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Abstract: This paper presents a fault-tolerant algorithm ensuring multiple 
resources sharing in mobile ad hoc networks (MANETs) that is able to handle 
the known K-mutual exclusion problem in such mobile environments. The 
proposed algorithm relies on a token-based strategy, and requires information 
about resources and their use to be carried in routing protocol control 
messages. This way, our solution avoids any additional exchange of messages. 
Furthermore, experimental results show that it offers a fast response time. 
Moreover, we introduce a dual-layer fault-tolerance mechanism that tolerates 
the faults of several sites at the same time without affecting the well 
functioning of the system. Simulation results also evidence the high efficiency 
of our proposal, which achieves reduced overhead and response delay even in 
the presence of critical situations where multiple simultaneous faults occur.
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1 Introduction

Nowadays, the development of wireless technologies offers new perspectives in the
field of computing. In fact, wireless networks allow users to gain access to information
independently of time and place. Due to their many advantages, they gained major
interest and an increasing popularity in both academic and industrial domains (Rappaport
et al., 1996; Prabhu et al., 2017).

An ad hoc network is a set of mobile hosts interconnected by a wireless medium,
forming a temporary network without any communications infrastructure support. The
mobile ad hoc networks concept assumes that all (or the majority) of the components in
the environment are mobile. So, contrary to infrastructure-based networks, no centralised
administration is available; instead, mobile hosts themselves form the infrastructure of
the network. Also, no assumption or limitation is made regarding the size of the mobile
ad hoc network, meaning that the network can potentially contain hundreds of mobile
units (Nasipuri, 2004).

The absence of a centralised administration in ad hoc networks, and the possibility
of sharing resources between the various sites of the network, can jointly lead to
incoherences due to simultaneous access to the same resource from several locations,
and so it becomes of utmost importance to guarantee the exclusive access to this
resource. This notion gave birth to the mutual exclusion problem (MUTEX) in mobile
ad hoc networks (Nasipuri, 2004). This problem can be generalised to the K-mutual



exclusion problem (K-MUTEX) when the system is endowed with several copies of the
same resource (Bulgannawar and Vaidya, 1995).

These two problems were adequately addressed in conventional distributed systems,
and the proposed algorithms can be classified in two main categories:

1 permission-based algorithms (Saxena and Rai, 2003)

2 token-based algorithms (Swaroop and Singh, 2007).

However, the assumption that all nodes are safe from any kind of faults can lead to
unexpected and unwanted situations.

The purpose of the proposed algorithms is to insure the K-MUTEX through the
exchange of a reduced number of messages to avoid overloading the network, and to
reduce energy consumption. Unfortunately, fault tolerance is rarely considered.

In this paper, we propose a new algorithm to solve the K-MUTEX problem in
mobile ad hoc networks that supports fault tolerance. Our solution takes advantage of
the AODV routing protocol (Chakeres and Belding-Royer, 2004) to achieve a reduced
exchange of messages between the various mobile hosts whenever access to a critical
resource takes place. Moreover, we extend AODV control messages to carry both critical
resource availability and fault tolerance information.

After ensuring the distribution of token availability data on the fly (together with
control messages), our proposal offers a double-layer recovery strategy to face any kind
of nodes failure. Thus, our proposal, which we named ‘NFK’, is an AODV-based, fully
distributed, timely, and fault-tolerant K-MUTEX solution for mobile ad hoc networks
(MANETs).

The remainder of the paper is organised as follows: in Section 2, we present a
review of existing K-MUTEX solutions. In Section 3, we provide an overview of our
proposal, and then go through the main algorithms used for building a reliable and safe
resource sharing solution in Section 4. Afterward, we present our double-layer recovery
strategy to ensure fault-tolerance in Section 5. In Section 6, the simulation environment
is described, along with the discussion of simulation results. Finally, some concluding
remarks are provided in Section 7.

2 Related works

Since the distributed systems and parallel computing have emerged, the resource
sharing problem has gained much interest from both academic and industrial research
communities. In this section, we summarise the main existing solutions dealing with
the K-MUTEX exclusion problem over MANETs. These solutions can be classified as
either fault-sensitive or fault tolerant approaches.

2.1 Fault-sensitive K-MUTEX approaches for MANETs

In this section we focus on k-MUTEX solutions without fault tolerance mechanisms. We
start by discussing on-cluster centred solutions, and then move on to fully distributed
ones.



2.1.1 Cluster-based approaches

To overcome message complexity, clustering-based architectures are the main existing
solutions. Same as all MUTEX solutions, all existing solutions falling under this
category are, to the best of our knowledge, token-based solutions.

