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Architecture for Social Internet of Vehicles
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Abderrahim Benslimane , Carlos T. Calafate , Juan-Carlos Cano, and Anna Maria Vegni

Abstract—The Internet of Vehicles (IoV) has emerged as a1

new spin-off research theme from traditional vehicular ad hoc2

networks. It employs vehicular nodes connected to other smart3

objects equipped with a powerful multisensor platform, commu-4

nication technologies, and IP-based connectivity to the Internet,5

thereby creating a possible social network called Social IoV6

(SIoV). Ensuring the required trustiness among communicating7

entities is an important task in such heterogeneous networks,8

especially for safety-related applications. Thus, in addition to9

securing intervehicle communication, the driver/passengers hon-10

esty factor must also be considered, since they could tamper11

the system in order to provoke unwanted situations. To bridge12

the gaps between these two paradigms, we envision to connect13

SIoV and online social networks (OSNs) for the purpose of14

estimating the drivers and passengers honesty based on their15

OSN profiles. Furthermore, we compare the current location of16

the vehicles with their estimated path based on their historical17

mobility profile. We combine SIoV, path-based and OSN-based18

trusts to compute the overall trust for different vehicles and their19

current users. As a result, we propose a trust-aware communi-20

cation architecture for social IoV (TACASHI). TACASHI offers21

a trust-aware social in-vehicle and intervehicle communication22

architecture for SIoV considering also the drivers honesty factor23

based on OSN. Extensive simulation results evidence the effi-24

ciency of our proposal, ensuring high detection ratios >87% and25

high accuracy with reduced error ratios, clearly outperforming26

previous proposals, known as RTM and AD-IoV.27

Index Terms—Human factor, Social Internet of Vehicles (SIoV),28

trust, vehicular ad hoc network (VANET).29

I. INTRODUCTION30

MANY applications have been realized through vehic-31

ular networks as a result of communication among32
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vehicles and/or the infrastructure [1]. These applications are 33

abstractly classified into safety and nonsafety related appli- 34

cations. The former class of applications exhibit stringent 35

requirements, such as delay-critical, security-critical, trust- 36

critical, and decision-critical features, whereas the latter class 37

of applications have relatively less stringent requirements. 38

Nevertheless, many of these applications represent a decision- 39

aided system where the final decision (usually taken by the 40

human drivers) have a direct effect on the outcome of the deci- 41

sion. Therefore, the trustworthiness of the information and the 42

source of information is of prime importance. 43

In Internet of Vehicles (IoV) paradigm, each vehicle is 44

considered as a smart object equipped with a powerful mul- 45

tisensor platform, communications technologies, computation 46

units, IP-based connectivity to the Internet, and to other vehi- 47

cles either directly or indirectly. In addition, a vehicle in 48

IoV is envisioned with a multicommunication model, enabling 49

the interactions among intravehicle components, intervehi- 50

cles, vehicle-to-infrastructure, and vehicles-to-people. IoV also 51

enables the acquisition and processing of large amount of data 52

from versatile geographical areas via intelligent vehicles com- 53

puting platforms, to offer various categories of services for 54

road safety and other services to drivers and passengers [2]. 55

To this end, the communication of vehicles with differ- 56

ent entities in IoV exhibit social features at par with the 57

traditional social networks where the nodes share informa- 58

tion. More precisely, Social IoV (SIoV) are a breed of 59

socially aware ephemeral networks [3], where vehicular nodes 60

share/exchange information with different entities and thus- 61

forth comparable with the traditional social networks. On the 62

other hand, with the emergence of 5G technology, almost all 63

Internet services can be accessed anytime and anywhere [4]. 64

In addition, vehicles’ mobility patterns can be easily estimated 65

through its history profiles and the drivers’ social interactions 66

and hobbies. Hence, the SIoV system can trigger a possible 67

event, which would advocate for verification of the situation, 68

resulting in stolen vehicle alert an alert or even, text the vehi- 69

cle’s owner. It is indeed possible that there could be false 70

alarms; however, more insights are needed to this issue. 71

To fill the gaps, in this paper, we propose a novel SIoV com- 72

munication architecture that takes advantage of online social 73

networks (OSNs) to enhance the SIoV trust establishment by 74

considering the human and location-related honesty (LRH). 75

We leverage the group-trust metric adopted by Advogato,1 76

1[Online]. Available: http://www.advogato.org/
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attempting to determine the maximum set of trusted peers,77

