

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/157279

Cai, Z.; Li, X.; Ruiz García, R. (2019). Resource Provisioning for Task-Batch Based
Workflows with Deadlines in Public Clouds. IEEE Transactions on Cloud Computing.
7(3):814-826. https://doi.org/10.1109/TCC.2017.2663426

https://doi.org/10.1109/TCC.2017.2663426

Institute of Electrical and Electronics Engineers (IEEE)

1

Cloud YARN resource provisioning for
task-batch based workflows with deadlines

Xiaoping Li, Senior Member, IEEE, Zhicheng Cai,Student Member, IEEE, Rubén Ruiz

Abstract—To meet the dynamic workload requirements in widespread task-batch based workflow applications, we developed the cloud
YARN (C-YARN) architecture by integrating the YARN platform with cloud computing. The C-YARN could provision flexible resources.
In terms of depths and functions, tasks of different task-batches were merged to task-units. Based on task-units, a unit-aware deadline
division method was investigated for properly dividing workflow deadlines to task deadlines to minimize the utilization of rented intervals.
Considering different factors affecting time slot allocation, several rules were introduced for scheduling tasks with the task deadlines.
A rule-based task scheduling method was presented for allocating tasks to time slots of rented Virtual Machines (VMs) with a task
right shifting operation and a weighted priority composite rule. A Unit-aware Rule-based Heuristic (URH) was proposed for elastically
provisioning VMs to task-batch based workflows to minimize the rental cost in C-YARN. Effectiveness of the proposed URH methods
was verified by comparing them against two adapted existing algorithms for similar problems on some realistic workflows.

Index Terms—cloud computing, workflow scheduling, resource provisioning, task-batch, interval based pricing model.

F

1 INTRODUCTION

TASK-BATCH based workflows are more general than
traditional ones [1], [2]. They are widespread in

many fields, especially in data analysis applications,
such as mobile applications, e-commerce and scientific
research (which often process large volumes of data
through a series of connected operations [3]). In order
to speed up the process for each operator, data is par-
titioned and processed by multiple parallel tasks which
form a task-batch. For an application, the flow of differ-
ent operations forms a workflow which is composed of
many dependent task-batches (it becomes a traditional
workflow if there is only one task in each task-batch).
Workflows with such specified network structures are
called task-batch based workflows. A typical example
is the Fake-License Plate Detecting application (FLPD).
FLPD is applied to detect cars with fake-license plates by
analysing data obtained from road cameras. The FLPD
consists of six dependent operations (Data partition,
Record generation, Reducing by locations, Abnormity
detection, Result combination and Final combination)
as shown in Figure 1. Multiple parallel tasks of each
operation form a task-batch. For example, v2, v3, v4 and
v5 generate transportation records from different data
partitions obtained from the same district and they form
a task-batch.

• Xiaoping Li and Zhicheng Cai work at the School of Computer Science and
Engineering, Southeast University, Nanjing 211189, China, and also with
the Key Laboratory of Computer Network and Information Integration,
Southeast University, Ministry of Education, 211189, Nanjing, China.
E-mail:{xpli, caizhicheng}@seu.edu.cn.

• Rubén Ruiz works at the Grupo de Sistemas de Optimización Aplicada,
Instituto Tecnológico de Informática, Ciudad Politécnica de la Innovación,
Edifico 8G, Acc. B. Universitat Politècnica de València, Camino de Vera
s/n, 46021, València, Spain (e-mail: rruiz@eio.upv.es).

Hadoop 1.0 based systems [4], [5] are not ideal plat-
forms for task-batch based workflow applications. A
MapReduce job [6] is usually adopted to process data
partitions of one or more task-batches and the whole
workflow might consist of many different MapReduce
jobs. However, an on-demand cluster (Hadoop 1.0) [4]
for MapReduce jobs cannot be resized until the tasks
on it are all completed, incurring many idle nodes while
processing slimmer stages (light workload) [4]. As stated
in [4]: only one reduce task being executed in a node is
enough to prevent claiming back the cluster while this
is at the same time common, i.e., resources of different
MapReduce clusters are hard to be shared to improve the
utilization of resources. At the same time, MapReduce
is not a suitable programming framework to describe
workflow-based logics.

Recently, several more flexible cluster management
systems (such as YARN [4] and Mesos [7]) have been
developed. YARN gives the possibility of choosing more
appropriate programming frameworks such as Dryad
[8] and designing efficient task scheduling strategies ac-
cording to application characteristics. Dryad allows users
to specify arbitrary Directed Acyclic Graphs (DAGs)
to describe the application’s logic such as data com-
munication patterns among different task-batches. Un-
like adopting multiple separate on-demand Hadoop 1.0
clusters, resources of YARN with Dryad can be shared
among task-batches of the same application to improve
the utilization of rented Virtual Machines (VMs) [9].
Existing studies such as Tabaa et al. [5] usually adopted
local clusters or private clouds as the resource pool
for YARN, which had fixed capacities. However, task-
batch based workflow applications always take hours
or days to process large volumes of data. In different
stages of task-batch based workflows, workloads change
greatly. Nowadays many companies and institutes are

2

2

6

9

1

121

3 4 5

10

7 8

12

Data

Partition

Records

Generation

Reducing by

Locations

Abnormity

Detecting
11

Results

Combination

Final

Combination

1
0

1
5

14

18

21

13

15 16 17

22

19 20

24

23

3
0

0

District 1

A batch task

B0

B1

B2

B3

B4

B5

District 2
District 3

26

30

33

25

27 28 29

34

31 32

36

35

3
0

. . .

. . .

B6

B7

B8

District 4 - 10

A task unit

u1

u2

u3

u4

u5

Fig. 1. An example of the task-batch based workflow

trying to migrate their applications to commercial public
clouds in order to achieve adaptive capacities. Cardosa
et al. [10] and Chen et al. [11] investigated scheduling of
dynamically built MapReduce clusters based on virtual
machines (VMs) to increase energy efficiency and to
minimize cost. However, the MapReduce framework is
not suitable for dynamic workload situations. Therefore,
we proposed the cloud YARN (C-YARN) with DAG
based programming framework for task-batch based
workflows which was an extension of YARN by adding
support of renting resources from clouds to YARN.
Cloud resources were elastically provisioned in terms of
dynamic workloads.

Developing smart algorithms to help application users
request (or release) resources from (or to) public clouds
and minimizing the resource rental cost are crucial to
optimally provision cloud resources to applications in
the considered C-YARN system. For such applications,
tasks in the same batch usually have the same function-
ality (or operation) and the same software requirements.
Tasks of different batches with the same functionality
are merged to a single task-unit. Tasks of a task-unit
can be executed in parallel to accelerate the execution
process. They can also be fulfilled sequentially to im-
prove the utilization of rented time intervals when the
deadline is not very tight. In other words, tasks are
executed by task-groups according to the number of
rented virtual machines. Tasks of each task-group are
sequentially executed on the same virtual machine. The
size of a task-group is called clustering granularity as
in [12]. Because the number of rented machines cannot
be determined in advance (i.e., the involved data cen-
ter has an elastic capacity) in C-YARN, the clustering
granularity is scalable. Actually, the more sequenced
tasks there are, the larger possibility of maximizing the
utilization of the rented intervals (minimize the final
rental cost). In other words, the final rental cost is closely
related to clustering granularity. However, the scalable
clustering granularity is constrained by task deadlines
while task deadlines are determined by the workflow
deadline. Therefore, it is essential to properly divide the
workflow deadline to task deadlines to obtain proper
clustering granularities, which improve the utilization
of rented time intervals and minimize the rental cost in

the elastic C-YARN. In existing methods for traditional
workflows such as those proposed by Byun et al. [9],
Mao et al. [13], Abrishami et al. [1] and Durillo et al.
[2], task deadlines were generated for tasks separately
without considering task-batches. If these methods were
applied to task-batch based workflows, imbalance tasks
deadlines would be resulted. For example, tight task
deadlines miay be allocated to task-batches consisting
of many short tasks or extremely loose task deadlines
may be assigned to task-batches with fewer long tasks,
which all lead to a lower utilization of rented intervals.

In this paper, a Unit-aware Rule-based Heuristic
(URH) was proposed which distributed the workflow
deadline to competitive task-units. The URH guided C-
YARN users to rent the appropriate type and number
of resources from public clouds and to schedule tasks
to appropriate time slots on the rented virtual machines
minimizing the VM rental cost. Key contributions we
made in this paper were summarized as follows:

(i) Integrating cloud computing and the YARN platfor-
m, the C-YARN platform was presented for task-
batch based workflows. C-YARN provisioned re-
sources elastically .

(ii) A unit-aware deadline division method was devel-
oped for properly dividing the workflow deadline
into task deadlines. Scalable clustering granularities
of task-units were obtained which improved the
utilization of rented time intervals.

