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ABSTRACT

This paper presents a human-robot closely collaborative solution to cooperatively

perform surface treatment tasks such as polishing, grinding, finishing, deburring, etc.

The proposed scheme is based on task priority and non-conventional sliding mode

control. Furthermore, the proposal includes two force sensors attached to the manip-

ulator end-effector and tool: one sensor is used to properly accomplish the surface

treatment task, while the second one is used by the operator to guide the robot tool.

The applicability and feasibility of the proposed collaborative solution for robotic

surface treatment are substantiated by experimental results using a redundant 7R

manipulator: the Sawyer collaborative robot.
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1. Introduction

The automation of industrial processes has generated great improvements in terms of

cost reduction, operator safety and comfort, as well as the quality of the end prod-

uct over more traditional hand-made methods. However, there are currently many

industrial processes within the production of products that are carried out manually

due to their complexity. Although it is a true fact that the sensorimotor stability

and strength of industrial manipulators are much better than that of humans, nowa-

days robotic manipulators cannot compete with the flexibility/adaptability of humans.

That is why there is currently a strong tendency to combine robots and humans for

the accomplishment of complex tasks through collaboration.

One of the least automated processes is the quality control of surfaces [19, 29].

This is primarily attributed to the fact that automated process remain elusive in

meeting strict requirements when it comes to short cycle time, low cost and the high

quality achieved in other manufacturing industries [20, 24]. As such, surface treatment

operations and quality control continues to be mainly a manual process being carried

out by skilled workers, which give rise to issues such as subjectivity in the evaluation

criteria, human errors and the like [2, 33].

In surface treatment operations the tool has to be in contact with the product

surface to apply a specific treatment, e.g., grinding, polishing, deburring, etc. As such,

the forces exerted by the tool have to be properly controlled. Moreover, the tool

should be kept perpendicular to the surface at all times to homogenize the pressure

on all contact points [27, 32]. Due to the complexity of the shape of the surfaces of the

product, human operators have difficulties in maintaining a constant pressure and tool

perpendicularity to the surface at all times, which causes deficiencies in the surface

treatment. In the same way, when the product to be treated is part of a production

line where it is in motion, or its morphology is constantly changing —e.g., for the case

of car bodies [2, 22] or ceramics [8])— it is difficult for robotic manipulators to carry

out automatic surface treatment operations efficiently given the inherent uncertainty

regarding the position and velocity of the product being handled.

To mitigate the drawbacks of both, manual and robotic automatic surface treatment,
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this work proposes a human-robot closely collaborative solution which adopts the form

of a human operator performing the task of guiding the tool along the surface of the

object to be treated, together with a robot manipulator to automatically maintain both

the pressure of the tool on the surface and the tool perpendicularity to the surface,

ensuring a flexible surface treatment. For this purpose, this work uses multi-task,

conventional and non-conventional sliding mode control (SMC) and two force/torque

sensors attached to the manipulator end-effector and tool.

While solutions of robots working collaboratively alongside humans in polishing

tasks exists (e.g., see https://www.youtube.com/watch?v=kOPVvYapElQ, where a

Universal Robot is used in the process of loudspeakers polishing), to the best of the

authors’ knowledge this is the first work proposing a human-robot closely collabora-

tive solution to cooperatively perform surface treatment operations, and also the first

work using two force/torque sensors at the end-effector of the robot manipulator. In

this sense, one force sensor is used to properly accomplish the surface treatment task,

i.e., to attain the desired pressure between the tool and the surface being treated as

well as to keep the tool orientation perpendicular to the surface; whereas the second

force sensor is used by the human operator to guide the robot tool while the surface

treatment is being performed. It is important to note that the force sensor used to

accomplish the surface treatment cannot be used simultaneously to guide the robot,

since the forces exerted by the human operator would represent a disturbance to prop-

erly accomplish the surface treatment task. For instance, if the same sensor is used

for both purposes and the operator exerts a force in the negative Z-axis direction of

the robot tool that is larger than the desired pressure for the surface treatment task,

the robot would move away the tool from the treated object and the contact would

be lost.

It is worthy to mention that the proposed scheme for human-robot collaboration

represents a reactive controller with no high-level planning. However, the proposed

SMC framework could be combined with other intelligent strategies, such as learning-

based control, in order to improve human-robot collaboration in terms of tracking

performance, security during the interaction, etc. However, this is out of the scope of

this work.
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Next, a literature review is presented about the main aspects concerning this work:

robot guidance and SMC techniques for robot force control and human-robot collab-

oration.

The motion guidance for robot manipulators is typically obtained via a wrist-

mounted force sensor which evaluates the forces exerted by the human operator. The

most commonly used method to convert these measurements into kinematic instruc-

tions to the robot is through compliance control, which establishes a direct relationship

between the measured forces and the changes in the robot position [6, 15]. Yet other

variants and methods can be found in the literature. For instance, in [18] a force

tracking method under the impedance control framework was extended to also ac-

count for uncertain human limb dynamics. In [36] a decision-and-control architecture

was proposed for hand-arm systems with “soft robotics” capabilities via dedicated

human-machine interfaces. In [13] a mathematical relation between the velocity of

the human-robot interaction point and the force applied by the human operator was

established using impedance control for handling tasks.

Other approaches tackling the problems of robot force control and human-robot

collaboration are based on SMC techniques. Concretely, in [28] SMC is used to sup-

press impact forces when contacting the environment and be able to continue with a

stable robot motion. In [3] a hybrid position/force control scheme was proposed us-

ing first- and second-order SMC for position and force control, respectively. In [12] an

impedance control structure was proposed for monitoring the contact force between the

end-effector and the environment, and a model-free fuzzy SMC strategy was employed

to design the position and force controllers. In [9], several methods were developed

to control a prosthetic hand and the best results in terms of unwanted force over-

shoot were obtained using a SMC with force, position and velocity feedback. In [39]

a non-singular terminal SMC was developed to ensure trajectory tracking precision

for the case of a lower limb rehabilitation parallel robot. In [14] a proxy-based SMC

was proposed to obtain effective tracking during normal operations for flexible joint

manipulators working close to humans. In [38] a robust SMC was proposed that relied

on basic information from the human subject to handle model uncertainties due to

biomechanical variation of patients using an upper limb rehabilitation robot. An SMC
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consisting of a PID sliding surface and a fuzzy hitting control law was developed in [37]

to guarantee robust tracking performance and reduce the chattering effect for a class

of robot-assisted therapeutic exoskeleton. A fuzzy SMC was presented in [21] using

a non-linear model for trajectory tracking of micro robots in the human vasculature

system. Moreover, SMC has been used in the field of robot force control not only

to improve controller robustness but also to improve force estimation by means of a

sliding perturbation observer to avoid the use of expensive force sensors, e.g., see [26].

