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Abstract—Runahead execution improves processor performance by accurately prefetching long-latency memory accesses. When a
long-latency load causes the instruction window to fill up and halt the pipeline, the processor enters runahead mode and keeps
speculatively executing code to trigger accurate prefetches. A recent improvement tracks the chain of instructions that leads to the
long-latency load, stores it in a runahead buffer, and executes only this chain during runahead execution, with the purpose of
generating more prefetch requests during runahead execution. Unfortunately, all these prior runahead proposals have shortcomings
that limit performance and energy efficiency because they discard the full instruction window to enter runahead mode and then flush
the pipeline to restart normal operation. This significantly constrains the performance benefits and increases the energy overhead of
runahead execution. In addition, runahead buffer limits prefetch coverage by tracking only a single chain of instructions that lead to the
same long-latency load. We propose precise runahead execution (PRE) to mitigate the shortcomings of prior work. PRE leverages the
renaming unit to track all the dependency chains leading to long-latency loads. PRE uses a novel approach to manage free processor
resources to execute the detected instruction chains in runahead mode without flushing the pipeline. Our results show that PRE
achieves an additional 21.1% performance improvement over the recent runahead proposals while reducing energy consumption by

6.1%.

Index Terms—Microarchitecture, single-core performance, runahead execution

1 INTRODUCTION

UNAHEAD execution [1], [2], [3] improves processor perfor-

mance by accurately prefetching long-latency loads. The
processor triggers runahead execution when a long-latency
load causes the instruction window to fill up and halt the
pipeline. Instead of stalling, the processor removes the block-
ing long-latency load and speculatively executes subsequent
instructions to uncover future independent long-latency loads
and expose memory-level parallelism (MLP). However, not all
instructions executed in runahead mode lead to useful memory
prefetches. Instructions that are not part of a dependency chain
that generates a long-latency load waste processor resources
that could otherwise be used to generate prefetch requests. To
improve the energy-efficiency and performance of runahead
execution, runahead buffer [4] filters out unnecessary runahead
instructions. In runahead mode, this technique identifies the
chain of instructions that generates the stalling load, stores it in
the runahead buffer, and keeps replaying only this instruction
chain in a loop.

The runahead buffer improves energy-efficiency and perfor-
mance compared to traditional runahead execution. However,
it still suffers from significant shortcomings that impact its
performance and energy consumption. First, similar to prior
runahead techniques, the full instruction window has to be dis-
carded every time runahead execution is invoked. This reduces
the potential performance benefits from runahead execution
and increases its energy cost. Moreover, runahead buffer limits
prefetch coverage to only a single chain of instructions per
runahead interval, while several benchmarks access memory
through multiple chains. This limited prefetch coverage reduces
the potential performance gain from runahead buffer.

In this paper, we propose precise runahead execution (PRE),
a technique that remedies the shortcomings of prior runahead
proposals. We observe that when runahead execution is trig-
gered, the processor has sufficient unused resources to execute
instructions without discarding any instructions from the re-

order buffer (ROB)'. PRE uses runahead register reclamation, a
novel mechanism to manage free physical registers in runa-
head mode while preserving dependencies among instructions.
Moreover, PRE stores all instructions of any chain that gener-
ates a long-latency load in a dedicated cache, called the stalling
slice table (SST). First, it stores the stalling load in the SST, then
with every loop iteration it leverages the renaming unit to de-
tect the preceding instructions in the chain, and stores them in
the SST. In runahead mode, PRE receives decoded instructions
from the front-end but executes only the ones that hit in the
SST. Because PRE stores all long-latency load chains in the SST,
it does not limit prefetch coverage to a single load chain. As an
optimization, PRE can be augmented with an additional buffer
to store all the decoded instructions in runahead mode. When
normal execution resumes, instructions are then dispatched
from this buffer. Therefore, it is not necessary to fetch and de-
code runahead-mode instructions again. The micro-op queue is
used to hold decoded micro-ops in modern-day processors. We
propose to extend its size and use it to buffer micro-ops gener-
ated during runahead mode. Compared to an out-of-order core,
the performance improvements achieved through runahead
execution, runahead buffer and PRE amount to 14.5%, 14.4%
and 35.5% on average, respectively. While runahead bulffer is
energy neutral relative to an out-of-order core, PRE reduces
energy consumption by 6.1%.

