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A low-profile lens antenna formedby 2metallic ringswith strips short-circuiting both rings is presented.The theory of characteristic
modes is used to facilitate the design, optimization, and analysis of the structure. Simulations and measurements are presented
for the optimized single-layer metallic lens antenna. Measured results show a large operating bandwidth (14.7% relative -14 dB
impedance bandwidth) with a maximum directivity above 13.70 dBi and a return loss better than 14 dB.

1. Introduction

The increase of small cell base stations, wireless access points,
laptops, tablets, and smartphones, each with a computing
capacity comparable to that of a computer server a decade
ago, and the growing demand for multimedia services are
leading to an increase in the traffic of associated broadband
connections, with high access speed and low latency [1]. From
the perspective of the system, these needs require the use of
low-profile directive antennas that maximize the gain, and
exhibit energy-focusing capability.

Over the past few years, metal lenses have attracted
an increasing interest as high-gain antennas in multiple
applications. Several types of lenses have been proposed to
improve the gain and efficiency of simple radiators. These
lenses are commonly designed using periodic structures,
such as EBG (Electromagnetic Band Gap) or FSS (Frequency
Selective Surfaces). In [2], a nonuniform three-layer FSS
lens is presented, whereas, in [3], a metallic luneburg lens
is proposed with pin-loaded holes with glide symmetry to
increase the equivalent refractive index of the structure.

Periodic structures have also been used to design trans-
mitarrays [4, 5], and reflectarrays [6], based on the analysis
of the unit cell with infinitely periodic boundary conditions.

In [7, 8], thin planar lenses are proposed for massive MIMO
applications, and, in [9], gradient metasurfaces are used to
construct a planar lens antenna system. In all cases, the trun-
cation to a finite number of cells from the theoretical infinite
number leads to inaccurate results, thereby demanding a
costly optimization process.

Alternatively, the design might be carried out using
the Theory of Characteristic Modes (TCM). The TCM
facilitates the design process because it provides a very
clear understanding of the radiation behavior of metal and
dielectric bodies [10]. This theory was initially formulated
by Garbacz [11] and improved by Harrington and Mautz
in [12], where they explained how to compute the char-
acteristics eigenvalues and eigencurrents for a conducting
body.

For more than a decade, the TCM has been used to
designmobile antennas [13], analyze slotted planar structures
[14, 15], study some canonical structures such as spheres or
cylinders [16], design wideband omnidirectional antennas
[17], or provide design guidelines for open slot antennas
embedded in finite platforms [18]. The TCM has also been
used to analyze metallic lenses, such as a lens formed by
twelve metallic rings distributed in a single-layer in [19], a
low-profile lens made of metallic cylinders [20], or a metallic
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Figure 1: Geometry of the proposed antenna: (a) metallic lens antenna; (b) lateral view.

lens designed with a central circular metallic ring surrounded
by a set of eight metallic rings.

In this paper, we propose the use of the TCM not
only to analyze but also to design the lens antenna. In
particular, the TCM is used to design a single-layer metallic
lens antenna formed by two short-circuited metallic rings
and fed by a rectangular waveguide. A similar structure was
developed in [21], where the results of the simulation of the
lens were presented, but in this work we demonstrate the
usefulness of the TCM for the design of the lens, presenting
measured results as well. Characteristic modes (CM) have
been calculated using FEKO [22], and the design of the lens
has been performed with CST Microwave Studio [23].

2. Analysis of Characteristic Modes of the
Proposed Metallic Structure

2.1. Structure. Considering that the CM analysis is based on
the structure without feeder, for the initial dimensions, the
lens is modeled as a PEC object identical to that shown in
Figure 1(a), with a thickness of 0.35 mm, a width of 𝑤 = 1.37
mm, an inner diameter𝐷𝑖 = 29.32mm (2𝜆0), a shorting strip𝑤1 = 4.04 mm, and an external diameter 𝐷𝑜 = 42.89 mm
(3𝜆0), where 𝜆0 is the free-space wavelength at the central
operating frequency (20.50 GHz). The lens antenna consists
of two short-circuited metallic rings, whose sectors are no
larger than 𝜆 at the design frequency, distributed in twenty-
four sectors as shown in Figure 1(a), intended to operate in
the 19−22 GHz band. The lens is placed at a distance 𝑓 from
the feeder.

