Document downloaded from:

http://hdl.handle.net/10251/157355

This paper must be cited as:

Escrivá, J.; Rodilla, M.; Martín-Díaz, JP.; Estruch, VD.; Sebastiá-Frasquet, M.; Llario, F.; Falco, S. (2020). Driving forces that structure sublittoral macrobenthic communities in sandy beaches along environmental gradients. Estuarine Coastal and Shelf Science. 233:1-12. https://doi.org/10.1016/j.ecss.2019.106517

The final publication is available at https://doi.org/10.1016/j.ecss.2019.106517

Copyright Elsevier

Additional Information

Table S1. ANOVA multifactorial tests for the environmental variables. Stations, depths and sampling campaigns are organised from the lowest to the highest in the results of the Tukey post hoc tests.

	Sta	Station		epth (m)	s	ampling campaig	n	Interactions		
	p-value	post hoc	p-value	post hoc	p-value	post hoc		Factors	p-value	
Temperature	0.2516	N.S.	0.0947	N.S.	0	February 2014 December 2014 July 2013	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.054 0.0601 0	
Salinity	0.0015	E X B XX A X C X D X	0.0007	0.5 X 1 XX 2 XX 4 X 3 X	0	February 2014 July 2013 December 2014	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.1656 0.0273 0.0001	
SS	0.0008	C X D X B XX A X E X	0.0175	3 X 4 XX 2 XX 1 XX 0.5 X	0	February 2014 July 2013 December 2014	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.1158 0.0849 0.004	
DIN	0.0154	E X D XX A XX C XX B X	0.0001	4 X 3 XX 2 XX 1 XX 0.5 X	0	July 2013 February 2014 December 2014	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.2406 0.0002 0.0192	
Si(OH) ₄	0.0058	E X D XX A XX C XX B X	0.077	N.S.	0	February 2014 July 2013 December 2014	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.7658 0.9733 0.13	
PO ₄ -3	0.2767	N.S.	0.1791	N.S.	0.0813	N.S.		Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.7187 0.0782 0.6546	
TP	0.3973	N.S.	0.4147	N.S.	0	February 2014 July 2013 December 2014	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.5067 0.4728 0.004	
Alloxanthin	0.457	N.S.	0.3155	N.S.	0	December 2014 July 2013 February 2014	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.5348 0.4524 0.0059	
Chl_a	0.4851	N.S.	0.2311	N.S.	0	December 2014 July 2013 February 2014	X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.348 0.3048 0.0255	
Chl_b	0.0015	C X A XX B X D X E X	0.5564	N.S.	0	December 2014 July 2013 February 2014	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.3044 0.2572 0	

	Station		Depth (m)		Sampling campaign			Interactions	
	p-value	post hoc	p-value	post hoc	p-value	post hoc		Factors	p-valı
Fucoxanthin	0.0458	N.S.	0.1661	N.S.	0	December 2014 July 2013 February 2014	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.08
Lutein	0.5435	N.S.	0.249	N.S.	0.0135	December 2014 July 2013 February 2014	X XX X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.28 0.29 0.54
Neoxanthin	0.6953	N.S.	0.8467	N.S.	0.0001	December 2014 July 2013 February 2014	x x	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.15 0.54 0.79
Peridinin	0	D X E X C XX A X B X	0.307	N.S.	0	February 2014 December 2014 July 2013	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.48
Prasinoxanthin	0.3991	N.S.	0.5642	N.S.	0	July 2013 December 2014 February 2014	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.43 0.19 0.14
Violoxanthin	0.0517	N.S.	0.4494	N.S.	0	December 2014 July 2013 February 2014	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.48
Zeaxanthin	0.0432	D X E XX B XX A XX	0.0841	N.S.	0.0007	December 2014 February 2014 July 2013	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.54 0.24 0.33
19' butanoyloxyfucoxanthin	0.2965	N.S.	0.1167	N.S.	0	December 2014 July 2013 February 2014	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.4
19' hexanoyloxyfucoxanthin	0	A X C X B X E X D X	0.2129	N.S.	0	December 2014 February 2014 July 2013	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0
Mean grain size	0.0043	E X A X B XX C XX D X	0	4 X 3 X 2 X 1 XX 0.5 X	0.0789	N.S.		Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.0