(iii) A rule-based task scheduling strategy was pro-
posed for the deadline constrained tasks. A unit-
aware rule-based heuristic was investigated for the
C-YARN resource provisioning problem in task-
batch based workfolws.

The rest of the paper was organized as follows. Section
2 gave the related work and the problem was described
in detail in Section 3. Section 4 presented the proposed
heuristic which was evaluated in Section 5. Section 6
concluded the paper.

2 RELATED WORK

Performance optimization of MapReduce and DAG based
scheduling [14] on dedicated clusters with fixed ca-
pacities has been studied extensively in the literature.
For example, algorithms for MapReduce mainly focused
on improving system performances, such as makespan
minimization [15] and energy saving [16]. For DAG
based tasks, many researchers considered the improve-
ment of system performances of distributed systems
with fixed capacities, such as [17]–[21]. In traditional
service-oriented computing, resources could be dynam-
ically provisioned as services to workflow applications
[22]–[24]. They used economic models which were dif-
ferent from those in public clouds. For example, cloud
resources were usually priced by intervals and were
shareable among tasks of the same workflow while
services in service-oriented computing were priced per

3

task. Therefore, algorithms for private cluster or service-
oriented computing are not suitable for task-batch based
workflow scheduling in public clouds.

Since most companies and research institutes lack
resources to operate large private clouds, studies on
provisioning resources for MapReduce and DAG-based
applications in public clouds are of great interest. For
example, Chen et al. [11] proposed a method to help
users make decisions about resource provisioning for
running MapReduce programs in public clouds. Perfor-
mance of MapReduce (Hadoop) on a 100-node cluster
of Amazon EC2 with various levels of parallelism was
studied by Jiang et al [25]. The Balanced Time Scheduling
(BTS) algorithm, proposed by Byun et al. [26], minimized
the client-oriented resource renting cost of DAG-based
applications. BTS was based on the assumption that
there was a fixed number of homogeneous resources
during the whole workflow execution horizon. In a later
work by Byun et al. [9], the Partitioned Balanced Time
Scheduling (PBTS) was developed for elastic resource
provision patterns, which found the minimum number
of resources for each time partition rather than the
whole workflow execution horizon. However, it still
assumed that homogeneous resources were used, i.e.,
only one kind of VM existed in the system. Recently,
Mao et al. [13] proposed an approach to support the
running of workflow applications on auto-scale cloud
VMs, which took advantage of deadline division and
task consolidation. Abrishami et al. [1] and Juan et al.
[2] considered the resource provisioning of scientific
workflows with heterogeneous resources in IaaS (Infras-
tructure as a Service) clouds. In order to mitigate effects
of performance variation of cloud resources, Calheiros et
al. [27] proposed an algorithm that used the idle time of
provisioned resources and budget surplus to replicate
tasks. They considered the data transfer among tasks
and choices among multiple types of VMs. However, the
operating system loading time and the software setup
time were not considered. In our previous work [28], a
Multiple-Rules based Heuristic (MRH) was developed to
provision resources to workflow applications, in which
the data locality and software locality were all con-
sidered. These works were all designed for traditional
workflows without considering task-batches.

To the best of our knowledge, there is only one existing
work [6] on resource provisioning for task-batch based
workflows. There each task-batch was considered as a
whole and executed by a cluster (traditional Hadoop 1.0)
with a specific number of VMs determined by its modes.
Resources of each task-batch could not be released until
the whole task-batch is finished (this is common in
traditional Hadoop 1.0 clusters), which led to a low
resource utilization.

3 PROBLEM FORMULATION

3.1 The C-YARN system
In this paper, we introduced the C-YARN system for
task-batch based workflow applications by deploying
the existing YARN to public clouds, which included
two roles: the cloud provider and the cloud user. The
IaaS cloud provider supplied Virtual Machines (VMs)
to cloud users. Cloud users rented VMs from cloud
providers to establish their own C-YARN systems to
serve their applications. Distinct from the traditional
YARN system built on local clusters described in [4],
there was an additional component the Elasticity Con-
troller (EC) in the Resource Manager (RM) of the C-
YARN as shown in Figure 2.

Elasticity Controller

Submission of

 workflow applications

Public Cloud providers

AMScheduler

AM services

Resource Manager (RM)

Other application

lifecycle managements

Node Manager

Node Manager

Node Manager

V
irtu

al D
ata C

en
ter

Application Master (AM)

R
eso

u
rce R

eq
u

ests

Resource Rent or

Release Commands

R
eso

u
rce R

en
t o

r R
elea

se

Create AM

Container

Container

Container

M
o

n
ito

rin
g

Fig. 2. Architecture of the developed C-YARN

The EC of the RM was in charge of fulfilling the
request of workflow applications in the system by dy-
namically renting and releasing resources from and to
public clouds. Whenever a task-batch based workflow
was submitted to the C-YARN system, the RM created an
Application Master (AM) for the application which was
in charge of managing all life-cycle aspects including
dynamic resource scaling, data flow management and
fault handling, etc. The most important component in
the AM was the AMScheduler in charge of making
dynamic resource consumption plans (issued Resource
Requests to the RM) and scheduling tasks to the received
containers (built on virtual machines in this paper) ac-
cording to specific applications. In this paper, heuristics
were designed for the AMScheduler to provision VMs
to the task-batch based workflows. The objective was
to minimize the total VM rental cost while meeting the
workflow deadline D.

3.2 Task-batch based workflow applications
Different types of Virtual Machines (with distinct prices)
are provided by many commercial clouds, in which
interval-based (monthly, hourly or minute) pricing mod-
els are offered. The whole interval is paid even if only
part of the interval is used. For example, Table 1 shows
details of different VM types at Amazon EC2. Let Pδ be

4

the price of VM type δ per interval unit. L is the pricing
interval length. A task-batch based workflow is defined
by a Directed Acyclic Graph (DAG) G = {V,E} and a set
B. V = {v0, v1, . . . , vN+1} is the set of all tasks where the
source node v0 and the sink node vN+1 are dummy nodes.
E = {(i, j)|i < j} is the precedence constraints of tasks
(such as data transfer dependencies), the arc (i, j) indi-
cates that vj cannot start until vi completes. Pi represents
the immediate predecessor set of vi. B = {B0, B1, . . . , BQ}
is the set of task-batches, in which Bi is the ith task-
batch. The depth of vi is defined as the minimum number
of nodes (tasks) along the path from v0 to vi, e.g., the
depth of v2 of the workflow shown in Figure 1 is 3.
Tasks of the same task-batch have the same depth. For
the workflow in Figure 1, B = {B0, B1, B2, B3, B4, B5, ...}
in which batches B0 = {v2, v3, v4, v5}, B1 = {v6, v7, v8},
B2 = {v9, v10, v11}, etc.

Different types of VMs have different configurations,
which are suitable for different types of tasks, e.g., high-
CPU VM instances for computational-intensive tasks.
We let T ei,δ denote the execution time of task vi on VM
instances of type δ. The fact that execution times of tasks
are different on various VM instances makes allocation
very difficult. Several existing methods [29], [30] can
be used to estimate execution times. Though sometimes
cloud providers limit each user the amount of rented re-
sources, we can still obtain sufficient amount of resources
from multiple clouds. Therefore, it is reasonable to as-
sume that there is no limitation on the amount of VM
instances. Besides execution times of tasks, data transfer
times are non-negligible. In fact, data transferring among
tasks is always time-consuming and is dependent on
the volume of data and the system network bandwidth
wB. Because VM instances are usually rented from the
same data center of a cloud provider, we assume that
bandwidths of different VM instances are the same.
Zi,j denotes the volume of intermediate data transferred
from vi to vj . Different system software (such as the op-
erating system, middle-ware and professional software
components) are required to execute tasks, which need
times to setup (including VM image transfer times, OS
loading times, professional software downloading and
installing times). In this paper, we assume that VM setup
times for the same type of VM instances are equal (which
can be estimated according to experiences). Tmδ denotes
the VM setup time for the VM type δ, $i being the
software component for vi with the setup time T$i .

3.3 Challenges for the problem under study
In this paper, we considered the C-YARN resource
provisioning problem for task-batch based workflows.
Though resource provisioning for task-batch based
workflows was studied in our previous work [6] using
Hadoop 1.0 clusters, there are many new challenges for
this problem using the proposed C-YARN platform. The
main challenges are:

(i) In C-YARN, cloud resources are dynamically provi-
sioned to adapt dynamic workload demands in dif-

ferent stages of task-batch based workflows. Adap-
tive workflow deadline division is required to prop-
erly divide workflow deadlines to task deadlines.

