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Weighted General Group Lasso for Gene
Selection in Cancer Classification

Yadi Wang, Xiaoping Li, Senior Member, IEEE, and Rubén Ruiz

Abstract—Relevant gene selection is crucial for analyzing cancer gene expression data in cancer classification. Intrinsic interactions
among selected genes cannot be fully identified by most existing gene selection methods. In this paper, we propose a Weighted
General Group Lasso (WGGL) model to select cancer genes in groups. A gene grouping heuristic method is presented based on
weighted gene co-expression network analysis. To determine the importance of genes and groups, a method for calculating gene and
group weights is presented in terms of joint mutual information. To implement the complex calculation process of WGGL a gene
selection algorithm is developed. Experimental results on both random and three cancer gene expression datasets demonstrate that
the proposed model achieves better classification performance than two existing state-of-the-art gene selection methods.

Index Terms—Gene selection, Cancer classification, Group Lasso, Heuristic, Joint mutual information.
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1 INTRODUCTION

IN cancer prevention, diagnosis and treatment, gene selec-
tion and prediction accuracy for cancer types are essential

for cancer classification. Microarray data has been verified
as being useful in classifying many cancers. Successfully
identifying gene biomarkers is crucial in predicting the
correct class type for a given tumor sample and improving
the accuracy of a prediction [1]–[4]. The big challenge for
gene selection in cancer classification lies in that there are
a huge number of genes and a small number of samples in
microarray gene expression data. From a biological perspec-
tive, only a small subset of genes is strongly indicative of a
targeted disease. In other words, most genes are irrelevant
to cancer classification which results in noise and a decrease
in the accuracy of classification. From a machine learning
perspective, having too many genes always leads to over-
fitting and a negative influence on classification. Therefore,
gene selection methods with high prediction accuracy are
desirable for effective cancer classification.

Gene grouping is also paramount for gene selection.
A complex biological process, e.g., detecting lung cancer
or a brain tumor, not only involves detecting single but
also interactions between genes within a subset of genes
(or components). Each component can be represented by a
graph (e.g., gene regulation, protein interaction) in which
the relevant genes (components) are connected. These com-
ponents are potential targets for the administration of med-
ication and are helpful in disclosing biological processes
relevant to metastasis. Even though many approaches have

• Yadi Wang and Xiaoping Li are with the School of Computer Science and
Engineering, Southeast University, Nanjing, China, 211189; and also at
the Key Laboratory of Computer Network and Information Integration
(Southeast University), Ministry of Education, 211189, Nanjing, China.
E-mail: yadiwang@seu.edu.cn, xpli@seu.edu.cn.

• Rubén Ruiz is with the Grupo de Sistemas de Optimización Aplicada,
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been developed for gene selection of microarray data based
on groups in recent years, few of them are biological-
ly based. From the viewpoint of biology, an ideal group
contains all genes in a gene pathway. However, detecting
gene pathways in complex biological processes is difficult.
Fortunately, biological pathways can be mapped to network
modules [28] in complex biological processes. Functional
gene modules can be detected by the gene co-expression
network method [23] which has been increasingly used to
explore the system-level functionality of genes. Though this
method can identify susceptive genes in complex diseases,
their biological meanings are always unclear with gene co-
expression encoded by binary information. Zhang et al. [24]
proposed the weighted gene co-expression network analysis
(WGCNA) method to convert gene co-expression similarity
measures into network connection strengths. WGCNA finds
modules (or clusters) of highly correlated genes using the
hierarchical average linkage clustering method [25] and it
has been applied to a variety of biological environments
[26], [27]. Therefore, it is possible to identify gene pathways
according to the identified network modules and further to
group genes.

Adaptively identifying important groups and important
genes in a specific group is another challenge for gene
selection. Some adaptive shrinkage methods have been
proposed to achieve adaptively grouped gene selection by
constructing weight coefficients for groups and genes based
on statistics which depend on the actual gene expression
values of cancer microarray data. Some genes irrelevant to
biological processes would be selected because the weight
coefficients are usually not biologically related. Moreover,
some genes irrelevant to cancer classification might be
selected which results in reducing classifier performance
because the weight coefficients are very much sensitive
to noise or outlier of the dataset. The importance of a
group depends on both the genes and their interactions.
Though the mutual information technique has been applied
to feature selection [29]–[33], interactions between features
were ignored which led to unstable selected biomarkers.
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Joint mutual information [34]–[36] has been employed in
gene selection for microarray gene expression data and it
performs well in classification accuracy and stability [37].
On the other hand, as the joint mutual information depends
only on the probability distribution of a random variable
and not on its actual values, it is more effective to assess the
importance of genes and groups. It is desirable to use joint
mutual information to evaluate groups and genes.

The main contributions of this paper are summarized as
follows:

• A new weighted general group Lasso WGGL model
is developed for gene selection in cancer classifica-
tion.

• Based on the weighted gene co-expression network
analysis, a gene grouping heuristic GGH is proposed
which groups genes according to pathways.

• A gene and group weight calculation GGWC is pre-
sented to determine Intra- and Inter-group weights
in terms of joint mutual information in and between
groups.

• Based on GGH and GGWC, a method is investigated
for the developed WGGL model.

The remainder of the paper is organized as follows.
Section 2 reviews the previous related work. The problem
under study is described in Section 3. Section 4 constructs
the weighted general group Lasso model and the corre-
sponding algorithm is presented in Section 5. Section 6 gives
the experimental results followed by conclusions in Section
7.

2 RELATED WORK

Traditionally, genes are selected independently by statistical
learning methods. Among these methods, type-2 fuzzy logic
[4], toward integrating feature selection algorithms [5], a
general hybrid adaptive ensemble learning framework [6]
and SVM (Support Vector Machine) and its extensions [2],
[7], [8] have been widely used for gene selection in cancer
classification. By introducing different penalty strategies,
new sparse models have been constructed to select genes
more effectively. By using the L1 norm penalty in regression,
Lasso [9] and its extensions [10]–[14] have been applied to
sparse gene selection. By using a Bayesian regularization
term, sparse logistic regression [15] and sparse multinomial
logistic regression [16] have been developed. Though these
methods have been successfully applied to gene selection in
cancer classification, they could not exploit the interaction
information among genes.

Biologically speaking, complex diseases, such as cancer
and heart disease have many causes, including mutations in
gene pathways. The ideal gene selection method should be
able to eliminate the unimportant genes and automatically
include the highly correlated genes in groups. The group
Lasso [17] has been proposed for selecting the highly corre-
lated and relevant variables in groups rather than individual
derived variables which allows for more accurate predic-
tion. Meier et al. [18] extended it to logistic group Lasso.
Although the group Lasso and its extension give a sparse
set of groups, they do not measure sparsity within a group.
Later Simon et al. [19] proposed the sparse group Lasso

which yields both the groupwise sparsity and the within
group sparsity and developed an accelerated generalized
gradient descent to fit the model. Fang et al. [21] and Vincent
et al. [22] extended it to the adaptive sparse group Lasso and
the multinomial sparse group Lasso respectively.

Although group Lasso, sparse group Lasso and their
extensions [18], [21], [22] have been successfully applied
to classification and gene selection, their effectiveness relies
highly on the group division. For microarray gene expres-
sion data, it is desirable to divide genes into different groups
according to gene pathways. However, it is rather difficult
to detect gene pathways in complex biological processes.
Although the sparse group Lasso can identify important
groups and important genes within selected groups, it ap-
plies the same penalty coefficient to all genes without con-
sidering their relative importance. Moreover, the importance
of a group is merely measured by the number of genes in
each group. It is for this reason that if the group sizes are
not even, the sparse group Lasso may not work well. The
adaptive shrinkage methods [20]–[22] can select genes adap-
tively by using constructed adaptive weights which seem to
have solved these problems. For example, adaptive Lasso
[20] was developed to penalize all the coefficients by using
the inverse of the initial estimator. Adaptive sparse group
Lasso [21] was designed with a group bridge estimator.
From a statistical perspective, the constructed weights have
statistical meanings, which can also be roundly utilized to
evaluate the importance of genes. Although the multinomial
sparse group Lasso [22] introduces the weight mechanism
which includes group weights and parameter weights (i.e.,
gene weights), it does not provide biological explanations
of these weights. In addition, the above weights rely on
the actual values of cancer microarray data, so they are
not robust to outliers. Hence, the above-mentioned methods
cannot infer the distinct biological meanings and are not
very effective when performing gene selection in cancer
classification.