A cluster-based K-MUTEX algorithm for MANETs is proposed in Haghighat and
Mohamadi (2011). In this algorithm, the network must be divided into at least K clusters.
Based on the Raymond algorithm (Raymond, 1989), nodes within the cluster get the
role of head, gateway or ordinary node, where every cluster head maintains the list of
requesting nodes. The cluster head attempts to serve demands using the cluster’s own
token, but if there is no available token, it forwards the request to the other cluster
heads. This technique was proposed to minimise the number of exchanged messages.
However, cluster head election may become a serious problem, especially in mobile
environments.

In Erciyes (2004), author proposes an architecture consisting of a ring of clusters
for distributed mutual exclusion algorithms in the scope of mobile networks. They
periodically re-divide the network into new clusters based on the fixed centred
partitioning algorithm, and then every cluster implements a separate MUTEX algorithm.
They applied Ricart-Agrawala and token-based algorithms to evaluate the performance
of their architecture. Despite simulation results show that message complexity is
considerably reduced, this solution cannot be considered as an adequate option for
solving the K-MUTEX problem over MANETs.

Same as Erciyes (2004), Dagdeviren and Erciyes (2007) propose an architecture for
MUTEX handling in MANETs. Specifically, they divide their software architecture into
three layers. At the lowest layer, the merging clustering algorithm (MCA) periodically
partitions the MANET into a number of balanced clusters. At the second layer, the
backbone formation algorithm (BFA) provides a virtual ring using the cluster heads
found by MCA. The final layer is represented by the implementation of a modified and
scaled version of the Ricart-Agrawala algorithm. Unfortunately, this architecture inherits
the previously mentioned problems.

2.1.2 Fully distributed approaches

Solutions falling in this category do not make any clustering assumptions, and their
communications are fully distributed. Generally, this category’s solutions suffer from the
generation of an excessive number of messages.

• Token-based approaches:

A token-based distributed algorithm for supporting MUTEX in opportunistic
networks is proposed in Tamhane and Kumar (2012). This approach tries to
achieve a trade-off between the dynamic MANET topology and the token passing
process, and it can be divided into three main procedures:

1 request generation

2 request propagation

3 token propagation.



Every node in a critical section (CS) case maintains the list of demanding nodes, 
and then it releases the Token for the first demander and acts as an intermediate 
for the others. Even if this approach can guarantee that all demanders will be 
served, it cannot handle link or node failures. The work in Thiare and Naimi
(2009) presents a group K-MUTEX algorithm for MANETs where authors assume 
that there is a unique token initially, and then utilise the partial reversal technique 
to maintain a token-oriented DAG (directed acyclic graph). Then, a node holding 
the token can enter the CS, and inform all its requesting neighbours by sending 
out Okay messages. When a neighbour node receives the Okay message, it can 
enter the CS if, and only if, it requests for the same resource as the token holder. 
Additional information messages and the continuous DAG computation are the 
main problems of this technique. Furthermore, there is no complexity study nor 
simulation tests that validate this approach.

In another work, Walter et al. (2001) propose a DAG-based k-resources sharing 
technique for MANETs where the token holders are considered as sink-points. In 
addition, every node maintains a queue of requesting node identities. The 
problems with this solution are mainly:

1 the assumption that the token is reliable and will never disappear

2 that duplicates do not occur

3 that node failures do not occur.

• Permission-based approaches:

Due to the unpredictable and dynamic topology of MANETs, most of the existing
works adopt token passing strategies instead of permission gathering. Hence, only
a few works fall under this category.

A permissions-based technique for solving the K-MUTEX problem is proposed in
Masum et al. (2010). The authors of this technique tried to overcome mobility and
disconnection problems by gathering enough consensuses for every mobile node
intending to enter the CS. They propose creating a specific message containing the
information required to reach such consensus, including ProcessID, LastRequestID
and LastRequestTS (TimeStamp), among others. Unfortunately, this approach does
not take into account MANET’s delay sensitivity, nor the additional messages
overhead or the energy consumption associated to the transmission process.

2.2 Fault-tolerant K-MUTEX approaches for MANETs

Due the nature of MANETs, resource sharing algorithms should take into account the
high failure probabilities of both nodes and communication links. In this part, we
provide an overview of the main existing solutions offering fault-tolerance mechanisms.