2 BACKGROUND AND MOTIVATION
2.1 Full-Window Stalls

In an out-of-order core, a load instruction that misses in the
last-level cache (LLC) typically takes a couple hundred cycles
to bring data from off-chip memory. Soon, the load instruction
blocks commit and the core cannot make any progress. Mean-
while, the front-end continues to dispatch new instructions into
the back-end. Once the ROB fills up, the front-end can no longer
dispatch instructions, leading to a full-window stall. We refer to
the load instruction that causes a full-window stall as a stalling

1. ROB and (instruction) window are used interchangeably.



load, and to its backward chain of dependent instructions as a
stalling slice.

2.2 Runahead Execution

Runahead execution [2] pre-executes an application’s own code
to pre-fetch data closer to the core. A full-window stall marks
the ‘entry’ to runahead mode. The processor checkpoints the
Architectural Register File (ARF), the branch history register,
and the return address stack. The processor identifies the results
of stalling loads and their dependents as invalid. In runahead
mode, the processor retires these instructions without affecting
the processor architectural state in order to unblock the ROB
and keep the pipeline running. Once the stalling load returns,
the pipeline is flushed and the checkpointed architecture state
is restored. This marks the ‘exit’ from runahead mode.

2.3 Filtered Runahead Execution

The original runahead proposal executes all the instructions
coming from the front-end of the processor. However, many
instructions are not necessary to calculate the memory ad-
dresses used in subsequent long-latency loads. Hashemi et
al. [4] propose a technique to track and execute only the chain
of instructions that leads to a long-latency load. Upon a full-
window stall, they perform an expensive backward data-flow
walk in the ROB and the store queue to find a dependency
chain that leads to another instance of the same stalling load.
This chain is stored in a buffer named the runahead buffer that
is placed before the rename stage. In runahead mode, the
instruction chain stored in the runahead buffer is renamed,
dispatched and executed in a loop, instead of generating new
instructions in the front-end. Therefore, the front-end can be
power-gated to save energy in runahead mode. By executing
only the stalling slice, this technique runs further ahead than
traditional runahead, exposing more MLP and achieving higher
performance.

2.4 Shortcomings of Prior Techniques

Both traditional runahead execution and runahead buffer
significantly improve single-threaded performance. However,
their full potential is limited by the following key factors.

Flushing and Refilling the Pipeline. Runahead execution
speculatively executes and pseudo-retires instructions. At the
exit of runahead execution, the processor flushes the pipeline
and starts fetching instructions starting from the stalling load.
Flushing and refilling the pipeline for every runahead invoca-
tion incurs significant performance and energy overheads that
limit the potential performance gain from accurate prefetching.
Assuming that the ARF can be saved/restored in zero cycles,
we estimate that every runahead invocation incurs a perfor-
mance penalty of approximately 56 cycles assuming a 192-
entry ROB: (1) refilling the front-end (8 cycles), and (2) refilling
the ROB by re-dispatching 192 instructions with a dispatch
width of 4, starting from the stalling load (48 cycles). These
cycles cannot be hidden and thus directly contribute to the
total execution time of the application. Our experimental results
reveal that compared to an out-of-order core, runahead execu-
tion improves performance by 14.5% on average. However, the
speedup has the potential to reach up to 20.6% if the instruc-
tions that occupy the ROB when the core enters runahead mode
are not discarded.

Prior work [5] shows only a minor performance benefit from
reusing valid pseudo-retired instructions when returning into
normal mode. After reusing these instructions, the program’s
critical path created by invalid pseudo-retired instructions still
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dominates the execution. These instructions must be fetched
and executed again after a pipeline flush.