(ii) Execution modes of task-batches in this paper are
adaptively determined involving in many factors
(such as the number of tasks in each task-unit, task
processing times, the pricing interval length and the
deadline division method). In [6], execution modes
were predefined.

(iii) Task-batches in C-YARN are decomposable and
they are regrouped into task-groups for execution
with scalable clustering granularity. The cluster-
ing granularity closely depends on the number of
rented Virtual Machines which is the optimization
objective. Task-batches in [6] are undecomposable
and each task-batch was scheduled as a whole.
Therefore, workflow deadline division for task-
level scheduling in this paper is much more com-
plicated than that for batch-level scheduling in [6].

4 PROPOSED HEURISTIC

To minimize the total VM rental cost, all tasks of a
workflow application are scheduled with the workflow
deadline D and tasks’ precedence constraints. Similar
to existing workflow scheduling, there are two phas-
es in the resource provisioning problem under study
in this paper: deadline division and task scheduling.
Workflow deadlines are divided into task deadlines with
which tasks are scheduled. There are many factors exert
influences on the two phases, such as the complexity
of workflows (precedence constraints between tasks),
task types (task-batches or tasks), and resource pricing
models (priced by per usage or time intervals). Because
of the above challenges, existing workflow scheduling
algorithms [6], [22], [28], [31] are not suitable for resource
provisioning for task-batch based workflows in C-YARN.

In this paper, a Unit-aware Rule-based Heuristic
(URH) was developed for the problem under study. We
called the amount of time distributed to a task as the task
float duration (TFD), that distributed to or a task-unit
as the task-unit float duration (UFD). Estimated wasted
cost (EWC) was defined as the total of the wasted rental
cost of unused fractions on the rented intervals and the
software setup cost of a task-unit with a given execution
mode. The URH mainly consisted of the following two
steps:

(i) The workflow deadline D was divided into task
deadlines in terms of task-units. Task-batches with
the same depth and function were merged to a task-
unit. Then, UFDs were initialized by the cheapest
then slowest VM types. If the length of the critical
path generated by the UFDs was longer than D,
some tasks were reassigned to faster VM types.
Next, D was distributed to competitive task-units
in such a way so that the total of their EWCs was
decreased.

5

TABLE 1
Configurations and Prices (per hour) for VMs at Amazon EC2

VM Type Configuration Price

Normal type

Small (N S) 1.7 GB MEM, 1 EC2 CU $0.06
Medium (N M) 3.75 GB MEM, 2 EC2 CU $0.12
Large (N L) 7.5 GB MEM, 4 EC2 CU $0.24
Extra Large(N EL) 15 GB MEM, 8 EC2 CU $0.48

High-memory type

Extra Large (M EL) 17.1 GB MEM 6.5 EC2 CU $0.41
Double Extra Large (M DEL) 34.2 GB MEM 13 EC2 CU $0.82
Quadruple Extra Large (M QEL) 68.4 GB MEM 26 EC2 CU $1.64

High-CPU type
Medium (C M) 1.7 GB MEM 5 EC2 CU $0.145
Extra Large (C EL) 7 GB MEM 20 EC2 CU $0.58

(ii) Tasks were scheduled to time slots of rented VMs
with task deadline constraints. Tasks were selected
based on their priorities while meeting the topo-
logical requirements. Time slots for the tasks were
determined by an introduced right shifting opera-
tion and a weighted composite rule.

4.1 Task-unit generation

Utilization of rented resource intervals could be im-
proved by combining or consolidating tasks (either inter-
or intra-batches) with the same depth and functionality.
All tasks in a task-batch based workflows were merged
to task-units according to their depths and functionalities
while their logical precedence constraints among them
were still kept, i.e., there were precedence constraints
between task-units. Basically, tasks of the same task-unit
were allocated to the same deadline. For example, tasks
of B0 and B3 in Figure 1 had the same depth and the
same functionality. They were merged to task-unit u1.
Though the task depth of B6 was identical to that of
B0, different kinds of software were needed. Therefore,
B0 and B6 were not consolidated to a task-unit. Other
consolidated task-units were shown in Figure 1 labeled
by rectangles. Tasks of each task-unit were assigned the
same deadline. These dependent task-units competed for
the time interval [0, D].

A larger UFD usually meant a higher possibility of
serializing more tasks, choosing more suitable types of
VMs and consolidating tasks more freely. However, a
larger UFD of task-unit u also usually led to smaller
UFD of its predecessor or successor task-units. In other
words, there were many strategies for allocating the
time interval [0, D] to task-units. Different strategies had
various impacts on the final resource rental cost, which
gave different opportunities to task serialization and
consolidation of task-units. Therefore, it was crucial to
determine how much time (UFD) was allocated to each
task-unit under the D constraint.

4.2 Unit-aware deadline division

Based on the generated task-units, the workflow dead-
line D was distributed to UFDs. TFDs were obtained
in terms of UFDs. The earliest finish times of tasks

were calculated by TFDs and they were regarded as the
final task deadlines. In this paper, a unit-based dead-
line division method was proposed which determined
execution modes of task-units. Task-batch attributes (the
number of tasks, task execution times and task execution
requirements), the length of the adopted pricing interval
and deadline competition between task-batches were
taken into account in order to distribute the workflow
deadline properly.

4.2.1 Estimated wasted cost
Generally, distributing the same UFD to different task-
units exerts a great influence on the final rental cost. We
adopted the estimated wasted cost (EWC) to measure of
the benefit of assigning a UFD to a task-unit. For a task-
unit u, a given VM type δ and a given UFD σ was called
an execution mode Υδ,σ of u. For each Υδ,σ, the minimum
number of needed VMs and rented intervals for u were
estimated based on the assumption that all VMs were
newly rented and only tasks of u were scheduled to
them. During the estimation procedure, task processing
times of the task-unit were supposed to be identical,
which were equal to the largest task processing time of
the task-unit. For each VM instance, only the software
setup time of the first task was taken into account. Figure
3 showed an example of the estimation of the minimum
number of VM instances and rented intervals in which
there were five tasks with the largest processing time of
20s on M EL VMs and a given UFD of 80. Three M EL

VMs were needed and one time interval was newly
rented on each VM instance when the software setup
time was 10s. We defined that the EWC of u with the
execution mode Υδ,σ was the total of the wasted rental
cost of unused fractions on the rented intervals and the
software setup cost, which was computed as follows.

Wu,δ,σ=
{gσ[Mm

u,δ,σ(Imu,δ,σL−T$i)−T
e
u,δ]+T$iM

m
u,δ,σ}Pδ

L
(1)

where T eu,δ was the total processing time of unit u, Mm
u,δ,σ

and Imu,δ,σ were the minimum number of VM instances
and rented intervals for Υδ,σ respectively. gσ was a binary
variable. If σ≤L, gσ=1. Otherwise, gσ=0, i.e., when σ>L,
only the software setup cost was considered as the EWC.
For the example in Figure 3, Wu,M EL,80={1×[3×(1×120−

6

Time (s)

1

200 40 80 12060 100

2M_EL_1

Tasks Rented intervals

3 4

5

M_EL_2

M_EL_3

Software setup times

Pricing interval=120 seconds

10 30

Float duration=80

Fig. 3. Estimating the minimum numbers of VM instances
and rented intervals for a given mode and UFD.

10)−20×5]+10×3}×0.41/120=0.89. A larger EWC usually
means a lower utilization of rented intervals. Minimizing
task-unit EWSs was therefore the optimization objective
of the designed deadline division method.

4.2.2 UFD initialization

Initially, tasks chose VM types with the cheapest execu-
tion costs (if there were more than one VM type with
the same execution cost, the one with the minimum
EWC was chosen to break the tie), based on which UFDs
were initialized. The execution cost of task vi on the VM
type δ was defined as ci,t=T ei,δ×Pδ/L without considering
the waste resulting from interval based pricing models.
Initially, the VM type with the cheapest execution cost
was preferred for each task because a cheaper execution
cost generally meant a higher match between the task
and the VM type. For example, the execution time of
a computation-intensive task on a high-memory VM
was much longer than that on a high-CPU VM while
the high-memory VM might not be cheaper than the
high-CPU VM. Therefore, cheaper execution costs were
translated into higher execution efficiency. Though better
configured VMs had higher prices, execution cost could
be the same because task execution was accelerated
and the execution time was saved, e.g., task execution
costs on the M QEL, M DEL, M EL VMs might be the
same. In this paper, the slowest VM type (usually the
cheapest price per hour) was preferred because it helped
to reduce the EWC. The reason for this was that it needed
to consolidate more tasks to fully use the rented time
intervals for better configured VMs.

