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17 ABSTRACT

18 The effectiveness of the incorporation of cellulosic reinforcing agents (cellulosic fibres: 

19 CF and cellulose nanocrystals: CNC) and antioxidant aqueous extract (AE) from coffee 

20 husk at improving the functional properties of compatibilised starch-PLA blend films 

21 was studied. Tensile and barrier properties, crystallization pattern and thermal behaviour 

22 were analysed in films containing 1wt% of CF or CNC incorporated by two different 

23 methods or 5.8 wt% of antioxidant extract. The antioxidant properties of the films were 

24 also tested through their efficacy at preserving sunflower oil from oxidation. Of the 

25 cellulosic fractions, CNC directly blended with the starch phase were the most effective 
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26 at reinforcing tensile properties of the material (148% and 45% increase in elastic 

27 modulus and tensile strength, respectively) and at reducing their water vapour and 

28 oxygen permeability (28% and 42% reduction, respectively). The AE did not improve 

29 the mechanical performance of the blend films, but conferred antioxidant capacity 

30 useful for food packaging applications.     

31

32 Keywords: Coffee husk; Cellulose fillers; Antioxidant extracts; Starch; Polylactic acid; 

33 Grafted polycaprolactone.

34

35 1. Introduction

36 Nowadays, it is a challenge to develop materials able to substitute the conventional 

37 petroleum-derived polymers with high environmental impact due to their accumulation 

38 and difficult management (Balaji, Pakalapati, Khalid, Walvekar, & Siddiqui, 2017). 

39 This is especially convenient in the food packaging area where there is a very high 

40 consumption of plastic materials. In this sense, biodegradable materials should 

41 substitute synthetic plastics since they represent an attractive solution to this issue, 

42 being abundant and mostly obtained from renewable resources. Different groups of 

43 biodegradable polymers have been studied, such as those directly obtained from 

44 biomass (polysaccharides, proteins and those produced by microbial action) and those 

45 synthesised from bio-based monomers (polylactic acid: PLA) or from petrochemical 

46 products (poly (ε-caprolactone): PCL) (Brigham, 2018; Collazo-Bigliardi, Ortega-Toro, 

47 & Chiralt, 2018a). These materials can also be used in combination, forming multilayer 

48 packaging systems (Requena, Vargas, & Chiralt, 2018; Tampau, González-Martínez, & 

49 Chiralt, 2018) or composites (Ortega-Toro, Collazo-Bigliardi, Talens, & Chiralt, 2016a) 

50 with optimized mechanical and barrier properties for food packaging. 
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51 Starch and PLA are the most widely-studied biomaterials for food packaging 

52 applications. Starch from different sources (rice, potato, corn, cassava, wheat, etc.) can 

53 be transformed into thermoplastic starch (TPS) by thermo-mechanical treatment in 

54 combination with the action of plasticizers (Koch, 2018). Despite its hydrophilic nature 

55 and water sensitivity, its limited mechanical performance and retrogradation during 

56 storage, starch is an interesting polymer for food packaging development due to its 

57 suitability for food contact, competitive price and high oxygen barrier capacity (Ortega-

58 Toro, Bonilla, Talens, & Chiralt, 2017). Likewise, starch modification through the 

59 reaction of hydroxyl groups (-OH) provides several possibilities for modulating its 

60 properties (Ogunsona, Ojogbo, & Mekonnen, 2018). As concerns PLA, it is synthesized 

61 from lactic acid obtained in the dextrose fermentation, using renewable sources, such as 

62 corn starch, rice starch or raw materials with high sugar content. This biodegradable 

63 aliphatic polyester is commonly produced by the ring-opening polymerization (ROP) of 

64 lactide monomers formed from lactic acid (Balaji et al., 2017; Muller, González-

65 Martínez, & Chiralt, 2017a). PLA is easy to process, transparent and has excellent water 

66 vapour barrier permeability (Murariu & Dubois, 2016), with characteristics comparable 

67 to those traditional petrochemical-based polymers (such as polystyrene: PS or 

68 polyethylene terephthalate: PET). However, PLA exhibits low oxygen barrier capacity 

69 in line with its hydrophobic nature and limited toughness, despite the fact that it is 

70 resistant to traction (Hamad, Kaseem, Ayyoob, Joo, & Deri, 2018). 

71 TPS-PLA blends have been studied to make the most of their complementary properties 

72 for the purposes of designing packaging materials. Nevertheless, these polymers are not 

73 thermodynamically compatible and their blends exhibit phase separation, which limits 

74 their effectiveness (Müller et al., 2016). Then, it is necessary to improve their interfacial 

75 adhesion in order to obtain TPS-PLA blends with better functional properties. To this 
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76 end, the use of compatibilizers has been widely studied (Hamad et al., 2018). Different 

77 compounds, such as citric acid, stearic acid, maleic anhydride, dicumyl peroxide or 

78 citrate esters, have been used to enhance the mechanical, thermal and barrier properties 

79 of the blends (Muller et al., 2017a). Ortega-Toro et al. (2016b) studied the use of 

80 compatibilizers based on the melt grafting of poly(ε-caprolactone) (PCL) with reactive 

81 polar groups from glycidyl methacrylate (epoxide) or maleic anhydride (anhydride), as 

82 reported by Laurienzo, Malinconico, Mattia and Romano (2006), in TPS-PCL blends. 

83 These compatibilizers have also been used in TPS-PLA blends leading to films with 

84 improved functional properties (Collazo-Bigliardi, Ortega-Toro & Chiralt, 2019a). 

85 Particularly, films with 20% substitution of starch by PLA, containing 5% of grafted 

86 PCL with glycidyl methacrylate exhibited high resistance to break and reduced water 

87 vapour permeability with respect to the starch films, with very high oxygen barrier 

88 capacity. The incorporation of cellulosic fibres and antioxidant compounds into this 

89 matrix might still improve the film characteristics for their application in food 

90 packaging. 