In Wu et al. (2007), the mobile dual-token MUTEX (MDTM) algorithm for detection
of token loss is proposed. The algorithm detects token loss due to links problems only
by using two types of tokens, primary and secondary. Each token has its own dynamic
ring and a coordinator. Only the primary token grants permission to enter the CS. If a
token completes a cycle over the ring and does not find the ID of other token on any
of the nodes, it assumes that the latter is lost and must be regenerated. We find that



this approach is not really suitable for MANETs because of the ring assumption. The
same authors have proposed another permission-based fault tolerant solution in Wu et al.
(2008). It is based on a look-ahead technique similar to medium access techniques. In
particular, this technique enforces MUTEX only among the hosts currently competing
for the critical section, thus reducing the number of exchanged messages. In addition,
they use a predefined timeout to detect mobile hosts’ disconnection. Despite supporting
high levels of mobility, this permissions-based approach introduces significant delay
problems.

Another fault tolerant K-MUTEX technique for MANET was proposed in Moallemi
et al. (2007). This solution extends the well-known Naimi-Trehels algorithm (Trehel
and Naimi, 1987) with an entropy-based clustering algorithm where cluster heads
manage the token passing among requesting nodes. However, authors fail to provide
experimental results or analytical proofs of this solution. Hence, the actual performance
of this technique remains unknown.

2.3 State of the art review considerations

Based on this hovering upon the existing solutions in the literature, it becomes clear
that the most adequate solution for MANET environments is the token-based ones.
Moreover, most of the existing solutions rely on pre-formed cluster, a solution that
cannot always be applicable, especially in highly dynamic MANETs. In addition, low
battery, link quality and node mobility are also among the main challenges for resource
sharing algorithms.

To overcome the aforementioned problems, in this paper we propose a double-layer
recovery strategy together with a token-passing technique. Moreover, our solution is
fully distributed and independent, and so it can be combined with any routing protocol.

In the sections that follow we provide a clear step-by-step description of our solution
assumptions, algorithms and performance achieved.

3 Proposal overview

In MANETs, all the applications which require a communication between two hosts
require at first the establishment of a link between these two hosts. This is insured
by the routing protocol of the network. The establishment of links is insured by the
routing protocol at the network layer, while the various applications, including those of
the K-MUTEX, run at the application layer.

For token-based K-MUTEX algorithms, the requester sends its demand to a single
particular site, or it sends its demand towards a set of sites and waits for the answer. In
both cases, a high number of message exchanges between sites will take place, leading
to network overload. Moreover, to insure this communication, a valid path must be
already established by the routing protocol, which also requires message exchanges.

We notice that the use of the shared resource requires an exchange of messages in
the lower layer, and another exchange of messages in the upper layer as well. Thus, it
quickly becomes obvious that network overload may take place.

Our approach consists of reducing the number of exchanged messages for every
CS entry, and of exploiting the inevitable messages of the routing protocol to carry
additional information that insures token exchanges between the various sites.



To solve the problem of the K-MUTEX, K tokens are used to satisfy the requests.
These tokens are initially held by K sites, and can be exchanged between the various
sites. Thus, at any given time, every site can be in one of the following status:

1 the site holds a free token

2 the site uses a token

3 the site does not hold a token.

Our idea consists in adding two fields in the routing table of each site to indicate the
presence and the usage of tokens. The first field is the Present_token field; it indicates
that the site holds a free token. The second field is the used_token field, which indicates
that the site uses a token.

We rely on the AODV routing protocol because it is a reactive algorithm which
allows to establish a link between two network nodes by using the shortest path. To
achieve this it creates routing tables on demand, assuring that the information is always
relevant.

Figure 1 gives an example of the routing tables of three sites (nodes). We notice the
distance (cost) between the sites, which is indicated in the table. Figure 1(b) explains
the changes in the routing table, where we can notice the two additional bits.

Figure 1 Proposed messages format extension (see online version for colours)
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Table 1 Notations used

AODV Ad hoc on-demand distance vector
K-MUTEX K-mutual exclusion
CS Critical section
LSi,j Link stability between two nodes ‘i’ and ‘j’
α Peak cases avoidance factor
AODV i Routing table of the node ‘i’
Vi(t) Velocity of the node ‘i’ at time ‘t’
NS-2 Network Simulator 2

The site holds a token, meaning that this information will be available in its routing
table, and by dint of the routing protocol, this information will be available in the routing
tables of the other sites.



When a site wishes to enter the CS, it updates its routing table, and it chooses
the closest site among the sites which hold tokens. This information is available in the
routing table, and thus a request will be directly sent towards this site without the need
to perform a token search. The latter answers favourably to this demand by returning the
token. Upon receiving the token, the requesting site allows it to access the CS. Notice
that all necessary updates are handled automatically by the routing protocol.