while minimizing the influence of unreliable dishonest peers78

during communication [5]. Afterward, an honesty-related clas-79

sification (i.e., good, bad, or compromised) is associated to80

every node (driver/passenger) and vehicle location depending81

on the Advogato classification of this node (i.e., either trusted82

or distrusted) and the location tracking system, respectively.83

In addition, in-vehicle interdevice communications are secured84

using a lightweight technique based on Chaotic Maps.85

Furthermore, the intervehicle trust is also estimated,86

combined with the discrete recommendations from RSUs87

and trusted authorities (TAs). Finally, the Advogato results88

are used to probabilistically identify honest and dishonest89

drivers/passengers. Using this strategy, the aim is not just to90

reduce both the detection error ratios and also the ratio of91

doubtful nodes that the intervehicle trust could not classify92

them to either trusted or distrusted peers but also to prevent93

unwanted situations, such as stolen vehicles thanks to the LRH94

estimation.95

To summarize, the contributions of this paper are as follows.96

1) We propose a trust-aware communication architecture97

for social IoV (TACASHI), which offers a trust-aware98

social in-vehicle and intervehicle communication archi-99

tecture for SIoVs.100

2) Secure in-vehicle communications are guaranteed101

through Chaotic Maps.102

3) Drivers’ honesty consideration using their OSN profiles103

reached through a trusted middleware.104

4) Vehicles movement-related honesty estimation through105

the use of their historical mobility patterns and a path106

prediction algorithm.107

The remainder of this paper is organized as follows. In108

Section II, we present some background in vehicular ad hoc109

network (VANET), IoV, OSNs, and trust establishment in both110

kinds of networks. Afterward, in Section III, we present an111

overview of our proposal, followed by its details in Section IV.112

TACASHI’s dishonesty detection process is then discussed in113

Section V. Section VI presents our simulation environment,114

followed by the discussion of the results obtained. Finally, the115

conclusions are drawn at the end of this paper.116

II. STATE-OF-THE-ART117

Trust establishment in vehicular networks is essential for118

the realization of efficient secure applications. Various solu-119

tions have adopted trust modeling to enhance the intervehicle120

communications for VANETs, IoV, and SIoV. In this section,121

we provide an overview of the main features of socially aware122

networking, as well as the existing trust-based solutions in123

these domains.124

A. Social Trust and Socially Aware Networking125

The proliferation of hand-held devices demands mobile car-126

riers to provide instant connectivity. Moreover, the movements127

of the users are generally related to their social behaviors and128

relationships, and the mobility patterns of mobile devices car-129

ried by these users are strongly coupled with their movements.130

Thus, mobile networks are nowadays more human-centric. As131

a result, a new field called socially aware networking has sur- 132

faced that takes the human behavior into account [6]. This new 133

paradigm of social-awareness is applicable to many types of 134

