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Abstract. Objective: This study proposes a reference database, composed of a large number
of simulated ECG signals in atrial fibrillation (AF), for investigating the performance of
methods for extraction of atrial fibrillatory waves (f -waves). Approach: The simulated
signals are produced using a recently published and validated model of 12-lead ECGs in
AF. The database is composed of eight signal sets which together account for a wide range
of characteristics known to represent major challenges in f -wave extraction, including high
heart rates, high morphological QRST variability, and the presence of ventricular premature
beats. Each set contains 30 5-min signals with different f -wave amplitudes. The database
is used for the purpose of investigating the statistical association between different indices,
designed either for use with real or simulated signals. Main results: Using the database,
which is made available at the Physionet repository of physiological signals, the performance
indices unnormalized ventricular residue (uVR), designed for real signals, and the root mean
square error, designed for simulated signals, were found to exhibit the strongest association,
leading to the recommendation that uVR should be used when characterizing performance in
real signals. Significance: The proposed database facilitates the comparison of performance
of different f -wave extraction methods and makes it possible to express performance in terms
of the error between simulated and extracted f -wave signals.
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1. Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting roughly 33.5 million
people worldwide (Chugh, Roth, Gillum & Mensah 2014). Since the prevalence of AF is
closely related to aging, it is expected to increase significantly in coming years, likely to
reach epidemic proportions by the middle of this century (Krijthe, Kunst, Benjamin, Lip,
Franco, Hofman, Witteman, Stricker & Heeringa 2013, Colilla, Crow, Petkun, Singer, Simon
& Liu 2013). The arrhythmia has a large effect on morbidity and mortality (Fauchier,
Villejoubert, Clementy, Bernard, Pierre, Angoulvant, Ivanes, Babuty & Lip 2016) as it may
provoke hemodynamic alterations, which in turn predispose the occurrence of cerebrovascular
accidents (Sposato, Cipriano, Saposnik, Ruı́z Vargas, Riccio & Hachinski 2015).

Since the pathophysiological mechanisms causing and maintaining AF are still not
completely understood (Schotten, Dobrev, Platonov, Kottkamp & Hindricks 2016), various
types of noninvasive techniques have been developed for better understanding of the
mechanisms. With respect to the ECG, being the most well-established noninvasive technique,
it is only until fairly recently that attention has been directed towards the atrial fibrillatory
waves (f -waves) and their characterization (Sörnmo, Alcaraz, Laguna & Rieta 2018).
For example, the f -wave repetition rate, i.e., the dominant atrial frequency (DAF), has
proven useful for monitoring drug therapy and predicting spontaneous and drug-induced
AF termination (Platonov, Corino, Seifert, Holmqvist & Sörnmo 2014). More advanced
approaches to characterizing f -wave morphology, e.g., based on nonlinear analysis and
entropy measures (Alcaraz & Rieta 2017), can help select patients who would respond to
therapies such as electrical cardioversion, catheter ablation, and Maze surgery. In addition,
f -wave representation by image mapping techniques has proven useful for noninvasive
localization of focal impulse sources of AF (Cuculich, Wang, Lindsay, Faddis, Schuessler,
Damiano, Li & Rudy 2010).

Since the QRST complexes overshadow the f waves, it is highly desirable to extract a
connected f -wave signal containing more samples for characterization than what is contained
in the TQ intervals, especially in short RR intervals which are rather frequent in AF (Sörnmo,
Petrėnas, Laguna & Marozas 2018). Different signal processing principles have been explored
for f -wave extraction which may be categorized as follows: average beat subtraction and
variants (Stridh & Sörnmo 2001, Lemay, Vesin, van Oosterom, Jacquemet & Kappenberger
2007, Dai, Jiang & Li 2013), principal component analysis (Castells, Mora, Rieta, Moratal-
Pérez & Millet 2005, Langley, Stridh, Rieta, Millet, Sörnmo & Murray 2006, Alcaraz &
Rieta 2008), interpolation and singular spectral analysis (Sassi, Corino & Mainardi 2009),
independent component analysis (Rieta, Castells, Sánchez, Zarzoso & Millet 2004, Phlypo,
Zarzoso & Lemahieu 2010), adaptive filtering using an echo state network (Petrėnas, Marozas,
Sörnmo & Lukosevicius 2012), extended Kalman filtering (Kheirati Roonizi & Sassi 2017),
and diffusion geometry (Malik, Reed, Wang & Wu 2017).