It is worth pointing out that the use of this method avoids additional message
exchanges because the information concerning tokens and their location is in general
available for all the sites in their routing tables.

Table 1 details the used notations and their meanings.

4 Proposal details

The system consists of N sites numbered from 1 to N, and of K resources. To insure
the K-MUTEX, we use K tokens that are initially held by the sites in a random manner.

4.1 Data design

Every node i in the system maintains the following local variables:

• Status: a variable which indicates the status of the site.

• Requesting: a Boolean variable indicating if the site asked a critical resource or
not, initialised at false.

• Token: a Boolean variable indicating if the site possesses a token or not; it is
initialised at True for the sites holding tokens, and at false for the other sites.

• Next: a waiting queue which contains the identities of the requesting sites. This
queue is sent with the token to a requesting site in order to satisfy the other sites.

• AODV (X, Y): indicates both the fields which can be manipulated by our
algorithm: X indicates the free tokens, and Y indicates the used tokens. In our
algorithm, we use also the following messages:

• Request (Token, i): sent by the site i towards the site which holds a token.

• Agreement (Token, Queue): sent by the site which holds the token to a requesting
site to allow it to use the CS.

• Reject: sent by a former holder of the token to a requesting site to inform it that
it does not hold the token any more.

4.2 Proposal functionalities

In this section we present the code of the algorithm with the explanation of each
procedure.

In Algorithm 1, the requesting site sends its demand to the closest holder of a free
token, and waits for its reception to enter the CS.



Algorithm 1 Requesting the CS

Int. J. Applied Nonlinear Science, Vol. x, No. x, xxxx 1

abc

1 a

2 b

Algorithm 1 Requesting the CS
1: Requesting ← True;
2: if (AODVi_[i]_free token = 0) then
3: Holder ← Find the adequate holder (AODVi);
4: Send Request (Token, i) to Holder;
5: end if
6: Wait for (Token = True);
7: Modification in the routing table AODVi (0,1);
8: < Enter the CS >

Algorithm 2 Reception of Agreement (Token, Queue)
1: Token ← True;
2: Next ← Queue;

Algorithm 3 Reception of Request (Token, j)
1: if (AODVi_[i]_free_token = 1) then
2: Token ← False;
3: Send Agreement (Token, Queue) to j;
4: Modification in the routing table AODVi (0,0);
5: else
6: if (AODVi_[i]_present_token = 1) then
7: Next ← Next+{j};
8: Queue ← Next;
9: else
10: Send Reject () to j;
11: end if
12: end if

Copyright 20XX Inderscience Enterprises Ltd.

In addition, when a site receives an agreement message, it sets its local variable at true,
and updates the waiting queue. Algorithm 2 summarises this process.

Algorithm 2 Reception of agreement (Token, Queue)

Int. J. Applied Nonlinear Science, Vol. x, No. x, xxxx 1

abc

1 a

2 b

Algorithm 1 Requesting the CS
1: Requesting ← True;
2: if (AODVi_[i]_free token = 0) then
3: Holder ← Find the adequate holder (AODVi);
4: Send Request (Token, i) to Holder;
5: end if
6: Wait for (Token = True);
7: Modification in the routing table AODVi (0,1);
8: < Enter the CS >

Algorithm 2 Reception of Agreement (Token, Queue)
1: Token ← True;
2: Next ← Queue;

Algorithm 3 Reception of Request (Token, j)
1: if (AODVi_[i]_free_token = 1) then
2: Token ← False;
3: Send Agreement (Token, Queue) to j;
4: Modification in the routing table AODVi (0,0);
5: else
6: if (AODVi_[i]_present_token = 1) then
7: Next ← Next+{j};
8: Queue ← Next;
9: else
10: Send Reject () to j;
11: end if
12: end if
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Using Algorithm 3, if a site receives a request message, it is going to send the token
towards the requesting site if it does not use the resource. Otherwise, it puts the
requesting site on hold. In case the site does not hold a token any more, it is going to
send a reject message to the requesting site.