The slowest VM type was chosen from the cheapest
ones as the initial VM type for each task vi, which is la-
beled by δ

′
i . We called such VM type selection strategy as

the cheapest-slowest selection (CSS for short) rule. Since
tasks of the same task-unit had the same functionality
and the same VM type preference, the current VM type
of u was assigned as δ′i , i.e., δ′u=δ

′
i (∀vi∈u). The longest

processing time among tasks in u was calculated by

T l
u,δ

′
u

=max
vi∈u

{
T e
i,δ

′
i
+max
j∈Pi
{Zj,i
wB
}
}

(2)

Since all tasks in task-unit u used the same software, we
let T$u be the software setup time, i.e., T$u =T$i , ∀vi∈u.
The UFD σu of task-unit u was initialized as

σu=T l
u,δ

′
u

+T$u (3)

In addtion, the TFD σvi of task vi was initialized as σvi=
σu, vi∈u.

4.2.3 UFD adjustment
After the initialization, the critical path generated by
TFDs might be longer than the workflow deadline D.
Some tasks on the critical path were needed to adjust
by reassigning faster VM types to shorten the critical
path. For a given task vi, the current VM type δ

′
i was

updated to the next slowest VM type δ
′′
i using the CSS

rule. At the same time, VM types of all the tasks of the
task-unit were updated, i.e., δ′′u =δ

′′
i (vi∈u) and the UFD

of u was updated to σ
′
u=T l

u,δ
′′
u

+T$u . It was obvious that
W
u,δ

′′
u ,σ

′
u
>W

u,δ
′
u,σu

. For each task-unit u, we defined the
increased ratio ru as follows, which was the ratio of the
increased EWC to the reduced UFD when the VM type
was changed from δ

′
u to δ

′′
u

ru=(W
u,δ

′′
u ,σ

′
u
−W

u,δ
′
u,σu

)/(σu−σ
′
u) (4)

If there is no faster VM type for u, ru is set as +∞.
The current TFDs determined a critical path CP . We

let UCP be the set of task-units with with at least one
task on CP . Based on the calculated increased ratios,
some UFDs were adjusted if the length of CP was longer
than D by the following method: The task-unit u′ was
selected if r

u
′<+∞ and r

u
′ was the minimal among

UCP . If there was more than one task-units with the
same minimal increased ratio, the one with the largest
EWC was selected to break the tie. If there was no u

′

satisfying the two conditions, no feasible solution could
be found. Otherwise, the next slowest VM type is chosen
by the CSS rule and σ

u
′ was updated by Equation (3). In

addition, task TFDs of u′ were updated and a new critical
path CP ′ was generated. If the length of CP ′ is longer
than D, the procedure was iterated until the length of the
critical path was not longer than D. The UFD adjustment
algorithm was formally described in Algorithm 1.

4.2.4 Adaptive workflow deadline division for task-units
The UFD initialization and adjustment procedures gen-
erated TFDs with a pessimistic way. The UFD of each
task-unit u was assumed to be the largest processing
time of its tasks under the VM type determined above.
In addition, all tasks of u was supposed to be executed in
parallel, i.e., the clustering granularity was 1. Therefore,
there were many gaps between the earliest and the latest
finish times of tasks in most of the time. An example
was shown in Figure 4. EWCs of task-units could be
decreased by distributing these gaps to UFDs (such as
{v4, v5, v6} and {v9, v10, v11}).

In this paper, we proposed a new iterated gap dis-
tributing method which decreased task-unit EWCs by

7

Algorithm 1: UFD Adjustment Algorithm (UAA)

1 begin
2 Initialize CP with TFDs;
3 while

∑
vi∈CP

σvi>D do
4 for each u∈UCP do
5 Calculate ru with Equation (4);

6 Select u′ with r
u
′ =minu∈UCP

{
ru
}
∧r

u
′ 6=+∞;

7 if u′ 6= null then
8 Find the next slowest VM type δ

′′
[1] for the

first task v[1]∈u
′ using the CSS rule;

9 for each vi∈u
′ do

10 δ
′
i←δ

′′
[1];

11 Update δ
′

u
′ with δ

′
[1];

12 Calculating σ
u
′ using Equation (3);

13 Update the task TFDs of u′ with
σvi=σu′ , ∀vi∈u

′ ;

14 else
15 return No feasible solution.

16 Update the new critical path CP and UCP by
the current TFDs ;

17 return.

2

1

2

3

4

5

6

7

Workflow deadline

3

4 9

7

8 13 141

5 10

6 11

8

9

10

11

12

13

12

14

Time (s)

Gap

Gap

14

Task units Latest finish timesEarliest finish times

Fig. 4. An example of gaps for UFD increasing

increasing UFDs and kept VM types unchanged. In every
iteration, we selected a task-unit u and increased the
UFD from σu to σu=σu+T l

u,δ
′
u

, i.e.,

σu=T$u +T l
u,δ

′
u
×nu (5)

where nu∈{1, 2, 3, ..., λu} and λu was the number of tasks
in u. Using this way of increasing UFDs, the minimum
number of VMs for u was Mm

u,δ
′
u,σu

=dλu/nue. Figure
5 showed an example of calculating EWCs when nu
ranged from 1 to 5. It was assumed that the length of
the pricing interval was 120 seconds and the price of
M EL was 0.41 per interval. There were five tasks in unit
u={v1, v2, v3, v4, v5}. For simplification, processing times
of all tasks were assumed to be 30 seconds (T lu,M EL=30)
and the software setup time T$i , i∈{1, 2, 3, 4, 5} was 10
seconds. Figure 5 (a), (b), (c), (d) and (e) showed the
procedure of estimating the minimum number of VM

Algorithm 2: Largest Return-Rate First (LRRF)

1 begin
2 Initialize F←∅;
3 for each u∈U do
4 Calculate ϕu according to Equation (6);

5 Initialize u
′ with ϕ

u
′ =minu∈U/F

{
ϕu
}

;
6 while u

′ 6= null do
7 Update n

u
′←n

u
′ +1;

8 Update σ
u
′ according to Equation (5);

9 Generate the current critical path CP ;
10 if

∑
vi∈CP

σvi>D then
11 F←F∪{u′}, n

u
′←n

u
′−1 and update σ

u
′ ;

12 else
13 Update ϕ

u
′ according to Equation (6);

14 Update u
′ with ϕ

u
′ =minu∈U/F

{
ϕu
}

;

15 return.

instances for nu=1, 2, 3, 4 and 5, respectively. According
to Equation (1), EWCs of different nu were:

(i) {1[5(1×120−10)−50×3]+10×5}0.41/120=1.54

(ii) {1[3(1×120−10)−50×3]+10×3}0.41/120=0.72

(iii) {1[2(1×120−10)−50×3]+10×2}0.41/120=0.18

(iv) {0[2(1×120−10)−50×3]+10×2}0.41/120=0.08

(v) {0[1(1×120−10)−50×3]+10×1}0.41/120=0.03

It was clear that W
u,δ

′
u,σu

was a non-increasing function
of nu according to Equation (5). Since different task-units
had different EWC functions, different EWCs were de-
creased by allocating the same length of gap to different
task-units. When the UFD of u was increased from σu to
σ

′
u (σ′

u−σu=T l
u,δ

′
u

), the decreasing speed of the EWC of u
was called return-rate defined as

ϕu=(W
u,δ

′
u,σu
−W

u,δ
′
u,σ

′
u

)/(σ
′
u−σu) (6)

In terms of the obtained return-rates, all gaps were
distributed to task-units by the proposed Largest Return-
rate First method (LRRF). Initially, nu=1 for all task-
units. Return-rates of all task-units were calculated ac-
cording to Equation (6). The task-unit u′ with the largest
return-rate was chosen. We updated the UFD σ

u
′ using

Equation (5) by n
u
′←n

u
′ +1. If the length of the critical

path determined by the new TFDs was longer than D, it
meant that the UFD increasing of u′ resulted in a dead-
line violation and must be rolled back by n

u
′←n

u
′−1.

In addition, u′ was added to the tabu task-unit set F,
of which task-units’ UFDs could not be increased any
more. Otherwise, the return-rate ϕ

u
′ was updated. Note

that, there were no change on return-rates of the other
task-units (except u′). Then, the task-unit with the largest
return-rate in U/F was chosen as u′ and we repeated the
above process. If no task-unit was chosen, the procedure
terminated. The procedure LRRF was formally described
in Algorithm 2.