91 Micro- or nano-fillers from different sources have been studied to improve the 

92 functional properties of biopolymer films (Collazo-Bigliardi et al., 2018a). In particular, 

93 lignocellulosic agro-wastes have been commonly used to isolate microcrystalline 

94 cellulose and cellulose nanocrystals. These fillers have been incorporated into starch-

95 based blends (Azeredo, Rosa, & Mattoso, 2017; Berthet et al., 2015; Collazo-Bigliardi, 

96 Ortega-Toro, & Chiralt, 2018b; Patel & Parsania, 2017) and provided great thermal 

97 resistance, improving the elastic modulus and barrier properties of composites. The 

98 presence of the hydroxyl groups of the cellulose favours its interaction with the polymer 

99 matrix, thus contributing to its reinforcement. 
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100 Lignocellulosic materials are also a source of phenolic compounds, which exhibit active 

101 properties to control microbial or oxidative processes in food matrices (Cong-Cong, 

102 Bing, Yi-Qiong, Jian-Sheng, & Tong; Shavandi et al., 2018). The antioxidant character 

103 of polyphenols is related with their ability both to act as free radical scavengers, 

104 inhibiting lipoxygenase enzyme activity, and to chelate metals (Talón, Trifkovic, 

105 Vargas, Chiralt, & González-Martínez, 2017). 

106 In this context, coffee husk (endocarp of coffee beans) is an interesting raw material 

107 produced in coffee processing, with high content of both cellulosic (35%, Collazo-

108 Bigliardi et al., 2018b) and phenolic components (1.3 % in Gallic Acid Equivalents,  

109 Collazo-Bigliardi et al., 2019b) that can be valued through its use for packaging 

110 material development (Alves, Rodrigues, Nunes, Vinha, & Oliveira, 2017). This residue 

111 has been submitted to hydrothermal treatments to extract active compounds (Piñeros-

112 Castro & Otálvaro, 2014), and to different chemical treatments in order to isolate 

113 cellulose fibres, whose subsequent acid hydrolysis produced cellulose nanocrystals. The 

114 isolated CNC exhibited an aspect ratio ranging between 20-40, which confers good 

115 reinforcing properties, 92% crystallinity and high thermal resistance (Collazo-Bigliardi 

116 et al., 2018b).

117 The aim of this work was to analyse the effectiveness of the incorporation of cellulosic 

118 reinforcing agents (cellulose fibres and cellulose nanocrystals) and antioxidant aqueous 

119 extract from coffee husk at improving the functional properties of compatibilized 

120 starch-PLA blend films. The antioxidant properties of the films were tested through 

121 their efficacy at preserving sunflower oil from oxidation. The effect of the incorporation 

122 method of cellulose nanocrystals into the blend films was also analysed.

123

124 2. Materials and methods
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125 2.1. Materials

126 Corn starch (S, 28% amylose) was supplied by Roquette (Roquette Laisa, Benifaió, 

127 Spain) and amorphous PLA 4060D, density of 1.24 g/cm3, was purchased from 

128 Natureworks (U.S.A). Glycerol was obtained from Panreac Química, S.A. (Castellar del 

129 Vallès, Barcelona, Spain). For the chemical modification of PCL (pellets ∼3 mm, 

130 average Mn 80.000 Da), glycidyl methacrylate (G) (purity 97%) and benzoyl peroxide 

131 (BP) were supplied by Sigma (Sigma-Aldrich Chemie, Steinheim, Germany). Coffee 

132 husks were provided by Universidad Jorge Tadeo Lozano (Bogotá, Colombia) and 

133 maltodextrin 18 DE used in spray drying of extracts was from Tecnas S.A., Colombia. 

134

135 2.2. Preparation of grafted PCL

136 The grafting reaction of glycidyl methacrylate (G) to PCL was performed following the 

137 methodology described by Collazo-Bigliardi et al. (2019a), Ortega-Toro et al. (2016b) 

138 and Laurienzo et al. (2006). To this end, 45 g of PCL, 0.5 g of BP and 5 g of G were 

139 incorporated into the Brabender plastograph (EC Plus, Duisburg, Germany) and melt 

140 blended at 100 ºC and 32 rpm for 20 min to obtain PCLG. Modified PCLG was dissolved 

141 in 500 mL of chloroform, subsequently re-precipitated in excess of hexane for the 

142 purposes of removing any ungrafted reagents (oligomers and monomers residuals), and 

143 kept in a desiccator under vacuum for 12 h at 25 ºC, and stored under freezing till its 

144 use. The molar grafting ratio determined for the glycidyl methacrylate in PCLG was 4.3 

145 ± 0.4%, determined from H1 NMR in previous studies (Collazo-Bigliardi et al., 2019a; 

146 Ortega-Toro et al., 2016b).

147

148 2.3. Extraction of antioxidant compound and isolation of cellulosic materials from 

149 coffee husk
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150 The extraction of the antioxidant fraction was carried out with 650 g of coffee husk and 

151 3 L of distilled water in a 5 L capacity pilot scale reactor (A2423 model, Amar 

152 Equipment, India) by pressurised hot water (180 °C and 9.5 bar) for 60 min, according 

153 to previous studies (Piñeros-Castro & Otálvaro, 2014). The extracts were separated 

154 from the solid fraction which was dried for the purposes of subsequently extracting the 

155 cellulose fillers. The extract was concentrated at 90 °C under continuous stirring and 

156 then spray dried using a Vibrasec pilot dryer model Pasalab 1.5 (Universidad Nacional 

157 de Colombia, Medellin), operating at 180 ºC and 90 ºC outlet temperature, at an 

158 atomiser disk speed of 24,000 rpm. Maltodextrin (18 DE) at 29.8 wt% was added as 

159 drying coadjuvant. 

160 The process of isolating cellulose reinforcing agents from coffee husks was carried out 

161 following the methodology reported by Collazo-Bigliardi et al. (2018b). The solid 

162 residue from the hydrothermal treatment was alkali treated with 4 wt% of NaOH at 80 

163 ºC for 3 h. Then, the sample was washed with distilled water until the alkali solution 

164 was removed. The bleaching process to obtain cellulose fibres (CF) was completed by 

165 adding equal parts of acetate buffer solution, sodium chlorite (1.7 wt%) and distilled 

166 water to the alkali- treated solid at reflux temperature (~100 ºC) for 4 h, under 

167 mechanical stirring. This process was repeated 4 times until the samples were 

168 completely white. Then, the fibres were washed with distilled water several times, dried 

169 and ground in a Moulinex grinder DJ200031 350W. Cellulose content of the isolated 

170 fibres was 62±3% according to the previous study (Collazo-Bigliardi et al., 2018b). 

171 Cellulose nanocrystals (CNC) were prepared by acid hydrolysis of the obtained 

172 bleached fibres by 64% wt/wt sulphuric acid, at 50 °C for 40 min. The hydrolysed 

173 sample was washed with distilled water by centrifugation at 14,000 rpm for 30 min. 

