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Abstract 

In the present research work, a numerical crack growth analysis using linear elastic 

fracture mechanics is carried out paying attention to the crack paths that grow in the 

central part of cruciform specimens under biaxial fatigue loads. The crack propagation in 

this type of specimens has been studied using the extended finite element method 

(XFEM). The objective is to analyse the effect of different phase angles under biaxial 

fatigue loads and to assess the different orientation criteria for nonproportional loading, 

benefiting from the advantages of XFEM. The crack path and the stress intensity factor 

range of a crack either aligned or inclined to the load directions have been investigated 

using different crack orientation criteria. Symmetrical branching is predicted for an initial 

crack inclined at 45° with phase angle of loading equal to 90º and 180º. The numerical 

results are in good agreement with the experimental observations found in the literature, 

although the study reveals important differences in the crack path predictions depending 

on the orientation criteria. 
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1. Introduction 

Multiaxial stresses can be found in many engineering structures, for example in the 

automotive or aeronautical industry. Furthermore, fatigue has been identified as 

responsible of a large amount of structural failures [1]. The biaxial stress state is one of 

the most studied cases since it is found on the surface of many mechanical components, 

where crack initiation usually takes place [2]. Thus, the scope of this study has been 

limited to a biaxial stress state under pure mode I, pure mode II and mixed mode (I+II) 

of fracture mechanics. During last decades, the development of new fatigue testing 

machines has allowed to investigate different biaxial loading paths (in-phase, out-of-

phase, different frequencies, variable amplitude, etc.) in different engineering materials 

[3–7]. Tubular [8], solid cylindrical [9] or cruciform specimens [7] are the most common 

specimens that have been analyzed in the literature [10]. 

Under proportional fatigue loading, a crack may propagate either co-planar or at 

a certain deviation angle, mode I or mode II controlled (either perpendicular to the 

maximum normal stress or governed by the maximum shear stress) depending on the 

material and type of loading [11]. Due to the proportionality of loads, directions of 

maximum normal and shear stresses are kept constant with time, and therefore the crack 

growth direction can be easily ascertained.  

Under non-proportional mixed mode I+II, a crack can either grow co-planar 

(mode I or mode II controlled), or propagate at a certain deviation angle or branch in 

different cracks [4,12]. Co-planar crack growth has been reported for cracked cruciform 

specimens under equibiaxial and in-phase loading in several works found in the literature 

[3,13–17]. In addition, symmetric crack branching (crack bifurcation) from an initial 

crack 45º inclined to the loading axis has been reported in cracked cruciform specimens 
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under out-of-phase loading conditions [3–5,18]. Furthermore, it has been shown that non-

singular terms have no significant influence on crack deflection in cruciform specimens. 

However, non-singular terms, as the T-stress, are good predictors of crack stability [6].  

The objective of the present work is to analyse numerically the effect of different 

phase angle of loading and initial crack inclinations on the predicted crack path under 

biaxial fatigue loading, benefiting from the advantages offered by XFEM simulations. 

With this aim, different criteria for nonproportional loading found in the literature are 

compared. Finally, the effect of the displacement ratio and phase angle of loading on the 

crack orientation is assessed for the first crack growth step.  

2. Materials and methods 

2.1. Cruciform specimen and initial crack geometry 

A symmetrical cruciform specimen is employed for the biaxial study, as is shown in Fig. 

1.The specimen geometry is in accordance to the international program NESC [19,20]. A 

centred initial crack either aligned or inclined to the load directions is located at the centre 

of the specimen. The inclination angle values examined are β=0º, 15º, 30º and 45º, and 

the initial crack length (2a) is 36mm. 