Compare to the previous existing works, we apply the
weighted gene co-expression network modules correspond-
ing to biological pathways in systematic biology to gene
groups in machine learning which has biological meanings
and is ease to implementation. Furthermore, the gene and
group weights with biological significance can be construct-
ed effectively by joint mutual information. Based on the
above two ideas, a Weighted General Group Lasso (WGGL)
model is proposed, which is effective to select informative
genes in cancer classification.

3 PROBLEM DESCRIPTION

Cancer screening and diagnostic applications often predict
the tumor type for a new sample accurately using as few
relevant important genes as possible. These genes are closely
related to biological processes. In this paper, we focus on
a general binary classification problem. Given a data set
(X,y) = {(xi, yi)|i = 1, · · · , n}, where xi = (xi1, · · · , xip)
is the input vector and yi ∈ {0, 1} indicates its class label.
The classification problem is therefore to obtain a discrim-
ination rule f : Rp → {0, 1} to judge in which class the
features belong. For cancer gene expression data, n and p
represent the number of sample tissues and the number of
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genes respectively. Let y = (y1, · · · , yn)T be the response
vector and X = (x1; · · · ;xn) = (x(1), · · · ,x(p)) be the
model matrix. Let x(j) = (x1j , · · · , xnj)T denote the jth

predictor. In terms of a linear regression model, the response
vector y can be predicted by

ŷ = Xβ̂ + ε =

p∑
j=1

β̂jx(j) + ε (1)

where β̂ = (β̂1, · · · , β̂p)T is the estimated coefficient vector,
and ε = (ε1, · · · , εn) ∼ N(0, σ2In) is the error vector. For
simplicity, we assume that the predictors are standardized
and the response vector is centered which indices that the
intercept ε can be removed from the model. The number of
non-zero estimated coefficients in β̂ represents the number
of selected genes. Assume that predictors are divided into
m groups, the input matrix X and β̂ can be represented
as X = (X(1), · · · , X(m)) and β̂ = (β̂(1)T , · · · , β̂(m)T )T

respectively. Then the response vector y is predicted by
ŷ =

∑m
l=1X

(l)β̂(l). Let I(·) be the indicator function and
ŷτ the prediction value for the given sample τ by the
discrimination rule. I(ŷτ > 0.5) denotes the classification
function f(xτ ). Therefore, the binary classification problem
can be solved by the regression method in [10].

4 WEIGHTED GENERAL GROUP LASSO

In this paper, an effective grouping method will be intro-
duced to group the given data into m groups. We use joint
mutual information to determine the weights of the divided
m groups and those of the genes in each group. Based on the
two types of weights, we propose a weighted general group
Lasso (WGGL for short) statistical learning model which is
formulated as follows:

β̂ = arg min
β

{1

2
‖y −

m∑
l=1

X(l)β(l)‖22

+ (1− α)λ
m∑
l=1

ηl‖w(l)β(l)‖2 + αλ
m∑
l=1

‖w(l)β(l)‖1
} (2)

In fact, Equ. (2) is a generalization of existing Lasso mod-
els and follows the same grouped gene selection framework
β̂ = arg min

β

{
L(β) + R(β)

}
in which L(β) is the loss

function and R(β) is the penalty term. In the proposed
WGGL model, the loss function is the squared error loss
which is identical to that of existing Lasso models, i.e.,

L(β) =
1

2
‖y −

m∑
l=1

X(l)β(l)‖22. (3)

However, the penalty term of the WGGL model is different
from that of existing Lasso models and contains both the
weights of groups and those of genes, i.e.,

R(β) = (1− α)λ
m∑
l=1

ηl‖w(l)β(l)‖2 + αλ
m∑
l=1

‖w(l)β(l)‖1 (4)

where α ∈ [0, 1] and λ ∈ [0,∞) are regularization parame-
ters. ηl and w(l) are the group weight and the gene weight
matrices respectively. They can be calculated by joint mutual
information (to be discussed in Section 5.2). The first item of

Equ. (4) is called the adaptive group Lasso penalty which
encourages sparsity of genes in groups. The second item is
called the adaptive Lasso penalty which encourages spar-
sity of genes within each group. The weighted l1/l2-norm∑m
l=1 ηl‖w(l)β(l)‖2 (or the adaptive group Lasso penalty)

penalizes the coefficients of significant groups, i.e., smaller
group weight coefficients mean more important groups are
selected first. The weighted l1-norm

∑m
l=1 ‖w(l)β(l)‖1 (or

the adaptive Lasso penalty) penalizes each gene in the
selected groups so that the coefficients of irrelevant genes
are shrunken to zero, i.e., bigger gene weight coefficients
imply that those genes are less important and therefore
there is a lower possibility of them being selected. In other
words, the penalty term (4) leads to sparsity in both inter-
and intra-group genes. WGGL improves the accuracy of
gene selection and reduces estimation bias by adopting
lower penalties for larger coefficients. In addition, WGGL
becomes the sparse group Lasso model developed in [19]
if the weight matrix w(l) is an identity matrix. Therefore,
WGGL is a generalization which includes the sparse group
lasso of [19] in particular cases.

It is difficult to calculate β̂ in the current form of Equ.
(2). Fortunately, the gene weight matrix w(l) is a positive
invertible matrix (to be proved in Section 5.2.1). We denote
θ(l) = w(l)β(l) (l = 1, . . . ,m) and Equ. (2) is simplified as:

β̂ = arg min
β

{1

2
‖y −

m∑
l=1

X̃(l)θ(l)‖22

+ (1− α)λ
m∑
l=1

ηl‖θ(l)‖2 + αλ
m∑
l=1

‖θ(l)‖1
} (5)

where X̃(l) = X(l)(w(l))−1. Therefore, to obtain the optimal
estimated coefficient vector β̂ of WGGL we need to obtain
the optimal θ̂. It is important to note that Equ. (5) is convex,
i.e., the optimal solution θ̂ can be obtained by subgradient
equations. For the gth group (g = 1, . . . ,m), the solution
θ̂(g) satisfies

X(g)T (y −
m∑
l=1

X̃(l)θ̂(l)) = ηg(1− α)λug + αλvg, (6)

where ug and vg are subgradients of ‖θ̂(g)‖2 and ‖θ̂(g)‖1 re-
spectively. According to [19], ug = θ̂(g)/‖θ̂(g)‖2 if θ̂(g) 6= 0,
otherwise ‖ug‖2 ≤ 1. vgj = sign(θ̂

(g)
j ) if θ̂(g)j 6= 0, otherwise

vgj ∈ [−1, 1].
Following the analysis in [19], θ̂(g) = 0 is satisfied

in Equ. (6) if ‖S(X̃(g)Tr(−g), αλ)‖2 ≤ ηg(1 − α)λ where
r(−g) = y −

∑
l 6=gX

(l)θ̂(l) is the partial residual of y. S is
the coordinate-wise soft threshold operator which is defined
as S(z, αλ))j = sign(zj)(|zj | − αλ)+. If θ̂(g) 6= 0, then the
subgradient condition for θ̂(g)k becomes

X̃
(g)T
k (y −

m∑
l=1

X̃(l)θ̂(l)) = (1− α)ληgugk + αλvgk. (7)

This is satisfied for θ̂(g)k = 0 (or β̂(g)
k = 0) if |X̃(g)T

k r(−g,k)| ≤
αλ where r(−g,k) = r(−g) −

∑
j 6=k X̃

(g)T
j θ̂(g) is the partial
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residual of y. When θ̂(g)k 6= 0, θ̂(g)k is obtained by

θ̂
(g)
k = arg min

θ̂
(g)
k

{1

2
‖y −

m∑
l=1

X̃(l)θ(l)‖22

+ (1− α)ληg‖θ(g)‖2 + αλ‖θ(g)‖1
}
.