174 Then, the suspension was dialysed against distilled water until constant pH and 
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175 neutralised with 10 wt% ion resin (Dowex Marathon MR-3) for 24 h. Finally, the CNC 

176 suspension was sonicated for 30 min using a tip sonicator (Vibra-Cell™ VCX 750, 

177 Sonics & Materials, Inc., Newton, USA) and kept refrigerated.

178

179 2.4. Obtaining compatibilised films

180 Films were obtained by melt blending the different components by using an internal 

181 mixer (HAAKETM PolyLabTM QC, Thermo Fisher Scientific, Germany) at 160 °C and 

182 50 rpm, for 10 min. The different film formulations and the mass ratio of the respective 

183 components are shown in Table 1. In all cases, 30 wt% of glycerol and 20 wt% of PLA 

184 with respect to starch were used and 5 wt%, with respect to the total polymer, of 

185 compatibiliser PCLG. Cellulosic material (CF or CNC) was added at 1wt% and dry 

186 antioxidant extract (AE) was added at 5.8 wt%. The incorporation of 1 wt% of CNC 

187 into the films required specific previous steps, as commented on below. The obtained 

188 blends were cut into pellets and conditioned at 25 ºC and 53% relative humidity (RH) 

189 for one week before the film performance. 

190 The films were obtained by compression moulding using a hot plate press (Model LP20, 

191 Labtech Engineering, Thailand). 4 g of the conditioned pellets were put onto Teflon 

192 sheets, preheated for 3 min at 160ºC and compression moulded for 1 min at 30 bars, 

193 followed by 3 min at 130 bars; thereafter, a 3 min cooling cycle was applied. Films 

194 were conditioned at 25 ºC and 53% RH for 1 week before their characterisation.

195

196 2.4.1. The incorporation of CNC 

197 Since the obtained CNC were in aqueous dispersion (at 1 wt%) to prevent their 

198 aggregation (Brinchi, Cotana, Fortunati, & Kenny, 2013; Ng et al., 2015), their 

199 incorporation into the blend films required different strategies aimed at dispersing CNC 
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200 within the polymer matrix. Since no water could be included in the internal mixer used 

201 for polymer melt blending to prevent overpressure, two different strategies were used: 

202 method 1) the initial transference of CNC to the glycerol, following the method 

203 described by Dorris & Gray (2012) and method 2) the prior thermoprocessing of the 

204 aqueous dispersion of CNC containing glycerol and starch granules in a two-roll mill to 

205 obtain CNC-TPS pellets. 

206 In method 1 (M1), the aqueous CNC suspension after sonication was mixed with the 

207 corresponding amount of glycerol under continuous stirring for 30 min (Dorris & Gray, 

208 2012) and the water was subsequently removed by evaporation in an oven at 74ºC. The 

209 CNC-glycerol blend, starch, PLA and PCLG were melt blended in the internal mixer as 

210 described above. In method 2 (M2), starch and glycerol were dispersed in the aqueous 

211 CNC suspension and then thermoprocessed in a two-roll mill (Model LRM-M-100, 

212 Labtech Engineering, Thailand roller) at 160 ºC for 15 min. The obtained pellets were 

213 melt blended with PLA and PCLG in the internal mixer under the same conditions as for 

214 M1.

215 To evaluate the effect of the CNC incorporation method on the film properties, pure 

216 thermoplastic starch films were additionally prepared, plasticised with 30% of glycerol 

217 respect to starch, containing or not 1 wt% of CNC in the films incorporated by methods 

218 1 and 2 (samples S-CNC-M1 and S-CNC-M2). The compatibilised starch-PLA blend 

219 films with 1 wt% of CNC were also prepared by methods 1 and 2 (samples 

220 S(PCL5G)PLA20-CNC-M1 and S(PCL5G)PLA20-CNC-M2). 

221

222 2.5. Characterisation of the films

223 2.5.1. Field emission scanning electron microscopy (FESEM) and X-Ray diffraction 

224 pattern
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225 Microstructural analyses of the cross-section of the films were carried out in a Field 

226 Emission Scanning Electron Microscope (FESEM Ultra 55, Zeiss, Oxford Instruments, 

227 U.K). Samples were conditioned in desiccators with P2O5 for 2 weeks at 25°C, and 

228 afterwards adequately put on support stubs and coated with platinum. Observations 

229 were carried out at 1.5 kV.

230 An X-Ray diffraction analysis of the different samples was performed using a 

231 diffractometer (XRD, Bruker AXS/D8 Advance) at 40 kV and 40 mA. Scattered 

232 radiation was detected in an angular range 2θ: 5-30° with a step size of 0.05º. The 

233 degree of crystallinity (Xc) of the samples, expressed as a percentage, was calculated, 

234 using OriginPro 8.5 software, from the ratio of crystalline peak areas and the integrated 

235 area of XRD diffractograms, assuming Gaussian profiles for crystalline and amorphous 

236 peaks (Collazo-Bigliardi et al., 2018b; Ortega-Toro et al., 2016b).

237

238 2.5.2. Thermal behaviour

239 A thermogravimetric analyser (TGA 1 Stare System analyser, Mettler-Toledo, Inc., 

240 Switzerland) was used to study the thermal stability of the samples. The measurements 

241 of the thermal weight loss were taken over a temperature range of 25 to 600 ºC at 

242 20ºC/min, under nitrogen atmosphere (gas flow: 10 mL min-1). The initial degradation 

243 temperature (TOnset) and peak temperature (TPeak) were obtained using the STARe 

244 Evaluation Software (Mettler-Toledo, Inc., Switzerland), from the first derivative of the 

245 resulting weight loss curves.

246 The phase transitions in the polymer matrices were evaluated by means of Differential 

247 Scanning Calorimetry (DSC 1 Star℮ System, Mettler-Toledo Inc., Switzerland). Film 

248 samples of 7-9 mg were placed into aluminium pans and sealed. The thermograms were 

249 obtained in a heating cycle from 25 ºC to 160 ºC at 10 ºC/min, cooled until 25 ºC, and 
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250 then heated in a second cycle under the same conditions. In the first scan, the bonded 

251 water in the film was eliminated, and in the second heating scan, the glass transition of 

252 starch and PLA was analysed.