	Station		Depth (m)			Sampling campaign			Interactions	
	p-value	post hoc	p-value	po	st hoc	p-value	post hoc	:	Factors	p-value
	0.0754	N.S.		1	X					
				0.5	X	0.0036	December 2014	Χ	Depth-Station	0.0278
OM			0	2	XX		July 2013	XX	Depth-Sampling campaign	0.5837
				3	Χ		February 2014	Х	Station-Sampling campaign	0.0787
				4	X					

Table S2. ANOVA multifactorial tests for the fauna variables. Stations, depths and sampling campaigns are organised from the lowest to the highest in the results of the Tukey post hoc tests.

	Station			Depth (m)			Saı	npling campaig	gn	Interactions	
	p-value	F	ost hoc	p-value	po	ost hoc	p-value	post ho	С	Factors	p-value
Total density	0	E D C B	X XX XX X	0	0.5 1 2 3 4	х х х х	0	Late winter Early winter Summer	X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.0779 0.0016 0.1553
Bivalve density	0.0252	E D B C	x xx xx xx	0	1 0.5 2 3 4	x x x x	0.0001	Late winter Early winter Summer	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.2882 0.0001 0.7547
Crustacea density	0	E D C A B	X X X XX X	0	0.5 1 2 3 4	X X X X	0	Late winter Early winter Summer	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.0023 0.0059 0.0447
Polychaeta density	0.0069	E D C B	X XX XX X	0	1 0.5 2 3 4	x x x x x	0.009	Late winter Early winter Summer	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.7129 0.8124 0.5756
Donax trunculus density	0.0039	E A C B	X	0	3 4 2 0.5	x x x x	0	Late winter Early winter Summer	X X X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.0626 0.0003 0.6407
Chamelea gallina density	0.3511		N.S.	0	0.5 2 1 3 4	x x x x x	0.0153	Early winter Late winter Summer	X XX X	Depth-Station Depth-Sampling campaign Station-Sampling campaign	0.2008 0.0922 0.3157

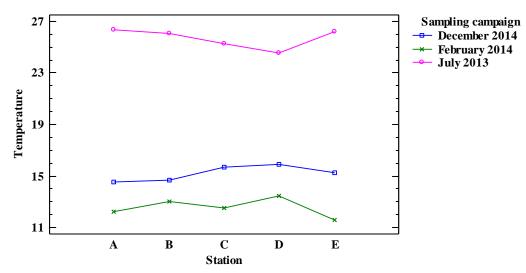


Fig. S1. Interaction graph between stations and sampling campaigns for temperature.

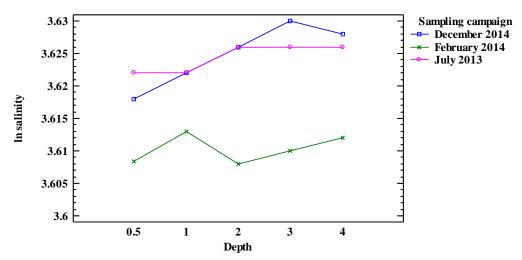


Fig. S2. Interaction graph between depths and sampling campaigns for the natural logarithm of salinity.

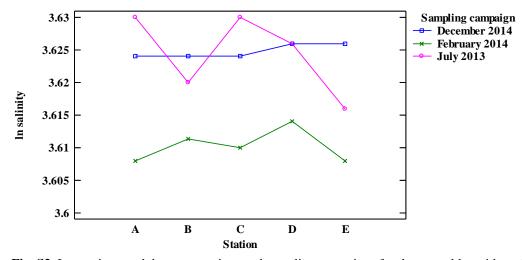


Fig. S3. Interaction graph between stations and sampling campaigns for the natural logarithm of salinity.

