meaningful information

measures should satisfy certain mathematical properties, but there are other classical require-

ments that are not needed and should be removed. Information measures should be vector

valued functions, and in general do not need to be additive on disjoint sets. In this way, the

vector valued nature of the measures allows information from different scalar indices to be

combined in a single mathematical object. In addition, the lack of additivity of some of the

most important impact measures, such as the h-index, must be accepted in fact.

These basic requirements justify the work shown in the paper, which proposes Choquet

integrable functions with respect to vector capacities —both Bochner and Pettis type— as

models for information measures. Once the model —an integrable function f— is set for a

given information measure, there are three ways to define the index that evaluates it when it

acts in information subsets: 1) the Bochner type norm of f , 2) the Pettis type norm of f , and

3) the norm of the vector valued integral of f . In addition to the specific calculation formulas,

this procedure also provides a way of classifying the information measures, depending on the

type of formula used in their definition. This was shown in Section 5 on a particular impact

index, and opens up new perspectives in the development of these theoretical and applied

aspects of Information Science.

While this opens the door to a systematic way of introducing new indices in Information

Sciences, it should be noted that Choquet integration is not the only method of defining

non-additive information measures. Once the additivity requirement is removed, many dif-

ferent integrals appear on the scene (fuzzy integrals, universal integrals,...). Some of them

have already proved useful in some contexts, although they are mainly defined for scalar

capacities. Therefore, it would be interesting to investigate also vector-valued versions of the

most important non-additive scalar integrals, in order to facilitate the creation of new specific

mathematical indices for measuring information sets.
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