 

 

Figure 1: Sketch of the cruciform specimen problem with a centred crack and definition of initial inclination angle (β) 

and local angle of propagation (θ). 
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2.2. Loading 

Loads are controlled by prescribed displacements Ux and Uy applied to each of the 

specimen arms. In all loading cases studied, the maximum displacement applied to both 

arms is kept constant and equal to 0.076mm. In addition, the same displacement ratio 

between the minimum and maximum displacements (Umin and Umax) prescribed in a cycle 

(Eq. 1) and frequency are set for both arms. Displacement loads are defined according to 

Eqs. (2) and (3), being δxy the phase shift angle, T the time period, Um the mean 

displacement and Ua the amplitude displacement: 

𝑅𝑅𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑑𝑑𝑑𝑑 =
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚
𝑈𝑈𝑚𝑚𝑚𝑚𝑚𝑚

 (1) 

𝑈𝑈𝑥𝑥 = 𝑈𝑈𝑚𝑚 + 𝑈𝑈𝑎𝑎 cos �
2𝜋𝜋𝜋𝜋
𝑇𝑇
� (2) 

𝑈𝑈𝑦𝑦 = 𝑈𝑈𝑚𝑚 + 𝑈𝑈𝑎𝑎 cos �
2𝜋𝜋𝜋𝜋
𝑇𝑇

+ 𝛿𝛿𝑥𝑥𝑥𝑥� (3) 

Numerical crack paths are obtained with a phase angle of 0º, 90º and 180º and a 

positive displacement ratio Rd of 0.1 in order to minimize crack closure effects. The 

loading cases considered are shown in Fig. 2. When δxy is 0°, loads are in-phase, and the 

loading path is a straight line with slope equal to 1. Thus, the biaxiality ratio keeps 

constant during the cycle and the case is clearly proportional.  

When δxy is 90°, loads are out-of-phase, and the loading path is a circle with centre 

at (Um, Um). When δxy is 180°, loads are again out-of-phase and the crack path is a 

straight line with a slope of -1. 
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Figure 2: In-phase and out-of-phase 90° and 180° loading paths applied with Rd=0.1 and Umax=0.076mm. 

 

2.3. Numerical model 

An Abaqus implementation of the extended finite element method (XFEM) [21] is 

employed to model crack propagation. Thus, the mathematical discontinuity introduced 

by means of XFEM enables the crack growth simulation without the necessity of 

remeshing. Inertial effects are not taken into account, and a quasi-static analysis is 

performed. A small scale yielding condition is assumed at crack tip. The material 

behaviour is taken as elastic, with E=206 GPa and v=0.3, under a plane strain condition. 

The mesh element size is 0.5 mm at the specimen centre.  

The crack is successively propagated as follows. First, stress intensity factors (SIFs) 

are calculated using the domain independent interaction integral for each crack tip (further 

details can be found in [21]). Then, a fatigue crack propagation criterion is applied, and 

the crack is extended 1.25 mm in the predicted direction. The mesh and crack extension 

sizes have been analyzed previously in order to optimize the computational cost and 

accuracy of the results. 
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2.4. Fatigue crack propagation 

In two-dimensional linear-elastic fracture mechanics and under mixed loading conditions 

that vary with time, the stress state governed by KI and KII corresponding to the singular 

term at crack tip in polar coordinates (r,θ) is given by [22]: 
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(4) 

The trigonometric functions in Eq. (4) can be found in any basic book of fracture 

mechanics, e.g. [23]. After multiplying Eq. (4) by √(2πr), the stress field expressions are 

modified in such a way that the influence of r is cancelled: 
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(5) 

Since Eqs. (5) are dimensionally equivalent to stress intensity factors, in Eqs. (5) 

we define the virtual stress intensity factors kI*, kII* to assess the prospective angle θ for 

crack kinking (see Fig. 3). This assessment is performed via several criteria (reviewed 

below) that are based on kI* or kII* computed for different values of t and θ. 

 

Figure 3: Sketch of the stress intensity factors associated with a virtual crack emanating from the initial crack. 

 

Conceptually, some authors link kI*, kII* to a virtual infinitesimally-branched 
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crack emanating from the original crack with an angle θ [24]. It must be noted that 

negative values of kI* have no physical meaning since a negative kI* means that the 

normal stress field is compressive and the hypothetical crack faces overlap. Therefore, it 

should not be considered in the crack propagation. In this way, negative kI* are set to 

zero.  

In general, under proportional loading, a crack kinks in a direction where the 

tensile normal stress field (mode I stress intensity factor kI*) is maximum. Furthermore, 

this direction coincides with the direction of kII* equal to zero, in accordance with the 

criterion of local symmetry [25], and with the direction of maximum ∆kI*. Several criteria 

can be found in the literature following these observations such as the maximum 

tangential stress criterion [26], the maximum strain energy density criterion [27] and the 

maximum energy release rate [28].  