The performance of a method for f -wave extraction is influenced by several factors of
which the number of leads is important as more leads should provide better immunity to
respiratory-induced modulation of the QRS amplitude; if desired, multiple leads can be used
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to produce a global f -wave signal. Certain methods need to learn the signal characteristics
before extraction can take place, and, therefore, the minimum signal duration is another
important factor. Ventricular premature beats (VPBs) represent a major challenge since
such beats often have morphologies that deviate considerably from what is observed in beats
originating from the atria. The presence of noise and artifacts is yet another factor which
imposes a limitation on performance. In addition, it should be noted that certain methods
require that AF detection is first performed since f -waves need to be present if the observed
signal is to be properly processed; if sinus rhythm is present, it is often unclear whether the
extracted signal will contain P waves.

While performance evaluation of AF detectors can rely on publicly available, annotated
ECG databases, this observation does not apply to performance evaluation of methods for f -
wave extraction. One important reason to this important difference is that expert annotations
cannot be easily related to the accuracy of the extracted signal. As a consequence, a
wide variety of proprietary databases have been analyzed to assess the quality of extracted
signals, where use is made of an equally wide variety of performance indices. Under these
circumstances, it is exceedingly difficult to compare the performance of different extraction
methods.

In an attempt to mitigate this limitation, the present study proposes a reference ECG
database for evaluating and comparing the performance of f -wave extraction methods,
consisting of a large set of simulated signals with widely different characteristics.‡ The
database makes it possible to compute performance indices such as the sample-to-sample error
between simulated and extracted f -wave signals. Even with the availability of a reference
database, other datasets with real ECGs may nonetheless have to be considered to shed
light on extraction performance when certain specific signal characteristics are present. To
quantify performance in such situations, the reference database can be used to investigate
the statistical association between indices designed for real signals and indices designed for
simulated signals, with the aim of finding an index for real signals which convey information
similar to that conveyed by any of the indices for simulated signals. In the present study, it is
hypothesized that such an index is well-suited for performance evaluation based on real ECG
databases.

The manuscript is organized as follows. Section 2 describes the composition of
the proposed reference database with simulated ECGs, where emphasis is put on the
characteristics of the f -waves and the QRST complexes. Section 3 provides a survey of
performance indices, designed either for use with simulated or real signals. Using the
reference database, Section 4 presents a statistical analysis of the performance indices, leading
up to an index recommended for use with real signals. Various aspects of the database and
performance indices are discussed in Section 5, and some concluding remarks are provided in
Section 6.

‡ The proposed reference database will be made available at the Physionet data repository (Goldberger, Amaral,
Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng & Stanley 2000).
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2. Materials

A reference database composed of simulated ECG signals is created using the model recently
proposed in (Petrėnas, Marozas, Sološenko, Kubilius, Skibarkiene, Oster & Sörnmo 2017),
offering a large number of choices such as type of f -wave (synthetic or real), type of
QRST complex (synthetic or real), type of RR-interval series (synthetic or real), and type
of noise and artifacts. The reference database contains 12-lead signals, however, in the
present study, only lead V1 is considered as it typically exhibits the largest f -wave amplitude.
Moreover, all simulated signals are in AF since the aim is to evaluate f -wave extraction
performance, not P wave extraction. Consequently, the option to switch between sinus
rhythm and AF is disabled in the simulation model, as is also the change in DAF occurring
during the first minutes after the onset of AF and the last minute before spontaneous
termination (Bollmann, Sonne, Esperer, Toepffer, Langberg & Klein 1999, Ravelli, Masè,
Greco, Faes & Disertori 2007, Alcaraz & Rieta 2009).

Real RR-interval series, extracted from ECGs in the Physionet Long-Term Atrial
Fibrillation Database, are used to produce signals in which the heart rate ranges from 80
to 150 beats per minute (bpm). Synthetic RR-intervals are not considered.

Synthetic f -waves are generated using an extended version of the sawtooth model (Stridh
& Sörnmo 2001), whereas the number of harmonics and the DAF are treated as random
variables (the number of harmonics can take the values 1, 2, or 3 with equal probability,
and the DAF is uniformly distributed in the interval [5, 12] Hz). Using an echo state
network (Petrėnas et al. 2012), real f -waves have been extracted from a proprietary database
of ECGs obtained from patients clinically diagnosed with either paroxysmal or persistent AF.
For both synthetic and real f -waves, the amplitude is expressed as a root mean square (RMS)
value, set to either 5, 10, 20, 30, 40, or 50 µV.