It is worthy to mention that human-robot interaction is increasing not only in

industrial scenarios but also for social purposes, see [1, 5, 10, 25, 35] among others.

It is interesting to remark that this work about human-robot collaboration for sur-

face treatment tasks is included in a special issue entitled “Human Robot Collaborative

Intelligence” and mainly covers the following topics: “collaborative control of human-

robot teams” and “applications of human robot collaborative intelligence methods to

industrial manufacture”.

The paper is organized as follows: next section introduces some preliminaries, while

Section 3 develops the SMC theory used in this work. The proposed collaborative so-

lution for robotic surface treatment is presented in Section 4. A simulation is shown

in Section 5 to illustrate the proposed non-conventional SMC and to compare it with

conventional SMC. The implementation of the controller is detailed in Section 6. The

feasibility of the proposed approach is substantiated by experimental results in Sec-

tion 7 using a redundant 7R manipulator: the Rethink Sawyer collaborative robot.

Finally, conclusions are drawn in Section 8.

2. Preliminaries

Kinematics. Following the standard notation [4], the robot pose p depends on the

robot configuration q as follows:

p = l(q), (1)
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where the nonlinear function l is called the kinematic function of the robot. The first-

and second-order kinematics of the pose vector p result in:

ṗ =
∂l(q)

∂q
q̇ = Jq̇ (2)

p̈ = Jq̈ + J̇q̇, (3)

where J is the Jacobian matrix of the robot.

Robot control. This work assumes the existence of a low-level robot controller in

charge of achieving a particular joint acceleration from the commanded acceleration q̈c,

and that its dynamics is fast enough compared to that of q̈c. Hence, the relationship:

q̈ = q̈c + dc (4)

holds approximately true, where dc represents inaccuracies due to disturbances. Note

that the dynamic model of the robot system should be taken into account to properly

design the mentioned underlying joint controller.

Task-priority scheme. The task-priority strategy [23] allows to tackle several ob-

jectives simultaneously assigning an order of priority to each one. Let us consider M

tasks which consist in calculating the commanded joint acceleration vector q̈c to fulfill

the following equality constraints:

Aiq̈c = bi, i = 1, . . . ,M, (5)

where matrix Ai and vector bi of the ith task are assumed known and index i repre-

sents the priority order, where i = 1 is used for highest priority.

The solution q̈c,M that hierarchically minimizes the error of equations in (5) is given
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Figure 1. Graphical comparison between conventional SMC (left) and one-side SMC (right).

by the following recursive formulation, proposed in [30]:

q̈c,i = q̈c,i−1 + (AiNi−1)†(bi −Aiq̈c,i−1) (6)

Ni = Ni−1(I− (AiNi−1)†(AiNi−1)), (7)

with i = 1, . . . ,M, q̈c,0 = 0, N0 = I,

where I and 0 denote the identity matrix and zero column vector, respectively, of

suitable size, superscript † denotes the Moore-Penrose pseudoinverse and q̈c,i and Ni

are the solution vector and null-space projection matrix, respectively, for the set of

first i tasks.

3. Sliding Mode Control

The proposed method to accomplish the cooperative surface treatment task using a

robotic system is based on satisfying a set of equality and inequality constraints, de-

fined in Section 4. The fulfillment of these constraints will be achieved using SMC

theory to benefit from the typical advantages of this type of controllers, such as ro-

bustness and low computational cost. However, conventional SMC can only be used

to satisfy equality constraints. Hence, this section also presents a non-conventional

SMC algorithm, coined as one-side SMC, developed to satisfy inequality constraints.

Fig. 1 shows a graphical two dimensional example to illustrate both conventional and

one-side SMCs.

7



3.1. Conventional SMC to satisfy equality constraints

For conventional SMC (see Fig. 1-left) the state space of the system is divided into

two regions, A and B, separated by the sliding surface. The value of the control action

u when the system state is in region A is such that it “pushes” the system into region

B, namely uB. Analogously, when the system state is in region B, the value of control

action is such that it pushes the system into region A, namely uA. Hence, regardless

of whether the system starts in region A - xA(0), or B - xB(0), it evolves to the sliding

surface in what is referred as reaching mode [7]. Once the system has reached the sliding

surface, the system is kept on it by a control action u that switches between uA and

uB at a theoretically infinite frequency, which is known as sliding mode (SM) [7]. A

continuous equivalent control [34] can be obtained for the SM phase, i.e., the control

required to keep the system on the sliding surface. Therefore, SMC produces such

control action without explicitly computing it and with low computational cost, which

is a typical advantage of SMC strategies [34].

The theorem below presents a conventional SMC designed to satisfy equality con-

straints. This theorem is given for completeness and for comparison with the proposed

one-side SMC, which is designed below to satisfy inequality constraints.

Theorem 3.1. Consider the following dynamical system:

ẋ = f(x,d) + g(x)u, (8)

where x(t) is the state vector of dimension nx, d(t) is an unmeasured disturbance or

model uncertainty of dimension nd, u(t) is the control input vector (possibly discon-

tinuous) of dimension nu, f is a vector field and g is a set of vector fields.

Consider also that the system state vector x is subject to equality constraints

φeq,i(x) = 0, i = 1, . . . , Neq, where φeq,i(x) is the ith equality constraint function.

Thus, the region Φeq of the state space compatible with the constraints on state x is

given by:

Φeq = {x | φeq,i(x) = 0} , (9)

8



with i = 1, . . . , Neq.

Then, assuming that the constraint functions φeq,i are differentiable, the control

action u that fulfills the variable structure control below guarantees that the system

converges to Φeq in finite time and remains there henceforth:

Lgφequ = −Weqsign(φeq) u
+
eq (10)

u+
eq > ‖Lfφeq‖1

/
diagmin(Weq), (11)

where φeq is a column vector with all the constraint functions φeq,i, the scalar Lfφeq,i =

∂φT
eq,i

∂x f and the row vector Lgφeq,i =
∂φT

eq,i

∂x g denote the Lie derivatives of φeq,i(x) in the

direction of vector field f and in the direction of the set of vector fields g, respectively,

column vector Lfφeq contains the elements Lfφeq,i of all equality constraints, matrix

Lgφeq contains the row vectors Lgφeq,i of all equality constraints, sign(·) represents the

sign function (typically used in SMC), positive scalar u+
eq is the so-called switching gain,

which can be either constant or varying in time, Weq is a diagonal matrix representing

the switching gain weights for the constraints, ‖ ·‖1 represents the 1-norm (also known

as the Taxicab norm) and function diagmin(·) computes the minimum value of the

diagonal elements of a matrix.