After increasing UFDs using Algorithm 2, we further
distributed gaps between the earliest and the latest finish

8

Time (s)

1

200 40 80 12060 100

2M_EL_1

Tasks Rented intervals

3 4

5

M_EL_2

M_EL_3

Software setup times

Time (s)

1

200 40 80 12060 100

M_EL_1

Pricing interval = 120 seconds

2

3

M_EL_2

M_EL_3

4M_EL_4

5M_EL_5

10

(a) (b)

Time (s)

1

200 40 80 12060 100

2M_EL_1 3

4 5M_EL_2

(c)

Time (s)

1

200 40 80 12060 100

2M_EL_1 3 4

5M_EL_2

(d)

Time (s)

1

200 40 80 12060 100

2 3 4 5

(e)

240

M_EL_1

30

Float duration = 10+1×30

Float duration = 10+2×30

Float duration = 10+3×30

Float duration = 10+4×30

Float duration = 10+5×30

Fig. 5. Calculating EWCs

times to all tasks of the task-batch based workflow in
proportion to their current TFDs and the TFDs were
updated. Based on the updated TFDs, the earliest finish
times of tasks were set as task deadlines, which were
constraints for the following task scheduling problem.

4.3 Rule-based task scheduling

In this paper, we proposed a rule-based task scheduling
strategy (RTSS). Tasks constrained by the obtained task
deadlines were scheduled to appropriate time slots of ex-
isting or newly rented VM instances. Tasks were sched-
uled according to the topological order of the workflow.
RTSS first got the task to be scheduled. Each task selected
the appropriate time slot in terms of a hybrid rule which
was based on four rules. By a right shifting method, tasks
were scheduled to the best positions of the selected time
slots.

The next task to be schedule was selected in terms of
the following rules: Task-units with the smallest depth
had the highest priority. If there are more than one task-
units having the same depth (with different functional-
ity), the task-unit with the largest total processing time
had the highest priority. In the same task-unit, the task
with the largest processing time is selected first. Let V R

be the set of ready tasks (all of their predecessors were
scheduled).

Let Ψ
vi
I be the set of time slots available (in the

interval from the earliest start time to the deadline of
vi) for task vi in the VM set I. If vi was assigned to
the VM instance to which time slot s belonged, xvi,s=1;
otherwise, xvi,s=0. The data transfer time of task vj
on time slot s was T dvj,s=maxi∈Pj{Zi,j(1−xvi,s)/w

B}. The

bandwidth was assumed to be infinitely large and the
data transfer time was 0 if the two tasks were on the
same VM instance. In other words, only the data transfer
between different VM instances was considered. If a new
VM was needed to launch at time slot s, ys=1; otherwise,
ys=0. Let Tms be the VM setup time for slot s. We obtained
Tms =ysT

m
δ . If vi was assigned to a time slot s without

software $i, zi,s=0; otherwise, zi,s=1. T$vi,s=(1−zi,s)T$i
was the software setup time of task vi on time slot s.

To reduce the number of total newly rented intervals,
the selected task vi needing more than one newly rented
time interval was tried to perform the right shifting on
each time slot in Ψ

vi
I . Initially, vi started at the earliest

available start time on each time slot. It was tried to
right shifted to start at the beginning of the second
newly rented interval. Figure 6 illustrated an example
of a reduction in the number of newly rented intervals
by task right shifting, in which the scheduled v1 was
the only predecessor of v2. The earliest start time of v2

was 40. When calculating the combined priority value
on a new high-CPU VM instance (C EL), two intervals
were newly rented when v2 was assigned to start at 40
as shown in Figure 6 (a). If v2 was moved right to start at
60, only one interval was needed, which was shown in
Figure 6 (b). As a result, before calculating the priority
value of a time slot, it should be tested to see whether
the task right shifting could reduce the number of rented
intervals or not.

Time (s)

2

200 40 80 12060 100

C_EL

Ready Task Rented interval

Pricing interval = 60 seconds

1

Time (s)

2

200 40 80 12060 100

C_EL

1

(a)

(b)

M_EL

M_EL

Fig. 6. Task right shifting

Time slots allocation is affected by several factors, such
as the number of newly rented intervals, the price per
interval, the execution time, the data transfer time, the
software setup time, the VM loading time, the length-
match between the task processing time and the length
of the remaining rented intervals, and the utilization of
rented intervals. These factors interact with each other
[28]. Taking into account these factors, four rules were
introduced to the RTSS. The first three were identical to
those proposed in [28], which were described as follows.

(i) FNIF (Fewest amount of newly rented time inter-
vals first): Let Rsvi denote the number of newly
rented intervals when vi is assigned to s∈Ψ

vi
I . R̄svi is

the maximum number of time intervals needed by
vi, which is determined by R̄svi=d(T

e
i,δs

+T dvi,s+T
m
s +

T$i,s)/Le+1 where δs is the VM type of s. The priority
αsvi is determined by the normalization Rsvi/R̄

s
vi

.

9

(ii) LACF (Lowest Actual Cost First): The actual cost
of vi on s is Csvi=(T ei,δs+T dvi,s+T

m
s +T$vi,s)×Pδs . The

priority value of this rule is normalized as βsvi=

Csvi/maxś∈Ψ
vi
I
C śvi . The time slot with cheaper βsvi is

preferred.
(iii) BMF (Best match between the slot length and the

task processing time first): The matching of the
processing time of vi and the length of s is defined
as γsvi=W

s
vi
/(2×L) where W s

vi
is the remaining time

(new produced smaller fractions) of vi on s. The
smallest γsvi the first.

These rules are effective for task scheduling in work-
flows [28]. However, most parts of rented intervals were
wasted because of the task deadline constraints for some
cases. For example, in Figure 7, v2, v3, v4, v5, v6 and v7

belonged to unit uk of which tasks had a unified deadline
of 78 and the pricing interval was assumed to be 60. v1

was the predecessor of all tasks in uk. In Figure 7 (a), v1,
v2 and v3 were scheduled tasks and v4 was the current
ready task. When v4 was scheduled, there were two
choices: i) Rent a new interval on M EL 1 and assign
v4 just following v3 as shown in Figure 7 (b). ii) Rent a
new VM instance and assign v4 at the finish time of v1

as shown in Figure 7 (c). According to the above three
rules, the first choice was preferred because of the lower
processing cost and better matching. However, most
parts of the newly rented interval on M EL 1 in Figure 7
(b) cannot be reused by later tasks of unit uk because of
the task deadlines. Another new VM instance M EL 2
must be rented for v5, v6 and v7. Therefore, the maximal
predicted utilization first (MPUF) rule was proposed:
We tried to pre-schedule as many as possible tasks in
the task-unit to the newly rented interval to maximize
utilization. The rate of unused fractions was called the
predicted waste rate of the newly rented interval. For
the example in Figure 7 (b), the fraction after v4 was
wasted since no more tasks of uk could be assigned to
it because of the task deadlines. In Figure 7 (c), after v4

was assigned, v5 could still be pre-scheduled after v4. It
was clear that the utilization of the rented intervals in
Figure 7 (c) was significantly higher than that in Figure
7 (b). Let ξsvi be the predicted waste rate for vi on slot.

Since different rules had various advantages, we pro-
posed a weighted priority rule for allocating tasks to
time slots below.

ψsvi=α
s
vi
×a+βsvi×b+γ

s
vi
×c+ξsvi×d (7)

The rule-based task scheduling method was formally
described in Algorithm 3. For each ready task vi, one
VM instance VM

δ
′
i

of the type δ
′
i was first added to the

data center I temporally. Then we updated the earliest
start time ESTvi of vi and the set of candidate time slots
Ψ
vi
I . For each time slot, it was tested to see whether vi

could be right shifted to reduce the number of newly
rented intervals. Then, the combined priority value ψsvi
on each time slot was calculated by Equation (7) and the
time slot s′ with the highest priority was chosen. Next, vi

Time (s)
200 40 80 12060 100

Ready Task Rented interval

1

(a)

(c)

M_EL_1 Wasted fraction

Time (s)
200 40 80 12060 100

Pricing interval = 60 seconds

1

2

1

2 3 4 5 6 7

Time (s)
200 40 80 12060 100

1M_EL_1 2 3

3 4

5 6 7

4 5

6 7

Wasted fraction

(b)

Task deadline

Assigned tasks in the future

M_EL_2

M_EL_2

M_EL_3

2 3M_EL_1

Wasted fraction

VM loading time Software setup time

Fig. 7. Waste prediction on the rented intervals.

was assigned to s
′ and VM

δ
′
i

was removed from the data
center if it was not chosen. Finally, we updated V R by
adding tasks of which the predecessors were scheduled
and got the next ready task. The procedure iterated until
all tasks were scheduled.