Limited Prefetch Coverage. Runahead execution has limited
prefetch coverage because it executes all future instructions in
runahead mode, which limits how deep in the dynamic instruc-
tion stream runahead execution can speculate. Runahead buffer
filters the most dominant stalling slice per runahead interval
and executes only this dominant stalling slice. Although this
allows runahead execution to go further down the instruction
stream, runahead execution is limited to a single slice. Unfor-
tunately, this does not match the characteristics of applications
that access memory through a diverse set of instruction slices
and multiple different load instructions.

Short Runahead Intervals. Prior runahead proposals avoid
initiating runahead mode if they estimate the runahead interval
to be short. The overhead of invoking runahead execution out-
weighs its benefit for short runahead durations [6]. However, a
significant fraction of runahead intervals are short. In particular,
for memory-intensive workloads, we find that 27% of the runa-
head intervals take less than 20 cycles on average. Therefore,
such a restriction in current runahead techniques wastes a
significant opportunity to enhance the degree of memory-level
parallelism in runahead execution.

3 PRECISE RUNAHEAD EXECUTION

We propose precise runahead execution to alleviate the limita-
tions of prior runahead proposals. We observe that at the entry
of runahead mode, the processor has enough free resources to
execute stalling slices without tampering with the instructions
in the ROB. Therefore, none of the instructions in the ROB are
discarded at the entry of runahead mode, and the ROB is not
flushed at the exit. PRE leverages the renaming unit to execute
all forthcoming stalling slices. We rely on a novel register
allocation and reclamation mechanism to execute instructions
in runahead mode while preserving instruction dependencies.
Figure 1 depicts the main components of PRE and the following
subsections describe its operation.

3.1 Entering Precise Runahead Execution

As in prior techniques, PRE is invoked on a full-window stall.
First, PRE checkpoints the Register Allocation Table (RAT). The
instructions filling the ROB can still execute as they would in
normal mode. However, no instructions are committed from the
ROB in runahead mode. Therefore, no updates are propagated
to the ARF and the L1 D-cache. During runahead execution,
PRE dynamically identifies the instructions that are part of
potential stalling slices as they arrive from the decode unit (as
described in the next section), and speculatively executes them.

3.2

PRE tracks the individual instructions that form a stalling slice
in a new cache that we call the Stalling Slice Table (SST). As
Figure 1 shows, the SST is accessed after the decode stage in
a typical out-of-order pipeline. The SST is a fully-associative
cache that contains only instruction addresses (i.e., PCs). If an
instruction address hits in the cache, that instruction is part of
a stalling slice. Whenever a stalling load blocks the ROB, we
store it in the SST. To facilitate tracking the chain of instructions
that leads to that load, we extend each entry in the RAT to hold
the PC of the instruction that last produced that register.

We track the stalling slices in an iterative manner. First, the
stalling load is stored in the SST. When the stalling load is
decoded again, e.g., in the next iteration of a loop, the PC of
the stalling load hits in the SST. PRE checks the RAT entry for

Identifying Stalling Slices
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Fig. 1: Core microarchitecture for precise runahead execution.

the load’s source registers to find the PCs of the instructions
that last produced those registers; these PCs are then stored
in the SST. Similarly, whenever an instruction hits in the SST
in the following iterations, we track the PC information of its
producer instructions and add those to the SST as well. By
tracking all stalling slices in the SST, PRE does not limit prefetch
coverage to a single slice as in the runahead buffer proposal.

3.3 Execution in Runahead Mode

PRE filters and speculatively executes all stalling slices that
follow the stalled window using the SST. After instruction
decode, PRE executes only the instructions that hit in the SST
because they are necessary to generate future loads. PRE prop-
erly maintains dependencies among the executed instructions
and manages the allocation and reclamation of registers in
runahead mode (as described in the next section). PRE executes
future stalling slices for the entire length of a runahead interval.
The instructions executed in runahead mode are fetched and
decoded again for execution in normal mode. However, to
avoid wasting the work and energy of the front-end in runa-
head mode, we propose an Extended Micro-Op Queue (EMQ)
as shown in Figure 1. We store all the decoded instructions
(including the ones that hit in the SST) in the EMQ. When the
processor resumes normal mode execution, it does not need
to re-fetch and re-decode all these instructions again. These in-
structions are directly dispatched and executed in the back-end.
Note that with this optimization, the number of speculatively
executed instructions in runahead mode is constrained by the
size of the EMQ. When the EMQ fills up, the core stalls until
the stalling load returns, at which point the processor exits
runahead mode.