internode interaction-based networks, such as ad hoc networks 135

and its different breeds. 136

B. Trust in OSNs 137

As aforementioned, trust establishment is primarily impor- 138

tant for enhancing the security of different networks and 139

many solutions used trust establishment mechanisms for 140

OSNs [7], [8]. The general trust establishment solutions for 141

OSNs are based on either Advogato trust metric [5] or 142

PageRank-based solutions [9]. 143

Generally, trust for OSNs can be classified using three com- 144

plementary phases: 1) trust information collection; 2) trust 145

evaluation; and 3) trust information dissemination. To identify 146

how honest and trustful is a profile owner, social trust is based 147

on a scalar estimation using the personal profile information, 148

which includes user identity and interactions with other users. 149

Once this social trust is estimated, it will be provided to the 150

end users in different forms and for different purposes. 151

C. Trust in VANETs and IoV 152

In the VANET context, trust management schemes are gen- 153

erally classified as entity-based, content-based, and hybrid 154

models following the targeted adversary, which can be dis- 155

honest entities, malicious messages, or both [10]. Several 156

works in the literature addressed entity-based trust models. 157

Yang’s [11] solution is based on revocation of the nodes that 158

sent falsified or fake information using different techniques. 159

Haddadou et al. [12] chose to associate a credit value to 160

each neighbor vehicle that will increase or decrease depend- 161

ing on the messages credibility of the concerned neighbor’s. 162

Hence, this credit will be quickly decreased when replaying 163

or injecting new (potentially false or malicious) messages. 164

For content-based trust management, Gurung et al. [13] 165

adopted three metrics to classify the received messages into 166

either legal or malicious messages; these metrics are con- 167

tent similarity, content conflict, and routing path similarity. 168

However, in addition to its high time complexity, this solution 169

does not take into account the high level of mobility exhibited 170

by VANET nodes and the node sparsity. On the other hand, 171

our previous hybrid models [14], [15] focus mainly on facing 172

denial-of-service and coalition attacks in VANETs using the 173

standardized messaging service. However, the additional traf- 174

fic generated by the recommendation requests/responses might 175

affect some safety-related applications. Additionally, few solu- 176

tions addressing trust issues in the IoV have also been recently 177

published [16]. 178

Hossain et al. [17] proposed a trust model for collect- 179

ing evidence from IoV infrastructures, store them in vehicles 180

tamper-proof devices, and then start intervehicle trust-based 181

communication. The main limitation of such approach is that 182

the behavior of vehicles may change. Thus, trust information 183

values should remain static over time. In addition, authors 184

did not evaluate the performance in a realistic environment 185

implementing the different low-layer features of VANETs. 186
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Unlike existing trust models, Gai et al. [18] proposed a187