(8)

Equ. (8) is a one-dimensional optimization problem in
respect to θ̂

(g)
k which can be solved by classical existing

optimization algorithms, e.g., gradient descent algorithms
[19] to get β̂(g)

k = θ̂
(g)
k /w

(g)
k . Similarly, the optimal solution

β̂ of WGGL can be obtained by β̂(g) = (w(g))−1θ̂(g).

5 PROPOSED ALGORITHM

For given microarray gene expression data, two aspects
are crucial in the performance of gene selection in cancer
classification: appropriately dividing the genes into groups
and determining the weights of groups and genes with
biological meanings. For the problem under study, we
propose a new gene selection algorithm (GSA for short)
based on the weighted general group Lasso model. GSA
contains three components: gene grouping heuristic (GGH),
gene and group weight calculation (GGWC) and solution
construction procedure (SCP). For a given X , y, α and
λ, GSA outputs β̂. The flowchart of the proposed gene
selection framework as in Fig. 1. Based on the flowchart,
the detailed framework of GSA is depicted by Algorithm 1.

Begin

Divide genes into      groups

            ？

End

N

Y

 Calculate gene weight matrix       ,  

group weight     and        for the     group

 Calculate the optimal solution     of the 

proposed weighted general group Lasso

1l

ml 

m

)(lw

l thl

̂

)(~ lX

1 ll

Fig. 1: Flowchart of the proposed gene selection framework.

5.1 Gene Grouping Heuristic
Cancer-diagnosis is a complex and well-orchestrated bio-
logical process with a synergistic work of a large number
of genes. For the sparse group Lasso model [19], genes are
grouped into “genesets” using cytogenetic position data.
Not all genes in the dataset are grouped and the involved

Algorithm 1: Gene Selection Algorithm (GSA) frame-
work

Input: X , y, α, λ
Output: β̂

1 Divide genes in X into m groups (X(1), · · · , X(m)) by
GGH;

2 for l = 1 to m do
3 Call GGWC to calculate w(l), ηl and X̃(l) in terms

of X(l);

4 Call SCP to calculate β̂;
5 return β̂.

genes are grouped coarsely in an intuitive way without con-
sidering a gene enrichment function. In addition, the group-
ing method used by this model groups specific datasets
which cannot be applied to general cases. In fact, all related
genes, no matter how closely or loosely related biologically
they are, are clustered into one group which results in
inaccurate predictions. However, interactions among genes
can be represented by networks which leads to the possible
use of the weighted gene co-expression network analysis
(WGCNA) [24] in order to group genes. WGCNA is a
network-based systems biology approach in which highly
correlated across sample genes are clustered into the same
group (or module).

In WGCNA, module identification essentially depends
on the weighted gene co-expression networks. Genes consist
of the nodes in each network. The edges of the network
are constructed using correlations between genes in the
expression data which are measured by the similarities
between genes. Two nodes are only connected by an edge if
their similarity is not less than threshold σ. Fig. 2 shows an
example.

G16 G17

G19

G15

G13

G12

G3

G4

G6

G2

G7

G14

G18

G8

G5

G1

G10

G9

G11
G20

Fig. 2: Gene Network.

Inspired by this idea, we propose a gene grouping
heuristic (GGH) which applies the weighted gene co-
expression network modules in systematic biology to gene
grouping in machine learning. Since there would be two or
more types of tumor in a cancer, GGH groups each of them
by WGCNA. In this paper, two tumor types are considered
for the cancer gene expression data, which is represented
by X = [XT1 , XT2 ]. XT1 = (x1; · · · ;xn′) and XT2 =
(xn′+1; · · · ;xn) denote type1 data and type2 data respec-
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Algorithm 2: Gene Grouping Heuristic (GGH)

Input: Matrix X = [XT1
, XT2

]
Output: Groups of X

1 Divide genes of type1 data XT1
into groups

G1 = {ĝ1, ĝ2, . . . , ĝk1} by IdentifyModule(NeT1);
2 Divide genes of type2 data XT2

into groups
G2 = {ĝk1+1, ĝk1+2, . . . , ĝm} by
IdentifyModule(NeT2);

3 G← G1

⋃
G2;

4 return G.

Algorithm 3: IdentifyModule (NeT)

Input: Matrix X = (x(1), · · · ,x(p)).
Output: Identified modules or groups.

1 for h = 1 to p do
2 for j = 1 to p do
3 Calculate the gene co-expression similarity shj ;

4 Determine the threshold parameter σ in terms of X
using the approximate scale-free topology criterion;

5 for h = 1 to p do
6 for j = 1 to p do
7 Calculate ahj by ahj = sσhj ;

8 Construct NeT using adjacency matrix A = (ahj)p×p;
9 for h = 1 to p do

10 for j = 1 to p do
11 lhj ← 0, k̂h ← 0, k̂j ← 0;
12 for u = 1 to p do
13 lhj ← lhj + ahuauj ;
14 k̂h ← k̂h + ahu;
15 k̂j ← k̂j + ahu;

16 ωhj ← lhj+ahj

min{k̂h,k̂j}+1−ahj
;

17 dωhj ← 1− ωhj ;

18 Construct the hierarchical clustering dendrogram
according to matrix D = (dωhj)p×p;

19 Call the dynamic tree cut algorithm to identify the
modules of NeT V = {v1, v2, . . . , vk};

20 return Groups V .

tively. XTt
can be represented by XTt

= (xTt

(1), · · · ,x
Tt

(p))
(t = {1, 2}). xTt

(i) (i = 1, . . . , p) denotes a gene (or a
network node). Row xj (j = 1, · · · , n′ or j = n′ + 1, · · · , n)
corresponds to a sample measurement.

According to [24], the gene co-expression similarity
shj = |cor(xTt

(h),x
Tt

(j))| measures the similarity between
columns xTt

(h) and xTt

(j). Using the power adjacency function
ahj = sσhj (σ ≥ 1), an adjacency matrix A = (ahj)p×p is ob-
tained by transforming the similarity matrix S = (shj)p×p in
which ahj ∈ [0, 1] denotes the network connection strength
between nodes h and j. By applying the approximate scale-
free topology criterion [24], we can get the optimal threshold
parameter σ for XT1

and XT2
. The weighted gene co-

expression network of XT1
or XT2

(NeT1 or NeT2) can be
constructed by its symmetric adjacency matrixAp×p. The to-
tal connection strength between nodes h and j is measured

by the topological overlap similarity ωhj (TOM for short)
[26]. ωhj =

lhj+ahj

min{k̂h,k̂j}+1−ahj
where lhj =

∑
u ahuauj , k̂h =∑

u ahu, u = 1, · · · , p. The dissimilarity between nodes h
and j is calculated by dωhj = 1 − ωhj . By applying the
dynamic tree cut algorithm presented in [27] to both NeT1

and NeT2, modules (or groups) are identified. The GGH
grouping nodes in NeT1 and NeT2 are formally depicted in
Algorithm 2 and the routine IdentifyModule (NeT) is given
in Algorithm 3.

The time complexity of steps 1-3 is O(p2), that of step 4
is O(p2), that of steps 5-7 is O(p2) and that of step 8 is also
O(p2). The time complexity of steps 9-17 is O(p3) and that
of step 18-19 is O(p2 log p). Therefore, the time complexity
of GGH is O(p3). Algorithm 2 divides each gene twice and
the p genes are extended to p̂ = 2p genes in the obtained
m groups. Therefore, the input matrix X can be represented
by X = (X(1), · · · , X(m)) = (x(1), · · · ,x(p̂)).