Synthetic QRST complexes are generated using an extended version of the single-dipole
model described in (Sameni, Clifford, Jutten & Shamsollahi 2007), where morphological
variability is introduced by treating the model parameters as uniformly distributed random
variables. Real QRST complexes have been selected from the PTB Database (Bousseljot,
Kreiseler & Schnabel 1995), mostly composed of ECGs in sinus rhythm with moderate
morphological variability. However, it is well-known that f -wave extraction becomes
increasingly more difficult to perform as the variability becomes increasingly more
pronounced; therefore, the simulation model is complemented by a component labeled real
QRST complexes with high morphological variability (HMV). Since such QRST complexes
are often observed just before transitions from sinus rhythm to AF, QRST complexes are
selected from such time segments in patients with paroxysmal AF and introduced in the model
in the same way as synthetic and real QRST complexes. Figure 1 illustrates simulated signals
with different degrees of morphological variability.

Since the morphology of VPBs typically differs considerably from that of beats
originating from the atria, the simulation model is complemented with the option to insert real
VPBs. These beats are selected from episodes of sinus rhythm in patients with paroxysmal AF,
and introduced in the model according to the following rule: the length of the coupling interval
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Figure 1. Simulated ECG signals in AF (left column) composed of (a) synthetic f -waves
and QRST complexes, (b) real f -waves and synthetic QRST complexes, and (c) real f -waves
and real QRST complexes with high morphological variability. The right column displays
superimposed QRST complexes.

Figure 2. Simulated 10 second-length ECG containing ventricular premature beats.

is 70% of the mean RR interval of the five preceding normal beats, whereas the compensatory
pause is about twice the coupling interval. The percentage of VPBs in a simulated signal is
set to 5%. Figure 2 illustrates a simulated ECG signal containing VPBs.

Eight sets of signals (labeled S1–S8) are defined by different combinations of the above-
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Table 1. Composition of sets with simulated signals used for evaluating f -wave extraction
performance.

Real Synthetic Real QRST Synthetic QRST Real QRST Real
Set f -waves f -waves complexes complexes complexes with HMV VPBs

S1 × ×
S2 × ×
S3 × ×
S4 × ×
S5 × ×
S6 × ×
S7 × × ×
S8 × × ×

mentioned components, see Table 1. In each set, five different 5-min signals are simulated
for each of the six f -wave amplitudes, and thus a total of 30 signals. It should noted that
the reference database is noise-free, except for the noise which is present in real signals; see
Section 5 for a discussion on this matter.

3. Methods

Most indices quantify extraction performance by exploring the properties of the extracted f -
wave signal in the QT interval because f -wave distortion is largely confined to this interval.
Hence, it is assumed that the observed signal x(n), n = 0, . . . , NQT− 1, whether simulated or
real in nature, contains the samples in the interval enclosed by the onset of the Q wave and the
end of the T wave. Since wave delineation is extremely difficult to perform accurately in the
presence of f -waves, see, e.g., (Dai, Yin & Li 2016), the onset and end of the QT interval are
related to the R wave position by fixed distances. The simulated and extracted f -wave signals
are denoted s(n) and ŝ(n), respectively, and indexed in the same way as x(n). All signals
are assumed to be zero-mean, achieved by linear, time-invariant high-pass filtering to remove
baseline wander.

For simplicity, beat indexing is omitted in the description below of performance indices.
It is straightforward to compute an overall performance figure by averaging the values
obtained for all beats of the analyzed signal.

3.1. Performance indices for simulated signals

The root mean square error (RMSE) is a well-established performance index for simulated
signals, used in diverse biomedical applications of which f -wave extraction is one. This index
is defined by (Stridh & Sörnmo 2001, Petrėnas et al. 2012)

SRMSE =

√√√√ 1

NQT

NQT−1∑
n=0

(s(n)− ŝ(n))2, (1)
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where S indicates that the index is designed for simulated signals. The normalized root mean
square error (nRMSE) is another commonly used index (Castells, Rieta, Millet & Zarzoso
2005, Alcaraz & Rieta 2008, Mateo & Rieta 2013, Kheirati Roonizi & Sassi 2017, Malik
et al. 2017), defined by