Algorithm 3 Reception of request (Token, j)

Int. J. Applied Nonlinear Science, Vol. x, No. x, xxxx 1

abc

1 a

2 b

Algorithm 1 Requesting the CS
1: Requesting ← True;
2: if (AODVi_[i]_free token = 0) then
3: Holder ← Find the adequate holder (AODVi);
4: Send Request (Token, i) to Holder;
5: end if
6: Wait for (Token = True);
7: Modification in the routing table AODVi (0,1);
8: < Enter the CS >

Algorithm 2 Reception of Agreement (Token, Queue)
1: Token ← True;
2: Next ← Queue;

Algorithm 3 Reception of Request (Token, j)
1: if (AODVi_[i]_free_token = 1) then
2: Token ← False;
3: Send Agreement (Token, Queue) to j;
4: Modification in the routing table AODVi (0,0);
5: else
6: if (AODVi_[i]_present_token = 1) then
7: Next ← Next+{j};
8: Queue ← Next;
9: else
10: Send Reject () to j;
11: end if
12: end if
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Following Algorithm 4, when a requesting site receives a reject message, it is going to
look for another adequate site holding a free token by consulting its routing table.

Algorithm 4 Evolutionary algorithm

2

Algorithm 4 Reception of Reject ()
1: Holder ← Find the adequate holder (AODVi);
2: Send Request (Token, i) to Holder;

Algorithm 5 Release the CS
1: Requesting ← False;
2: if (Not_empty (Next)) then
3: j ← head(Next);
4: Next ← Next – {j};
5: Queue ← Next;
6: Send Agreement (Token, Queue) to j;
7: Token ← False;
8: else
9: Modification in the routing table of AODVi (1,1);
10: end if

Algorithm 6 Modification in the routing table AODVi (X,Y)
1: AODVi_[i]_Free_token ← X;
2: AODVi_[i]_present_token ← Y;

Algorithm 7 Find the adequate token holder(AODVi)
1: X ← Y;
2: for Q = 1 to N do
3: if (AODVi_[Q]_free_token = 1) then
4: Min ← AODVi_[Q]_Distance;
5: if Min < X then
6: Holder ← Q;
7: X ← Min;
8: end if
9: end if
10: end for
11: if (X = Y) then
12: for Q = 1 to N do
13: if (AODVi_[Q]_present_token = 1) then
14: Min ← AODVi_[Q]_Distance;
15: if Min < X then
16: Holder ← Q;
17: X ← Min;
18: end if
19: end if
20: end for
21: end if
22: Return (Holder);

When a site releases the critical section, it sends the token with the waiting queue to the
first requesting site in that queue. If the waiting queue is empty, the token remains held
by this site. After that, an update of the routing table must be done (see Algorithm 5).



Algorithm 5 Evolutionary algorithm

2

Algorithm 4 Reception of Reject ()
1: Holder ← Find the adequate holder (AODVi);
2: Send Request (Token, i) to Holder;

Algorithm 5 Release the CS
1: Requesting ← False;
2: if (Not_empty (Next)) then
3: j ← head(Next);
4: Next ← Next – {j};
5: Queue ← Next;
6: Send Agreement (Token, Queue) to j;
7: Token ← False;
8: else
9: Modification in the routing table of AODVi (1,1);
10: end if

Algorithm 6 Modification in the routing table AODVi (X,Y)
1: AODVi_[i]_Free_token ← X;
2: AODVi_[i]_present_token ← Y;

Algorithm 7 Find the adequate token holder(AODVi)
1: X ← Y;
2: for Q = 1 to N do
3: if (AODVi_[Q]_free_token = 1) then
4: Min ← AODVi_[Q]_Distance;
5: if Min < X then
6: Holder ← Q;
7: X ← Min;
8: end if
9: end if
10: end for
11: if (X = Y) then
12: for Q = 1 to N do
13: if (AODVi_[Q]_present_token = 1) then
14: Min ← AODVi_[Q]_Distance;
15: if Min < X then
16: Holder ← Q;
17: X ← Min;
18: end if
19: end if
20: end for
21: end if
22: Return (Holder);

In Algorithm 6, the modification in the routing table concerns two variables: the
existence of a free token, and the existence of a present token, according to the values
of X and Y.

Algorithm 6 Modification in the routing table AODVi (X,Y)

2

Algorithm 4 Reception of Reject ()
1: Holder ← Find the adequate holder (AODVi);
2: Send Request (Token, i) to Holder;

Algorithm 5 Release the CS
1: Requesting ← False;
2: if (Not_empty (Next)) then
3: j ← head(Next);
4: Next ← Next – {j};
5: Queue ← Next;
6: Send Agreement (Token, Queue) to j;
7: Token ← False;
8: else
9: Modification in the routing table of AODVi (1,1);
10: end if

Algorithm 6 Modification in the routing table AODVi (X,Y)
1: AODVi_[i]_Free_token ← X;
2: AODVi_[i]_present_token ← Y;