5.2 Gene and Group Weight Calculation
In the existing literature, both gene weights and group
weights are vocally calculated either by using statistical
methods or only by the number of genes. Little research
considers the biological relations among genes which leads
to a lack of precision in cancer diagnosis. In fact, genes
have interactions with each other which can be measured by
their joint mutual information. Mutual information between
genes x(h) and x(j) in cancer gene expression data generally
describes the degree of mutual dependence between the two
vectors. In this paper, we use joint mutual information to
evaluate the gene weight of x(k) which depends on the
degree of correlation between x(k) and each pair of the
other genes

(
x(h),x(j)

)
(h 6= j 6= k). Each group weight

is determined by the gene weights among the group. There
are two processes involved: gene weight and group weight
computation.

5.2.1 Computing Gene Weights
In the group ĝl (l = 1, 2, . . . ,m), gene x(k) not only
correlates with, but has an impact on both pairs of genes(
x(h),x(j)

)
(h 6= j 6= k). In other words, the weight of gene

x(k) depends on both the independent importance slk and
the dependent importance tlk in its group.

Let X̂ = (x̂1, · · · , x̂n)T , Y = (y1, · · · , yn)T and Z =
(z1, · · · , zn)T . According to [38], mutual information is in-
troduced to measure the amount of information shared by
X̂ and Y which is used to describe the degree of correlation
between the two variables and is defined as follows:

I(X̂;Y ) =
∑
x̂∈X̂

∑
y∈Y

p(x̂, y) log
p(x̂, y)

p(x̂)p(y)
, (9)

According to [34], the joint mutual information is defined
as:

I(X̂, Y ;Z) =
∑
x̂∈X̂

∑
y∈Y

∑
z∈Z

p(x̂, y, z) log
p(x̂, y, z)

p(x̂, y)p(z)
, (10)

where p(x̂, y, z) is the joint probability of x̂, y and z, p(x̂, y)
is the joint probability of x̂ and y, and p(z) is the probability
of z. Here, the probability is a Gaussian kernel probability
density estimator which is the same as in [39]. Based on



6

Equ. (10), we define the independent importance slk of x(k)

on
(
x(h),x(j)

)
in group ĝl (l = 1, 2, . . . ,m) as:

slk =
1

A2
p̂l−1

p̂l∑
h=1

p̂l∑
j=1

I(x(h),x(j);x(k)),{
h 6= j 6= k; k = 1, · · · , p̂l

} (11)

in which A2
p̂l−1 = (p̂l−1)!

(p̂l−1−2)! = (p̂l−1)(p̂l−2) is the number
of permutations for all gene pairs except x(k) in group ĝl.
slk measures the average amount of information shared by
all the other gene pairs with respect to x(k) in group ĝl.
In terms of Equations (10) and (11), a greater slk implies
more information is shared by all pairs of the remaining
genes with the gene x(k). In other words, slk quantitatively
measures the significant degree of x(k) in the remaining
genes in ĝl. A greater slk implies more significant x(k) in
ĝl.

Similarly to slk, based on Equs. (9) and (10), we define
the dependent importance tlk as:

tlk =
1

A2
p̂l−1

p̂l∑
h=1

p̂l∑
j=1

[
I
(
x(h),x(j);x(k)

)
− I

(
x(h);x(k)

)
−I
(
x(j);x(k)

)]+
,
{
h 6= j 6= k; k = 1, · · · , p̂l

}
(12)

where [ς]+ = max(ς, 0). tlk illustrates the average incre-
ment of the shared information between all pairs of the
remaining genes with respect to x(k) in ĝl. tlk > 0 in-
dicates that more information can be obtained from the
joint mutual information I(x(h),x(j);x(k)) than the sum
of mutual information of I(x(h);x(k)) and I(x(j);x(k)).
In addition, joint mutual information can be expressed
by I(x(h),x(j);x(k)) = I(x(h);x(k)) + I(x(j);x(k)) −
I(x(h);x(j)) + I(x(h);x(j)|x(k)) according to [37]. tlk > 0
implies that the correlation of all the other pair of genes
increases when the gene x(k) is introduced to (x(h);x(j)) so
that I

(
x(h);x(j)|x(k)

)
> I

(
x(h);x(j)

)
, i.e., the conditional

mutual information of (x(h);x(j)) given x(k) is greater than
the mutual information of x(h) and x(j). On the contrary,
x(k) has no influence on any pair of the remaining genes
when tlk = 0.

To evaluate the amount of slk and tlk, we apply
the information entropy to sl = (sl1, . . . , s

l
p̂l

)T and
tl = (tl1, . . . , t

l
p̂l

)T . For variable or vector X̂ , H(X̂) =

−
∑
x̂∈X̂ p(x̂) log(x̂), where p(x̂) = x̂/

n∑
i=1

x̂i represents the

probability distribution of each x̂ ∈ X̂ which is different
from those of Equs. (9) and (10). The entropy H(X̂) is an
average uncertainty measure of X̂ . Less the information
entropy of a variable means greater the amount of informa-
tion the variable provides and implies more important the
variable. In this paper, we only denote the weights of sl and

tl by µ1 = e−H(sl)

e−H(sl)+e−H(tl)
and µ2 = e−H(tl)

e−H(sl)+e−H(tl)
respec-

tively. By integrating slk and tlk, the comprehensive impor-
tance of x(k) in group ĝl is determined by s̄lk = µ1s

l
k + µ2t

l
k

which can be simplified as:

s̄lk =
e−H(sl)slk + e−H(tl)tlk
e−H(sl) + e−H(tl)

. (13)

Since slk ≥ 0 and tlk ≥ 0, it is natural that s̄lk ≥ 0. The gene
x(k) has distinct biological meanings when s̄lk > 0 whereas
it is meaningless when s̄lk = 0.

In terms of Equ. (2), a greater weight means the gene
coefficient is less important. Therefore, we define the weight
of x(k) in group ĝl as:

w
(l)
k =

 e−H(sl)+e−H(tl)

e−H(sl)slk+e
−H(tl)tlk

, if s̄lk > 0

1/ε, otherwise
(14)

in which 0 < ε � 1 is a threshold given in advance. In
other words, the genes with s̄lk = 0 are penalized by a very
big weight. According to Equ. (14), we construct the weight
matrix of genes in group ĝl (l = 1, · · · ,m) for Equ. (2) as:

w(l) = diag(w
(l)
1 , . . . , w

(l)
p̂l

), (15)

Since w(l)
k > 0, the determinant of the weight matrix w(l) 6=

0, i.e., det(w(l)) = w
(l)
1 × · · · × w

(l)
p̂l
6= 0. Therefore, matrix

w(l) is invertible.

5.2.2 Computing Group Weights
The importance of group ĝl (l = 1, . . . ,m) depends on the
importance of its genes which is defined by:

ξl =

p̂l∑
k=1

s̄lk. (16)

ξl demonstrates the importance of ĝl using the sum of the
importance of its genes. A greater ξl value denotes what the
importance of ĝl is. ξl = 0 implies that ĝl is not important.

Similarly to gene weight computing, we construct the
weight coefficients of ĝl using:

ηl =

(
ξl +

1√
p̂l

)−1
(17)

where p̂l is the number of genes in ĝl. The group weight
vector is defined as:

η = (η1, . . . , ηm)T (18)

which are the weights of the group Lasso in Equ. (2).
According to the above analysis, the gene and group

weights calculation (GGWC) procedure is formally de-
scribed in Algorithm 4.

In terms of Equations (9)-(12), the time complexity of
GGWC isO(p̂3l ). The weights constructed by GGWC explain
biologically the importance of both genes and groups.