trust management system for SIoV called RTM where each188

node stores its own reputation information rated by others189

during past transactions. They introduced a CA server to190

ensure the integrity and the undeniability of the trust informa-191

tion. However, besides the additional cost of the introduced192

server, this scheme may not be effective in rural scenarios or193

low-density scenarios. Furthermore, as like in other existing194

solutions, the human honesty factor is not considered.195

D. Trust Computation in Vehicular Networks and OSNs196

Due to the distributed and ephemeral nature of vehicu-197

lar networks, every vehicle locally evaluates its neighbors’198

trust. This trust computation can be carried out either in a199

scalar way, using the piggybacked opinions within exchanged200

messages, or through clustered and group-based collaboration201

among vehicles located in a same area [19]. Whereas, trust202

in OSNs requires having a sink or a third trusted party who203

is responsible for evaluating the trust for different peers. This204

sink can either handle the whole task of trust computation, or205

it can distribute such task among secondary sinks, which are206

typically community leaders [20].207

In the light of the existing works, there is a still a huge208

gap between the requirements of the trust-based communi-209

cation in SIoV and the existing solutions. To fill the gaps,210

we propose a novel trust-based SIoV communication archi-211

tecture (namely, TACASHI), which besides the intervehicle212

trust establishments evaluates also their drivers and move-213

ment honesty. Furthermore, TACASHI also offers a secure and214

lightweight in-vehicle communication strategy.215

III. TACASHI OVERVIEW216

Establishing SIoV trust with the incorporation of the human217

honesty factor should be achieved by relying on third TAs218

as intermediaries for this information, since these authorities219

are the only ones having the possibility to trace/track vehi-220

cles identities together with their drivers/owners. Accounting221

for the vehicles’ identity is not a problem, as every vehi-222

cle should have a valid certificate and a set of pseudonyms223

provided by the TA. However, matching the driver identity224

and social account with the vehicle identity involves the use225

of other intermediate tools, such as digital fingerprint, eyes226

and voice recognition systems, or a subscriber identification227

module, thus imposing more requirements onto the system.228

Due to the high cost of smart vehicles, and to the probable229

lack of RSUs in rural environments, Android-based platforms,230

including smartphones and tablets have recently emerged as231

an alternative solution to provide vehicular communications.2232

This way, any trusted third authority can be reached using233

different cellular network technologies. This new research area234

is know as heterogeneous vehicular networking [21].235

Fig. 1 represents an overview of our proposed SIoV archi-236

tecture in which, besides passengers, vehicles, roadside units,237

and TAs, we also involve OSNs. The latter are accessed238

2The SmartCarPhone project. [Online]. Available: http://www.grc.upv.es/
SmartCarPhone/

Fig. 1. Proposed SIoV architecture.

Fig. 2. Driver and passengers honesty factor.

through a trusted middleware provided by the network opera- 239

tor, RSUs, or TA like the City Hall. 240

TACASHI architecture involves five main actors: 1) the per- 241

son registered as the vehicle owner; 2) the passengers within 242

the vehicle represented by their connected devices; 3) the 243

vehicles themselves; 4) road side units and TAs; and 5) the 244

OSN accounts connected to the driver and passengers’ devices. 245

In addition, a path prediction algorithm [22] is also used to 246

estimate and judge the current vehicle locations. 247

IV. TACASHI’S TRUST ESTABLISHMENT 248

As mentioned in the previous sections, our proposal involves 249

drivers’ honesty (see Fig. 2), vehicles’ honesty (see Fig. 3), 250

and vehicles’ LRH (see Fig. 4). Before detailing how these 251

factors are computed in the following sections, the next 252

section presents the proposed in-vehicle interdevice secure 253

communication process. 254

A. In-Vehicle Interdevices Authentication Process 255

In order to enable OSN-based trust, while preserving 256

drivers/owners privacy, the department of motor vehicles 257

(DMV) initializes the OBU by performing a number of oper- 258

ations. First, the driver enters its anonymized OSN account 259

and the DMV registers it against the user. DMV also issues a 260

number of pseudonyms to user a, i.e., {IDa
1, IDa

2, . . . , IDa
n}. 261
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Fig. 3. Vehicles honesty factor.

Fig. 4. LRH factor.