SnRMSE =

√√√√√√ 1

NQT

NQT−1∑
n=0

(s(n)− ŝ(n))2

sRMS,QT
, (2)

where sRMS,QT is the RMS value of s(n) in the QT interval.
Yet another well-known performance index is the sample correlation coefficient (Rieta

& Hornero 2007, Alcaraz & Rieta 2008, Mateo & Rieta 2013), defined by

SCC =

1

NQT

NQT−1∑
n=0

s(n)ŝ(n)

sRMS,QTŝRMS,QT
, (3)

where |SCC| ≤ 1. It should be noted that SCC measures morphological similarity, but is
invariant to differences in amplitude between s(n) and ŝ(n). This property must be taken into
account when f -wave amplitude is subject to analysis in applications such as the prediction of
AF termination in patients with persistent AF who have undergone catheter ablation (Nault,
Lellouche, Matsuo, Knecht, Wright, Lim, Sacher, Platonov, Deplagne, Bordachar, Derval,
O’Neill, Klein, Hocini, Jaı̈s, Clémenty & Haı̈ssaguerre 2009).

3.2. Performance indices for real signals

Real signals call for other types of performance indices than do simulated signals since s(n)

is unknown. Real-signal indices, denoted by R, aim to quantify the amount of QRS-related
residuals present in ŝ(n). The simplest performance index characterizes the local signal-
to-noise ratio (SNR) by the logarithm of the ratio of the R-wave amplitudes x(nR) and
ŝ(nR) (Mateo & Rieta 2013),

RSNR = 10 · log10

(
x(nR)

ŝ(nR)

)
, (4)

where nR is the location of the R-peak.
The ventricular residue (VR) is an often used performance index, originally proposed

in (Alcaraz & Rieta 2008). This index can be defined either without normalization, then
referred to as the unnormalized ventricular residue (uVR),

RuVR = ŝRMS,QRS · max
n=0,...,NQRS−1

|ŝ(n)|, (5)

or with normalization,

RVR =
RuVR

ŝ2RMS,1-min
, (6)
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where ŝRMS,QRS is the RMS value of ŝ(n) in the QRS interval and ŝ2RMS,1-min is the RMS value
of ŝ(n) in a 1-min interval centered around the R-wave peak, respectively. The QRS interval
contains NQRS samples.

The modified ventricular residue (mVR) index was introduced with the aim of improving
the performance evaluation of extracted signals with low-amplitude f -waves (Malik et al.
2017). The index is defined by

RmVR =
1

4

(
Q50[|¯̂sQT(n)|]
Q50[|x̄cTQ(n)|]

+
Q50[|x̄cTQ(n)|]
Q50[|¯̂sQT(n)|]

)
·(

Q95[|¯̂sQT(n)|]
max[|x̄cTQ(n)|]

+
max[|x̄cTQ(n)|]
Q95[|¯̂sQT(n)|]

)
,

where Qα[x(n)] denotes the α% quantile of x(n). The quantiles are computed using the
following two median-corrected signals:

¯̂sQT(n) = ŝ(n)−Q50[ŝ(n)], n = 0, . . . , NQT − 1, (7)

and

x̄cTQ(n) = xcTQ(n)−Q50[xcTQ(n)], n = 0, . . . , NcTQ − 1, (8)

where xcTQ(n) is obtained by concatenation of the samples contained in 30 TQ intervals
preceding the current beat and 30 TQ intervals following. Thus, ¯̂sQT(n) relates only to the
current beat, whereas x̄cTQ(n) relates to a much longer signal segment whose length NcTQ

depends on the prevailing heart rate.
Yet another approach to evaluating extraction performance is to analyze the relevant

scales of the time–scale representationw(s, τ), obtained by computing the continuous wavelet
transform of ŝ(n); s and τ denote scale and translation, respectively (Langley 2015). In this
approach, the scalogram |w(s, τ)|2 is first normalized across all translations,

E(s, τ) =
|w(s, τ)|2∫
|w(s, τ)|2dτ

, (9)

and, then, for the purpose of characterizing the temporal distribution of E(s, τ), the wavelet
entropy W (s) is computed for scale s,

W (s) = −
∫
E(s, τ) · ln (E(s, τ)) dτ. (10)

Using the fourth-order derivative of the Gaussian function as the mother wavelet, the
following three performance indices were proposed, characterizing

• ventricular activity (RV), defined as the minimum W (s) across the scales containing
frequencies from 12.5 to 50 Hz.