Algorithm 7 Find the adequate token holder(AODVi)
1: X ← Y;
2: for Q = 1 to N do
3: if (AODVi_[Q]_free_token = 1) then
4: Min ← AODVi_[Q]_Distance;
5: if Min < X then
6: Holder ← Q;
7: X ← Min;
8: end if
9: end if
10: end for
11: if (X = Y) then
12: for Q = 1 to N do
13: if (AODVi_[Q]_present_token = 1) then
14: Min ← AODVi_[Q]_Distance;
15: if Min < X then
16: Holder ← Q;
17: X ← Min;
18: end if
19: end if
20: end for
21: end if
22: Return (Holder);

Procedure 7 presents the judicious manner that we use to find the closest token holder
for the requesting site.

Algorithm 7 Find the adequate token holder(AODVi)

2

Algorithm 4 Reception of Reject ()
1: Holder ← Find the adequate holder (AODVi);
2: Send Request (Token, i) to Holder;

Algorithm 5 Release the CS
1: Requesting ← False;
2: if (Not_empty (Next)) then
3: j ← head(Next);
4: Next ← Next – {j};
5: Queue ← Next;
6: Send Agreement (Token, Queue) to j;
7: Token ← False;
8: else
9: Modification in the routing table of AODVi (1,1);
10: end if

Algorithm 6 Modification in the routing table AODVi (X,Y)
1: AODVi_[i]_Free_token ← X;
2: AODVi_[i]_present_token ← Y;

Algorithm 7 Find the adequate token holder(AODVi)
1: X ← Y;
2: for Q = 1 to N do
3: if (AODVi_[Q]_free_token = 1) then
4: Min ← AODVi_[Q]_Distance;
5: if Min < X then
6: Holder ← Q;
7: X ← Min;
8: end if
9: end if
10: end for
11: if (X = Y) then
12: for Q = 1 to N do
13: if (AODVi_[Q]_present_token = 1) then
14: Min ← AODVi_[Q]_Distance;
15: if Min < X then
16: Holder ← Q;
17: X ← Min;
18: end if
19: end if
20: end for
21: end if
22: Return (Holder);



5 K-MUTEX with fault tolerance

In Ad hoc networks, any site may crash at any time for several reasons. This site 
may contain important information for the well-functioning of the system. In this case, 
this fault will cause degradation on the functioning of the whole system. Thus, a fault 
tolerance mechanism is needed to ensure that the system operates properly, even in the 
presence of faults. This is achieved by choosing backup sites that may take action when 
some sites crash. In our algorithm, the major problem is the loss of the token or the 
waiting queue. This loss is caused by the crash of a site holding these two information 
elements, and so we must ensure that these two data structures are not lost, and if they 
are lost, the system should be able to regenerate them.

5.1 Basic idea

In our proposal, a double-layer fault-tolerance mechanism, is used to ensure that the 
system continues to function normally when the sites holding important information 
crash. Our idea consists in associating with every site holding a token another site called 
the safe site. This safe site keeps a copy of the waiting queue, and it can even generate a 
new token when the site holding the token crashes. This duplication allows the system to 
continue to work properly even after a loss because the critical information to guarantee 
its functioning is not lost thanks to the second copy held by the safe site. However, 
notice that the safe site is just another site, and so it may itself crash at any time. This 
will cause the information held in it to be lost, reason why we add a second layer 
of recovery to avoid such situations. Hence, for every safe site, we choose another 
site called the back-to-back site. This site keeps another copy of the waiting queue, 
and it can act as a safe site when the former crashes. Thus, using our fault tolerance 
mechanism, we have the site that holds the token and the waiting queue, and for this 
site a safe site is chosen, and a back-to-back site is chosen for every safe site. This way 
we can ensure that the important information will not be lost. The choice of these sites 
can be based on distance. In fact, the safe site and the back-to-back site must be the 
closest and most stable ones to minimise the number of hops, and also to avoid packets 
loss in the network. Safe and back-to-back sites are selected in such way that they are 
the ones having the highest link stability using the equation detailed below.

We consider a link between two sites as stable during a time t0 if they are neighbours 
moving in the same direction, and with roughly the same velocity in the time interval 
[t, t + t0]. The link stability between every pair of nodes must be revised periodically 
due to the nature of communications in mobile networks.