Many authors have demonstrated that predicted angles given by the 

aforementioned criteria are very similar. It should be mentioned that these criteria can be 

modified in order to account for the effect of non-singular terms [29]. On the other hand, 

it has been verified that a crack can also propagate co-planar or mode II controlled at high 

mixed-mode loadings under certain circumstances [30]. However, this is not the general 

case. Therefore, we will assume that propagation is mode I controlled to simplify the 

study. Other types of propagation are out of the scope of this work.  

Under nonproportional loading, the ratio of the stress intensity factor KI/KII is not 

kept constant during the cycle as in proportional loading. Thus, it can be generally said 

that the direction of maximum kI* at different instants of a loading cycle (kI,max*) is not 

kept constant during the cycle. Under these conditions, Hourlier [31] examined three 

potential directions of crack orientation: the direction corresponding to the absolute kI,max* 

(max(kI*)), the direction where ∆kI* is maximum (max(∆kI*)) and the direction where the 
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crack growth rate is maximum. In addition, Dubourg and Lamacq [32] proposed the 

direction where the effective range of the circumferential stress is maximum along the 

cycle. The criterion was applied to fretting fatigue problems showing a good agreement. 

On the other hand, an extension of the criterion of local symmetry for nonproportional 

loading, min(∆kII*), was proposed by Giner et al. [33], where the crack orientation is the 

direction for which the shear stress range at the crack tip is minimized, min(∆τ) [34]. 

Lastly, Highsmith [35] observed that direction of crack orientation usually falls between 

the max(kI*) and max(∆kI*) criteria. In this way, Highsmith employed a crack driving 

force, Eq. (6), combining the influence of both parameters following the work by Hourlier 

et al. [31] and Walker [36]. In this way, the mean stress influence is introduced into the 

crack orientation criterion for materials that show this dependence. In Eq. (6), the 

parameter w weighs kI,max* and ∆kI*, thus defining which one dominates the direction of 

orientation. The crack orientation angle is the one for which the crack driving force is 

maximized: 

∆𝑘𝑘𝐼𝐼𝑤𝑤∗(𝜃𝜃)����������� = 𝑘𝑘𝐼𝐼,𝑚𝑚𝑚𝑚𝑚𝑚∗ 1−𝑤𝑤(𝜃𝜃) ∆𝑘𝑘𝐼𝐼,𝑚𝑚𝑚𝑚𝑚𝑚∗ 𝑤𝑤(𝜃𝜃) (6) 

  

3. Results 

The results are divided into five sections. The first three sections present the numerical 

crack path results for a phase angle of 0º, 90º and 180º. In each section, the numerical 

crack path is obtained for four different central crack inclinations (0º, 15º, 30º and 45º) 

while keeping constant the rest of parameters. Finally, the fourth and fifth sections address 

the influence of the displacement ratio and the first crack kink, respectively, for an initial 

centred crack inclined at 45º.  

3.1. In-phase 

When the loads are in phase, KII remains zero during the loading cycle for any crack 
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inclination, and the crack grows coplanar to the initial crack as is shown in Fig. 4. Thus, 

crack behaviour is a pure mode I. As is shown in Fig. 5, the prospective directions θ 

predicted by the min(∆kII*), max(kI*) and max(∆kI*) criterion do not vary with time 

during the loading cycle due to the proportionality of loads. This direction is θ=0° 

(defined as in Fig. 1), which is in line with experimental observations found in the 

literature for the case of β=0º and 45º [3,14,17].  

 

Figure 4: Numerical crack paths after 25 propagations for the four initial inclinations β=0°, 15º, 30º and 45º with 

phase angle of loading 0º (initial crack in black) using the max(∆kI*) criterion. 

 

Figure 5: SIFs, kI*(t,θ) and kII*(t,θ) during a loading cycle for the initial centred crack for the case β=0° and δxy=0°. 

3.2. Out-of-phase 180º 

When the phase angle of loading is 180º, three crack behaviours are found depending on 

the initial crack inclination β. When the crack is aligned with the loading directions 
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(β=0°), KII remains zero during the loading cycle. Therefore, the crack behaviour is a pure 

mode I and there is not crack kink. Furthermore, predicted crack paths agree with the 

experimental evidence found by Lee and Taylor [17]. 