Proof. The proof can be obtained straightforward from the Proof 2.1 in [34] and its

generalization. Details omitted for brevity.

3.2. One-side SMC to satisfy inequality constraints

The one-side SMC proposed in this work is graphically represented in Fig. 1-right and

is used to satisfy inequality constraints. In this case, the state space of the system is

divided into the non-allowed region A and the allowed region B, which are separated

by the constraint boundary. Similarly to conventional SMC, when the system sate is

in the non-allowed region A the control action u = uB pushes the system into the

allowed region B. But in contrast to conventional SMC, when the system state is in the

allowed region B, no control action is applied, i.e., u = 0. Hence, if the system starts in

region A, i.e., xA(0), it evolves in reaching mode to the sliding surface. Nevertheless,
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when the system starts in the allowed region B, the system state can “freely” evolve

according to some other criterion, e.g., a control law for reference tracking. Therefore,

only when the state trajectory tries by itself to leave the allowed region, the one-side

SMC will make u switch between 0 and uB at a theoretically infinite frequency, which

can be seen as an ideal SM behavior [7].

The theorem below presents the proposed one-side SMC in order to satisfy inequality

constraints.

Theorem 3.2. Consider the dynamical system given by (8) and consider also that the

system state vector x is subject to inequality constraints φin,i(x) ≤ 0, i = 1, . . . , Nin,

where φin,i(x) is the ith inequality constraint function. Thus, the region Φin of the

state space compatible with the constraints on state x is given by:

Φin = {x | φin,i(x) ≤ 0} , (12)

with i = 1, . . . , Nin.

Then, assuming that the constraint functions φin,i are differentiable, the control

action u that fulfills the variable structure control below guarantees that the system

converges to Φin in finite time and remains there henceforth:

v2m (pos (φin))Lgφinu = −Win pos (φin) u+
in (13)

u+
in >

na∑

i=1

(max(Lfφin,i, 0))/diagmin(Win), (14)

where function v2m(·) converts a vector into a diagonal matrix, function pos(·) rep-

resents the positive function (i.e., pos(x) is equal to 0 if x < 0 and equal to 1 if

x > 0), φin is a column vector with all the inequality constraint functions φin,i, ma-

trix Lgφin contains the row vectors Lgφin,i of all inequality constraints, the scalar

Lfφin,i =
∂φT

in,i

∂x f and the row vector Lgφin,i =
∂φT

in,i

∂x g denote the Lie derivatives of

the inequality constraints in the direction of vector field f and in the direction of the

set of vector fields g, respectively, positive scalar u+
in is the switching gain, Win is a

diagonal matrix representing the switching gain weights for the inequality constraints

10



and na is the number of active inequality constraints, i.e., those with φin,i ≥ 0.

Note that, the expression v2m(pos(φin)) on the left-side of (13) is used to obtain

the trivial scalar equation 0 = 0 for the non-active inequality constraints (i.e., those

with φin,i < 0) and, hence, no degrees of freedom of the system are used by these

constraints.

Proof. Firstly, the inequality constraint vector is partitioned into two subvectors

φin = [φna T
in φNin−na T

in ]T, where the first subvector is composed of the na active

inequality constraints (i.e., those with φin,i ≥ 0) and the second subvector of the

remaining non-active inequality constraints (i.e., those with φin,i < 0).

Assuming that φna

in (0) > 0, the goal of this proof is to show that convergence to

point φna

in = 0 is achieved in finite time.

The column vector φ̇in composed of the constraint function derivatives φ̇in,i is given

by

φ̇in=
∂φT

∂x
f(x,d)+

∂φT

∂x
g(x)u=Lfφin + Lgφinu. (15)

Premultiplying (15) by v2m (pos (φin)) and substituting (13) yields:

v2m(zin)φ̇in = v2m(zin)Lfφin −Win zin u
+
in, (16)

where zin is a column vector with the ith-component zin,i = 1 if φin,i > 0 and zin,i = 0

if φin,i < 0.

Let Vin = zT
in v2m(zin)φin be a Lyapunov function candidate. Vector φna

in can be

generically partitioned into two subvectors φna

in = [φb T
in φna−b T

in ]T, where SM occurs

in the manifold given by φbin = 0, whereas the components of vector φna−b
in are greater

than zero. Obviously, one of these two subvectors may be empty at a certain time.

Since vectors zna−b
in = 1 and zNin−na

in = 0 are constant, the time derivative of V results
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in:

V̇in =

d







zbin

1

0




T

v2m







zbin

1

0










dt




0

φna−b
in

φNin−na

in


+ zT

in v2m(zin) φ̇in

= zT
in v2m(zin) φ̇in. (17)

Substituting (16) in (17) yields:

V̇in = zT
in v2m(zin) Lfφin − zT

in Win zin u
+
in. (18)

Since zNin−na

in = 0 and the components of vector zna

in range from 0 to 1, the upper

bound of the first term in (18) is given by zna

in,i = 1 when Lfφ
na

in,i > 0 and zna

in,i = 0

when Lfφ
na

in,i < 0, that is:

zT
in v2m(zin) Lfφin ≤

na∑

i=1

(max(Lfφin,i, 0)). (19)

Since u+
in is a positive scalar and matrix Win is positive definite, the second term

in (18) is negative and its upper bound is given by:

− zT
in Win zin u

+
in ≤ −diagmin(Win) ‖zin‖22 u+

in, where ‖zin‖2 ≥ 1 ∀ φin > 0, (20)

because if vector φna−b
in is not empty at least one component of vector zin is equal to

1.

From (19) and (20), the upper bound of the time derivative of the Lyapunov

function V results in:

V̇in ≤
na∑

i=1

(max(Lfφin,i, 0))− diagmin(Win) u+
in. (21)
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Therefore, if u+
in fulfills (14) the Lyapunov function decays at a finite rate, it vanishes

and collective SM in the intersection of the na active inequality constraints occurs after

a finite time interval.