• atrial activity (RA), defined as the average of W (s) across the scales containing
frequencies from 3 to 10 Hz.

• both ventricular and atrial activity (RVA), defined as the average of W (s) across the
scales containing both ventricular and atrial activity, i.e., 3 to 50 Hz.
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3.3. Comparison of performance indices

The statistical association between indices designed for real and simulated signals is
investigated for the purpose of identifying thoseR-indices which convey information similar
to any of the S-indices. The identified indices are deemed to be particularly well-suited for
evaluating performance on real signals.

For each pair (S,R), the distribution of points is fitted, in the least squares sense, using
linear, power, exponential, and logarithm functions. The goodness-of-fit is quantified by
the degrees-of-freedom adjusted R2 statistic (0 < R2 < 1), estimating the proportion of
the variance in the dependent variable predicted from the independent variable; a better fit
is reflected by a larger value of R2. For these four functions, the largest R2 is selected to
characterize the association between each pair of indices.

A comparison of performance indices requires a method for f -wave extraction. Here,
the well-known average beat subtraction (ABS) is chosen since, despite its limitations, it
continues to be popular in clinically oriented studies, see, e.g., (Fujiki, Sakabe, Nishida,
Mizumaki & Inoue 2003, Shah, Yamane, Choi & Haı̈ssaguerre 2004, Beckers, Anne,
Verheyden, van der Dussen de Kestergat, van Herk, Janssens, Willems, Heidbuchel & Aubert
2005, Grubitzsch, Modersohn, Leuthold & Konertz 2008, Sterling, Huang & Ghoraani 2015);
the rationale behind this choice is discussed in Section 5.

The performance indices were implemented using the parameter settings provided in the
original publications. For normal beats, the onset of the QRST interval started 70 ms before
the R wave peak, and the length of the QRST interval was set to the shortest RR interval.
For VPBs, the onset was instead set to 90 ms before the R wave peak and the length was
established by increasing the shortest RR interval with 20%. It was visually verified that
all individual beats, whether normal beats or VPBs, were properly contained in the related
window.

4. Results

Table 2 presents the R2 statistic for pairs of indices, obtained for the real f -waves contained
in the sets S1, S3, S5, and S7. Almost all pairs are associated with low values of R2, and it is
only (SRMSE,RuVR) that is close to 1, i.e., R2 = 0.94, thus indicating that these two indices
convey similar information. On the other hand, the normalized ventricular residue indexRVR

is not strongly associated with any of the S-indices. This observation becomes even more
pronounced for the three indices RV,RA, and RVA, which are all associated with R2-values
close to zero. It is also noted that SCC is not associated with any of theR-indices.

Table 3 presents the R2 statistic for pairs of indices, now obtained for the synthesized f -
waves contained in the sets S2, S4, S6, and S8. Comparing these results with those in Table 2,
it is evident that the analysis of indices for real and synthesized f -waves leads to essentially
the same result, i.e.,RuVR again conveys information similar to that of SRMSE.

The overall results of R2 statistics, obtained from all the sets S1–S8 merged, differ
marginally from the results in Tables 2 and 3 and are therefore not presented.
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Table 2. R2 statistic for pairs of performance indices, obtained for real f -waves in the sets S1,
S3, S5, and S7.

RSNR RVR RuVR RmVR RV RA RVA

SRMSE 0.61 0.65 0.94 0.39 0.04 0.08 0.27
SnRMSE 0.40 0.37 0.38 0.78 0.03 0.10 0.31
SCC 0.37 0.18 0.28 0.27 0.14 0.06 0.26

Table 3. R2 statistic for pairs of performance indices, obtained for synthesized f -waves in the
sets S2, S4, S6, and S8.

RSNR RVR RuVR RmVR RV RA RVA

SRMSE 0.54 0.71 0.93 0.46 0.17 0.05 0.19
SnRMSE 0.27 0.36 0.38 0.79 0.04 0.04 0.21
SCC 0.21 0.15 0.20 0.31 0.12 0.02 0.18
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Figure 3. Association between RuVR and SRMSE for (a) real f -waves and (b) synthesized
f -waves.