253

254 2.5.3. Mechanical properties

255 The mechanical performance of the samples was analysed following the ASTM 

256 standard method D882 (ASTM, 2001). A universal test machine (TA.XTplus model, 

257 Stable Micro Systems, Haslemere, England) was used to obtain the stress-strain curves. 

258 From these curves, the elastic modulus (EM), tensile strength at break point (TS) and 

259 the elongation at break (ε) of the films were determined. The film thickness was taken 

260 into account for the calculations. Conditioned (25 ºC, 53% RH) samples of 25 x 100 

261 mm were mounted in the film-extension grips of the testing machine and stretched at 50 

262 mm/min until break. Ten replicates were made for each formulation. 

263

264 2.5.4. Moisture content, water vapour permeability (WVP) and oxygen permeability 

265 (OP)

266 The samples conditioned at 53% RH were dried in a natural convection oven (J.P. 

267 Selecta, S.A. Barcelona, Spain) for 24 h at 60 °C to determine the equilibrium moisture 

268 content of the films. Then, they were placed in a desiccator at 25 ºC with P2O5 for a 

269 week to adjust the relative humidity to close to 0%. The moisture content of the samples 

270 was calculated by varying the weight between the wet sample (53% RH) and the dry 

271 sample (0% RH).

272 The water vapour permeability (WVP) of the films was determined following the 

273 gravimetric method, E96-95 (ASTM, 1995; McHugh, Avena-Bustillos, & Krochta, 

274 1993), with some modifications. Payne permeability cups (Elcometer SPRL, Hermelle/s 
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275 Argenteau, Belgium), 3.5 cm in diameter, were used with 5 mL of bidistilled water and 

276 the adjusted film. Each cup was placed into a desiccator equilibrated with Mg(NO3)2 

277 saturated solution (53% HR, 25 °C) and inserted into a chamber at 25 ºC. The cups were 

278 weighed periodically (± 0.0001 g) until the steady state was reached. The WVP was 

279 calculated from the slope of the curves of weight loss versus time as reported by Ortega-

280 Toro et al. (2016a).

281 The oxygen permeability of the films (50 cm2 film area) was determined using OX-

282 TRAN equipment, Model 2/21 ML (Mocon Lippke, Neuwied, Germany) in samples 

283 conditioned at 25 ºC and 53% RH. Film thickness was considered in all cases in order to 

284 obtain the OP values. The oxygen transmission values were evaluated every 10 min 

285 until equilibrium.

286

287 2.5.5. Optical properties

288 The film transparency was measured through the internal transmittance (Ti), applying 

289 the Kubelka-Munk theory of multiple scattering (Hutchings, 1999), using the film 

290 reflection spectra obtained on both black and white backgrounds, as described by Talón 

291 et al. (2017). Reflection spectra from 400 to 700 nm were obtained by using a spectro-

292 colorimeter CM- 3600d (Minolta Co., Tokyo, Japan). 

293

294 2.6. Antioxidant performance of the films on sunflower oil

295 To evaluate the antioxidant properties of the S-PLA compatibilised films with 

296 antioxidant extract, their potential positive effect on the retardation of sunflower oil 

297 oxidation was analysed. To this end, the method described by Galarza, Haas, de 

298 Oliveira, & Hickmann (2017) was used. Film samples (area of 7.5 cm × 4 cm) were 

299 thermosealed to form bags using a vacuum packing machine (SAECO Vacio Press 
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300 Elite, Barcelona, Spain). 5 mL of commercial sunflower oil were placed into each bag 

301 and thermo-sealed. How effective the films were at delaying sunflower oil oxidation 

302 was evaluated in comparison to S-PLA compatibilised blend films without antioxidant 

303 extract. As the control sample, an open glass Petri dish containing 5 mL of sunflower oil 

304 was considered. All of the samples were stored at 30 ºC and 53% RH and exposed to 

305 fluorescent light at an intensity of 1000-1500 lux (measured using a digital Luxometer; 

306 model RS Pro ILM1332A, RS Components, Madrid, Spain). The oxidative stability of 

307 sunflower oil was measured in terms of peroxide index after 5, 9, 14, 19 and 23 days of 

308 storage. For that purpose, a titrimetric method was employed (IUPAC, 1987), using an 

309 automatic titrator (Titrando, Metrohm Ion Analysis, Switzerland). 1 g of oil was 

310 dissolved in 10 mL of solvent (glacial acetic acid:1-decanol at 3:2 volume ratio, 

311 containing 10-15 mg·L-1 of iodine) and mixed with 200 μL of saturated KI solution and 

312 kept in the dark for 1 min. Then, 50 mL of distilled water was added, and the solution 

313 was titrated with 0.01 M or 0.001 M Na2S2O3, depending on the expected peroxide 

314 index. A blank control sample (without sunflower oil) was prepared by the same 

315 procedure. 

316

317 2.7. Statistical analysis

318 Statgraphics Centurion XVI software (Manugistics Corp., Rockville, Md.) was used to 

319 perform the statistical analyses of the results by means of analysis of variance 

320 (ANOVA). Fisher's least significant difference (LSD) procedure was used at the 95% 

321 confidence level.

322

323 3. Results and discussion
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324 3.1. Effect of the CNC on the film functional properties as affected by the incorporation 

325 method

326 The incorporation method of CNC from their aqueous dispersion into the polymeric 

327 matrices is critical since water content must be reduced in the internal mixer to prevent 

328 overpressure during the polymer melt blending or polymer hydrolysis. The CNC 

329 dispersion could be dried before the incorporation process and drying methods that are 

330 effective at maintaining the inherent nano-scale dimensions, such as freeze drying, 

331 spray drying or supercritical drying, have been described (Ng et al., 2015). 

332 Nevertheless, CNC are aggregated in the dry form and re-dispersion in the polymer melt 

333 represents a challenge, on top of the difficulty involved in handling them in dry form 

334 (Brinchi et al., 2013). In this work, two different methods were used to transfer CNC to 

335 the polymer blend: their previous transference to the glycerol used as plasticizer (M1) 

336 and the previous thermoprocessing of the starch phase suspended in the initial CNC 

337 dispersion in an open two-roll mill, which favours water evaporation while the starch 

338 gelatinization occurs (M2). In this sense, 1 wt% of CNC was incorporated into both S-

339 PLA compatibilised blends and net TPS films, for comparison purposes. Tables 2 and 3 

340 include the tensile properties (elastic modulus: EM, tensile strength: TS and elongation 

341 at break: ε), thickness, barrier properties (water vapour permeability: WVP and oxygen 

342 permeability: OP) and moisture content of the obtained films.