Algorithm 3: RTSS(a,b,c,d) /*Rule-based Task
Scheduling Strategy*/

1 begin
2 Initialize V R←{v0} and s

′← null ;
3 vi←Get the next ready task from V R;
4 while vi 6= null do
5 Add a new VM instance VM

δ
′
i

to I;
6 Update ESTvi and Ψ

vi
I ;

7 ψlowvi ←+∞;
8 foreach s in Ψ

vi
I do

9 Perform task right shifting on s;
10 Calculate ψsvi according to Equation (7);
11 if ψsvi<ψ

low
vi

then
12 s

′←s;
13 ψlowvi ←ψ

s
vi

;

14 Assign vi to s
′ and remove VM

δ
′
i

from I if it
is not used;

15 Update V R;
16 vt←Get the next ready task from V R;

17 return

4.4 Proposed Unit-aware Rule-based Heuristic
Based on the above procedures, the proposed unit-aware
rule-based heuristic (URH) was formally described as

10

Algorithm 4: Unit-aware Rule-based Heuristic (URH)

1 begin
2 Combine tasks into task-units by the task-unit

generation process;
3 Initialize VM types using the UFD initialization

procedure;
4 Call UAA;
5 Call LRRF;
6 Distribute gaps to tasks in proportion to their

TFDs;
7 Calculate the earliest finish times of tasks by

TFDs and set them as task deadlines;
8 Call RTSS(a, b, c, d);
9 return

Algorithm 4. At first, tasks were merged into task-units
according to their depths and functions. UFDs of the
task-units were initialized by the cheapest and slowest
VM types. Then, the UAA was called to adjust configu-
rations of some task-units to obtain feasible UFDs. The
LRRF procedure was conducted to fully decrease EWCs
of all task-units by increasing their UFDs. Next, if there
were still gaps, they were distributed to tasks in propor-
tion to their TFDs. The earliest finish times of tasks were
refreshed by the current TFDs. By adopting the earliest
finish times as task deadlines, tasks were scheduled to
appropriate time slots by the RTSS procedure.

The time complexity of the URH mainly depended on
three parts, i.e., the UAA, the LRRF and the RTSS. In
the UAA, time complexities of generating critical paths,
calculating increased ratios and adjusting configuration
of a task-units were O(N2), O(N) and O(M) respectively.
There were at most N×M iterations at Step 2 of the UAA
because each task could be updated M times at most.
Therefore, the time complexity of UAA was O(MN3).
For the LRRF, the time complexity of calculating the
return-rate of all task-units was O(N). The UFD of each
task-unit u could be increased λu times, i.e., all units
could be increased N times at most. Therefore, the time
complexity of LRRF was O(N3). The time complexity of
the RTSS was O(MsN), where Ms was the maximum
number of available time slots in the system. Because
tasks were non-preemptive, Ms≤N . In other words, the
time complexity of RTSS was no more than O(N2).
Therefore, the time complexity of the proposed URH was
O(MN3).

5 PERFORMANCE EVALUATION OF URH

To evaluate the performance, the URH was compared
with the MRH [28] and the IC-PCP [1]. All these algo-
rithms were coded in JaveEE and ran with a developed
C-YARN simulator that extended the CloudSim [32] by
adding C-YARN simulation components which support-
ed software locality, DAG based modeling and elastic

resource provisioning. The C-YARN simulator modeled
the Amazon EC2 instance types shown in Table 1.

5.1 Tested workflows

Since the realistic workflows (including Montage, Cy-
berShake, Epigenomics, LIGO, and SIPHT) studied
by Bharathi et al. [33] were typical task-batch based
workflows, they were used for the algorithms’ eval-
uation in this paper. Therefore, the testing workflow
instances were produced by the Workflow Genera-
tor of Bharathi et al. [33] (https://confluence.pegasus.
isi.edu/display/pegasus/WorkflowGenerator). The gen-
erated workflows were saved in XML formats, which
provided network structures, task names and seed run-
ning times. They were extended according to the work-
flows’ characteristics. The software needed by each task
was determined by the task name described in the XML
files. Tasks with the same type of software name and
the same depth implied that they belonged to the same
task-batch. In order to generate the execution time on
different type of VMs, tasks with the same software
requirement were assigned a unified category chosen
from {Normal, High-memory, High-CPU}. Let QMvi and
QCvi be the total memory and CPU workload of vi.
FMδ and FCδ represented the memory and CPU con-
figurations of VM type δ described in Table 1. The
execution time seedvi described in the XML file was
assumed to be the execution time on the N S, M EL
and C M types of instances when the category was
Normal, High-memory and High-CPU respectively. QMvi=
FMδ
t
′ ×seedvi and QCvi=F

C
δ
t
′ ×seedvi (δ

t
′ = N S, M EL and

C M for Normal, High-memory and High-CPU, respec-
tively). The execution time of vi on any VM type δ

was T ei,δ=max{QMvi/F
M
δ , QCvi/F

C
δ }. Data transfers were de-

scribed in the XML files which consisted of the volume
of the data and the transferring directions. For the tested
workflows, the number of tasks took values as fol-
lows: {50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}. 100
instances were randomly generated for each value and
thus testing a total of 1100 instances. The test-bed
generated in this paper is available on the website
(http://www.seu.edu.cn/lxp/bb/06/c12114a113414/pa
ge.psp).

In the cloud simulation platform, the bandwidth took
values from {1, 10, 100, 1000} (MBps), the software setup
time took values from {0, 5, 10, 15, 20} (seconds) and the
VM loading time was set as 30s. VM instances were
priced by hours as done in the Amazon EC2. We let Tminw

be the shortest execution time of the tested workflow w

with the fastest and sufficient amount of VM instances
and Tmaxw was the longest execution time of w with tasks
being executed sequentially on only the slowest VM
instance. We took the deadlines of each tested workflow
from Tminw ×2n, n=1, 2, 3, ..., L and Tminw ×2L<Tmaxw . 2n was
named as the deadline factor.

11

5.2 The competing algorithms

There is no other existing workflow scheduling algorith-
m proposed exactly for the same problem under studied
in this paper. The IC-PCP proposed by Abrishami et al.
[1] and the MRH in Cai et al. [28] were developed for
traditional workflows, which are the most similar to the
task-batch based worklows under study. For the sake of
comparison, both IC-PCP and MRH were adapted for
the considered applications without taking into account
task-batches. In addition, the IC-PCP was modified to
be aware of the operating system loading time and the
software setup time as done in [28]. For a workflow
instance w, the Relative Decreased Percentage (RDP) of
the rental cost obtained by an algorithm A compared
with IC-PCP was calculated by

RDPAw =(CIw−CAw)×100/CIw (8)

where CIw and CAw were the rental costs obtained by
algorithms IC-PCP and A on instance w respectively. A
larger RDP meant a lower resource rental cost.

There were several components (unit-aware deadline
division, task right-shifting and RTSS) and parameters
(a, b, c and d in RTSS) in the proposed URH. Because the
same realistic workflows were verified, we adopted the
same parameter values of a, b and c to those calibrated
in [28], i.e., a=100, b=10, c=1. The weight d of MPUF
was tested taking values from {0,1,10,100}. If d=0, it
meant that the MPUF rule was not adopted. In addition,
there was two variants for the right shifting operation,
true or false. Based on levels of parameters or variants of
components, we constructed six heuristics as shown in
Table 2.

TABLE 2
Parameter settings of URH heuristics

Name a b c right shifting d
URH00 100 10 1 false 0
URH10 100 10 1 true 0
URH03 100 10 1 false 100
URH11 100 10 1 true 1
URH12 100 10 1 true 10
URH13 100 10 1 true 100

5.3 Impacts of components and parameters on URH

5.3.1 Effectiveness of unit-aware deadline division
The experimental results were analyzed by the multi-
factor analysis of variance (ANOVA) method [34]. The
three main hypotheses (normality, homoskedasticity and
independence of the residuals) were checked and ac-
cepted. The instance type and the deadline factor had
the largest F−ratios which indicated that they had a
statistically significant impact on the response variable
RDP. Figure 8 showed the means plots of RDP (with 95%
Turkey Honest Significant Difference (HSD) confidence
intervals) with different deadline factors. In Figure 8,
URH obtained a statistically significant larger RDP than
MRH on CyberShake and Montage workflows, a little

larger than MRH on LIGO and SIPHT workflows and
similar with the MRH on Epigenomics workflows.

The reason for the better performance obtained by
the URH on CyberShake, Montage, LIGO and SIPHT
workflows was that these types of workflows had unbal-
anced workloads among different stages (batches), i.e.,
a significantly different number of tasks in each stage
and the proposed unit-aware deadline division method
could handle these unbalanced structures better. Figure
9 gave the structure of Montage workflows, of which
the mProjectPP, mDiffFit and mBackground task-units
had heavier workloads. The task deadlines (the largest
one of the same unit) obtained by the MRH and the
task-unit deadlines by URH00 on a realistic Montage
workflow were given on the right of Figure 9, which
showed that the MRH gave mProjectPP, mDiffFit and m-
Background task-units extremely tighter deadlines than
URH00. This was because tasks deadlines in the MRH
were determined separately according to the processing
time of each task rather than by units as done in the
URH00. Gantt charts of the MRH and the URH00 on the
Montage example were also given in Figure 9, which
illustrated that properly allocated task-unit deadlines of
mProjectPP and mDiffFit decreased the number of rented
VM instances significantly (decreasing the VM rental
cost from $12.16 to $1.87).