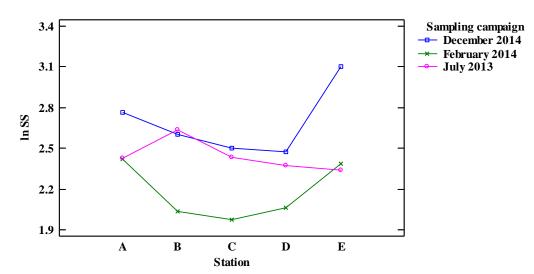
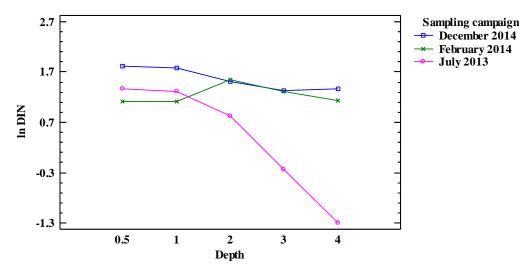
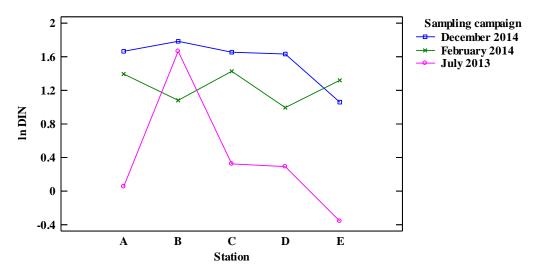




Fig. S4. Interaction graph between stations and sampling campaigns for the natural logarithm of suspended solids

Fig. S5. Interaction graph between depths and sampling campaigns for the natural logarithm of dissolved inorganic nitrogen.

Fig. S6. Interaction graph between stations and sampling campaigns for the natural logarithm of dissolved inorganic nitrogen.

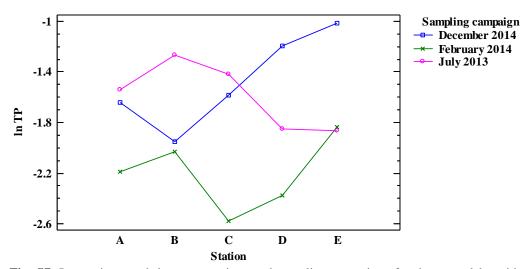


Fig. S7. Interaction graph between stations and sampling campaigns for the natural logarithm of total phosphorus.

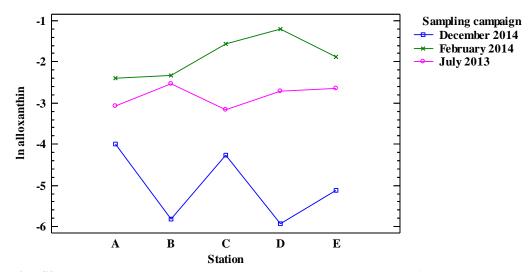
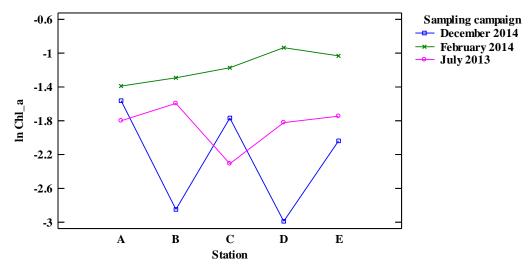



Fig. S8. Interaction graph between stations and sampling campaigns for the natural logarithm of alloxanthin.

Fig. S9. Interaction graph between stations and sampling campaigns for the natural logarithm of chlorophyll *a*.

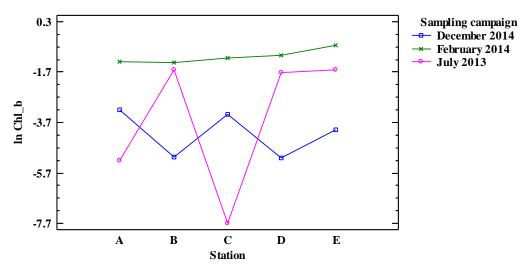


Fig. S10. Interaction graph between stations and sampling campaigns for the natural logarithm of chlorophyll b.