3.3. Modified constraints

Approaching the constraints at high speed is not advisable because, in general, large

joint accelerations q̈ would be required to slow down the robot motion in order to keep

it on the constraint manifold. Therefore, the actual constraints σeq,i and σin,i will be

modified to include the speed of movement as follows:

φeq,i = σeq,i +Keq,iσ̇eq,i = 0 (22)

φin,i = σin,i +Kin,iσ̇in,i ≤ 0, (23)

where Keq,i and Kin,i are free design parameters that determine the rate of approach

to the equality constraint manifold and to the boundary of the inequality constraint,

respectively.

3.4. Chattering

Discrete-time implementations of the proposed SMC makes the system leave the ideal

SM and oscillate with finite frequency and amplitude inside a band around φ = 0,

which is called chattering [7]. The upper bound for the chattering band 4φ of the pro-

posal can be obtained using the Euler-integration of the discontinuous control action

given by Eq. (10), that is:

4φ = Ts |Lgφ u| = Ts u
+ diag(W), (24)

where Ts is the sampling time of the robot system and function diag(·) gives a column

vector with the diagonal elements of a square matrix.
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4. Proposed approach

4.1. Overview of method

The objective of this work is to obtain a robot control using the theory in Section 3

so that robot and human operator cooperatively perform a surface treatment task.

For this purpose, some coordinates of the robot pose are controlled automatically to

maintain the desired pressure between the robot tool and the object’s surface as well as

to assure that the tool is perpendicular to this surface by using a force sensor, namely

treatment sensor, attached to the end of the robot tool. Meanwhile, other coordinates

of the robot pose are controlled by the human operator in order to guide the tool

along the object’s surface using a second force sensor, namely guide sensor, attached

to some place of the robot end-effector.

Fig. 2 shows the block diagram of the proposed method. Four tasks with different

priority levels are considered. Level 1 (high-priority task) is developed using the SMC

theories described in Section 3 in order to fulfill a set of equality constraints to properly

accomplish the treatment on the surface with the robot tool using the treatment sensor.

Level 2 (medium-high-priority task) is also developed using the SMC described in

Section 3 in order to fulfill the inequality constraint required for the robot to track the

human operator’s forces using the guide sensor. Level 3 (medium-priority task) is used

to reduce to zero the speed of the robot tool when no operator’s forces are detected

by the force guide sensor. Finally, Level 4 (low-priority task) is considered for the case

of redundant robots to keep the robot close to the so-called home configuration.

The input to all four levels is the robot state {q, q̇} obtained from the robot con-

troller. Moreover, Level 1 and Level 2 have also as inputs the vectors Ft and Fg, re-

spectively, of forces and torques measured by the treatment and guide sensors, which

have already been filtered by the sensor electronics. Each level must satisfy an accel-

eration equality of the form Aiq̈c = bi (5) whose square error must be minimized. For

this purpose, the task priority redundancy resolution given by Eqs. (6) and (7) is used

to obtain the commanded acceleration q̈c,4, which is integrated and sent to the robot

controller. Finally, the robot controller performs a low-level control loop to track the

commanded velocity q̇c using the current angles q and torques τ measured by the

14



K1H1Jn︸ ︷︷ ︸
A1

q̈c = −W1sign(φ1)u
+
1︸ ︷︷ ︸

b1

LEVEL 1 (SMC - Constraints for the
surface treatment task)

v2m(pos(φ2))K2H2Jn︸ ︷︷ ︸
A2

q̈c = −W 2pos(φ2)u
+
2︸ ︷︷ ︸

b2

LEVEL 2 (SMC - Constraint to track
human operator’s forces)

J︸︷︷︸
A3

q̈c = −K3,vṗ− sign(ṗ)u+
3︸ ︷︷ ︸

b3

LEVEL 3 (Speed reduction)

I︸︷︷︸
A4

q̈c = −K4,vq̇+K4,p(q0 − q)︸ ︷︷ ︸
b4

LEVEL 4 (Home configuration)

q̈c,i = q̈c,i−1 + (AiNi−1)
†(bi −Aiq̈c,i−1)

Ni = Ni−1

(
I− (AiNi−1)

†(AiNi−1)
)

i = 1, 2, 3, 4, q̈c,0 = 0, N0 = I

TASK PRIORITY
REDUNDANCY RESOLUTION

∫

FORCE
SENSORS

+
LOW PASS
FILTERS

INTEGRATION
Fg Ft

Fg

Ft

{q, q̇}

{q, q̇}

JOINT
SENSORS
{q, τ}

ROBOT
CONTROLLER

q̈c,4 q̇c

Figure 2. Block diagram of the method.

joint sensors.

4.2. Lie derivatives

In order to use the theory in Section 3, a dynamical system in the form of Eq. (8) is

considered with the state vector x =
[
qT q̇T

]T

, the disturbance vector d = dc and

the input vector u = q̈c. Hence, the model is a double integrator, and from (4) the

state equation results in:

ẋ =


O I

O O


x +


 0

dc


+


O
I


u, (25)
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and, therefore, the Lie derivatives for the constraint function φi are given by:

Lgφi =∇φT
i g = (∂φi/∂q̇)T (26)

Lfφi =∇φT
i f = (∂φi/∂q)T q̇ + (∂φi/∂q̇)T dc. (27)

4.3. Force model

Level 1 and Level 2 include the equality and inequality constraints required to prop-

erly accomplish the surface treatment and to guide the robot, respectively. These con-

straints are defined below depending on the vectors Ft and Fg of forces and torques

measured by the treatment and guide sensors, respectively. In many applications, the

interaction forces F between the robot/tool and the environment can be approximated

by the ideal elastic model below [31]:

F(q, t) = Ks ∆s(q,ps) =
[
Fx Fy Fz Fα Fβ Fγ

]T

, (28)

where F is the force vector relative to the tool coordinate system, Ks is a diagonal

matrix with the stiffness coefficients for each tool axis and vector ∆s is the mechanical

deformation of the sensor relative to the tool coordinate system, which depends on

the robot configuration q and the position and orientation ps of the object in contact

with the robot, i.e., the object being treated or the human operator guiding the robot

tool. Note that, in general, both Ks and ps are variable.