For the Epigenomics workflows, the URH00 and the
MRH got similar results, which was because most tasks
of Epigenomics workflows needed more than one hour
(one pricing interval) and there was no space for the
unit-aware deadline division method to improve, i.e.,
the proposed URH00 was more suitable for tasks with
smaller execution times than the pricing interval length.
If the rental interval was far smaller than the execution
time, consolidation of tasks to improve the utilization
of rented intervals was no longer important. However,
the task-unit based deadline division still gave more
chances to reuse software and saved the VM loading
time. Figure 10 showed the means plots of RDP with
95% Tukey HSD confidence intervals, the interaction
with the software setup time and the system bandwidth.
The improved percentages of the URH00 compared with
MRH for different software setup times and different
bandwidths were similar, which indicated that the two
factors (software setup time and the bandwidth) had
little effect on the performance of both algorithms. As
a result, these two factors were not discussed in the rest
of this paper.

5.3.2 Effectiveness of task right shifting
Experimental results showed that the task right shifting
worked better for workflows with longer tasks than
others. This was because longer tasks gave more chances
to apply the task right shifting. In the five types of
tested workflows, right shifting only worked better on
Epigenomics and SIPHT workflows. Figure 11 was the
means plot of MRH, URH00 and URH10 (with 95% Tukey
HSD confidence intervals) on Epigenomics and SIPHT

12

DeadLineFactor

-42

-22

-2

18

38

58

78

98
R

el
at

iv
e

D
ec

re
as

ed
 P

er
ce

n
ta

g
e

(%
)

2 4 8 16 32 64 128

Algorithms
MRH
URH00

DeadLineFactor
2 4 8 16 32 64 128

DeadLineFactor
2 4 8 16 32 64 128

DeadLineFactor
2 4 8 16 32 64 128

DeadLineFactor
2 4 8 16 32 64 128

Cybershake Epigenomics LIGO Montage SIPHT

Fig. 8. The means plot of RDP with 95.0% Tukey HSD confidence Intervals of MRH and URH as a function of the
DeadLinefactor and the workflow type.

mProjectGroup mDiffFit

mProjectGroup mDiffFit

Operators

mProjectPP

mDiffFit

mConcatFit

mBgModel

mBackground

mImgTbl

mAdd

mShink

mJPEG

Task deadlines

146

257

532

864

981

1373

2417

2651

2711

798

1607

1660

1789

2544

2581

2683

2705

2711

Gantt chart of MRH

Gantt chart of URH00

MRH URH00

Fig. 9. Task deadlines and Gantt charts obtained by MRH/URH00 for a Montage workflow.

Software setuptime

-10

10

20

30

40

R
el

at
iv

e
 D

ec
re

as
ed

 P
er

ce
n

ta
g
e

(%
)

0 5 10 15 20

Algorithms
MRH
URH00

Bandwidth
1 10 100 1000

0

Fig. 10. The means plot of RDP with 95.0% Tukey HSD
confidence Intervals of the MRH and URH00 as a function
of software setup times and bandwidths.

workflows, which showed that the URH10 got larger
RDP, i.e., task right shifting helped in decreasing the
rental cost. For example, Figure 12 showed the Gantt

charts obtained by the URH00 and the URH10 for an
Epigenomics workflow, in which tasks were scheduled
as early as possible by the URH00 while they were
moved (delayed) to start at the beginning of the next
pricing interval in the URH10. About 5.5% of rental cost
was saved by the URH10 compared with URH00 on
this instance by adopting the task right shifting when
selecting time slots.

5.3.3 Effectiveness of the MPUF rule
Experimental results showed that the MPUF rule worked
better on workflows with deadlines which were longer
than one pricing interval and especially for those with
many shorter tasks such as CyberShake, LIGO and Mon-
tage workflows. Figure 13 showed the means plot of
RDP obtained by URH00 and URH03 on CyberShake and
LIGO workflows. It showed that the MPUF rule worked
when the scheduling horizon was at least longer than
one pricing interval (Deadlinefactor was larger than 8
for CyberShake and LIGO workflows). Figure 14 showed

13

Epigenomics SIPHT

DeadLineFactor
2 4 8 16 32 64 128

DeadLineFactor

-42

-32

-22

-12

-2

08

18

28
R

el
at

iv
e

D
ec

re
as

ed
 P

er
ce

n
ta

g
e

(%
)

2 4 8 16 32 64 128

Algorithms

MRH
URH00

URH10

0

Fig. 11. The means plot of RDP with 95.0% Tukey HSD
confidence Intervals of MRH, URH00 and URH10 as a
function of the DeadLineFactor and the workflow type.

URH00

URH10

V
ir

tu
al

 M
ac

h
in

es

Time Pricing points

Fig. 12. Gantt chats of a Epigenomics workflow obtained
by URH00 and URH10

the Gantt chats obtained by URH00 and URH03 on a
CyberShake workflow instance. Most parts of the second
intervals were wasted because of the deadline constraint
in the solution given by URH00 while the MPUF rule
helped URH03 in avoiding renting the second intervals
by predicting the utilization of newly rented intervals.
The resource utilization of URH00 and URH03 on the
example in Figure 14 were 47.9% and 73.7%, respectively.
On the contrary, when the scheduling horizon was too
loose, there was little chance for the MPUF rule to
improve performance. This was because loose deadlines
usually allowed all compared algorithms to fully consol-
idate tasks to improve the utilization of rented intervals.

Increasing the weight of the MPUF rule had a small
impact on performance. The means plot obtained by
URH11, URH12 and URH13 were shown in Figure 15,
which showed that only a small improvement was ob-
tained when the weight of waste prediction was in-

CyberShake

DeadLineFactor

-40

-30

-20

-10

10

20

30

40

50

60

R
el

at
iv

e
D

ec
re

as
ed

 P
er

ce
n
ta

g
e

(%
)

2 4 8 16 32 64 128

Algorithms
MRH
URH00

URH03

LIGO

DeadLineFactor
2 4 8 16 32 64 128

0

Fig. 13. The means plot of RDP with 95.0% Tukey HSD
confidence Intervals of algorithms as a function of the
DeadLineFactor for the CyberShake and LIGO workflows.

V
ir

tu
al

 M
ac

h
in

es

Time Pricing points

URH00

URH03

Deadline
Second interval First interval

Rented and Wasted

Fig. 14. Gantt chats of a CyberShake workflow obtained
by URH00 and URH03

creased from 1 to 100 on CyberShake and LIGO work-
flows. This was because the MPUF rule rule was usually
needed in scenarios where the priority values of the first
three rules were almost the same for the candidate inter-
vals. Therefore, the MPUF rule rule worked whenever its
weight was larger than a specific value and performance
could not be improved further even a larger weight was
given.

5.4 Combined results

Experimental results indicated that there were interac-
tions among task right shifting and the MPUF rule, i.e.,
the joint use of them could decrease the resource rental
cost further. Figure 16 was the means plot of RDP of
Epigenomics workflows, which showed that URH10 and
URH03 were similar or a bit worse than the MRH when
the deadline factor was 4. However, URH13 with the
joint use of task right shifting and the MPUF rule was
better than MRH for those instances. The means plot of
all types of workflows in Figure 17 showed that URH13

got a statistically significant higher RDP than MRH in
almost all cases, which also indicated that the combined
use of unit-aware deadline division, task right shifting

14

LIGO

DeadLineFactor
2 4 8 16 32 64 128

CyberShake

DeadLineFactor

-40

-30

-20

-10

10

20

30

40

50

60
R

el
at

iv
e

D
ec

re
as

ed
 P

er
ce

n
ta

g
e

(%
)

2 4 8 16 32 64 128

Algorithms
MRH
URH11

URH12

URH13

0

Fig. 15. The means plot of RDP with 95.0% Tukey
HSD confidence Intervals of URH with different predict-
ing weights as a function of the DeadLineFactor for the
CyberShake and LIGO workflows.

Epigenomics

DeadLineFactor

-23

-13

-3

7

17

R
el

a
ti

v
e

D
e
c
re

a
se

d
 P

e
rc

en
ta

g
e

(%
)

2 4 8 16 32 64 128

Algorithms

MRH

URH13

URH10

URH03

URH00

Fig. 16. The means plot of RDP with 95.0% Tukey HSD
confidence Intervals of algorithms as a function of the
DeadLineFactor for the Epigenomics workflows.

and MPUF could decrease the VM rental cost in a very
statistically significant way.