We calculate the link stability LSi,j between two nodes ‘i’ and ‘j’ as follows:

LSi,j = α · LSi,j + (1− α) ·

 1
∆Vi,j(t+ρ)
∆Vi,j(t)

× Di,j(t+ρ)
Di,j(t)

 (1)

where

• α: constant used to avoid the influence of peak cases, such as unexpected braking

• Vi(t): velocity of node ‘i’ at time t



• ∆Vi,j(t) = Vi(t)− Vj(t); ‘i’ and ‘j’ speed variations at instant t

• Di,j(t): distance between ‘i’ and ‘j’ at time t.

In addition, the selected site should not be used by another site holding token. Figure 2
illustrates the proposed message format extension to ensure the fault-tolerance.

Figure 2 Proposed message format extension related to the fault-tolerance (see online version
for colours)
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5.2 Fault situations

We can find several cases of faults in our system, where the fault can occur at the level
of:

• the token holder

• a safe site

• a back-to-back site

• both a site holding a token and its safe site at the same time

• both a site holding a token and a back-to-back site at the same time

• both a safe site and its back-to-back site at the same time.

We will now discuss the actions that must be taken for every situation.

5.2.1 A site holding a token

When a failure of a site holding a token is detected by its safe site, the latter must act
as a token-holding site by following these steps:



• generate a new token

• remove the identity of the failing site from the waiting queue

• send the new token with a copy of the waiting queue to the first requesting site in
the queue

• propagate the information to its back-to-back site.

Figure 3 illustrates the tolerance strategy when the fault occurs at the token holder level.

Figure 3 Tolerance strategy when the fault occurs at the token holder level (see online
version for colours)
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5.2.2 A safe site

In this case, the back-to-back site becomes a safe site, and it chooses a new site to
become its back-to-back site. The latter will receive a copy of the waiting queue from
its safe site, as illustrated in Figure 4.

Figure 4 The tolerance strategy when the fault occurs at the safe site level (see online
version for colours)
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5.2.3 Back-to-back site

The safe site chooses a new back-to-back site, and sends a copy of the waiting site to
it, as illustrated in Figure 5.

Figure 5 Tolerance strategy when the fault occurs at the back-to-back site level (see online
version for colours)
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5.2.4 A site holding a token and its safe site at the same time

The back-to-back site removes the identities of the failing sites from the queue if they
are present in it, generating a new token, and then sending the token with a copy of the
waiting queue to the first site in the queue.

Figure 6 Tolerance strategy when the fault occurs at both the token holder and its safe site at
the same time (see online version for colours)
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Figure 6 illustrates the tolerance strategy when the fault occurs at both the token holder
and its safe site at the same time.

5.2.5 Site holding a token and a back-to-back site at the same time

The safe site removes the identities of the failing sites from the queue if they exist in
it, generate a new token, and sending the token with a copy of the waiting queue to the
first site in the queue. Afterward, it selects a new back-to-back site.



Figure 7 The tolerance strategy when the fault occurs at a site holding a token and a
back-to-back site at the same time (see online version for colours)

 Situation at T0  Situation at Ti > T0 

Site 3 
Site 5 

Site 1 

Site 4 

Site 6 

Site 7 
Site 0 

Site 2 
1 3 

1 3 

1 3 

S 

B 

Site 3 
Site 5 

Site 1 

Site 6 

Site 7 

3 
3 

S 

B 

Site 0 

3 

Figure 7 illustrates the tolerance strategy when the fault occurs at both a site holding a
token and a back-to-back site at the same time.

5.2.6 A safe site and its back-to-back at the same time

The site holding the token chooses a new safe site and sends a copy of the waiting
queue to it. The latter will choose a site as its back-to-back site, and also sends a copy
of the waiting queue.

Figure 8 Tolerance strategy when the fault occurs simultaneously at a safe site and its
back-to-back site (see online version for colours)
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Figure 8 illustrates the tolerance strategy when the fault occurs at both a safe site and
its back-to-back site at the same time.

6 Performance evaluation

To evaluate our proposal we relied on the NS-2 simulator (Issariyakul and Hossain,
2011) using the IEEE 802.11 standard for communications. Simulations run during
300 seconds, during which mobiles nodes move with a variable speed ranging from 0 to



8 m/s, within a 1 km2 area using the Random WayPoint mobility model. Furthermore,
tokens are held by randomly chosen ‘k’ nodes.