5.3 Solution Construction Procedure
Once we obtain the gene weights and group weights for
the grouped genes, we can construct a solution in terms of
WGGL in Equ. (2). The idea follows that given in [18], [19]
which separates the general optimization procedure for the
objective into two sequential steps, i.e., groupwise sparsity
selection and within group sparsity selection. They are
repeated until a convergence condition is met. In this paper,
the absolute difference between two consecutive estimates
smaller than 0.001 is set as the termination criterion. The
procedure is formally described in Algorithm 5. Although
the time complexity in each iteration is O(mp̂g), the number
of iterations cannot be determined. Therefore, it is hard to
estimate the time complexity of SCP in a closed form.
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Algorithm 4: Gene and Group Weight Calculation
(GGWC)

Input: X(l)

Output: w(l), ηl, X̃(l)

1 for k = 1 to p̂l do
2 Calculate slk by Equ. (11);
3 Calculate tlk by Equ. (12);

4 H(sl)← 0, H(tl)← 0;
5 for k = 1 to p̂l do
6 H(sl)← H(sl)− p(slk) log(slk);
7 H(tl)← H(tl)− p(tlk) log(tlk);

8 ξl ← 0;
9 for k = 1 to p̂l do

10 Calculate s̄lk using Equ. (13);
11 ξl ← ξl + s̄lk;
12 if s̄lk > 0 then
13 w

(l)
k ← 1/s̄k;

14 else
15 w

(l)
k ← 1/ε;

16 w(l) ← diag(w
(l)
1 , . . . , w

(l)
p̂l

);
17 Calculate ηl by Equation (17);
18 X̃(l) ← X(l)(w(l))−1;
19 return w(l), ηl, X̃(l).

6 EXPERIMENTAL RESULTS

The related parameters and components of the proposed
GSA framework are calibrated on random calibration in-
stances. The proposed GSA with the WGGL model is com-
pared with GSA methods with the sparse group Lasso
and the group Lasso models over benchmark gene selec-
tion instances. All methods are implemented in R-3.3.2 for
windows and tested on an Intel(R) Core(TM) i5-2400 CPU
@ 3.10 GHz computer with 8.00 GB RAM with Windows
Server 2007 standard.

The commonly used indexes misclassification error and
the number of selected genes are adopted to evaluate the
obtained response vector y of the proposals. Misclassifi-
cation error is the error on the test data which is a set
of examples used only to assess the performance (gener-
alization) of a full specified classifier, which is defined by

E = 1
n

n∑
i=1

I(f(xi) 6= yi). The number of selected genes is

an index which reflects the gene selection performance of an
algorithm.

6.1 Parameters and Components Calibration
Simon et. al [19] considered the SGL model using GG
(Given Groups) for gene grouping and group and CE
(Constant Estimator) for gene weight determination. Since
SGL is similar to the WGGL model constructed in this
paper, GG and CE are adopted for component calibra-
tion. There are two variants (GGH and GG) for the gene
grouping component and two variants (GGWC and CE)
for the weight construction component. In addition, there
are two parameters λ and α which might have an effect
on the performance of the proposed GSA. In this paper,

Algorithm 5: Solution Construction Procedure (SCP)

Input: w, η, X̃
Output: β̂

1 β0 ← 0;
2 repeat
3 flag ← True;
4 for g = 1 to m do
5 if (‖S(X̃(g)Tr(−g), αλ)‖2 ≤ ηg(1− α)λ) then
6 θ̂(g) ← 0;
7 β̂(g) ← 0;

8 for k = 1 to p̂g do
9 if |X̃(g)T

k r(−g,k)| ≤ αλ then
10 θ̂

(g)
k ← 0;

11 β̂
(g)
k ← 0;

12 else
13 Calculate θ̂(g)k by Euq. (8);
14 β̂

(g)
k ← θ̂

(g)
k /w

(g)
k ;

15 β
′ ← β̂ − β0;

16 for g = 1 to m do
17 for k = 1 to p̂g do
18 if β

′

g,k > 0.001 then
19 flag ← False;

20 if flag = False then
21 β0 ← β̂;

22 until (flag = True);
23 return β̂.

λ takes values from {0.005, 0.01, 0.1, 0.15, 0.2, 0.5} and
α ∈ {0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.97, 0.99}. There-
fore, there are 2 × 2 × 6 × 10 = 240 combinations. To
calibrate the most appropriate components and parameters,
each combination is performed on four groups of random
calibration instances and each group is replicated 8 times.
240 × 4 × 8 = 7680 tests are conducted in total. The
performance of GSA is evaluated by RPD (relative percent-
age deviation). Let Ek(H) be the misclassification error for
instance k obtained by algorithm H and E∗k be the lowest
misclassification error for instance k obtained in all tests.
RPD is defined by RPD =

Ek(H)−E∗k
E∗k

× 100%.
The calibration instances are randomly generated in a

way so that the input matrix X and the response vector
y = (y1, · · · , yn)T (i = 1, · · · , n and yi ∈ {0, 1}) fol-
low the distributions given in [27]. Four random dataset-
s (n, p) = {(50, 1000), (75, 1500), (100, 2000), (120, 4000)}
are generated. GGH divides each gene twice and the p
genes are extended to p̂ = 2p genes. The four groups
with p̂ = 2000, 3000, 4000, 8000 genes are divided into
m = 12, 14, 15, 16 groups, respectively, by GGH. Details are
given in Table 1. The number of rows for NeT1 and NeT2

represent the number of two randomly selected types of
tumor. Fig. 3 demonstrates the cluster dendrograms in NeT1

and NeT2 for four random datasets respectively. The gene
dendrograms are obtained by average linkage hierarchical
clustering. The color row underneath each dendrogram
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(a) Cluster dendrogram and module color in NeT1 with p = 1000.
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(b) Cluster dendrogram and module color in NeT2 with p = 1000.
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(c) Cluster dendrogram and module color in NeT1 with p = 1500.

0.
80

0.
85

0.
90

0.
95

1.
00

fastcluster::hclust (*, "average")
as.dist(dissTom)

H
ei

gh
t

Module color

(d) Cluster dendrogram and module color in NeT2 with p = 1500.
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(e) Cluster dendrogram and module color in NeT1 with p = 2000.
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(f) Cluster dendrogram and module color in NeT2 with p = 2000.

0.
80

0.
85

0.
90

0.
95

1.
00

fastcluster::hclust (*, "average")
as.dist(dissTom)

H
ei

gh
t

Module color

(g) Cluster dendrogram and module color in NeT1 with p = 4000.
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(h) Cluster dendrogram and module color in NeT2 with p = 4000.

Fig. 3: Identification of network modules in NeT1 and NeT2.
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Fig. 4: Means plots and 95% confidence level Tukey HSD intervals for the parameters and components on the random calibration instances.

shows the module assignment determined by the dynamic
tree cut algorithm. Genes in the same branch can be assigned
to different modules.

The RPDs of each combination over the random in-

stances are analyzed by the multi-factor analysis of variance
(ANOVA) technique. Hypotheses should be ideally met by
the experimental data among which three main hypotheses
(independence of the residuals, homoscedasticity or homo-
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TABLE 1: Results of identified network modules in NeT1 and NeT2 from the four groups of random calibration datasets.

Module n = 50, p = 1000 n = 75, p = 1500 n = 100, p = 2000 n = 120, p = 4000

[NeT1]28×1000 [NeT2]22×1000 [NeT1]27×1500 [NeT2]48×1500 [NeT1]66×2000 [NeT2]34×2000 [NeT1]36×4000 [NeT2]84×4000

black — — 17 — — 12 9 —
blue 154 212 247 222 311 293 478 600
brown 51 94 112 90 133 107 156 285
green 41 45 26 36 67 26 64 137
grey 328 282 386 540 530 996 2077 1309
magenta — — — — — — 8 —
pink — — — — — 10 8 —
red — — 21 — — 14 11 —
turquoise 375 314 617 539 859 450 1082 1451
yellow 51 53 74 73 100 92 107 218

geneity of the factor’s levels variance and normality in the
residuals of the model) are checked and accepted. Means
plots and 95% confidence level Tukey HSD intervals for
α, λ and the two algorithm components are depicted in
Fig. 4. Recall that overlapping confidence intervals indicate
statistical insignificance among the overlapped means.