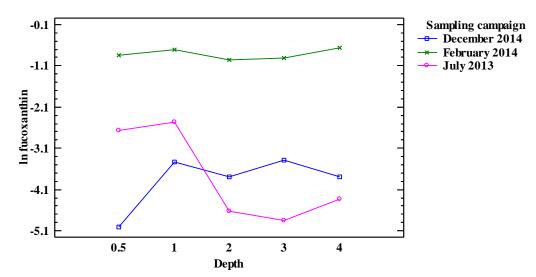


Fig. S11. Interaction graph between depths and sampling campaigns for the natural logarithm of fucoxanthin.

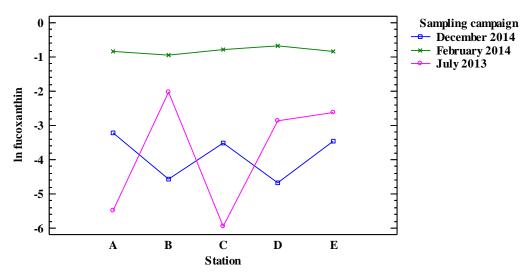
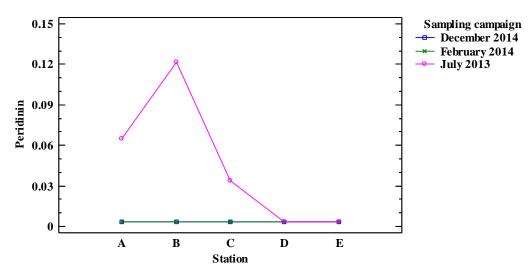
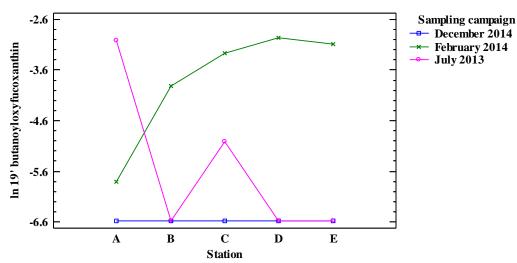
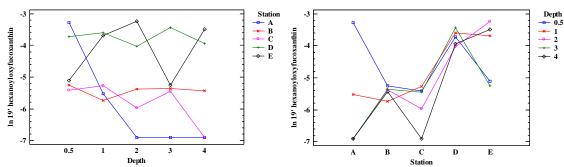


Fig. S12. Interaction graph between stations and sampling campaigns for the natural logarithm of fucoxanthin.

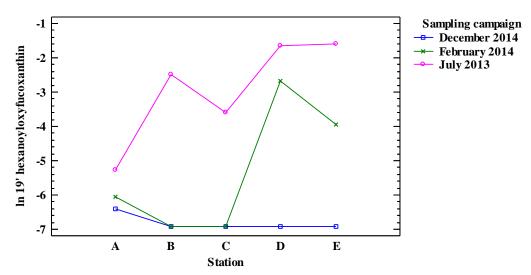

Fig. S13. Interaction graph between stations and sampling campaigns for peridinin.

Fig. S14. Interaction graph between stations and sampling campaigns for the natural logarithm of 19'butanoyloxyfucoxanthin.

Fig. S15. Interaction graph between stations and depth for the natural logarithm of 19'hexanoyloxyfucoxanthin.

Fig. S16. Interaction graph between stations and sampling campaigns for the natural logarithm of 19'hexanoyloxyfucoxanthin.



Fig. S17. Interaction graph between stations and depths for the natural logarithm of mean grain size.

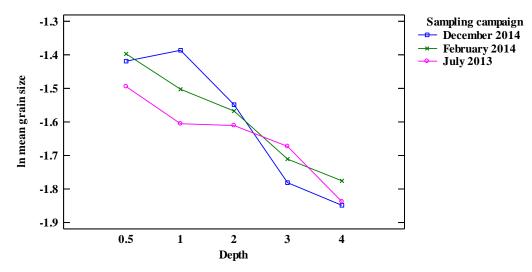


Fig. S18. Interaction graph between depths and sampling campaigns for the natural logarithm of mean grain size.