In-vehicle device/passengers in TACASHI are required to262

pass the authentication process before gaining access to the263

different network operations. If these devices fail to be authen-264

ticated, they are directly classified as compromised devices, as265

shown in Fig. 2.266

We assume that all the devices in a network have an identity267

(IDi), and get the secure token from the TA; this token is268

assumed to be received through a secure channel. All the nodes269

compute the public key (x, Tk(x)) and private key k using270

Chaotic Maps based on Chebyshev polynomials, which are271

known to be less energy consuming than RSA and ECC [23].272

Consider the communication between devices A and B273

with their identities, i.e., IDa and IDb, and their public and274

private key pairs are {(x, Tka(x)), ka} and {(x, Tkb(x)), kb},275

respectively.276

If node A wants to securely communicate with node B, it277

initiates the authentication request as follows.278

1) Node A selects a prime number p and computes the279

value of Tp(x).280

2) Node A sends the message ma = {Ha, Ca} to node B.281

3) After getting the message ma = {Ha, Ca} from node A,282

B decrypts Ca with the key k = Tt(x) received from TTP,283

and compares the value of PW from the decrypted mes-284

sage with its obtained PW value from TTP. If there is a285

match, then node B concludes that A is an authenticated286

node.287

4) Afterward, it checks the message integrity by computing288

the hash value, and compares it with Ha. If there is289

a match, then B concludes that the message was not 290

altered during the communication. 291

5) Now node B selects the big prime value b and computes 292

the values of Tb(x), Ks, Hb, and Cb. 293

6) Node B sends the message mb = {Hb, Cb, Tb(x)} to 294

node A. 295

7) After getting the message mb = {Hb, Cb, Tb(x)} from 296

node B, A computes the value of Ks = Tpb(x) = 297

Tp(Tb(x)) by using Tb(x) from message mb. Then, node 298

A decrypts Cb with the key Ks, and compares the value 299

of PW from the decrypted message with its obtained 300

PW value from TTP. If there is a match, then node A 301

concludes that B is an authenticated node. 302

8) Afterward, it checks the message integrity by computing 303

the hash value, and compares it with Hb. If there is 304

a match, then B concludes that the message was not 305

altered during the communication. 306

9) Finally, both the nodes A and B agree on an identical 307

session key Ks and further communication is encrypted 308

and decrypted by session key Ks. 309

B. Intervehicle Trust 310

Intervehicle trust is composed of two main metrics: 1) direct 311

trust and 2) indirect trust. 312

The interaction-based trust, i.e., (DirectT(i, j)), of the jth 313

vehicle as evaluated by the ith vehicle, is the ratio of honest 314

actions #H(i, j) to the total number of actions, i.e., both honest 315

and dishonest #All(i, j). It follows that the interaction-based 316

trust is calculated as: 317

DirectT(i, j) = #H(i, j)

#All(i, j)
·
[

1 − 1

H(i, j) + 1

]
. (1) 318

From (1), we can see that 1 − (1/[H(i, j) + 1]) increases 319

with respect to the increased number of honest actions in such 320

a way that several honest actions are needed to increase the 321

interaction-based trust. 322

In our proposal, the intervehicle exchanged opinions (i.e., 323

Indirect trust) are sent together with the unencrypted part of 324

exchanged data messages. To favor the opinions sourced by 325

vehicles considered as trusted, the received recommendations 326

(opinions) sourced by a vehicle k concerning the behavior of 327

a vehicle j [i.e., IndirectTk(i, j)] are combined with respect to 328

the honesty level of the recommender k, as follows: 329

IndirectTk(i, j) = [
DirectT(i, k) · Recom(k, j)

] 1
2 . (2) 330

Then, the different vehicles’ recommendation about the jth 331

vehicle are combined together to find the global vehicles’ 332

recommendation value for that vehicle RV(i, j), i.e., 333

IndirectT(i, j) =
⎡
⎣ k∏

|Recom|
IndirectTk(i, j)

⎤
⎦

1
|Recom|

. (3) 334

C. Road Side Units Trust 335

Simultaneously with the different intervehicle interactions, 336

whenever a vehicle joins the communication range of an RSU, 337

it sends its different neighbors overall trust to the road side 338



KERRACHE et al.: TACASHI 5

Fig. 5. Capacity assignment example.

unit. Afterward, the RSU combines all vehicles reports to build339

a quasi-global evaluation of the behavior of vehicles moving340

around.341

Following (4), the roadside units compute their opinion342

regarding any vehicle j through the combination of the reports343

delivered by the other vehicles, i.e.,344

RR(RSU, j) =
[

i∏
n

Tr(i, j)