 

Figure 6: Numerical crack paths after 25 propagations for the four inclinations β with phase angle of loading 180º 

(initial crack in black) using the max(∆kI*) criterion. 

 

Figure 7: SIFs, kI*(t,θ) and kII*(t,θ) during a loading cycle for the initial centred crack for the case β=15° and 

δxy=180°. 

When β is either 15º or 30º, the loading case is clearly non-proportional and 

mixed-mode (see Fig. 7 and 8). As is seen in Fig.7 and 8, the direction where kI* achieves 

its maximum (cross markers in subfigure for max(ΔkI*) criterion) changes during the 

loading cycle. The predicted orientation by max(kI*) coincides with the direction of 
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max(∆kI*) for β equal to 15º and 30º. However, it is observed in Fig. 7 that min(∆kII*) is 

zero and the predicted direction does not coincide with the direction predicted by the 

max(∆kI*) criterion for both cases (see Fig. 7 and 8).  

 

Figure 8: SIFs, kI*(t,θ) and kI*(t,θ) along a cycle for the initial centred crack for the case β=30° and δxy=180°. 

When β is 45º, the loading case is again mixed-mode and non-proportional. 

However, in this case KI does not vary during the loading cycle while KII changes. As is 

shown in Fig. 9, there are two directions (θ=±50°) where kI* and ∆kI* achieve their 

absolute maximum. Furthermore, min(∆kII*) is zero and its predicted direction 

(θ=±70.5°) does not coincide with the max(∆kI*) predicted direction. Therefore, the crack 

is expected to branch symmetrically into two cracks with respect to the initial crack.  

This result was first observed by Qian et al. [4] and recently by Neerukatti et al. 

[5]. Qian et al. [4] observed experimentally that the crack initially bifurcates 

symmetrically into two cracks at 50º-60º. Within 1 mm, the crack bifurcates to 70º and 

finally propagates along the direction of axes. We point out that Lee and Taylor [17] only 

observed kinking of the crack into one of the branches. However, this fact may be 

consequence of misalignment of the specimen or local effects such as the microstructure 

at that region. 
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Figure 9: SIFs, kI*(t,θ) and kI*(t,θ) along a cycle for the initial centred crack for the case β=45° and δxy=180°. 

3.3. Out-of-phase 90º 

When the phase angle of loading is 90°, the crack path predicted is very close to the 

predicted crack path with phase angle of loading equal to 180°. Nevertheless, the 

predicted kink angles are smaller in this case. Mall and Perell [3] found experimentally 

less kinking in symmetrical bifurcated cracks under 90º phase angle of loading than in 

180º phase angle of loading. As can be seen in Fig. 10, the crack path is straight for the 

initial crack aligned with the load axis, and symmetric branching is predicted for an initial 

crack with an inclination of 45°.  

 

Figure 10: Numerical crack paths after 25 propagations for the four inclinations β with phase angle of loading 90º 

(initial crack in black) using the max(∆kI*) criterion. 
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Figure 11: SIFs, kI* (t,θ) and kI* (t,θ) during a loading cycle for the initial centred crack for the case β=15° and 

δxy=90°. 

The differences found between 180º and 90° phase angles of loading are in the kI* 

and kII* curves along a cycle. As is shown in Fig. 11, relative kI,max* values during a cycle 

(cross markers in subfigures for max(ΔkI*) criterion) follow a loop shape. Furthermore, 

in comparison with the same inclination case of phase angle of loading equal to 180°, the 

angle predicted by min(∆kII*) (θ=-36.5°) is less sharp (for δxy=180° it was θ =-43.5°), and 

it does not coincide with the angle predicted by max(∆kI*) (θ=-26.25°).  

These facts are more pronounced when the initial inclination is 45° as is shown in 

Fig. 12. As in the case of 180º phase angle of loading, symmetric branching is predicted 

on both crack tips when β=45º. Mall and Perell [3] observed experimentally the same fact 

for an initial crack inclined 45º with phase angle of loading equal to 90º. However, 

Neerukatti et al. [5] observed the initial crack kinking only in one branch although the 

major crack tried to split unsuccessfully to secondary cracks. 
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Figure 12: SIFs, kI*(t,θ) and kII*(t,θ) during a loading cycle for the initial centred crack for the case β=45° and 

δxy=90°. 