Table 2 summarises the main simulation parameters:

Table 2 Simulation parameters

Scenario Number of
requests

Communications
range (m)

Number of
nodes

Number of
resources

Number of
faults

1 [3, 18] 200 50 5 4
2 10 [50, 500] 50 5 4
3 10 200 [20, 50] 5 4
4 10 200 50 [3, 15] 4
5 10 200 50 5 [2, 10]

We evaluated the performance of our solution on different scenarios by varying: number
of requests, network density, communications range, and number of faults. In addition,
for every scenario, we studied the amount of exchanged messages together with the
generated delay. We also compared the waiting time and number exchanged messages
of our proposal NFK to those obtained by CKM (Haghighat and Mohamadi, 2011),
we chose to compare with CKM mainly because it was evaluated within the same
environment as ours, and using the same routing strategy.

Figure 9 Amount of exchanged messages with respect to the number of requests (see online
version for colours)

Figure 9 presents the amount of exchanged messages with respect to the number of
requests both with and without fault-tolerance mechanisms. It is clear that the average
number of messages is much higher for the algorithm with fault tolerance because
of the different updates required to implement the required tolerance. However, this
double-layer system achieved a similar delay despite the presence of faults, as illustrated
in Figure 10.



In addition, in the first part, Figure 10 also depicts that the existence of a failure
had a positive effect on certain sites, since if a token-holding site fails, the token is sent
to the waiting requesters and then, in the second phase, they experience higher waiting
times than the algorithm without tolerance, which is quite logical considering the time
taken to resume operation after failure. Furthermore, Figure 10 shows also that thanks
to the efficient AODV-based on-the-fly CS information sharing, our full proposal with
fault tolerance takes almost the same waiting time as CKM which does not consider
any fault tolerance mechanism.

Figure 10 Average waiting time to enter the CS of NFK compared to CKM with respect to
the number of requests (see online version for colours)
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Figure 11 Amount of messages exchanged of NFK compared to CKM with respect to the
communications range (see online version for colours)
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We can see from the variation of the communications range in Figure 11 that the amount
of exchanged messages logically decreases when the communications range increases
since, in this situation, end-to-end communications require fewer hops. Whereas, the
cluster-based approach adopted by CKM without fault tolerance requires almost the
same number of message only to ensure the K-MUTEX.

Furthermore, the existence of breakdowns has not affected the average waiting delay,
as illustrated in Figure 12, thanks to our efficient and fast double-layer recovery strategy.

Figure 12 Average waiting time to enter the CS with respect to the communications range
(see online version for colours)

Figure 13 Amount of exchanged messages with respect to network density (see online
version for colours)



Figure 13 shows an increasing behaviour in terms of the number of exchanged messages
in respect to the number of sites because of the number of updates to each failure.
However, the waiting time for the fault tolerance algorithm also increases due to the
immediate regeneration after a token holder site fails (see Figure 14). This occurs
because the duration of the critical section is most influential parameter on the waiting
time.

Figure 14 Average waiting time to enter the CS with respect to network density (see online
version for colours)

Figure 15 Amount of exchanged messages with respect to the number of ressources
(see online version for colours)



In Figure 15, the unstable behaviour of the curves has a direct relationship with the
number of fails of sites acting as token holders, safe or back-to-back. Hence, the wait
time is logically higher for the algorithm providing fault tolerance (see Figure 16). Also
notice that, since we randomly generated the identities of the nodes where faults occur,
multiple token holders can breakdown at the same time.

Figure 16 Average waiting time to enter the CS with respect of the number of resources
(see online version for colours)

Figure 17 Amount of exchanged messages in respect of the number of faults (see online
version for colours)

From both Figures 17 and 18, we can see that the number of messages and the
waiting time increase logically when increasing the number of faults due to the different
fault-tolerance updates. However, our proposal is able to sustain low delays (<0.4
seconds in the worst case).



Figure 18 Average waiting time to enter the CS with respect to the number of faults
(see online version for colours)

7 Conclusions and future work

In this paper, we presented a new K-MUTEX algorithm for mobile ad hoc networks.
We used a new method that can be considered as an innovation in this domain. In
particular, our method integrates the information concerning the availability of tokens
in the routing tables in order to minimise the number of exchanged messages.

We used a fault tolerant mechanism based on the duplication of information to
resist token losses in our system. This dual-layer mechanism overcomes token loss, and
permits the well functioning of the system even when several sites fail at the same time.
Our study of fault tolerance was limited to the token loss. Other situations of failure
include message losses and links failures caused by the network partitioning. These
issues will be addressed in future works. Simulation results show that our algorithm
guarantees the accesses to the CS while exchanging a reduced number of messages, and
introducing a very short waiting time.

Future works may involve the use of the proposed principle and the proposed fault
tolerant mechanism in other systems such as the vehicle networks and UAV networks.
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