] 1
n

(4)345

where n represents the number of vehicles having previously346

evaluated the jth vehicle.347

D. Location-Related Trust348

TACASHI classifies the LRH of a given vehicle through349

a similarity measurement between the current position and350

the estimated position, based on their historical mobility pat-351

terns [22]. Social events, such as soccer games, festivities,352

and emergency cases are also taken into account for the path353

estimation (see Fig. 4).354

E. Social Networks Trust: Using the Advogato Trust Metric355

to Identify Trustable People356

Various social networking aspects have been studied by an357

online, free software developers community called Advogato.358

This community, launched in 1999, has adopted a group-trust359

metric trying to determine the largest set of honest peers, while360

minimizing the influence of unreliable/dishonest ones [5].361

Advogato uses a social graph to represent the different peers362

and relations in the network. Each peer in the graph represents363

a user’s account, whereas a directed edge represents a relation364

(also called “certification”).365

The Advogato trust metric stands on the network flow. It366

first assigns a “capacity” Ci to every peer i, which represents a367

nonincreasing function of the distance separating the peer i and368

the seed, as returned by the considered searching (breath-first369

algorithm). For instance, “advogato.org” assigns a 20 capacity370

for the seed, then 7 for the following two levels, 2 for peers371

belonging to the third level, and so on (see Fig. 5).372

Each node A is then divided into two sides, i.e., A− and373

A+, with a capacity−1 edge from A to the sink, and a capacity374

of (Ci−1) edge from A− to A+, respectively. Finally, the375

certification of A to B becomes an infinite-capacity edge from376

A+ to B− (see Fig. 6).377

To find the maximum flow [24], Advogato is based on the378

Ford–Fulkerson algorithm (see Fig. 7). Since Ford–Fulkerson379

Fig. 6. Conversion into a single source, single sink.

Fig. 7. Network flow computation.

Fig. 8. Nodes classification.

selects the shortest increasing path from the current node to 380

the seed, any node having a flow from x− to x+ possesses also 381

a flow from x− to the sink. Ford–Fulkerson takes O(|f +||E|), 382

where f is the maximum flow. In this graph, f + is the number 383

of accepted peers. 384

Concerning the trusted accounts identification, an adversary 385

model should be defined first. Then, the minimum cut is cre- 386

ated to distinguish between trusted, doubted, and compromised 387

accounts, as shown in Fig. 8. The graph’s minimum cut (i.e., 388

a partition of the nodes of a graph into two or more—k-cut— 389

disjoint subsets that are joined by at least one edge) is the one 390

that is minimal in some sense (trust value in our case). We note 391

that the Advogato trust metric has a wide range of applications, 392

meaning that edges and connections can be defined in different 393

ways, including, for instance, communities, friendship, shared 394

posts, comments, or likes. 395
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Algorithm 1 Overall Intervehicle Trust Computation
1: if There is an RSU OR traffic is delay-sensitive then

2: Tr(i, j) = [
DirectT(i, j) · RV(i, j)

] 1
2 ;

3: else
4: if There is an RSU AND the exchanged traffic is

partially delay-sensitive then

5: Tr(i, j) = [
DirectT(i, j) · RR(j)

] 1
2 ;

6: else
7: if There is an RSU AND the exchanged traffic is

delay-tolerant then
8: Tr(i, j) = TAD(j);
9: else

10: if j is a dubious node (i.e, 0.4 ≥ Tr(i, j) ≥ 0.6)

then
11: Tr(i, j) = Tr(i, j) + HHF(j) + LRH(j);
12: end if
13: end if
14: end if
15: end if