2.2. Analysis of Characteristic Modes. As discussed in [10–12],
the TCM provides a physical interpretation of the radiation
by a given structure, which is of great help in antenna design.
The CM are real current modes (J𝑛) that are extracted at
each frequency from the generalized impedancematrix of the
antenna.Thesemodes form a set of orthogonal functions that
can be used to expand the total current in the surface of the
structure, as described in the following equations:

J = ∑
𝑛

𝑉𝑖𝑛J𝑛
1 + j𝜆𝑛 (1)

𝑉𝑖
𝑛
= ∮
𝑠

J𝑛 ∙ E𝑖d𝑠, (2)

where J𝑛 are the characteristic currents on the conducting
body, 𝜆𝑛 are the eigenvalues, and 𝑉𝑖𝑛 is the modal excitation
coefficient. Despite J𝑛 and 𝜆𝑛 being the only two quantities
solved in the base equation, there are other physical interpre-
tations of the eigenvalue, such as the characteristic angle (𝛼𝑛)
and the modal significance (𝑀𝑆𝑛). The characteristic angle
(𝛼𝑛) is associated with each eigenvalue as

𝛼𝑛 = 180∘ − arctan (𝜆𝑛) . (3)

The characteristic angle (𝛼𝑛) indicates how the phase of a
single current changes over the frequency, and can be used
to design antennas with a specific phase distribution [10].
Themodal significance (𝑀𝑆𝑛) is an intrinsic property of each
mode and is independent of any specific external source. The
𝑀𝑆𝑛 provides a convenient way to measure the bandwidth of
each characteristic mode, mathematically expressed as

𝑀𝑆𝑛 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1
1 + j𝜆𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (4)

The mode is at resonance when the characteristic angle is
180∘ (𝛼𝑛=180∘) or the modal significance is one (𝑀𝑆𝑛=1).

The half-power radiating bandwidth of a mode (𝐵𝑊𝑛)
constitutes an important figure of merit to determine the
radiation performance of characteristic modes [10]. It can be
expressed as𝐵𝑊𝑛 = (𝑓𝑈−𝑓𝐿)/𝑓𝑟𝑒𝑠, where𝑓𝑟𝑒𝑠 is the resonance
frequency of the mode and 𝑓𝐿 and 𝑓𝑈 are the lower and
upper frequencies, respectively, for a𝑀𝑆𝑛 threshold of 1/√2.
Furthermore, a modal quality factor can be defined from the
fractional bandwidth as 𝑄𝑟𝑎𝑑,𝑛 = 1/𝐵𝑊𝑛 [10].

The modal currents of the first four modes of the
proposed metallic structure are illustrated in Figure 2. Black
lines have been added to indicate the direction of the currents.

Figure 2(a) shows a very intense current distribution
in the short-circuiting strips between the inner and outer
rings for Mode 1. The orthogonal modal current (Mode
1’) is included in Figure 2(b). Mode 2 presents a vertical
current distribution in the two metal rings (see Figure 2(c)),
and Mode 3 (see Figure 2(d)) presents a loop inside and
outside the total structure. Eachmodal currentmaintains this
current distribution in the metallic structure over the whole
frequency range (19−22 GHz).

The radiated far field of the first four modes is shown in
Figure 3. From these radiation patterns it is clear that Mode
1, Mode 1’, and Mode 2 are the desirable modes in order
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Figure 2: Modal currents of the lens proposed at 20.5 GHz: (a) Mode 1; (b) Mode 1’; (c) Mode 2; (d) Mode 3.
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Figure 3: Modal radiation pattern of the proposed lens at 20.5 GHz: (a) Mode 1; (b) Mode 1’; (c) Mode 2; (d) Mode 3.

to obtain a maximum radiation in the broadside direction.
However, if a vertically polarized plane wave incides in the
lens, only Mode 1 and Mode 2 will be excited.