Fig. 4 implies that RPD of the proposal has a mostly non-
increasing tendency when α < 0.95 while it increases when
α ≥ 0.95. Most of the differences are statistically significant
when α < 0.95. GSA gets the least RPD when α = 0.95.
Therefore, we set α = 0.95 for GSA in the following exper-
iments. RPD of GSA fluctuates with an increase in λ. GSA
gets two minimal values when λ = 0.01 and λ = 0.2. The
RPD when λ = 0.2 is even less than that when λ = 0.01. The
differences are statistically significant for the other λ values.
Therefore, λ = 0.2 is adopted in the following experiments.

From Fig. 4, it can be observed that the difference be-
tween GGH and GG is statistically significant. Since the
RPD of GSA with GGH is much less than that of GG
for gene grouping, we adopt GGH to group genes in the
following experiments. In addition, we can observe that the
difference between GGWC and CE is statistically significant.
The RPD of GSA with GGWC is much less than that of CE
for gene and group weight determination. Therefore, GSA
uses GGWC to determine the gene and group weights in the
following experiments.

6.2 Comparison Results

To evaluate the advantages of the introduced WGGL mod-
el compared with the GL [17] and SGL [19] models, we
compare GSA methods with the three models on three fre-
quently studied public gene expression datasets: leukemia,
brain cancer and ovarian cancer. Before the comparisons, the
involved data is standardized by preprocessing.

6.2.1 Data Preprocessing
Leukemia dataset [1], [2] includes the expression pro-
files of 7129 genes in 47 cases of acute lym-
phoblastic leukemia (ALL) and 25 cases of acute
myeloid leukemia (AML). The original data is avail-
able at: http://portals.broadinstitute.org/cgi-bin/cancer/
publications/pub paper.cgi?mode=view&paper id=43. Ac-
cording to [1], [2], we preprocess this dataset using a thresh-
old of 100 and a ceiling of 16000. If gene expression levels
are less than 100, they are assigned a value of 100. Similarly,
gene expression levels are assigned a value of 16000 if

they are greater than 16000. Variation filters are applied
to filter those genes which violate max(ĝ)/min(ĝ) > 5
and max(ĝ) − min(ĝ) > 500. max(ĝ) and min(ĝ) are the
maximum and minimum values of gene expressions of gene
ĝ among different samples. After preprocessing, the dataset
contains 3571 genes. We set the label of 47 ALL samples to be
0 and 25 AML samples to be 1. To comprehensively illustrate
the performance of the proposed GSA with the WGGL mod-
el, three subsets (Leukemia1, Leukemia2 and Leukemia3)
are constructed by randomly selecting 1000, 1500 and 2000
genes from the preprocessed leukemia dataset. Each of the
four datasets is randomly split into 43 groups of training
data and 29 groups of test data for the two types of acute
leukemia.

Brain cancer dataset [40] contains expression levels of
12625 genes of 50 gliomas samples: 28 glioblastomas and 22
anaplastic oligodendrogliomas. The initial dataset is avail-
able at: http://portals.broadinstitute.org/cgi-bin/cancer/
publications/pub paper.cgi?mode=view&paper id=82. Af-
ter preprocessing, only 4139 genes are left. 28 glioblas-
tomas samples are labelled to 0 and 22 anaplastic oligo-
dendrogliomas samples are labelled to 1. Similarly to the
leukemia data, three subsets (Brain1, Brain2 and Brain3)
are constructed by randomly selecting 1000, 1500 and 2000
genes from the preprocessed brain cancer dataset. Each of
the four datasets is randomly split into 33 samples for
training and 17 samples for testing the performance of the
diagnostic rule.

Ovarian cancer dataset [41] includes the expression pro-
files of 54675 genes based on the 12 samples from the
resistant cohort and 16 samples from the sensitive cohort.
The gene expression raw data files have been deposit-
ed to NCBI Gene Expression Omnibus (GEO accession
GSE51373 at http://www.ncbi.nlm.nih.gov/projects/geo/).
Only 3228 important genes are selected after the complete
dataset preprocess. 16 sensitive cohort cancer samples are
set as the 0 class and 12 resistant cohort samples as the
1 class. Similarly to the above two cases, three subsets
(Ovarian1, Ovarian2 and Ovarian3) are constructed by ran-
domly selecting 1000, 1500 and 2000 genes from the pre-
processed ovarian cancer dataset. Each of the four datasets
is randomly split into 17 samples for training and 11 test
samples.

Weighted gene co-expression networks are constructed
for acute lymphoblastic leukemia data (ALL) and acute
myeloid leukemia data (AML) in the leukemia dataset.
This is also done for glioblastomas (GLI) and anaplastic
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oligodendrogliomas (OLI) in the brain cancer dataset and
for sensitive cohort (SEN) and resistant cohort (RES) in the
ovarian cancer dataset. All the datasets are grouped into
different groups by GGH as shown in Table 2.

TABLE 2: Number of groups obtained by GGH on different datasets.

Dataset Leukemia1 Leukemia2 Leukemia3 Leukemia

ALL AML ALL AML ALL AML ALL AML
Groups 7 10 9 11 9 12 10 17

Dataset Brain1 Brain2 Brain3 Brain

GLI OLI GLI OLI GLI OLI GLI OLI
Groups 7 7 9 10 10 12 16 24

Dataset Ovarian1 Ovarian2 Ovarian3 Ovarian

SEN RES SEN RES SEN RES SEN RES
Groups 10 10 11 10 11 13 16 16

6.2.2 Comparative Performance Analysis
GSA is an implementation of WGGL. Based on the calibrat-
ed parameters and components, we compare the proposed
WGGL against GL and SGL on the above datasets. Since the
samples are randomly selected, 10 replicates are performed
on each dataset. We adopt two commonly used cancer
classification performance evaluation indexes, the average
misclassification error (AME) and the average number of
genes selected (ANGS) on the 10 replicates for evaluation.
In addition, average computation times are compared on
each dataset. The experimental results are shown in Table 3.

From Table 3, it can be observed that WGGL achieves
obviously lower AMEs and significantly smaller ANGSs
than SGL and GL on all datasets. For example, the average
AME of WGGL is 0.110 which is much smaller than those
of SGL and GL with 0.128 and 0.176, respectively, on the
Leukemia subsets. The lower average AME of WGGL indi-
cates the WGGL obtains the best classification performance
on the four leukaemia datasets among the three models.
In addition, WGGL obtains the least ANGSs on the four
datasets among the three models. Even for the same AME
on the Leukemia2 subset, WGGL uses only 26.4 ANGS
while SGL needs 35.9. In other words, WGGL performs
better in classification and gene selection than SGL and GL
on the invloved datasets. As for efficiency, Table 3 shows
that WGGL always needs more computation time than SGL
and GL. For example, WGGL needs about 278s while SGL
and GL take 157s and 171s, respectively, on the leukemia
dataset. The reason lies in that: (i) WGGL (by the GSA)
needs more time for gene grouping, and (ii) group and gene
weight determination by GGH and GGWC is much time-
consuming. In any case, the computation time is perfectly
acceptable.

It is well known that there is an imbalance in the pos-
itive and negative data sets in gene classification problem-
s. Thus accuracy measurement at each class is important
to provide further insight into the performance of each
model. According to [47], we adopt Matthews correlation
coefficient (MCC) which is used in machine learning as
a measure of the quality of binary classifications. Math-
ematically, the formula of MCC is defined as: MCC =

TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

, where TP, FP, TN,

FN are the numbers of true positives, false positives, true

TABLE 3: Experimental results of the three models on different datasets.