Fig. 13 displays the predicted crack paths at one of the crack tips (the behaviour 

at the other crack tip is symmetric) for the different orientation criteria: max(kI*), 

min(∆kII*), max(∆kI*) and max(∆kI
w*) (w=0.3 and 0.7) for the case β=45° and δxy=90°. 

It is evident that significant differences can be found between the predicted crack paths. 

It is shown that the crack predicted by the criterion max(kI*) is a straight line. The crack 

paths predicted by min(∆kII*) and max(∆kI*) are different from the beginning, but the 

crack path predicted by max(∆kI*) gets close to the crack path predicted by min(∆kII*) as 

the crack grows. In addition, it is observed that the approach proposed by Highsmith [35] 

can be employed to fit the predicted crack in cases for which the experimental crack lies 

between the results obtained by max(∆kI*) and max(kI*) criterion.  
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Figure 13: Numerical crack paths after 25 propagations for β=45° and δxy=90° predicted by the orientation criteria 

max(kI*), min(∆kII*), max(∆kIw*) (w=0.3 and 0.7) and max(∆kI*). Initial inclined crack: solid black line. 

Figure 14 shows the predicted crack paths at one of the crack tips (predicted crack 

paths for the other crack tip are symmetric) with max(kI*), min(∆kII*) and max(∆kI*) for 

β=45° and δxy=180°. Again, significant differences can be observed between the predicted 

crack paths. The differences are similar to those found for the δxy=90º case. The crack 

path predicted by max(kI*) is again a straight line. In addition, the predicted bifurcation 

angle is greater for the min(∆kII*) criterion than for the angle predicted by max(∆kI*). 

Experimental crack paths observed in [3–5] with phase angle of loading equal to 180º are 

similar to the predictions obtained with min(∆kII*) and max(∆kI*). The shape of the 

experimental crack is closer to the predictions obtained by the min(∆kII*) criterion. 

Further investigations by varying specimen dimensions and loads are necessary to 

confirm this point.  
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Figure 14: Numerical crack path after 25 propagations for β=45° and δxy=180° predicted by the orientation criteria 

max(kI*), min(∆kII*) and max(∆kI*). Initial inclined crack: solid black line. 

 

Mall and Perel [3] observed crack bifurcation from an initial crack inclined 45º 

under phase angle of loading equal to 180º and 90º and co-planar growth under 

equibiaxial in-phase loading. Fig. 15 shows a picture of the experimental crack paths 

described above, published in [3]. In qualitative terms, it is observed a good correlation 

with the predicted crack paths shown in Fig. 13 and 14 with the criterion of min(∆kII*) 

and max(∆kI*). However, it must be noted that the geometry and material may relevantly 

influence the crack path. It cannot be concluded which criterion has a better agreement 

with the experimental evidence. 
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Figure 15: Experimental evidence found by Mall and Perel [3] (reproduced with permission of Elsevier) for cracks 

originating from a precrack inclined 45º with the loading axes with phase difference (a) 90º, (b) 180º and (c) 0º.   

On the other hand, Qian et al. [4] showed that the shear stress range in mode II 

stress intensity factor is almost zero after the bifurcation of the crack in 4 branches when 
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the phase angle of loading is 180º. Fig. 16 shows the mode I and mode II stress intensity 

factor ranges (ΔKI and ΔKII) along the crack path predicted by the orientation criteria 

max(kI*), min(∆kII*) and max(∆kI*) for the case β=45º and δxy=180º. As can be seen, ΔKII 

achieves a value close to zero after few propagations for the path predicted by the 

min(∆kII*) criterion. This condition takes longer to be achieved by the max(∆kI*) 

criterion, whereas it is not achieved by the max(kI*) criterion. This again suggests that the 

min(∆kII*) captures in a better way the mechanical behaviour governing crack orientation, 

as was commented by Giner et al. in [33], for the analogous min(∆τ) criterion. 