6 CONCLUSIONS

For elastically provisioning VM instances to task-batch
based workflows in C-YARN, a fast and effective heuris-
tic URH was proposed which took advantage of the task-
unit based structures of realistic workflows to divide the
workflow deadline. Experimental results showed that
the unit-aware deadline division method was significant-
ly better than traditional ones. In addition, a rule-based
task scheduling method which consisted of task right
shifting and waste prediction was developed to improve
the performance even further. Experimental results indi-
cated that task right shifting worked better on workflows
with longer tasks while the MPUF rule could improve
the performance of the proposals on workflows with
scheduling horizons longer than the pricing interval. The
combined use of the unit-aware deadline division, task
right shifting and waste prediction resulted in a much
better performance.

Comparing URH heuristics against the MRH, it could
be concluded that deadline division had a statistically
significant impact on the results. Therefore, developing
appropriate deadline division methods according to the
application characteristics was a promising line for fu-
ture research.

7 ACKNOWLEDGMENTS
This work has been supported by the National Natural
Science Foundation of China (61272377) and the Doctoral
Program of Higher Education (20120092110027). Rubén
Ruiz is partially supported by the Spanish Ministry
of Economy and Competitiveness, under the project
“RESULT - Realistic Extended Scheduling Using Light
Techniques” (No. DPI2012-36243-C02-01).

REFERENCES
[1] S. Abrishami, M. Naghibzadeh, and D. Epema, “Deadline-

constrained workflow scheduling algorithms for iaas clouds,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 158–169,
2013.

[2] J. J. Durillo and R. Prodan, “Multi-objective workflow scheduling
in amazon EC2,” Cluster Computing, vol. 17, no. 2, pp. 169–189,
2013.

[3] P. Uthayopas and N. Benjamas, “Impact of I/O and execution
scheduling strategies on large scale parallel data mining,” Journal
of Next Generation Information Technology, vol. 5, no. 1, pp. 78–88,
2014.

[4] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache
hadoop yarn: Yet another resource negotiator,” in Proceedings of
the 4th annual Symposium on Cloud Computing. ACM, 2013, p. 5.

[5] Y. Tabaa and A. Medouri, “Towards a next generation of scientific
computing in the cloud,” International Journal of Computer Science
Issues, vol. 9, no. 6, pp. 177–183, 2012.

[6] Z. Cai, X. Li, and J. N. D. Gupta, “Heuristics for provisioning
services to workflows in XaaS clouds,” Services Computing, IEEE
Transactions on, doi: 10.1109/TSC.2014.2361320, 2014.

[7] Mesos, “Apache mesos,” http://mesos.apache.org/.
[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: dis-

tributed data-parallel programs from sequential building blocks,”
ACM SIGOPS Operating Systems Review, vol. 41, no. 3, pp. 59–72,
2007.

[9] E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng, “Cost optimized
provisioning of elastic resources for application workflows,” Fu-
ture Generation Computer Systems, vol. 27, no. 8, pp. 1011–1026,
2011.

[10] M. Cardosa, A. Singh, H. Pucha, and A. Chandra, “Exploiting
spatio-temporal tradeoffs for energy-aware mapreduce in the
cloud,” Computers, IEEE Transactions on, vol. 61, no. 12, pp. 1737–
1751, 2012.

[11] K. Chen, J. Powers, S. Guo, and F. Tian, “Cresp: Towards optimal
resource provisioning for mapreduce computing in public cloud-
s,” IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS.

[12] W. Chen, R. F. da Silva, E. Deelman, and R. Sakellariou, “Us-
ing imbalance metrics to optimize task clustering in scientif-
ic workflow executions,” Future Generation Computer Systems,
doi:10.1016/j.future.2014.09.014, 2014.

[13] M. Mao and M. Humphrey, “Auto-scaling to minimize cost
and meet application deadlines in cloud workflows,” in High
Performance Computing, Networking, Storage and Analysis (SC), 2011
International Conference for. IEEE, 2011, pp. 1–12.

[14] J. Dean and S. Ghemawat, “Mapreduce: simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[15] A. Verma, L. Cherkasova, and R. H. Campbell, “Orchestrating
an ensemble of mapreduce jobs for minimizing their makespan,”
Dependable and Secure Computing, IEEE Transactions on, vol. 10,
no. 5, pp. 314–327, 2013.

15

CyberShake

DeadLineFactor

-42

-22

-2

18

38

58

78

98
R

el
at

iv
e

D
ec

re
as

ed
 P

er
ce

n
ta

g
e

(%
)

2 4 8 16 32 64 128

Algorithms
MRH
URH13

Epigenomics

DeadLineFactor
2 4 8 16 32 64 128

LIGO

DeadLineFactor
2 4 8 16 32 64 128

Montage

DeadLineFactor
2 4 8 16 32 64 128

SIPHT

DeadLineFactor
2 4 8 16 32 64 128

Fig. 17. The means plot of RDP with 95.0% Tukey HSD confidence Intervals of MRH and URH13 as a function of the
DeadLineFactor for all workflows.

[16] W. Lang and J. M. Patel, “Energy management for mapreduce
clusters,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp.
129–139, 2010.

[17] R. Bajaj and D. P. Agrawal, “Improving scheduling of tasks in
a heterogeneous environment,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 15, no. 2, pp. 107–118, 2004.

[18] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation us-
ing virtual machines for cloud computing environment,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 24, no. 6, pp.
1107–1117, 2010.

[19] H. Hsiao, H. Chung, H. Shen, and Y. Chao, “Load rebalancing for
distributed file systems in clouds,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 24, no. 5, pp. 951–962, 2013.

[20] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allo-
cating directed task graphs to multiprocessors,” ACM Computing
Surveys (CSUR), vol. 31, no. 4, pp. 406–471, 1999.

[21] Q. Wu and Y. Gu, “Supporting distributed application work-
flows in heterogeneous computing environments,” in Parallel
and Distributed Systems, 2008. ICPADS’08. 14th IEEE International
Conference on. IEEE, 2008, pp. 3–10.

[22] S. Abrishami, M. Naghibzadeh, and D. Epema, “Cost-driven
scheduling of grid workflows using partial critical paths,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 23, no. 8, pp.
1400–1414, 2012.

[23] E. Demeulemeester, W. Herroelen, and S. Elmaghraby, “Optimal
procedures for the discrete time/cost trade-off problem in project
networks,” European Journal of Operational Research, vol. 88, no. 1,
pp. 50–68, 1996.

[24] Y. Yuan, X. Li, Q. Wang, and X. Zhu, “Deadline division-based
heuristic for cost optimization in workflow scheduling,” Informa-
tion Sciences, vol. 179, no. 15, pp. 2562–2575, 2009.

[25] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of mapre-
duce: an in-depth study,” Proceedings of the VLDB Endowment,
vol. 3, no. 1-2, pp. 472–483, 2010.

[26] E.-K. Byun, Y.-S. Kee, J.-S. Kim, E. Deelman, and S. Maeng, “Bts:
Resource capacity estimate for time-targeted science workflows,”
Journal of Parallel and Distributed Computing, vol. 71, no. 6, pp.
848–862, 2011.

[27] R. Calheiros and R. Buyya, “Meeting deadlines of scientific work-
flows in public clouds with tasks replication,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 7, pp. 1787–1796,
2014.

[28] X. Li and Z. Cai, “Elastic resource provisioning for cloud work-
flow applications,” Technical report of southeast university 2014,
http://www.seu.edu.cn/lxp/bb/06/c12114a113414/page.psp.

[29] L. David and I. Puaut, “Static determination of probabilistic exe-
cution times,” in Real-Time Systems, 2004. ECRTS 2004. Proceedings.
16th Euromicro Conference on. IEEE, 2004, pp. 223–230.

[30] M. A. Iverson, F. Ozguner, and L. C. Potter, “Statistical predic-
tion of task execution times through analytic benchmarking for
scheduling in a heterogeneous environment,” in Heterogeneous
Computing Workshop, 1999.(HCW’99) Proceedings. Eighth. IEEE,
1999, pp. 99–111.

[31] J. Yu, R. Buyya, and C. Tham, “Cost-based scheduling of scientific
workflow applications on utility grids,” in e-Science and Grid

Computing, 2005. First International Conference on. IEEE, 2005,
pp. 8–pp.

[32] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Software: Practice and Experience, vol. 41,
no. 1, pp. 23–50, 2011.

[33] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of scientific workflows,” in Workflows in
Support of Large-Scale Science, 2008. WORKS 2008. Third Workshop
on. IEEE, 2008, pp. 1–10.

[34] T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss,
Experimental methods for the analysis of optimization algorithms.
Springer, 2010.