Index Dataset GL SGL WGGL
Leukemia1 0.155 0.117 0.097
Leukemia2 0.168 0.114 0.114
Leukemia3 0.183 0.133 0.108
Leukemia 0.196 0.146 0.121
Average 0.176 0.128 0.110
Brain1 0.266 0.239 0.161
Brain2 0.205 0.191 0.103

AME Brain3 0.232 0.224 0.153
Brain 0.302 0.276 0.198
Average 0.251 0.233 0.154
Ovarian1 0.183 0.202 0.129
Ovarian2 0.193 0.187 0.138
Ovarian3 0.230 0.212 0.147
Ovarian 0.246 0.226 0.180
Average 0.213 0.207 0.149
Leukemia1 34.5 26.7 19.8
Leukemia2 39.7 35.9 26.4
Leukemia3 48.3 46.5 32.9
Leukemia 63.6 52.8 42.6
Brain1 23.4 30.7 16.4
Brain2 43.4 32.8 24.2

ANGS Brain3 49.2 39.4 33.8
Brain 67.3 54.2 35.7
Ovarian1 38.9 25.6 22.6
Ovarian2 44.3 34.8 25.7
Ovarian3 48.9 37.3 35.2
Ovarian 58.8 49.5 39.6
Leukemia1 45.08 37.13 48.69
Leukemia2 66.08 61.39 79.81
Leukemia3 66.35 62.24 86.98
Leukemia 170.73 156.78 277.53
Brain1 41.46 36.51 49.75
Brain2 53.88 46.29 68.76

Time (s) Brain3 64.61 53.47 89.60
Brain 239.72 193.81 332.79
Ovarian1 39.96 32.94 42.43
Ovarian2 48.74 40.38 56.76
Ovarian3 60.21 51.53 76.12
Ovarian 155.19 132.64 226.38

negatives and false negatives, respectively. To avoid the
one-time occasionality and ensure the validity of the test,
we compute the average value of five-fold cross validation
MCC across 10 trails. Table 4 reports the results of five-
fold cross validation MCC on different datasets. It is shown
that the WGGL achieves the highest MCC than other two
models, which shows that WGGL is more accurate at each
class in all cases than SGL and GL.

Details of the top 10 informative genes found by GL, SGL
and WGGL for the leukaemia dataset are shown in Table 5.
The biologically significant genes obtained by each classifier
are indicated in bold. The biological experimental results
proved some genes included in the frequently selected gene
sets are mostly and functionally related to carcinogenesis or
tumor histogenesis. For example, the most frequently select-
ed gene set of WGGL, which include cystatin C (CST3) and
myeloperoxidase (MPO) genes are proved experimentally to
be correlated with ALL or AML leukemia. The gene CST3
is located at the extracellular region of the cell and has the
role of invading human glioblastoma cells. The decrease in
CST3 in CSF might contribute to the process of metastasis
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Fig. 5: Results of network modules identified by GGH from the three cancer datasets.

TABLE 4: The results of five-fold cross validation MCC on different datasets.

Dataset GL SGL WGGL
Leukemia1 0.817 0.819 0.916
Leukemia2 0.810 0.829 0.884
Leukemia3 0.796 0.814 0.854
Leukemia 0.765 0.809 0.863
Brain1 0.549 0.637 0.724
Brain2 0.560 0.701 0.796
Brain3 0.540 0.616 0.705
Brain 0.494 0.551 0.651
Ovarian1 0.683 0.592 0.720
Ovarian2 0.608 0.615 0.714
Ovarian3 0.530 0.562 0.664
Ovarian 0.500 0.543 0.629

and the spread of cancer cells in the leptomeningeal tissues
[43]. Matsuo et al. [44] believed that the percentage of MPO-
positive blast cells was the most simple and useful factor
in predicting a prognosis for AML patients in this category.
Genes CST3, MPO, PTX3 and IGL are selected in the grey
module in AMLNet. Genes CST3, MPO, IGL, MEF2C and
KIT are selected in the blue module in ALLNet. Genes DF,
IGB, TCL1 and PYGL are selected in the different groups
respectively. In particular, note that gene groups CST3,
MPO and IGL are highly correlated with the occurrence
of leukaemia. Compared with the other two models, more
important genes are frequently selected by WGGL.

Table 6 depicts details of the top 10 informative genes
found by the three models for the brain cancer dataset.
Similar to those of the leukaemia dataset, we observe that
the most frequently selected genes by WGGL are the g-
lypican (GPC1) and protein tyrosine phosphatase, receptor-
type, zeta polypeptide (PTPRZ) genes. These genes are
the top two significant informative genes ranked by the
proposed WGGL model and they are highly related to brain
cancer. For example, multiple proteoglycan core proteins
and related enzymes have been differentially expressed in
glioblastoma tumors relative to normal brains. These genes
(including genes GPC1 and PTPRZ [45]) promote tumor
cell invasion or tumor development. The first ranked gene

selected by WGGL is GPC1, of which the gene function
is in accordance with the result given by Whipple et al.
[46]. It was reported that the increase expression of GPC1
on tumor cells or on tumor-associated endothelial cells is
associated with alterations in RTK signaling and promoting
tumorigenesis in brain, breast, and pancreatic cancer. In
particular, note that GPC1, PTPRZ and PTCH genes are
highly correlated with brain cancer.

Table 7 shows the top 10 ranked informative genes found
by the three models for the ovarian cancer dataset. It can be
observed that the most frequently selected genes by WGGL
involve the insulin-like growth factor 1 (IGF1), the insulin-
like growth factor 2 (IGF2) and the insulin receptor (INSR).
The first ranked gene selected by WGGL is the insulin-like
growth factor 1 (IGF1) gene. Koti et al. [41] showed that IGF1
potentially acts as one of the key signalling pathways which
is involved in the development of intrinsic chemotherapy
resistance in ovarian cancer. Some genes are frequently se-
lected by WGGL while they are not discovered by the other
two models. WGGL always selects genes which are more
relevant to ovarian cancer classification than SGL and GL.
For example, the CDKN2C and NGFRAP1 genes are less
important than the IGF1 gene as shown in [41]. However,
the IGF1 and IGFBP3 genes selected by WGGL are highly
correlated with ovarian cancer for the same group.

The results of network modules identified by GGH from
the three cancer datasets are given in column stacking
diagram Fig. 5. The total number of genes in the ordinate is
stacked by the number of genes in different modules. From
this figure we observe that the group sizes are not even
for the leukemia and brain two datasets. Especially, the size
of biggest group (grey module) is 2472 is far larger than
the smallest group (magenta module) whose size is 34 for
leukemia dataset. The size of biggest group (grey module)
is 1274 is far larger than the smallest group (midnightblue
module) whose size is 31 for brain dataset. The results of
WGGL is based on the GGH and SGL and GL is based on
the GG in Table 5, 6 and 7. WGGL can still work better
than the other two models on the unevenly sized groups.
To illustrate this, we report the top 10 ranked informative
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TABLE 5: Top 10 ranked informative genes selected by the three models from the leukaemia dataset.