3.4 Recycling Resources in Runahead Mode

PRE requires sufficient issue queue entries and physical reg-
isters to run ahead without discarding the instructions in the
ROB. Our evaluation reveals that at the time of runahead entry,
37% of the issue queue entries, 51% of the integer registers,
59% of the floating-point registers are free on average. Stalling
slices are usually short and therefore issue queue entries are
quickly reclaimed and are unlikely to hinder forward progress
of runahead execution. In all of our experiments, we did not
come across instances of issue queue pressure during runahead.

In an out-of-order core, a physical register can be freed only
when the last consumer of the renamed architectural register
commits [7]. Since instructions in runahead mode are discarded
after execution, we cannot rely on the original renaming policy
to free physical registers. Thus, we devise a new mechanism,
called runahead register reclamation, to free physical registers in
runahead mode. This process relies on a new FIFO hardware
structure that we name the Precise Register Deallocation Queue
(PRDQ) in Figure 1. Each entry in the PRDQ has three fields:
an instruction identifier, a physical register (tag) to be freed,
and an ‘execute’ bit that marks whether the instruction has

completed execution. PRDQ entries are allocated in program
order at the PRDQ tail. Register renaming maps a free physical
register to the destination architectural register of an instruction
in runahead mode. We mark the old physical register mapped
to the same (destination) architectural register in the PRDQ
entry. A PRDQ entry is deallocated when the instruction is
executed (i.e., ‘execute’ bit is set) and reaches the PRDQ head.
PRDQ deallocation is done in program order. The old physical
register associated with the instruction is freed upon deallo-
cation. While instructions may execute out-of-order and thus
mark the ‘execute’ bit out-of-order, in-order PRDQ deallocation
guarantees that a physical register is freed only when there
are no more instructions in-flight that may possibly read that
register. The PRDQ is only enabled in runahead mode and
its entries are discarded once the processor returns to normal
mode.

3.5 Exiting Precise Runahead Execution

The core exits runahead mode when the stalling load returns.
On exit, the checkpointed RAT is restored and execution re-
sumes in normal mode. As instructions are preserved in the
ROB, the core starts committing instructions right away starting
from the stalling load.

3.6 Hardware Overhead

PRE relies on the SST and PRDQ to implement runahead execu-
tion. We find that a 256-entry SST holds stall slices with almost
no misses. With 4-byte tags, the SST requires 1 KB storage. We
conservatively provision the PRDQ to hold 192 entries, for a
total of 768 Bytes. We extend each mapping of the 64-entry
RAT by 4 bytes for a total of 256 Bytes. This leads to a total
hardware cost of 2KB. When employing the (optional) EMQ,
the overhead changes according to the EMQ size. We show
results with a 768-entry EMQ), adding an extra 3 KB. Runahead
buffer requires about 1.7 KB and uses expensive CAM lookups
in the ROB to find stalling slices. Overall, the hardware cost
and complexity of PRE is comparable to the runahead buffer
proposal.

4 METHODOLOGY

We evaluate PRE using the most accurate cycle-level core model
in Sniper 6.0 [8]. The configuration for our baseline out-of-order
core is provided in Table 1. For a fair comparison, we maintain
the same ROB and issue queue sizes as in the runahead buffer
proposal [4]. For a 192-entry ROB, we base the number of phys-
ical registers on the Haswell core [9], [10]. We select the same
set of memory-intensive benchmarks, from SPEC CPU2006, as
in runahead buffer [4] and we simulate 1-Billion instruction
SimPoints [11] for each benchmark. The SST is modeled as a
256-entry fully-associative cache with 8 read and 2 write ports.
We assume the front-end can deliver up to 8 micro-ops per
cycle. We also evaluate the case with EMQ optimization using
an EMQ of 768 entries or 4x the ROB size. The PRDQ and



TABLE 1: Baseline configuration for our out-of-order core.