 

Figure 16: Mode I stress intensity factor range (top) and mode II stress intensity factor range (bottom) vs. crack 

length for β=45° and δxy=180° predicted by the orientation criteria max(kI*), min(∆kII*) and max(∆kI*). 

3.4. Displacement ratio 

In the previous sections, the displacement ratio applied in both axes is kept constant in all 

the cases (Rd = 0.1). In this section, the influence of the displacement ratio of the 
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displacement-controlled loads applied at both arms on the first crack orientation is 

assessed numerically. The case analyzed corresponds to an inclination β=45° and two out-

of-phase loadings: 90° and 180°. The same displacement ratio is applied on both arms. 

Four different orientation criteria are applied: min(∆kII*), max(∆kI*), max(kI*) and 

max(∆kI
w*). The studied displacement ratio interval ranges from -1 to 0.8.  

Figure 17 shows the predicted crack orientation angle against the displacement 

ratio Rd, showing large differences depending on the orientation criteria. In general, all 

the applied criteria predict symmetric branching with respect to the initial crack direction, 

except the max(kI*) criterion for the case δxy = 90º and displacement ratio higher than 0.4. 

We point out that Fig. 17 only shows the predicted angle in one of the bifurcated branches. 

It is important to remark that the criterion min(∆kII*) leads to an angle prediction that is 

independent of Rd. On the contrary, and for the out-of-phase 90°, the criterion max(kI*) 

predicts no kinking when the displacement ratio is above 0.4. However, when the 

displacement ratio is below 0.4, max(∆kI*) tends to predict the same direction as the 

max(kI*) criterion. In addition, it can be observed that, as the parameter w increases, the 

angle predicted by the max(∆kI
w*) criterion is closer to the direction predicted by the 

max(∆kI*) criterion. 

 

Figure 17: Bifurcation angle predicted at the crack tip of the initial inclined crack (β=45°) versus displacement ratio 
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applied on both arms when the phase angle of loading is 90º and 180º . 

3.5. Phase angle of loading 

In this section, we analyze the effect of phase of loading for the case β=45º and Rd = 0.1 

on both arms. Similar to the previous section, different criteria are applied to predict the 

crack propagation of a straight initial crack of length 36 mm. Fig. 18 shows the predicted 

crack orientation angle against the phase angle for the outlined case. The parameter w is 

set to 0.3 for the calculation of the max(∆kI
w*) criterion. As can be seen, all criteria predict 

that the crack will propagate without kinking for small phase loading angles. In addition, 

all criteria predict bifurcation above a certain value of phase angle of loading. It is 

interesting to observe that crack bifurcation is predicted abruptly after a phase angle of 

loading of about 40º for the criterion of min(∆kII*), predicting a bifurcation angle of 70.5º 

that is independent of the phase loading angle. 

The bifurcation angles predicted by the rest of criteria increase with the phase angle 

in a smooth way. Note that the phase angle value that triggers bifurcation is greater than 

50º for the rest of criteria. Further experimental tests should be carried out to compare 

these predictions.  
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Figure 18: Bifurcation angle predicted at the crack tip of the initial inclined crack (β=45°) versus phase angle of 

loading applied on both arms with a displacement ratio equal to 0.1. 

 

4. Conclusions 

Crack propagation has been numerically analysed for a cruciform specimen under out-of-

phase biaxial fatigue loads. The influence of the phase angle of loading and displacement 

ratio has been assessed using XFEM and applying different criteria found in the literature 

for non-proportional loading. A parametric study has been carried out thanks to the 

advantages of XFEM. It enables the study of the effect of out-of-phase fatigue biaxial 

loads and initial crack inclination on crack paths.  

In the case of either initial cracks aligned with a load direction or in-phase loading, 

cracks do not change the initial orientation. In the cases of 90º and 180º phase loading, an 

initial crack inclined 45º to the load direction can bifurcate into two cracks growing 
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symmetrically with respect to the initial crack plane. The numerical results agree with the 

experimental observations found in the literature. It can be concluded that crack paths 

predicted using different orientation criteria, such as max(∆kI*), max(kI*) and min(∆kII*), 

can be significant different from each other. Further experimental testing should be 

carried out in order to confirm the numerical predictions discussed in this research. 
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