Figure 3 shows the scatter plots of the pair with the strongest statistical association, i.e.,
(RuVR,SRMSE), divided into real and synthesized f -waves. Figure 4 shows the pair with the
next strongest association, i.e., (RmVR,SnRMSE). Each dot in the scatter plot results from
computing the pair of indices from a 5-min signal contained in the analyzed data sets. In all
four scatter plots, the power function offers the best fit to the data sets.
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Figure 4. Association between RmVR and SnRMSE for (a) real f -waves and (b) synthesized
f -waves.

5. Discussion

5.1. Database with simulated signals

Simulated ECG signals have been widely used for evaluating the performance of f -wave
extraction methods. The signals are usually composed of three components — QRST
complexes, f -waves, and noise — extracted either from real or synthesized ECGs. The
QRST complexes can be extracted from real ECGs in sinus rhythm following P-wave
cancellation (Alcaraz & Rieta 2008, Petrėnas et al. 2012, Dai et al. 2013, Donoso, Figueroa,
Lecannelier, Pino & Rojas 2013, Lee, Song, Shin & Lee 2012) or synthesized using a single
dipole model (McSharry, Clifford, Tarassenko & Smith 2003, Kheirati Roonizi & Sassi 2017).
Similarly, the f -wave signal can be produced by concatenating the TQ intervals of real ECGs
in AF (Alcaraz & Rieta 2008, Donoso et al. 2013, Lee et al. 2012) or synthesized using the
sawtooth model (Stridh & Sörnmo 2001) or its variants (Petrėnas et al. 2012, Kheirati Roonizi
& Sassi 2017, Malik et al. 2017). The noise may be taken from a database as done in (Petrėnas
et al. 2017) or synthesized using, e.g., autoregressive modeling (Sameni et al. 2007). In most
studies on f -wave extraction, however, the noise component is disregarded.

It is evident that simulated signals can be composed in many different ways, and,
therefore, it is not surprising that the characteristics of databases differ considerably from
study to study. As a result, a fair comparison of performance is extremely difficult to
accomplish, with the exception of those cases where the authors have implemented some
other method(s) to compare performance with that of the proposed method; ABS is commonly
the method implemented for comparison, see, e.g., (Stridh & Sörnmo 2001, Alcaraz &
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Rieta 2008, Lee et al. 2012, Dai et al. 2013).
The proposed reference database of simulated ECG signals not only facilitates the

comparison of performance, but it also highlights signal characteristics known to represent
major challenges in f -wave extraction. These characteristics include high heart rates, high
morphological QRST variability, the presence of VPBs, different f -wave amplitudes and
repetition rates, and f -wave morphology involving a stochastic component. Some of these
characteristics (i.e., high heart rates, different f -wave amplitudes and repetition rates) are
integral to the synthesized signals, whereas other characteristics (i.e., high morphological
QRST variability and the presence of VPBs) are featured, either alone or together, in data sets
S5–S8, see Table 1. Thus, the strengths and weaknesses of a method can be better pinpointed
by presenting the performance results on a set-by-set basis rather than as a result obtained for
the whole database.

When QRST complexes are synthesized, the morphological variability may be modest
or pronounced depending on how the model parameters are chosen. For most extraction
methods, increased morphological variability translates to worsened performance, especially
for methods involving ensemble averaging of the QRST complexes. Moreover, the degree
of determinism with which f -waves are synthesized may notably influence performance.
Indeed, almost perfect extraction can be achieved when the synthesis of f -waves is completely
deterministic, i.e., no stochastic component is involved (Petrėnas et al. 2017). Obviously, such
results say little about the practical value of the method subject to evaluation.

5.2. Performance indices

A method for f -wave extraction needs to be chosen before the statistical association
between any two indices R and S can be investigated. In the present study, the well-
known ABS was chosen because of its simplicity, its earlier use in a study on performance
evaluation (Langley 2015), and the fact that the development of extraction methods has had
ABS as a natural starting point.

Using the proposed reference database, the second part of the present study addresses the
problem of determining which of the considered R-indices provide information statistically
associated with any of the S-indices. The results show that the strongest association
(R2 = 0.94) exists between the pair (SRMSE,RuVR), whereas no other pair has an association
exceeding 0.8. This particular pair offers the advantage of characterizing performance in
clinically relevant terms, i.e., in units of µV, and thus avoids the problems associated with
interpreting normalized indices such as SnRMSE and SCC. It should be emphasized that a strong
association to a certain S-index does not imply that the index is perfect and cannot be bettered.