4.4. Level 1: Constraints for the surface treatment task

Three equality constraints are defined for the surface treatment as follows:

σ1,z(Ft) =σ1,z(q, t) = Ft,z − Fz,ref = 0 (29)

σ1,α(Ft) =σ1,α(q, t) = Ft,α = 0 (30)

σ1,β(Ft) =σ1,β(q, t) = Ft,β = 0, (31)
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where Ft,z is the linear force measured by the treatment sensor in the tool Z-axis, Ft,α

and Ft,β are the angular forces (i.e., torques) measured by the treatment sensor in the

tool X- and Y -axes, and Fz,ref is the desired force between the tool and the surface

being treated in the tool Z-axis. Hence, the first equality constraint is used to attain

the desired force Fz,ref between the tool and the surface, whereas the last two equality

constraints are used to keep the tool orientation perpendicular to the surface, since

the torques in the tool X- and Y -axes are zero if the tool is perfectly perpendicular

to the surface. Note that the torque in the Z-axis is not constrained and can be used

for the specific treatment application: polishing, grinding, etc.

Taking into account (22), (26) and (28)–(31), the Lie derivative Lgφ1 required for

the SMC in (10) is given by:

Lgφ1 = (∂φ1/∂q̇)T = K1(∂σ1/∂q)T

= K1




0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


Kt,sJn = K1H1Kt,sJn, (32)

where σ1 is a column vector composed of all equality constraints σ1,i, K1 is a diagonal

matrix composed of all the approaching parameters K1,i, see (22), Kt,s is the stiffness

diagonal matrix for the treatment sensor and Jn is the geometric Jacobian relative to

the tool coordinate system [31], i.e., the Jacobian matrix relating the joint velocities q̇

and the linear and angular velocities of the end-effector relative to the tool coordinate

system.

Since the stiffness coefficients Kt,s in Lgφ1 (32) may not be known, they can be

included without loss of generality in the switching gain weight matrix W1, so that

the conventional SMC given by (10) is modified as follows:

K1H1Jnq̈c = −W1sign(φ1) u+
1 → A1q̈c = b1, (33)
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where A1 and b1 are the matrix and vector for the first task in (5) and:

W1 =




W1,z/Kt,s,z 0 0

0 W1,α/Kt,s,α 0

0 0 W1,β/Kt,s,β


 =




W 1,z 0 0

0 W 1,α 0

0 0 W 1,β


 . (34)

4.5. Level 2: Constraint to track human operator’s forces

The following inequality constraint is proposed to track the human operator’s forces:

σ2(Fg)=σ2(q, t)=
√
F 2
g,x+F 2

g,y−Fl,0 =Fl−Fl,0≤0, (35)

where Fg,x and Fg,y are the linear forces detected by the guide sensor in its X- and

Y -axes, which are perpendicular to the robot end-effector, Fl is the magnitude of these

linear forces and Fl,0 is a threshold so that the constraint becomes active when the

magnitude Fl is larger than this threshold, in which case the robot tool is moved in the

direction of the detected forces in order to fulfill the constraint. Note that the smaller

is threshold Fl,0 the less effort is for the human operator to move the robot tool.

Taking into account (23), (26) and (35), the Lie derivative Lgφ2 for the above

constraint, which is required for the one-side SMC in (13), is given by:

Lgφ2 = K2(∂σ2/∂q)T = K2

[
F g,x F g,y 0 0 0 0

]
Kg,sJn = K2 H2 Kg,sJn, (36)

where K2 is the approaching parameter to the original constraint (35), see (23), F g,i =

Fg,i/Fl represents the normalized linear force in the i-axis and Kg,s is the stiffness

diagonal matrix for the guide sensor.

The acceleration equality for the second level results in:

v2m (pos (φ2))Lgφ2 q̈c = −W2 pos (φ2) u+
2 , (37)

where W2 and u+
2 are the switching gain weight and switching gain, respectively, for

the second level (in this scalar case the switching gain weight could be omitted).
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Since the stiffness coefficients Kg,s in Lgφ2 (36) may not be known, they can be

included in the switching gain weight W2, so that the SMC given by (37) is modified

as follows:

v2m (pos (φ2))K2 H2 Jn q̈c=−W 2 pos(φ2) u+
2 → A2q̈c=b2, (38)

where A2 and b2 are the values for the second task in (5) and:

W 2 = W2/Ks,l, (39)

where it has been assumed the same stiffness coefficientKs,l for both linear coordinates,

i.e., Ks,l = Kg,s,x = Kg,s,y and, hence, the linear motion of the robot tool given by (38)

is in the same direction as the human operator’s forces detected by the guide sensor.

4.6. Level 3: Speed reduction

The following equality is considered to reduce to zero the Cartesian speed of the robot

tool:

Jq̈c =−K3,vṗ− sign(ṗ)u+
3 → A3q̈c = b3, (40)

where the Cartesian speed of the robot tool ṗ is obtained from the first-order kinemat-

ics (2), K3,v is the velocity correction gain of the continuous term in the above control

law, u+
3 is the switching gain of the conventional SMC used in the second term, and A3

and b3 are the matrix and vector for the third task in (5). Basically, the above control

law uses the first continuous term for speed reduction when ṗ 6= 0 and the second

switching term to compensate the term J̇q̇ of the robot second-order kinematics (3)

when ṗ = 0. This hybrid control law has several advantages: the time derivative of the

robot Jacobian is not required; the switching gain u+
3 can be relatively small, reducing

the chattering effects, while a fast speed convergence to zero is obtained due to the

continuous correction term.
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4.7. Level 4: Home configuration

This level is considered only for the case of redundant robots (e.g., the one used in the

experiments in Section 7) since otherwise there are no remaining degrees of freedom

at this level. Among the different available options in literature, this work considers

“pushing” the robot to a home configuration q0 for increasing safety, in order to avoid

a bias robot self-motion which may lead achieving critical areas due to, for instance,

joint limits, singular configurations or possible obstacles in the robot workspace. To

accomplish this purpose, the following equality is considered:

q̈c = −K4,vq̇ +K4,p(q0 − q) → A4q̈c = b4, (41)

where K4,v and K4,p are the gains used for the velocity and position corrections,

respectively, and A4 and b4 are the matrix and vector for the fourth task in (5).

4.8. Additional remarks

Control action. In this work the joint accelerations are considered as the SM discon-

tinuous control action, which yields two advantages: the joint velocities are continuous

(smoother control) and it allows to reach smoothly the boundary of the constraints.

If the actual control action are the joint velocities (or positions), a pure single (or

double) integrator can be applied to the discontinuous control signal to compute the

actual continuous control action.