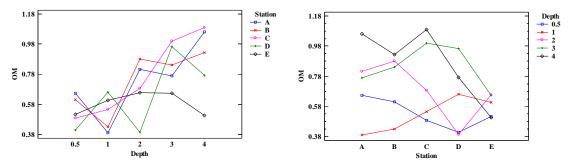


Fig. S19. Interaction graph between depths and station for organic matter.

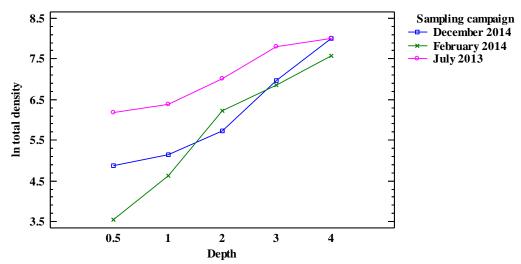
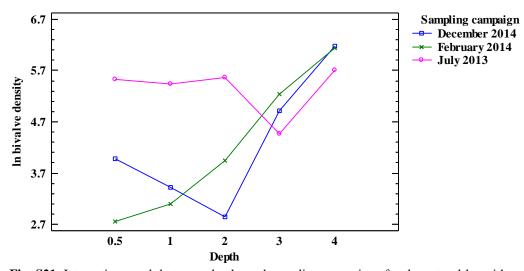



Fig. S20. Interaction graph between depths and sampling campaigns for the natural logarithm of total density.

Fig. S21. Interaction graph between depths and sampling campaigns for the natural logarithm of bivalve density.

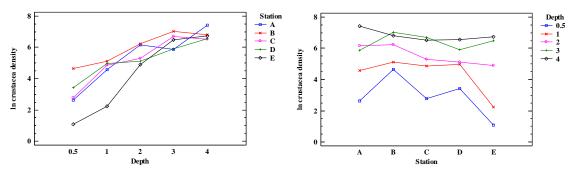


Fig. S22. Interaction graphs between stations and depths for the natural logarithm of crustacea density.

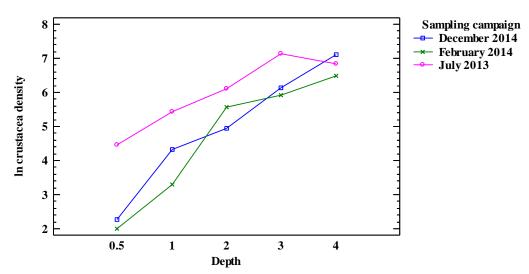
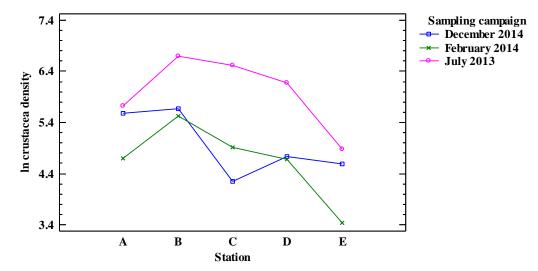
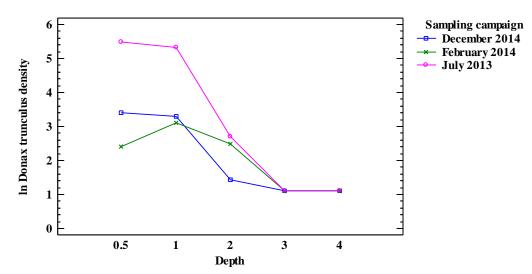




Fig. S23.: Interaction graph between depths and sampling campaigns for the natural logarithm of crustacea density.

Fig. S24. Interaction graph between stations and sampling campaigns for the natural logarithm of crustacea density.

Fig. S25.: Interaction graphs between depths and sampling campaigns for the natural logarithm of *Donax trunculus* density.