In addition to the indices described in Section 3.1, a few other S-indices have been
considered in the literature. The SNR improvement (Kheirati Roonizi & Sassi 2017) is
defined as the ratio between the power of (x(n) − s(n)) and the power of (s(n) − ŝ(n)),
and thus differ from the herein described S-indices since it involves the power of x(n). As
a consequence, the accuracy of ŝ(n) is evaluated correctly when the power of x(n) is held
fixed from one realization of the simulated signal to the next. If not, an improved SNR may
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be due to changes in the characteristics of the QRST complex (which are unrelated to f -wave
extraction). Therefore, this index was not considered in the present study. The mean absolute
error of the DAF (Sassi et al. 2009) is an index which indirectly quantifies the performance in
simulated signals, being well-suited for situations when the overall aim is to analyze the DAF.
However, this index requires that the DAF is estimated from s(n), which thus introduces an
unwanted dependence on the technique used for spectral estimation. Since this index does
not convey much information on how f -wave morphology is preserved in ŝ(n), it was neither
considered in the present study.

Likewise, a few R-indices described in the literature were not considered in the present
study. The spectral concentration (Castells, Rieta, Millet & Zarzoso 2005, Llinares, Igual
& Miró-Borrás 2010, Phlypo et al. 2010, Malik et al. 2017) is defined as the normalized
spectral power in a small interval centered around the DAF; a more concentrated spectrum is
judged to reflect better performance. However, the usefulness of this index may be questioned
since it is well-known that the DAF can vary over time, implying that the dominant spectral
peak may be broadened for physiological reasons. Neither does this index provide much
information on the magnitude of QRST-related residuals. Another approach to quantifying
performance is to compare the f -wave amplitude representative of the QT interval with
that representative of the TQ interval (Langley et al. 2006), based on the assumption that
good performance is manifested by an insignificant difference in amplitude between the two
intervals. A nonparametric statistical test is used to determine whether the amplitudes in the
two intervals are significantly different. This test provides a rather coarse characterization of
performance, being expressed in terms of statistical significance of differences between the
two populations, and, therefore, it is not considered in the present study. A similar reasoning
applies to the statistical approach proposed in (Lemay et al. 2007).

The present study considers performance indices quantifying the characteristics of ŝ(n)

in the QT interval because most f -wave distortion is confined to this interval. However, for
certain methods, it may be motivated to quantify the distortion in the TQ interval as well, so
that a more complete characterization of extraction performance is provided. Methods which
may need both QT- and TQ-related performance indices include independent component
analysis (Rieta et al. 2004, Phlypo et al. 2010), autoregressive modeling and prediction
error analysis (Wang, Rao, Shepherd & Beggs 2008), and the echo state network (Petrėnas
et al. 2012). The indices described in Section 3 can also be used for characterizing the
distortion in the TQ interval.

Although the emphasis of the present study is on the use of a single R-index to
characterize performance in real ECGs, it may very well be motivated to combine the
proposed index RuVR with some other index, e.g., designed with reference to the particular
application of interest.

Some limitations of the study merit consideration. Extraction performance has
been quantified in individual leads, implying that the performance of multi-lead methods,
e.g., (Rieta et al. 2004, Donoso et al. 2013), producing a global f -wave signal, cannot be
properly evaluated as this signal does not match any of the original leads. Hence, indices
need to be developed so that the performance of such methods can be evaluated and compared
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as well. Another potential limitation of the study is that noise-free signals have been analyzed,
although a certain degree of noise is present in real signals. However, noise-free signals were
employed to ensure that any association that may exist between different pairs of indices was
not masked by noise. If performance in noise is of interest to investigate, it is straightforward
to add noise to the simulated signals of the database. Since f -wave extraction is likely
preceded by preprocessing for noise removal, a comparison of performance is rendered
difficult due to that the preprocessing implemented usually differ from study to study, causing
f -wave morphology to be altered differently.

6. Conclusions

A reference database with simulated ECG signals is proposed for the purpose of evaluating
the performance of methods for f -wave extraction. The signals account for a wide range of
challenging characteristics such as high heart rates, high morphological QRST variability, and
the presence of ventricular premature beats. Using this database, the information conveyed by
performance indices designed either for use with simulated or real signals was investigated.
The strongest statistical association was found for the index pair (RMSE,uVR), leading to
the recommendation that the uVR should be used when characterizing performance in real
signals.
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