Time derivatives. The method requires the derivatives Ḟt and Ḟg for the SMC in

Level 1 and Level 2, respectively. The simplest way to deal with this issue consists in

using numerical differentiation, although some kind of filtering should be previously

applied to the actual variable when non-negligible noise is present. However, the low-

pass filter used for noise reduction must not limit the bandwidth of the control law.

4.9. Guidelines to design the control parameters

The procedure to design the control parameters of the conventional and one-side SMCs

in Level 1 and Level 2, respectively, is very similar. In particular, the steps to design
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the control parameters of the proposed control method are as follows. Firstly, the

cut-off frequency of the force sensor filters has to be selected to effectively remove the

measurement noise. Then, the control period Ts must be selected guaranteeing that

the SM frequency fSM = (2Ts)−1 is lower than the bandwidths of the sensor filters

and low-level joint controllers, otherwise changes in the SM control action would not

be properly “followed”. Moreover, the bandwidth of the kinematic control performed

in Level 1 (given by K1,i), Level 2 (given by K2), Level 3 (given by K3,v) and Level 4

(given by K4,p and K4,v) should be significantly lower than the SM frequency fSM for

stability reasons. Note that the bandwidth of the controlled system corresponds to the

bandwidth of the aforementioned kinematic controller. Forces Fz,ref and Fl,0 can then

be established depending on the requirements of the actual surface treatment task and

the desired guiding sensitivity, respectively. Finally, the switching gains {u+
1 , u

+
2 , u

+
3 }

and weights {W 1,i,W 2} can be empirically tuned to be as small as possible in order to

reduce the chattering effect whilst guaranteeing that the SM behavior of the control

action remains effective for the task at hand.

5. Evaluation of the proposed control method

In this section, the main features of the proposed conventional and one-side SMCs are

illustrated by simulating a DC motor model, as it allows to better highlighting the

merits of the proposed controller with a traditional example. Note that this model

represents one joint of the robot system and can be easily extrapolated to a given

number of joints, as considered in the real experimentation of Section 7. The simulation

results presented in this section were obtained using MATLAB R©.

The DC motor model is given by:

ω̇ = (Km,t im − bm ω)/Jm (42)

i̇m = (−Rm im + Vm −Km,e ω)/Lm, (43)

were ω is the rotor angular velocity, im the armature current, Vm the voltage source,

Jm the moment of inertia of the rotor, bm the motor viscous friction constant, Km,e
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the electromotive force constant, Km,t the motor torque constant, Rm the electric

resistance and Lm the electric inductance. For this model, the output of the system

will be the rotor speed ω and the input or control action the voltage Vm.

In order to track the reference velocity ωref the equality and inequality constraints

for the conventional and one-side SMC are defined in terms of the error e = ωref − ω
as follows:

σeq,m(ω) = e = 0, φeq,m(ω, ω̇) = σeq,m +Keq,mσ̇eq,m = 0 (44)

σin,m(ω) = |e| − emax ≤ 0, φin,m(ω, ω̇) = σin,m +Kin,mσ̇in,m ≤ 0, (45)

where Keq,m and Kin,m are the approaching parameters to the original constraints and

emax is the maximum allowed tracking error considered for the inequality constraint.

Note that the relative degree between the constraint functions {φeq,m, φin,m} and the

control action Vm is equal to one, as required by SM control theory.

Therefore, the Lie derivative Lgφ and the control action Vm for the conventional

and one-side SMCs are given by:

Lgφeq,m = −(Keq,mKm,t/Lm), Veq,m = sign(φeq,m)u+ (46)

Lgφin,m = −(Kin,mKm,t/Lm) sign(e), Vin,m = sign(e) pos(φin,m)u+, (47)

where the switching gain u+ includes all the constants of the control action.

The simulation was run under the following conditions: Ts = 1ms, Jm = 0.1 kg.m2,

bm = 0.1 N.m.s, Km,e = 0.01 V.s, Km,t = 0.01 N.m/A, Rm = 1 Ω, Lm = 0.5 H,

Keq,m = Kin,m = 0.1 s, emax = 0.02 rad/s, u+ = 30 and the reference velocity is given

by the sinusoidal wave ωref (t) = 0.05 + 0.1 sin(1.33πt) rad/s.

Fig. 3 shows the simulation results for both conventional and one-side SMCs. It can

be seen that, once the initial error has been corrected (reaching mode), the conventional

SMC keeps the error signal at zero (top graph) switching the control action value from

positive to negative and vice versa (second graph), which is known as SM. In contrast,

the one-side SMC only applies a correction (third graph), i.e., the value of the control

signal is not zero, when the error signal is about to leave the allowed region (top
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Figure 3. Simulation of a DC motor control using conventional and proposed one-side SMC with a sinusoidal
reference velocity. Top graph: errors. Second and third graphs: control action for the conventional and one-side

SMC, respectively. Bottom graph: reference velocity.

graph) in order to keep the system within the limits. Therefore, it can be concluded

that the proposed one-side SMC has a good performance and is especially suitable

for non-negligible allowed regions, since otherwise the behavior is very similar to that

obtained with conventional SMC. It is important to remark that when the one-side

SMC applies no correction, the control signal can be used to achieve other goals of

lower-priority tasks, see Section 2.

6. Controller implementation

The pseudo-code of the proposed method is shown below. The algorithm is executed

at Ts seconds sampling time, and incorporates the following auxiliary functions:

• Kinematic function l(q) and Jacobian matrices J and Jn.
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• Moore-Penrose pseudoinverse (·)†, using a tolerance to set to zero the very small

singular values [11].

• Robot sensors: GetRobotStateAndForces, which returns the current robot state

{q, q̇} and the current force vectors Ft and Fg measured by the treatment and

guide sensors, respectively (it is assumed that the force signals have been already

filtered by the sensor electronics).

• Actuators: SendToJointControllers(q̇c), which sends the current commanded

joint velocity vector to the joint controllers.

The computation time per iteration of the algorithm using compiled C code in a

computer with Intel Core i5-3470 processor at 3.2 GHz clock frequency was around 15

microseconds for the experiment in Section 7.