2.3. Design of the Lens Antenna. As seen, fundamental
Mode 1 presents a broadside radiation pattern at the central
frequency. In order to excite this fundamental Mode 1, a

parametric study of 𝛼𝑛 and 𝑀𝑆 for different lens sizes is
performed. The aim is to have a resonance for Mode 1 at the
central frequency, together with a large bandwidth.

As a starting point for the design, the structure considered
is the one presented in Section 2.1. The two variables of the
design are 𝐷𝑖 and 𝑤1. The number of sectors in the structure
is left fixed, in order to keep the symmetry. Note that,
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Figure 4: Modal parameters of the proposed lens by varying the internal diameter 𝐷𝑖 with 𝑤1 = 4.04 mm: (a) characteristic angle Mode 1;
(b) modal significance Mode1.

considering 𝑤1 = 4.04 mm and a variable internal diameter
𝐷𝑖, the value of the external diameter of the structure can be
found by the relationship𝐷𝑜 = 𝑤1+𝐷𝑖. With this in mind, we
first present the results for a fixed 𝑤1 value (𝑤1 = 4.04 mm)
and 𝐷𝑖 ranging between 22 and 32 mm.

Figure 4(a) plots the phase values of Mode 1 for different
𝐷𝑖 values. As seen in the band of interest (19−22 GHz), 𝐷𝑖
values for the resonance of the structure (𝛼𝑛=180∘) are within
the range 26−30 mm. For 𝐷𝑖 ≤ 24 mm, the structure has a
capacitive behavior, and for 𝐷𝑖 ≥ 32 mm it has an inductive
behavior (𝛼𝑛 <180∘).

Figure 4(b) shows the values of modal significance for
Mode 1. As can be observed, for𝐷𝑖 = 28mm, we have values
higher than 0.98 in thewhole band,which is a very good value
above the commonly adopted 0.7 threshold to guarantee a
large bandwidth.

From the above results, it can be easily deduced that for
𝐷𝑖 = 28mm there is a resonance at the central frequency 20.5
GHz and a high modal significance for Mode 1.

Figure 5 presents the characteristic angle 𝛼𝑛 of the
proposedmetallic structure by varying𝐷𝑖 and𝑤1 forMode 1,
at 20.5 GHz. As can be seen, Mode 1 resonates for 𝐷𝑖 = 27.87
mm with 𝑤1 = 4.04 mm. There exists other possible values,
but these lead to the smallest lens.

Figure 6 represents the contribution of each mode to the
total radiated power for the proposed lenswith𝐷𝑖 =27.87mm
and 𝑤1 = 4.04 mm, when excited with a vertically polarized
plane wave with normal incidence. As can be seen, at the
central frequency, a 60% of Mode 1 and a 40% of Mode 2
generate the total radiated power. Since these twomodes have
a maximum at broadside direction, the total power field will
also have a maximum at this direction.

3. Lens Design

Considering the results obtained in previous section, the
optimum values for the metallic lens in order to resonate at
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Figure 5: Characteristic angle of the proposed lens by varying 𝐷𝑖
and 𝑤1 at 20.5 GHz for Mode 1.

20.5 GHz are 𝐷𝑖 = 27.87 mm and 𝑤1 = 4.04 mm, which
means that the external diameter 𝐷𝑜 is 41.43 mm. Note that
the width and thickness are the same as in the structure
presented in Section 2.1.

The next step is to find the optimal feeding point of
the lens. This point corresponds to the distance between the
lens and the feeding aperture, where the resulting radiated
electromagnetic waves have a plane wave front at the upper
level of the metallic structure.