V. TACASHI’S DISHONESTY DETECTION PROCESS396

In addition to the direct and recommendation-based trust,397

TACASHI involves also the driver’s honesty factor based on398

their OSN profiles. This information is received through the399

trusted middleware, which for our case can be the TA, the400

deployed RSUs, or even network operators. Furthermore, the401

vehicles’ LRH is also taken into account in the overall trust402

evaluation.403

If a vehicle has already demonstrated its honesty, and404

thereby benefits from an high trust value, there is no need to405

take the driver’s honesty factor into account, and vice versa.406

Thus, nodes requiring the human honesty factor as comple-407

mentary data should be only those nodes whose behavior is408

unclear/compromised.409

Depending on the OSNs, and having trust computed through410

the Advogato trust metric, the TA matches, for each vehi-411

cle identity, an honesty factor called honesty human factor412

(HHF), which refers to the human trust factor of the current413

driver. This factor varies within the range of [−0.5,−0.2] for414

the drivers judged as bad, [−0.2, 0] for the drivers judged as415

compromised, and [0,+0, 2] for the drivers judged as good.416

Whereas, the overall trust is in the range of [0, 1].417

In addition, using a path prediction algorithm [22], the LRH418

factor is also considered.419

Similarly to the HHF, the LRH varies in the range of420

[−0.5,−0.2] for the positions judged as bad, [−0.2, 0] for the421

positions that are compromised, and [0,+0, 2] for the posi-422

tions judged as good. Once the soliciting vehicles receive the423

HHF and LRH for neighbors they have concerns about, the424

trust computation will follow Algorithm 1. In this algorithm,425

Tr(i, j) is the global intervehicle trust, RV(i, j) is the recom-426

mendation coming from a nearby vehicle, RR(RSU, j) is the427

recommendation requested and received from a nearby road428

side unit, and, finally, RT(TA, j) is the TA evaluation about the429

jth vehicle’s honesty.430

The trust evaluation Tr(i, j) is assessed after every update to 431

keep it within the range [0, 1]. Using this strategy, the number 432

of dubious nodes will be reduced. Thus, a decision about the 433

vehicles’ trustiness can be made. The latter is made by using 434

the different vehicles reports to generate a blacklist of the 435

detected misbehaving vehicles, i.e., 436

RSUBlacklist = ∀j (5) 437

Card(j/ Tr(i, j) ≤ 0.5)

Card(RC(j))
≥ DThreshold (6) 438

where DThreshold represents the threshold beyond which a 439

vehicle is blacklisted. This threshold is compared with the ratio 440

of negative reports about the jth vehicle to the total number 441

of reports. 442

The TA’s recommendations are in fact decisions that must 443

be followed by the different sublevels (RSUs and vehicles). 444

It makes a decision TAD(j) about the jth vehicle. TA deci- 445

sions are used only for nondelay-sensitive applications, as they 446

involve all the lower level evaluations, thus implying additional 447

computation delays. Therefore, the TA decision is computed 448

according to 449

TAD(j) =
[

i∏
n

RR(RSUi, j)

] 1
n

(7) 450

where n represents the number of RSUs having previously 451

evaluated the jth vehicle. 452

VI. PERFORMANCE EVALUATION 453

Our proposal is implemented in the NS-2.35 simulator. In 454

addition, we used the same dataset as in [25]. This dataset, 455

called Epinions [26], has 131 828 nodes (users) and 841 372 456

edges (honest or malicious). We also consider that 30% of the 457

edges represent a distrust relationship, and they are toward the 458

10% and 20% vehicles considered as dishonest. Hence, we 459

considered in every case 10% of false evaluations (false pos- 460

itives). We selected the first 400 nodes that have more than 461

40 out-neighbors, and we randomly matched their identities 462

to 400 vehicle identities. Thus, every vehicle driver is repre- 463

sented by a node within the used dataset. Furthermore, in every 464

vehicle, we have four devices, being one of them assumed 465

unknown. 466

For VANET settings, the traffic is generated using the 467

Citymob mobility model [27]. In our case, we used a 4 km2
468

map of Laghouat city in Algeria. The generated vehicles path 469

of 80% of the vehicles to enable the paths prediction. For the 470

20% remaining vehicles, half of them are moving toward pre- 471

defined positions called emergency location and event location 472

(i.e., hospital, soccer stadium, and so on), and the other half 473

are assumed to move to unpredictable positions. The scenario 474

has four randomly deployed RSUs. We run our simulation for 475

a duration of 1000 s 15 times to reach the 95% confidence 476

level. In addition, the vehicles communication range is set 477

300 m and they are moving with a speed varying in the range 478

of [0, 80] km/h. Finally, ten randomly chosen vehicles send 479

four data packets of 256 bytes each every second. 480

In the following, we will compare the obtained dishon- 481

esty detection ratios to ones of RTM [18] and AD-IoV [28]. 482
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Fig. 9. Detection performance without the drivers honesty consideration.

Fig. 10. Detection performance when considering the HF.