343 Significant differences in tensile properties were obtained for films with the same 

344 composition obtained by using both methods for the CNC transference. Using M1, 

345 reductions in the EM of the films, with respect to that of the corresponding film without 

346 CNC, of about 42 and 33%, respectively for starch and starch-PLA blend, was obtained. 

347 However, a significant increase in EM was detected when CNC were directly 

348 incorporated into the starch phase in the open two-roll mill (132 and 148%, respectively 
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349 for the starch and starch-PLA blend). A similar effect was observed on the TS, while the 

350 film extensibility was only notably reduced when using M2 for CNC incorporation. 

351 This indicates the different reinforcing effect of CNC on the matrix depending on the 

352 transference method. The greater improvement in the film resistance and stiffness when 

353 CNC were directly incorporated into the starch phase from the water dispersion points 

354 to the strong interfacial interaction between crystalline cellulose and starch during the 

355 melt blending through the great surface area of the CNC (Collazo-Bigliardi et al., 

356 2017b). In contrast, the previous transference of the CNC to the glycerol could lead to 

357 the formation of glycerol-CNC complexes through hydroxyl hydrogen bonds. CNC-

358 glycerol interactions would favour the glycerol carbon exposure on the outside of the 

359 molecular complex, giving particles with a more hydrophobic surface and lower ability 

360 to disperse in the hydrophilic starch continuous phase of the film, where their 

361 reinforcing capacity would be more appreciable.  Dispersion of the more hydrophobic 

362 CNC-glycerol particles in the starch phase would contribute to a reduction in the 

363 cohesion forces of the matrix, thus reducing the films’ stiffness and resistance to break. 

364 In the S-PLA blend, the CNC-glycerol complexes would exhibit more affinity with the 

365 less-polar molecules of PLA than with the continuous polar starch phase and so, the 

366 glycerol-CNC particles could be better dispersed in the PLA domains, which, in turn, 

367 are dispersed in the starch matrix. Fig.1 shows the FESEM micrograph of 

368 compatibilised blend films, where the good interfacial adhesion between the dispersed 

369 PLA domains and continuous starch phase may be observed, as well as the reduced size 

370 of the PLA domains, as discussed in previous studies (Collazo-Bigliardi et al., 2019b)

371 Fig.1 also shows the FESEM micrographs of the compatibilised blend films with CNC 

372 transferred by both methods, where no CNC aggregates could be observed at the used 

373 magnification level, while qualitative differences may be appreciated at the PLA-starch 
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374 interface. M2 led to lower interfacial adhesion of the polymers than M1. This could be 

375 due to the different location of CNC, which can also contribute to the interfacial 

376 interactions, depending on their prevalent distribution in each phase and their 

377 association, or not, with the glycerol molecules. In the S-PLA blend, the CNC-glycerol 

378 particles dispersed within the PLA domains could improve the interfacial affinity of 

379 both polymers. 

380 Kargarzadeh, Johar, & Ahmad (2017) also observed an increase in EM (up to 70%) and 

381 TS (up to 52%) with the addition of 6% of CNC from rice husk to cassava starch films 

382 obtained by casting. Savadekar & Mhaske (2012) also incorporated CNC from cotton 

383 fibres into thermoplastic starch blends at 0.4 wt% with good reinforcement efficiency. 

384 The formation of a percolation network favours the enhancement of the film mechanical 

385 properties because of the interaction among the CNC by intra- and inter-molecular 

386 hydrogen bonds and/or the mutual entanglement between the CNC and the starch 

387 matrix. Moreover, the intrinsic stiffness of crystalline cellulose, associated with the 

388 crystalline structure, could also contribute to the increase in EM. This fact was also 

389 reported by Sung, Chang, & Han (2017) for PLA matrices obtained by extrusion 

390 process when freeze-dried CNC from coffee silverskin were incorporated. Authors also 

391 reported that the stiffening effect of the filler led to significant local stress 

392 concentrations and reduced strain to failure.  Karkarzadeh et al. (2017) and Sung et al. 

393 (2017) indicated that the main factors determining the reinforcing effect of nano-scale 

394 fillers are the good dispersion and adhesion between the filler and the polymer matrix, 

395 which, in turn, are affected by  the CNC load in the blend (Dhar, Tarafder, Kumar, & 

396 Katiyar, 2016).

397 Barrier properties were also affected by the CNC incorporation method. In starch films, 

398 WVP was reduced by 28 and 36% when CNC were incorporated by methods 1 and 2, 
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399 respectively. In contrast, OP was only significantly reduced (by 40%) when using M2. 

400 Reduction in WVP was also reported by Fabra, López-Rubio, Ambrosio-Martín, & 

401 Lagaron (2016) for thermoplastic corn starch films with different contents of bacterial 

402 cellulose nanowhiskers. The different effect of the CNC on barrier properties, 

403 depending on the transference method, agrees with the different film microstructure and 

404 the prevalent location of the CNC in each case. 

405 In starch-PLA compatibilised films, WVP was only reduced (by 28%) by method 2, 

406 whereas OP increased by 30% by method 1 and decreased by 42 % by method 2.  These 

407 different effects are coherent with the more hydrophobic nature of the CNC particles 

408 when transferred from the glycerol and their prevalent location in the dispersed PLA 

409 domains, whereas CNC incorporated into the starch phase (method 2) provided a more 

410 efficient barrier capacity, similar to that observed in the net starch films.

411 The role of CNC at improving barrier properties is mainly related with their crystalline 

412 structure, which hinders the diffusion of molecules (O2, CO2, H2O) through the 

413 biopolymer matrix. The formation of hydrogen-bonded structures and a percolation 

414 network promotes the tortuosity factor of the matrix (Collazo-Bigliardi et al., 2018b; 

415 Luzi et al., 2016), which mainly depends on the matrix-filler adhesion, degree of 

416 dispersion, aspect ratio of filler and polymer chain immobilization (Sung et al., 2017). 

417 In polymer blends with phase separation, the percolation network in the continuous 

418 phase will be more effective than that in the dispersed domains, which also points to the 

419 different distribution of CNC (in the continuous or dispersed phase), according to the 

420 incorporation method. 