7. Real experimentation

7.1. Setup

The setup used for the experiment consists of (see Fig. 4): a Sawyer cobot (collaborative

robot); a guiding handle consisting of a T-shaped plastic rigid object composed of two

prismatic portions of dimensions 148x30x6mm and 30x36x6mm; a force/torque sensor

Nano25 (guide sensor) located between the last link of the robot and the guiding

handle; another force/torque sensor Nano25 (treatment sensor) located between the

guiding handle and the tool; a tool consisting of a cylinder of 43x43x10mm; and a flat

rectangular plastic object of 190x95x3mm as target.

The controller is implemented in an external PC (Intel Core i5-3470 processor at

3.2GHz) using Ubuntu 16.04 as O.S., ROS Lunar distribution, Intera 5 SDK from

Rethink Robotics, and the netft rdt driver ROS package provided by ATI Industrial

Automation. All Sawyer cobot, force sensor and external PC are connected to a router

and communicate via UDP protocol.
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Algorithm executed at sampling time of Ts seconds

1 [q, q̇,Ft,Fg] =GetRobotStateAndForces;
2 p = l(q) ; // Eq. (1)
3 ṗ = Jq̇ ; // Eq. (2)

4 Ḟt = (Ft − Ft,prev)/Ts ; // Derivative

5 Ḟg = (Fg − Fg,prev)/Ts ; // Derivative

6 φ1 =



Ft,z − Fz,ref +K1,zḞt,z

Ft,α +K1,αḞt,α
Ft,β +K1,βḞt,β


 ; // Eqs. (22),(29)-(31)

7 φ2 =
√
F 2
g,x + F 2

g,y − Fl,0 +K2
Ḟg,xFg,x + Ḟg,yFg,y√

F 2
g,x + F 2

g,y

; // Eqs. (23),(35)

8 A1 = K1H1Jn ; // Eq. (33)

9 b1 = −W1 sign (φ1) u+
1 ; // Eq. (33)

10 A2 = v2m (pos (φ2))K2H2Jn ; // Eq. (38)

11 b2 = −W 2 pos (φ2) u+
2 ; // Eq. (38)

12 A3 = J ; // Eq. (40)

13 b3 = −K3,vṗ− sign(ṗ)u+
3 ; // Eq. (40)

14 A4 = I ; // Eq. (41)
15 b4 = −K4,vq̇ +K4,p(q0 − q) ; // Eq. (41)

16 q̈c,1 = A†1b1 ; // Eq. (6), i = 1

17 N1 = I−A†1A1 ; // Eq. (7), i = 1

18 q̈c,2 = q̈c,1 + (A2N1)†(b2 −A2q̈c,1) ; // Eq. (6), i = 2

19 N2 = N1(I− (A2N1)†(A2N1)) ; // Eq. (7), i = 2

20 q̈c,3 = q̈c,2 + (A3N2)†(b3 −A3q̈c,2) ; // Eq. (6), i = 3

21 N3 = N2(I− (A3N2)†(A3N2)) ; // Eq. (7), i = 3

22 q̈c,4 = q̈c,3 + (A4N3)†(b4 −A4q̈c,3) ; // Eq. (6), i = 4
23 q̇c = q̇c,prev + Ts q̈c,4 ; // Integration

24 SendToJointControllers(q̇c);
25 [q̇c,prev,Ft,prev,Fg,prev] = [q̇c,Ft,Fg] ; // For next iteration
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Figure 4. Experimental setup: 7R serial manipulator with two force sensors (guide and treatment sensors),

a guiding handle consisting of a T-shaped plastic rigid object (black), a tool consisting of a cylinder (black)
and a flat rectangular plastic object as target (red).

7.2. Experiment conditions

i) The signals of both force sensors are filtered using a first-order low-pass filter

with a cutoff frequency of 73 Hz, which is implemented in the sensor electronics.

ii) The control period Ts is set to 20 milliseconds.

iii) Parameters used for Level 1 (Section 4.4): Fz,ref = −10N, u+
1 = 0.06, W 1,z =

0.75, W 1,α = W 1,β = 12, and K1,i = 0.15.

iv) Parameters used for Level 2 (Section 4.5): Fl,0 = 3N, u+
2 = 0.2 and K2 = 0.075.

v) Parameters used for Level 3 (Section 4.6): K3,v = 0.01 and u+
3 = 1.1.

vi) Parameters used for Level 4 (Section 4.7): K4,v = 4.5, K4,p = 0.75 and q0 =
[
1.04◦ −36.41◦ −1.39◦ 95.24◦ 2.08◦ 30.19◦ 188.29◦

]T

.

7.3. Results

In order to verify the performance of the proposed approach an experiment

has been conducted, where the human operator moves the robot tool using

the guiding handle while the target object to be treated either rests on a ta-

ble or is held above the table. The video of this experiment can be played

at https://media.upv.es/player/?id=e7df1870-1371-11e8-9032-77826e6b3a7e
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and the results for this experiment are depicted at different figures as discussed below.

Fig. 5 shows several frames from the video: Fig. 5a and 5b (interval 19s–25s in the

video of the experiment) show how the user guides the robot tool when the flat object

(i.e., the target to be treated) is resting on the table; Fig. 5c and 5d (interval 1m27s–

1m30s in the video of the experiment) show how the robot tool smoothly stops when

the user leaves the guiding handle1; and Fig. 5e and 5f (interval 1m41s–1m49s in the

video of the experiment) and Fig. 5g and 5h (interval 2m06s–2m14s in the video of

the experiment) show how the user can guide the robot tool or leave it motionless,

respectively, even when the flat object changes its position, orientation and stiffness,

i.e., when the flat object is held above the table.

Fig. 6 shows the performance of the current approach in terms of constraint func-

tions and activation of the inequality constraint used to guide the robot tool. In partic-

ular, it can be seen that the equality constraints {σ1,z, σ1,α, σ1,β} are switching around

zero as expected. This means that the surface treatment is being done properly: the

tool orientation is perpendicular to the object surface and the pressure with the tool

on the surface is being kept around the desired value regardless the changes of the

object position, orientation and stiffness. Note that the amplitude of the chattering

band for the equality constraint φ1,z is significantly reduced for the time interval 86s–

164s in the graph (1m40s–2m58s in the video), which corresponds to the phase when

the flat object is held above the table. This is because the stiffness coefficient Kt,s,z

is significantly reduced when the flat object has no support and, since the used value

for W 1,z remains the same, it means that the actual value for W1,z is also reduced,

see (34). Thus, resulting in a lower chattering band, see (24), as can be clearly seen in

the figure.