Core 2.66 GHz out-of-order, ROB: 192,
Issue/Load/Store queue: 92/64/64,
Width: 4, Depth (front-end only): 8 stages
Register file 168 int (64 bit), 168 fp (128 bit)
SST 256 entry, fully assoc, LRU
PRDQ size 192
EMQ size 768
L1 I-cache 32KB, assoc 4, 2 cyc
L1 D-cache 32KB, assoc 8, 4 cyc
Private L2 cache | 256 KB, assoc 8, 8 cyc
Shared L3 cache | 1 MB, assoc 16, lat 30 cyc
Memory DDR3-1600, 800 MHz
ranks: 4, banks: 32, page size: 4 KB
bus: 64 bits, tRP-tCL-tRCD: 11-11-11
0000 HWRA B RA-buffer BPRE . EPRE+EMQ
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Fig. 2: Performance normalized to OoO.

EMQ are modeled as in-order queues with 4 read and 4 write
ports each. We use McPAT [12] to calculate power assuming a
22nm chip technology. We calculate power for the SST, EMQ
and PRDQ using CACTI 6.5 [13] and we add those numbers to
the core and DRAM power numbers calculated using McPAT.

5 [EVALUATION

We compare the performance and energy-efficiency of the fol-
lowing four runahead proposals compared to a baseline out-of-
order (OoO) core:

e Runahead Execution (RA): Traditional runahead (Sec-
tion 2.2) with optimizations from Mutlu et al. [6].

o Runahead Buffer (RA-buffer): See Section 2.3.

o Precise Runahead Execution (PRE).

» PRE with EMQ optimization (PRE + EMQ).

5.1 Performance

Figure 2 reports performance for all the runahead proposals
normalized to the baseline out-of-order core. RA and RA-
buffer improve performance by on average 14.5% and 14.4%,
respectively. PRE yields a significantly higher performance
improvement of 35.5%. PRE+EMQ improves performance by
28.6% — the length of a runahead interval is limited by the
EMQ size. PRE achieves this improvement by avoiding the
frequent pipeline flushing and refilling overheads incurred by
RA and RA-buffer. This has the additional benefit of allowing
PRE to invoke runahead execution for slices with relatively
short runahead intervals, exposing more MLP. We find that PRE
and PRE+EMQ invoke runahead execution 1.62 x and 1.95 x
more frequently than traditional runahead. RA-buffer outper-
forms the other techniques in cases where only a single slice
leads to all full-window stalls (e.g., 1ibquantum). However,
for the majority of benchmarks where more than one slice stalls
the ROB frequently, precise runahead performs better than
runahead buffer. This is because precise runahead can execute
multiple slices upon every full-window stall.
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Fig. 3: Energy savings relative to OoO.

5.2 Energy Consumption

Figure 3 compares the energy savings (core plus DRAM) ac-
crued by all mechanisms over the baseline. All four runahead
proposals increase the dynamic instruction execution within
the core, which increases power consumption. However, both
RA and RA-buffer fetch, decode and execute an entire window
worth of instructions twice due to flushing and refilling the
pipeline. RA increases energy consumption of the core by 2.7%
on average. On the other hand, PRE does not discard the ROB
and PRE+EMQ preserves the work of the front-end in the
EMQ. Overall, PRE and PRE+EMQ consume 6.1% and 7.2%
less energy, respectively, compared to an out-of-order core. In
contrast, RA-buffer does not provide any energy saving.

6 CONCLUSION

Runahead execution improves processor performance by un-
covering future independent long-latency instructions upon
full window stalls. We show that the performance of prior runa-
head proposals suffers from mandatory pipeline flush/restore
overheads and limited prefetch coverage. We propose Precise
Runahead Execution (PRE) to alleviate shortcomings of prior
runahead techniques. Relative to an out-of-order core, PRE
improves performance by 35.5% on average (compared to
14.4% for recent runahead proposals). In addition, PRE reduces
energy consumption by 6.1%.
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