421 As regards crystallization, Fig. 2 shows X-ray diffraction pattern and degree of 

422 crystallinity (Xc) of the different samples containing CNC incorporated by the two 

423 methods. The main characteristic crystalline peaks of starch were detected in all 
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424 samples at 2θ values of around 12.9º and 19.8º, which are associated with the crystalline 

425 structure of amylose type V (Castillo et al., 2013; Ortega-Toro, Contreras, Talens, & 

426 Chiralt, 2015), although some peaks associated with A form (2θ: 18-18.5º) could also be 

427 observed. The characteristic peak of crystalline PLA on 2θ of 17º (Muller et al., 2017b) 

428 was not observed, coherent with its amorphous nature. Likewise, no peaks of crystalline 

429 PCL (2θ: 21.6º, 22.2º and 23.3º; Ortega-Toro et al., 2016b) were detected for the grafted 

430 PCL, either because of its low concentration in the blend or its crystallization inhibition 

431 by the anchoring of the polar groups (Ortega-Toro et al., 2016b). Cellulosic micro- or 

432 nano-fillers exhibited typical crystalline peaks of type I cellulose at 2θ: 17º and 21.4º 

433 (Collazo-Bigliardi et al., 2018b) but they were not observed, probably due to their low 

434 content in the film. The incorporation of CNC directly into the starch phase (method 2) 

435 slightly promoted the amylose crystallization in starch films, which could be due to the 

436 favoured interaction of amylose and crystalline cellulose, which can act as nucleating 

437 agents, as reported by other authors (Ferreira et al., 2018). However, this effect was not 

438 observed in the starch-PLA blend.

439 Fig. 3 shows TGA and derivate (DTGA) curves obtained for the studied formulations. 

440 TGA curves exhibited several degradation phases of differing intensities for every 

441 sample; the first phase can be attributed to the bonded water evaporation and the 

442 degradation of low molecular weight components and, afterwards, the partially 

443 overlapped thermal degradation of the polymers, starch, PLA and PCLG, and the 

444 cellulosic fraction, took place. These different phases are reflected in the DTGA curves 

445 as peaks or shoulders. The shoulder in the main peak at about 380 ºC would mainly 

446 correspond to the degradation of the grafted PCL with higher degradation temperatures 

447 (341-381 ºC, Ortega-Toro et al., 2016b), partially overlapped with the final degradation 

448 of PLA. The comparison of samples containing CNC incorporated by both methods and 
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449 control sample (free of lignocellulosic fractions) reflects differences in the peak and 

450 shoulder temperatures in both the first and the main peak. No differences were found 

451 between control sample and that processed by method 1, but samples processed by 

452 method 2 exhibited a lower temperature for the first peak and a higher temperature for 

453 the main peak, with temperature displacements for the shoulders. This can be attributed 

454 to the different interactions of CNC with the polymers in both cases, resulting in 

455 changes in the degradation behaviour of the different blend components (Kargarzadeh et 

456 al., 2018). Table 4 also shows the glass transition temperature (Tg) of S and PLA in the 

457 different blend films. This is an important parameter since it indicates the maximum 

458 temperature of use of the packaging material before its softening (Ortega-Toro et al., 

459 2017).  The addition of CNC by method 1 or 2 did not significantly affect the values of 

460 Tg of any of the polymers, although a slight tendency to increase was observed. Other 

461 authors (Chen, Zhou, Zou, & Gao, 2019; Ilyas, Sapuan, Ishak, & Zainudin, 2018) 

462 reported an increase in the Tg values of starch nanocomposites with CNC obtained by 

463 casting. However the increase in the CNC content implied a reduction in the water 

464 content of the films that, in turn, reduced its plasticization effect. Glass transition 

465 temperature in the studied films were obtained in completely dried films (conditioned in 

466 P2O5) where no water plasticization effect was expected and no significant effect of 

467 CNC was detected on the Tg values.  However, hydrogen bonds between hydroxyl 

468 groups of crystalline cellulose and starch chains can be assumed, as reported by other 

469 authors (Kargarzadeh et al., 2018; Karimi, Abdulkhani, Tahir, & Dufresne, 2016) 

470 favouring the compatibility of CNC in the starch matrix.

471 As concerns transparency (Fig. 4), the control sample (free of lignocellulosic fractions) 

472 exhibited relatively low transparency that can be attributed to the dispersion of the PLA 

473 domains in the starch matrix, as observed in the FESEM images, which implies an 
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474 increase in the dispersive component of light. The incorporation of CNC into the blend 

475 slightly modified film transparency, depending on the incorporation method. This 

476 agrees with the microstructural observations that reflect differences in the component 

477 arrangement mainly at interfacial level, which may affect the light dispersion pattern 

478 and so, the film transparency, as reported by Muller et al. (2017b). 

479

480 3.2. Effect of cellulosic fibres on the film’s functional properties

481 The microstructural impact of cellulosic fibres from coffee husk on the S-PLA 

482 compatibilised matrix can be observed in Fig. 1, where the FESEM micrographs of the 

483 film cross-section are shown. The CF could be clearly seen embedded in the film matrix 

484 with good interfacial adhesion. However, CF provoked a weakening effect on the film 

485 matrix reflected in the fact that the EM values were lower than in the control film, 

486 although they did not provoke significant changes in the film resistance to break and 

487 extensibility. Likewise, the barrier properties of the films were negatively affected by 

488 CF; no significant changes in the WVP were observed, but OP increased by 40% with 

489 respect to the control film.

490 The addition of CF did not provoke notable changes in the film transparency, polymer 

491 crystallization pattern or in the degree of crystallinity; neither did it influence the 

492 thermal behaviour of the blend in terms of the thermodegradation of components or the 

493 polymer glass transition. Then, CF behaved as a quasi-inert filler that, at the used ratio, 

494 did not improve film properties. However, CF incorporated at 1% in net starch films 

495 increased their elastic module by 50% with respect to the control film, with no changes 

496 in barrier properties (Collazo-Bigliardi et al., 2018a). The lack of effect brought about 

497 by CF in the compatibilised starch-PLA blend could be explained by the starch film that 

498 is already reinforced by the dispersed PLA that makes the fibre effect less appreciable. 



21

499 Likewise, in terms of barrier properties, fibres do not seem to lead to a notable increase 

500 in the tortuosity of the path to permeation of the water and gas molecules, with respect 

501 to that promoted by the PLA dispersed in the starch matrix, and the expected 

502 improvement in the film barrier capacity was not observed.