Fig. 6 also shows the behavior for the constraint in Level 2, which is used to guide the

robot tool. In particular, it can be seen how the constraint of Level 2 φ2 is activated,

see the fifth plot, when small force magnitudes are detected, see the fourth plot. Note

that the main objective of Level 2 is to be very sensitive to the human operator’s forces

in order to track its movements, which is successfully attained as shown in the video:

1A smooth stop has been considered for the robot tool, e.g., this is useful for textile industry where an abrupt
stop is not advisable in order to avoid ruining the fabric. However, the desired speed reduction to stop the

robot tool can be selected in Level 3.
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(a) video: 0m 19s; graph: 5s (b) video: 0m 25s; graph: 11s

(c) video: 1m 27s; graph: 73s (d) video: 1m 30s; graph: 76s

(e) video: 1m 41s; graph: 87s (f) video: 1m 49s; graph: 95s

(g) video: 2m 06s; graph: 112s (h) video: 2m 14s; graph: 120s

Figure 5. Frames of the video of the experiment. The time instant is indicated for each frame.
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Figure 6. Behavior of the constraints in the experiment. First to fourth plots: constraint functions for Level 1

and Level 2, the modified constraint function φi is in dark-blue, whereas the original constraint function σi is
in light-cyan. Fifth plot: activation of the inequality constraint in Level 2.
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Figure 7. Trajectory followed by the robot tool in the experiment. Left: 3D view. Right: top view

the robot tool is guided by the human operator using just one finger and very small

forces. However, it is interesting to remark that, if a low threshold Fl,0 is considered

to activate the inequality constraint used to guide the robot, the constraint could be

accidentally activated by the weight supported by the guide sensor when the slope of

the surface being treated is large, see the intervals 2m14s–2m17s and 2m39s–2m43s

of the video. Obviously, this undesired movement can be avoided if the user simply

handles the guiding element (in fact, the usual case is that the human operator guides

the tool during the whole surface treatment task), see the intervals 2m17s–2m20s and

2m43s–2m46s of the video. In practice, to avoid gravity perturbation it is convenient to

minimize the weight supported by the guide sensor, e.g., the sensor could be attached

at a light handle of the guiding element that is used by the operator to move the robot.

Fig. 7 shows the trajectory followed by the robot tool, where it can be seen that a

large area has been covered by the tool during the experiment: around 0.3 meters in

both X- and Y -axes and 0.2 meters in Z-axis. Note that, although there are reference

values for the forces in Level 1, there are no reference values for the tool trajectory

in Level 2. In particular, the robot tool is guided by the human operator’s forces

and, hence, the so-called “tracking errors” of the tool trajectory do not apply for the

proposed human-robot collaborative solution for surface treatment tasks.

Fig. 8 shows the control commands computed during the experiment, where it can

be seen that all four levels contribute to the commanded joint accelerations. Note that
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Figure 8. Control actions for the experiment: contribution of each priority level to the commanded joint
accelerations in the first four plots, the commanded joint accelerations in the fifth plot and commanded joint

velocities to be sent to the robot controller in the bottom plot.
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the control commands computed in Level 4 are small compared to those computed at

the higher levels. However, Level 4 commands cannot be neglected since they allow to

avoid a bias self-motion for the redundant robot which may lead achieving a critical

region, e.g., the joint limits.

It is interesting to remark that robot behavior with the proposed SMC approach is

relatively smooth. This is mainly due to two reasons. Firstly, the constraint modifica-

tion introduced in Section 3.3 increases the order of the SM control action, which yields

that the discontinuous control action is the joint acceleration vector and, hence, the

joint velocities (and positions) are smooth, see Fig. 8. Secondly, the robot dynamics

and low-level joint controllers smooth to a certain extent the commanded discontinu-

ous control action.

It is worth noting that, in general, the hardness and stiffness of the target object

affect the performance of the proposed method for surface treatment tasks and, hence,

the parameters of the algorithm should be selected depending on these characteristics.

In this sense, the proposed approach could benefit from adaptive methods for online

self-tuning of the control parameters. For instance, adaptive switching gain (ASG)

methods could be used to compute online the switching gain parameter u+ in order

to improve the performance and adaptability of the control algorithm.

7.4. Chattering-free methods

A new experiment has been conducted to evaluate several methods that reduce the

chattering effect mentioned in Section 3.4. The experiment consists in tracking a cir-

cular reference trajectory with the flat target resting on the table and a fixed obstacle

at the mid point of the circle. For this experiment Level 2 and Level 3 in Section 4.5

and Section 4.6, respectively, have been replaced by a conventional reference tracking

controller in order to obtain repeatability in the experiments, i.e., the online guiding

behavior is replaced by an a priori known reference trajectory. Moreover, the following

inequality constraint is also included in Level 1 to adapt the tool position to the surface

obstacles: σ1,xy =
√
F 2
t,x + F 2

t,y − Fxy,max ≤ 0, where Fxy,max = 15 N is the maximum

allowed value for the linear force measured by the treatment sensor in the tool XY

plane. This inequality constraint is fulfilled using the proposed one-side SMC. Details
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omitted for brevity.

The following options available in the literature have been tested to reduce the

chattering effect of the proposed SMC: hyperbolic tangent function [7] as commuta-

tion function, quasi-continuous SMC [17] and twisting and super-twisting SMCs [16].

Among all of them, the best results have been obtained using the super-twisting SMC.

Fig. 9 shows a comparison experiment between the standard and the chattering-free

SMCs. It can bee seen in Fig. 9a that the tool trajectory is smoother for the chattering-

free SMC, whereas Fig. 9b shows that the frequency harmonics of the chattering-free

SMC are lower, particularly for the rotation α in the X-axis, i.e., in the direction of

the obstacle.

8. Conclusions

While solutions of robots working collaboratively alongside humans in polishing tasks

exists, to the best of the authors’ knowledge this is the first work that has proposed a

human-robot closely collaborative solution to cooperatively perform surface treatment

tasks such as polishing, grinding, finishing, deburring, etc. For this purpose, two force

sensors attached to the manipulator end-effector and tool have been considered: one

sensor is used to properly accomplish the surface treatment task, while the second

force sensor is used by the human operator to guide the robot tool.

A distinctive feature of the proposed approach is that the controller was developed

using not only conventional sliding mode control but also a non-conventional sliding

mode control. The main advantages of the method are robustness and low computa-

tional cost.

The effectiveness of the proposed approach has been shown experimentally using a

redundant 7R manipulator: the Rethink Sawyer collaborative robot.
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