3.1. Plane Wave Analysis (Focal Point). The focal point can
be determined using several methods such as geometrical
optics used in the Fresnel zone plate [24], or the plane wave
incidence described in [19], where a plane wave impinges
on the metallic structure. In this work, we use the second
method, considering an incident field produced by a plane
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Figure 7: Simulation of the plane wave at 20.5 GHz in the proposed lens.

wave propagating in the 𝑧 direction, the lens being located
in the x−y plane. Figure 7 shows the electric field with this
configuration at 20.5 GHz. It can be seen that the field is
focused on the other side of themetallic structure, at𝑓 = 9.54
mm from the lens. This is the focus of the lens and is where
the feeder must be placed.

The feeder is a square aperture (10.66 mm × 10.66 mm).
This size guarantees a −10 dB taper on the edge of the lens.
The aperture is placed on a ground plane (90 mm × 90
mm) which only introduces a small ripple in the radiation
pattern of the lens. The aperture is fed by a transition of
length 𝑙 = 10.66 mm to allow the feeding of the structure
by means of a standard rectangular waveguide (WR-42).
Figure 8 shows a picture of the prototype.The feeder has been
fabricated in aluminum (see Figure 8(a)), while the single-
layer lens antenna has been fabricated in a copper sheet,
as shown in Figure 8(b), and attached to a foam layer with
the same height as the focal distance 𝑓 (see Figure 8(c)), to
guarantee the correct separation between the lens and the
feeder.

4. Experimental Results of the Single-Layer
Lens Antenna

To validate the performance of the proposed single-layer lens
antenna, the S11 parameter has beenmeasured. Figure 9 com-
pares measured and simulated results. As can be observed,
both results are quite similar, with a good matching (S11 <−14 dB) from 19 to 22 GHz.

The measured and simulated copolar and crosspolar
components of the radiated field are shown in Figure 10. A
good measured crosspolar level (below -27 dB) is observed
within the main beam of the pattern. The differences between
the measured and simulated patterns are caused by an
inaccurate characterization of the foam material between the
lens and the feeder and, also, by unexpected manufacturing
errors.

Figure 11 shows that the maximum measured gain is 14
dBi at 19 GHz, which corresponds to an increase in directivity
of 5.23 dB with respect to the measurement of an open-ended
square waveguide.
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(a) (b) (c)

Figure 8: Photograph of the manufactured prototype of the proposed lens antenna: (a) feeder, (b) single-layer lens antenna, and (c) lens with
feeder.

Sim: Open-ended WG
Meas: Open-ended WG
Sim: Lens antenna
Meas: Lens antenna

19.5 20 20.5 21 21.5 2219
Frequency (GHz)

−35

−30

−25

−20

−15

−10

−5

0

３ 1
1

(d
B)

Figure 9: Simulated and measured 𝑆11 parameter of the proposed
metallic lens antenna.
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Figure 10: Measured (MEAS) and simulated (SIM) copolar and
crosspolar components of the radiation pattern at 20.5 GHz.
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Figure 11: Comparison of the maximum gain, measured (MEAS)
and simulated (SIM), of the proposed lens.

It can be clearly observed that the proposed antenna has
an operational bandwidth of 14.7% for |𝑆11| < −14 dB, and a
radiation efficiency above 90%.

5. Conclusion

A low profile metallic lens antenna formed by 2 short-
circuited metallic rings has been proposed. The single-layer
lens antenna has been designed using the Theory of Char-
acteristic Modes to facilitate the design process and evaluate
the performance of currents in the metallic structure. Note
that a final optimization has not been required. An open-
ended square waveguide is used as the primary feed for the
metallic lens.The resulting structure improves the maximum
directivity with respect to the feeder along a large bandwidth
(more than 5 dB) and provides a good crosspolar level (better
than -27 dB), with a measured directivity above 13.70 dB.

Data Availability

The simulation and measurement data used to support the
findings of this study are available from the corresponding
author upon request.
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