503

504 3.3. Effect of antioxidant extract on the film’s functional properties

505 The incorporation of the active extract into the blend films led to morphological 

506 changes in both the continuous starch phase and the PLA dispersed phase, as compared 

507 with the control sample, as shown in Fig. 1. In fact, the ability of the extract compounds 

508 to interact with the starch matrix, contributing to the formation of a more compact and 

509 homogeneous matrix, has previously been reported in other studies (Collazo-Bigliardi et 

510 al., in press; Talón et al., 2017). Likewise, PLA in the dispersed phase could also 

511 interact with these compounds. The acid nature of phenolic acids could even partially 

512 hydrolyse the polyester chains. Caffeic and chlorogenic acids were the main phenolic 

513 compounds present in coffee husk, and vanillic, gallic, tannic and protocatechuic acids 

514 were also found in small quantities (Aguiar, Estevinho, & Santos, 2016).

515 The tensile properties of the blend films were not significantly affected by the presence 

516 of the antioxidant extract, despite the fact that this had a great reinforcement effect in 

517 net starch films. This suggests that compounds could interact better with the dispersed 

518 PLA than with the starch, which dilutes the potential reinforcing effects in the film’s 

519 continuous phase. As concerns barrier properties, no significant effect was observed on 

520 the WVP, but the OP was reduced by 15% respect to that of the control film. OP 

521 reduction brought about by the extract incorporation was also observed in net starch 

522 films, which was attributed to the oxygen scavenging capacity of the compounds in line 

523 with their antioxidant capacity (Collazo-Bigliardi et al., in press). 
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524 The incorporation of the extract did not modify the crystallization pattern of the films, 

525 but slightly reduced the degree of crystallinity in line with its amorphous nature. The 

526 thermodegradation behaviour was also slightly modified by the extract, due to the 

527 presence of low molecular compounds which degrade at low temperature. Likewise, the 

528 Tg of starch and PLA changed with respect to the control film, thus indicating the 

529 interactions of the extract compounds with both polymers. The Tg value of starch 

530 increased, as previously observed for net starch films containing this extract (Collazo-

531 Bigliardi et al., in press) and the Tg of PLA decreased, according to a plasticizing effect 

532 of the compounds in this polymer phase or to the possible partial de-polymerization of 

533 PLA provoked by phenolic acids, as previously mentioned. 

534 The films containing active extract exhibited the lowest transparency level which is 

535 mainly caused by the selective light absorption of the extract compounds, mainly at low 

536 wavelengths. This could be considered positive because of the potential protection 

537 capacity of the films for use in food applications, reducing the light-induced oxidation 

538 reactions (Collazo-Bigliardi et al., 2018c).

539 The antioxidant capacity of these films was evaluated through their ability to preserve 

540 sunflower oil from oxidation. The antioxidant capacity of this film formulation was 

541 compared to that of the control film and to an open oil sample. The PV values reflect 

542 the initial oxidation stage of oil since it is related with the presence of peroxides derived 

543 from the polyunsaturated fatty acids existing in the sample (Galarza et al., 2017). 

544 Hydroperoxides are produced as primary oxidation products that could be derived into 

545 secondary products. The progress of the PV in the different samples throughout 23 days 

546 is shown in Fig. 5.  The PV of sunflower oil in the initial stage was 2.2 mEq O2/kg, as 

547 also reported by other authors (Kiralan et al., 2017; Mohdaly, Sarhan, Mahmoud, 

548 Ramadan, & Smetanska, 2010). A remarkable increase in this value was found for the 
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549 open control sample (135 mEq O2/kg in the final stage). However, the samples with and 

550 without antioxidant compound were kept below the required limits, even for the control 

551 film, at the end of the experiment (~5 mEq O2/kg). The Codex Alimentarius established 

552 a limit of PV in 10 mEq O2/kg for refined oils (Codex-Alimentarius, 1999). This 

553 behaviour is attributable to the great oxygen barrier capacity of the films, mainly made 

554 up of starch. The lowest PV were obtained in the sample packaged in the film with AE, 

555 wherein the presence of the antioxidant compounds from coffee husk prevented the 

556 oxidation of sunflower oil. Similar results were described by Reis, de Souza, da Silva, 

557 Martins, Nunes, & Druzian (2015) analysing the incorporation of mango pulp and yerba 

558 mate extract into cassava starch films, which were effective at preserving palm oil. 

559 Galarza et al. (2017) also reported a good preservation of sunflower oil oxidation when 

560 packaged in bags formed with glycerol-plasticised films from rice flour (RRF) and red 

561 rice starch (RRS) in a 9:1 RRF:RRS ratio. 

562

563 4. Conclusions

564 Lignocellulosic fractions of coffee husk could be used to improve the functional 

565 properties of compatibilised starch PLA films, depending on their final use. Of the 

566 cellulosic fractions, CF was not adequate to enhance the functionality of the blend film, 

567 but CNC previously incorporated into the starch phase were effective at reinforcing the 

568 tensile properties of the material (148% and 45% increases in EM and TS, respectively) 

569 and at reducing the WVP and OP of the films (28% and 42 % reductions, respectively in 

570 WVP and OP). Likewise, the antioxidant extract did not impart a better mechanical 

571 performance to the blend films, but reduced their oxygen permeability and conferred 

572 antioxidant capacity, promoting their usefulness for the purposes of preventing food 

573 oxidation reactions.     
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1 Figure captions

2 Fig. 1. FESEM micrographs of the cross-section of pure thermoplastic starch (S) and 

3 compatibilised S-PLA blends containing or not CNC incorporated by different methods 

4 (M1: glycerol transference, M2: direct thermoprocessing in two-roll mill), cellulose 

5 fibres (CF) and active extracts (AE) from coffee husk.

6 Fig. 2. X-ray diffraction patterns and crystallinity degree (Xc, %) of pure thermoplastic 

7 starch (S) and compatibilised S-PLA blends containing or not CNC incorporated by 

8 different methods (M1: glycerol transference, M2: direct thermoprocessing in two roll 

9 mill), cellulose fibres (CF) and active extracts (AE) from coffee husk.

10 Fig. 3. TGA and DTGA curves of compatibilised S-PLA blends containing or not CNC 

11 incorporated by different methods (M1: glycerol transference, M2: direct 

12 thermoprocessing in two roll mill), cellulose fibres (CF) and active extracts (AE) from 

13 coffee husk.

14 Fig. 4. Internal transmittance (Ti) spectra of compatibilised S-PLA blends containing or 

15 not CNC incorporated by different methods (M1: glycerol transference, M2: direct 

16 thermoprocessing in two roll mill), cellulose fibres (CF) and active extracts (AE) from 

17 coffee husk. Embedded table shows the Ti values at 460 nm.