Rank Gene description

WGGL SGL GL

1 CST3 cystatin C (amyloid angiopathy
and cerebral hemorrhage)

ADA adenosine deaminase RNS2 ribonuclease 2 (eosinophil-derived
neurotoxin; EDN)

2 MPO myeloperoxidase TTF mRNA for small G protein MB-1 gene
3 DF D component of complement (adipsin) MPO myeloperoxidase IGL immunoglobulin lambda light chain
4 IGB immunoglobulin-associated beta

(B29)
IGHM immunoglobulin mu KIT V-kit Hardy-Zuckerman 4 feline sar-

coma viral oncogene homolog
5 PTX3 pentaxin-related gene, rapidly in-

duced by IL-1 beta
LYZ lysozyme CFD complement factor D (adipsin)

6 IGL immunoglobulin lambda light chain PR264 gene CD19 gene
7 TCL1 gene (T cell leukemia) extracted

from H.sapiens mRNA for Tcell leukemi-
a/lymphoma 1

MEF2C MADS box transcription en-
hancer factor 2, polypeptide C (myocyte
enhancer factor 2C)

IGB immunoglobulin-associated beta
(B29)

8 PYGL glycogen phosphorylase L (liver
form)

RNS2 ribonuclease 2 (eosinophil-derived
neurotoxin; EDN)

IGHM immunoglobulin mu

9 MEF2C MADS box transcription en-
hancer factor 2, polypeptide C (myocyte
enhancer factor 2C)

IGB immunoglobulin-associated beta
(B29)

MEF2C MADS box transcription en-
hancer factor 2, polypeptide C (myocyte
enhancer factor 2C)

10 KIT V-kit Hardy-Zuckerman 4 feline sar-
coma viral oncogene homolog

IGL immunoglobulin lambda light chain MANB mannosidase alpha-B (lysosomal)

TABLE 6: Top 10 ranked informative genes selected by the three models from the brain cancer dataset.

Rank Gene description

WGGL SGL GL

1 GPC1 human mRNA for heparan sulfate
proteaglycan (glypican)

PAGA H.sapiens mRNA for tetranectin
(plasminogen-binding protein)

SH3 domain-containing protein SH3P17
mRNA

2 PTPRZ protein tyrosine phosphatase,
receptor-type, zeta polypeptide

PTCH patched (Drosophila) homolog PKD2 autosomal dominant polycystic
kidney disease type II

3 N-MYC oncogene protein mRNA HMG2 high-mobility group (nonhistone
chromosomal) protein 2

CENPB centromere protein B (80kD)

4 GCSH glycine cleavage system protein H
(aminomethyl carrier)

CSNK1D human casein kinase I delta m-
RNA

HMG2 high-mobility group (nonhistone
chromosomal) protein 2

5 PTCH patched (Drosophila) homolog GUSB human beta-glucuronidase mRNA ORF mRNA
6 PKD2 autosomal dominant polycystic

kidney disease type II
PTPRZ protein tyrosine phosphatase,
receptor-type, zeta polypeptide

PAGA H.sapiens mRNA for tetranectin
(plasminogen-binding protein)

7 RBP1 cellular retinol-binding protein mR-
NA

MHC class I region proline rich protein
mRNA

KIAA0115 gene

8 APXL apical protein (Xenopus laevis-like) KIAA0045 gene PTCH patched (Drosophila) homolog
9 HMG2 high-mobility group (nonhistone

chromosomal) protein 2
GPC1 human mRNA for heparan sulfate
proteaglycan (glypican)

MHC class I region proline rich protein
mRNA

10 ADM homo sapiens mRNA for a-
drenomedullin precursor

DLX7 distal-less homeobox 7 GPC1 human mRNA for heparan sulfate
proteaglycan (glypican)

TABLE 7: Top 10 ranked informative genes selected by the three models from the ovarian cancer dataset.

Rank Gene description

WGGL SGL GL

1 IGF1 insulin-like growth factor 1 (so-
matomedin C)

CDKN2C cyclin-dependent kinase in-
hibitor 2C (p18, inhibits CDK4)

IGLC1 immunoglobulin lambda constant
1 (Mcg marker)

2 MYC v-myc avian myelocytomatosis vi-
ral oncogene homolog

IGLV1-44 immunoglobulin lambda vari-
able 1-44

NGFRAP1 nerve growth factor receptor
(TNFRSF16) associated protein 1

3 IGF2 insulin-like growth factor 2 (so-
matomedin A)

GBP1 guanylate binding protein 1,
interferon-inducible

IGKC immunoglobulin kappa constant

4 ZFP36 ring finger protein IGF2 insulin-like growth factor 2 (so-
matomedin A)

MRI1 methylthioribose-1-phosphate iso-
merase 1

5 NFKBIA nuclear factor of kappa light
polypeptide gene enhancer in B-cells in-
hibitor, alpha

IGJ immunoglobulin J polypeptide, linker
protein for immunoglobulin alpha and mu
polypeptides

IGFBP3 insulin-like growth factor bind-
ing protein 3

6 INSR insulin receptor IGKC immunoglobulin kappa constant GJB2 gap junction protein, beta 2, 26kDa
7 PLP2 proteolipid protein 2 (colonic

epithelium-enriched)
NGFRAP1 nerve growth factor receptor
(TNFRSF16) associated protein 1

IGF2 insulin-like growth factor 2 (so-
matomedin A)

8 IGFBP3 insulin-like growth factor bind-
ing protein 3

GUSBP11 glucuronidase, beta pseudo-
gene 11

INSR insulin receptor

9 PSMB9 proteasome (prosome, macropain)
subunit, beta type, 9

IGFBP3 insulin-like growth factor bind-
ing protein 3

APLP2 amyloid beta (A4) precursor-like
protein 2

10 OAT ornithine aminotransferase OAT ornithine aminotransferase INHBA inhibin, beta A
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genes selected by SGL and GL models based on the GGH
on the three cancer datasets in Table 8.

After adopting the GGH, SGL selects 49.6 ANGS and GL
selects 59.1 ANGS on the leukaemia dataset. The number of
biologically significant genes frequently selected by the SGL
and GL models based on the GGH in the first two columns
of Table 8 are still less than those by WGGL in Table 5. More
specially, gene TCL1 is selected by WGGL model which is
in the smallest magenta module in the networks which are
constructed for ALL, but the other two models cannot select
this gene. Similarly, SGL selects 48.7 ANGS and GL selects
64.9 ANGS based on GGH on the brain dataset. We observe
that the frequently selected genes N-MYC by WGGL in
Table 6 which is not selected by the other two models based
on GGH in middle two columns of Table 8. This gene is
contained in the smallest midnightblue module. Finally, SGL
selects 41.3 ANGS and GL selects 50.8 ANGS based on GGH
on the ovarian dataset. Genes IGF1 and MYC are frequently
selected by WGGL in Table 7 while they are not discovered
by the other two models based on GGH in the last two
columns of Table 8. Gene IGF1 in magenta module and
gene MYC in blue module, which are small sized groups.
Therefore, the proposed WGGL model can achieve better
gene selection performance on the unevenly sized groups
as compared with GL and SGL models.

TABLE 8: Top 10 ranked informative genes selected by the SGL and GL models
based on the GGH on the three cancer datasets.

Rank Leukaemia Brain Ovarian

SGL GL SGL GL SGL GL

1 CD36 IGB PKD2 PAX8A IGF2 OAT
2 CST3 AQP3 CENPB PTCH IGFBP3 IGKC
3 MPO IGHM PTPRZ HMG2 ITPR3 IGFBP3
4 ZYX ANX1 GPC1 STPKC2K TMC6 RNF139
5 IGB CD36 DRAP1 GPC1 OAT IGF2
6 IGL IGL PSP31 CENPB INSR ZFP36
7 CD24 MEF2C HMG2 PRB2 CPVL INSR
8 Epb72 ZYX NRF1 PSP31 SCAMP1 TMC6
9 MEF2C GB BMP-2A PKD2 CDKN2C NGFRAP1
10 IGHM MPO PTCH NRF1 RNF139 CPVL

7 CONCLUSION

In this paper, the weighted general group Lasso for gene
selection in cancer classification has been proposed and
a new gene selection algorithm has also been developed.
The network-based system biology approach is introduced
to the constructed sparse group Lasso. Weighted gene co-
expression network analysis is applied to identify important
network modules for cancer datasets and group genes.
Biologically significant gene and group weights are cal-
culated by joint mutual information. Experimental results
on benchmark instances show that the proposed model
and algorithm are more suitable for classification and gene
selection than existing models.
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