Afterward, we will analyze the generated error ratios with and483

without the use of our proposed OSN-aided trust architecture.484

For the detection performance we also studied both cases,485

with and without human factor considerations. Fig. 9 rep-486

resents the obtained detection ratio without using HHF for487

10% and 20% of dishonest vehicles with respect to time,488

respectively. It shows that, although the average detection ratio489

exceeds the 90% for 10% of malicious nodes, the confidence490

interval is quite large, reaching the 5% at the end of the vari-491

ous runs. This is mainly because of the doubtful behavior of492

some peers that must be classified as behaving good or bad.493

On the other hand, when the human factor is considered (see494

Fig. 10), the detection ratio reaches up to 96% for 10% of495

dishonest vehicles, and 93% for the 20% case, with clearly496

more reduced confidence intervals.497

Compared to the detection ratios achieved by RTM and498

AD-IoV, both TACASHI versions with (i.e., TACASHI+)499

and without (i.e., TACASHI-) driver’s honesty consideration500

achieved higher detection ratios. Even more, with TACASHI+501

the obtained detection ratios reach almost optimal perfor-502

mance, as depicted in Fig. 11. This is mainly due to the503

incorporation of OSN to enhance the trust establishment and,504

thus, reduce the detection error ratios.505

Confirming the previous results, the number of generated506

false positives with respect of time is optimized by more than507

3%, with more reduced confidence intervals compared to the508

case where the driver factor is not considered (see Fig. 12).509

However, the generated error ratio by both RTM and AD-IoV510

Fig. 11. Detection performance of TACASHI with and without considering
the HF compared to RTM and AD-IoV.

Fig. 12. Generated false positives by TACASHI with and without considering
the HF compared to RTM and AD-IoV.

Fig. 13. TACASHI’s introduced delay to compute HF and the LRH.

is quite high, reaching up to 10% for AD-IoV, which may 511

cause some undesired situations. 512

Although the use of the OSNs and path prediction algo- 513

rithms through the trusted middleware has enhanced the 514

overall trust establishment, it is still prone to cause some 515

additional delay which becomes unacceptable for safety appli- 516

cations. Fig. 13 presents the required computation delay of the 517

drivers’ honesty from OSNs and vehicles LRH through the 518

trusted middleware. It shows that, on average, and based on 519

the drivers honesty estimation, our proposal requires up to 5 s 520

in the worst case. Indeed, this delay is not acceptable for IoV 521

safety applications, but still it is considered reduced enough to 522
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prevent terrorist attacks or stolen vehicles. For the latter case,523

simulation results show that we can decide whether the cur-524

rent position of a given vehicle is normal or abnormal within525

less than 2 s in the worst case.526

VII. CONCLUSION527

IoV is composed of smart IP-based objects having connec-528

tivity to both the Internet and to other vehicles, forming a529

social network called SIoVs. Ensuring secure communication530

among these vehicles and their embedded devices is an essen-531

tial requirement of SIoV, especially when these communica-532

tions are related to safety applications. In this paper, we aimed533

at the trust-driven security mechanism for SIoV and proposed534

a novel trust-aware social in-vehicle and intervehicle commu-535

nications architecture for SIoVs called TACASHI. In addition536

to the intervehicle trust establishment and lightweight secure537

in-vehicle communications, TACASHI also involves OSNs to538

estimate the honesty of vehicles’ drivers. Furthermore, the his-539

torical mobility traces of the vehicles are stored and then540

used to estimate their future path, while also considering541

some exceptions, such as emergency situations and events.542

Simulation results demonstrate the performance of the pro-543

posed TACASHI at ensuring high misbehavior detection ratios544

clearly outperforms previous solutions known as RTM and545

AD-IoV.546

As future work, we plan to add another social dimen-547

sion to our architecture by also accounting for the trustiness548

of unmanned aerial vehicles, and their interactions with the549

vehicles and devices on the ground.550
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