18 Fig. 5. Peroxide Index (mEq O2/kg), B) of sunflower oil packaged in films of 

19 compatibilised S-PLA blends containing or not antioxidant extract (AE), compared with 

20 the control open samples.
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1 Table 1. Mass fraction (Xi, g compound/g dried film) of the different components: Starch 

2 (S), glycerol (Gly), glycidyl methacrylate grafted polycaprolactone (PCLG), polylactic 

3 acid (PLA), cellulose nanocrystals (CNC) from coffee husk, cellulose fibres from coffee 

4 husk (CF) and antioxidant extract from coffee husk (AE). 

Formulations XS XGly XPCLg XPLA XCNC/CF XAE

S(PCL5G)PLA20 0.6410 0.1923 0.0385 0.1282 - -

S(PCL5G)PLA20-CNC 0.6346 0.1904 0.0381 0.1269 0.0100 -

S(PCL5G)PLA20 -CF 0.6346 0.1904 0.0381 0.1269 0.0100 -

S(PCL5G)PLA20 -AE 0.6410 0.1346 0.0385 0.1282 - 0.0577
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22 Table 2. Tensile properties (EM: elastic modulus, TS: tensile strength, ε: elongation at 

23 break point) of pure thermoplastic starch (S) and containing CNC incorporated by 

24 different methods (M1: glycerol transference, M2: direct thermoprocessing in two roll 

25 mill), compatibilised S-PLA blends containing CNC incorporated by M1 and M2, 

26 cellulose fibres (CF) and active extracts (AE) from coffee husk (films conditioned at 53% 

27 RH and 25 ºC).

Formulation EM 

(MPa)

TS 

(MPa)

ε 

(%)

Thickness

(mm)

S 77 ± 15b 5.2 ± 1.6b 64.9 ± 0.5f 0.20 ± 0.02bc

S-CNC-M1 45 ± 3a 3.8 ± 0.2a 55.3 ± 1.4e 0.20 ± 0.02b

S-CNC-M2 179 ± 4d 6.6 ± 0.4c 35.1 ± 4.7d 0.20 ± 0.01bc

S(PCL5G)PLA20 195 ± 35d 7.6 ± 0.3de 21.1 ± 1.9b 0.19 ± 0.01ab

S(PCL5G)PLA20-CNC-M1 140 ± 16c 8.0 ± 0.5e 28.3 ± 3.9c 0.20 ± 0.02b

S(PCL5G)PLA20-CNC-M2 515 ± 29g 11.0 ± 0.3f 12.6 ± 2.0a 0.21 ± 0.01c

S(PCL5G)PLA20-CF 132 ± 15c 7.0 ± 0.3cd 20.5 ± 1.4b 0.18 ± 0.01a

S(PCL5G)PLA20-AE 183 ± 13d 6.9 ± 0.9cd 19.8 ± 2.3b 0.18 ± 0.01a

28 Different superscript letters within the same row indicate significant differences among formulations 
29 (p<0.05).
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38 Table 3. Mean values and standard deviation of barrier properties (water vapor 

39 permeability: WVP, oxygen permeability: OP) and moisture content of pure 

40 thermoplastic starch (S) containing or not CNC incorporated by different methods (M1: 

41 glycerol transference, M2: direct thermoprocessing in two roll mill) and compatibilised 

42 S-PLA blends containing CNC incorporated by M1 and M2, cellulose fibres (CF) and 

43 active extracts (AE) from coffee husk (films conditioned at 53% RH and 25 ºC). 

Formulation
Moisture content 

(g water/g dried film)

WVP 
(g·mm·kPa-1·

h-1·m-2)

OP x1014

 (cm3·m-1·s-1·Pa-1)

S 0.096 ± 0.007c 14.9 ± 0.4d 10.3 ± 0.1b

S-CNC-M1 0.098 ± 0.005c 10.7 ± 0.6c 11.8 ± 0.9c

S-CNC-M2 0.097 ± 0.006c 9.3 ± 1.3bc 6.2 ± 0.8a

S(PCL5G)PLA20 0.065 ± 0.004a 10.1 ± 0.4bc 19.9 ± 0.6e

S(PCL5G)PLA20-CNC-M1 0.091 ± 0.006bc 10.8 ± 1.2c 25.9 ± 0.7f

S(PCL5G)PLA20-CNC-M2 0.092 ± 0.005bc 7.3 ± 0.9a 11.6 ± 0.8bc

S(PCL5G)PLA20-CF 0.104 ± 0.003d 8.9 ± 1.0ab 28.1 ± 0.4g

S(PCL5G)PLA20-AE 0.086 ± 0.001b 8.4 ± 0.9ab 17.2 ± 0.2d

44 Different superscript letters within the same row indicate significant differences among formulations (p < 
45 0.05). 
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51 Table 4. Mean values and standard deviation of onset and peak temperatures for thermal degradation and glass transition temperature (Tg; second 

52 heating scan on DSC) of S-PLA films with cellulosic material and antioxidant extracts from coffee husk, conditioned in P2O5. 

[138-205]ºC [250-400]ºC Second heating scan
Samples

Onset (ºC) Peak (ºC) Onset (ºC) Peak (ºC) Endset (ºC) Tg (ºC) Starch Tg (ºC) PLA

S(PCL5G)PLA20 146 ± 4a 195 ± 2bc 269 ± 1b 296 ± 1a 392 ± 2a 106 ± 1a 49.3 ± 0.7b

S(PCL5G)PLA20-CNC-M1 141 ± 3a 193 ± 8b 268 ± 1b 294 ± 2a 400 ± 0.3b 107 ± 2a 48.2 ± 0.9ab

S(PCL5G)PLA20-CNC-M2 145 ± 2a 171 ± 0.2a 305 ± 0.2c 329 ± 1b 438 ± 4c 107 ± 2a 48.3 ± 0.9ab

S(PCL5G)PLA20-CF 151 ± 5ab 204 ± 0.5c 270 ± 1b 296 ± 0.2a 400 ± 2b 108 ± 1a 49.5 ± 0.6b

S(PCL5G)PLA20-AE 156 ± 3b 200 ± 0.1bc 258 ± 0.2a 295 ± 1a 404 ± 2b 110 ± 1b 47.7 ± 0.3a

53 Different superscript letters within the same column indicate significant differences between formulations (p < 0.05).


