
TECHNICAL UNIVERSITY OF VALENCIA

DEPARTAMENT OF COMPUTING ENGINEERING

Master thesis

DroidStorm: Development of a Bluetooth
based mobile application for autonomous

systems

Tomás Tormo Franco

Advisors:

Dr. Pietro Manzoni

Dr. Juan Carlos Cano Escribá

1

CONTENT INDEX

1. INTRODUCTION..3

1.1 MOTIVATION AND OBJECTIVES..4

2. SYSTEM ARCHITECTURE...6

3. HARDWARE ENTITIES..9

3.1 HTC DREAM...9
3.2 LEGO MINDSTORMS NXT...11

3.2.1 Programming...12
3.3 NXT MODULATED IR EMITTER...13

3.3.1 Circuit main components...14
The 555 Integrated Circuit...14
Resistors and capacitors..15

3.3.2 Infrared led..16
3.4 HITECHNIC IR SEEKER V2...16

4. APPLICATION ARCHITECTURE..19

4.1 LOW LEVEL LAYER: COMMUNICATIONS IMPLEMENTATION...20
4.1.1 Bluetooth library (BTManager)...20
4.1.2 The Lego MINDSTORMS NXT Communication Protocol...31

SetOuputState command..32
4.2 HIGH LEVEL LAYER: USER INTERFACE...37

4.2.1 Synchronization mode...37
4.2.2 Follower mode...45

5. SMARTPHONE AND ROBOT INTERACTION...49

5.1 CONTROL BY MOVEMENT..51
5.2 CONTROL BY BUTTONS..55

6. FOLLOWER IMPLEMENTATION: IR FOLLOWER...57

6.1 ROBOT PROGRAMMING..57

7. TESTS AND RESULTS...62

8. CONCLUSION..70

9. REFERENCES..72

2

1 INTRODUCTION

Autonomous systems are widely used nowadays. Its applications covers from factory
automation or space exploration, to home robots aimed to address real-life problems in
households or workplace environments.
Home robots presence is increasing in daily life, as their level of autonomy and intelligence
improves. Some examples are the Roomba [5], an autonomous robotic vacuum cleaner, or
the Sony Aibo [6], an autonomous system which emulates a dog and is used mainly for
entertaining purposes.
One of the most important drawbacks of this home robots is their interaction with humans. In
order to interact with robots, humans usually use artificial communication means such as a
computer or joystick, which make the human robot interaction unnatural. In most of the
cases, an specifically designed remote control has to be used in order to interact with such
robots.
Aiming to facilitate man-machine interaction in a direct and intuitive way, auditive and
gesture based interfaces have been a very important research topic in many corporations
and laboratories recently. Since there are more than 5000 million phone users all over the
world, the use of mobile phones in human-robot interaction, is considered suitable for home
robot control purposes. Current phones provide enough computation and communication
performance to ensure a proper robot control without the need of additional devices.
Since the mobile phone appeared, a lot of research has been carried out in this area: some
approaches proposed the use of a mobile phone to receive voice commands to control a
robot [1]. This system uses a mobile phone connected to a laptop which translates voice
commands in robot movements. The robot is connected through Ethernet network to the
computer in order to receive orders. Another approach is the remote control based on an IP
network, where the WWW is used to create a server/client model [3]. The user connects to a
server through the internet and sends and receives commands to/from the robot. Robot
control using SMS (Short Message Service) is also possible. An SMS message is sent to an
external server that connects to the IP network and sends the control signal to the remote
robot over the IP network. The SMS defines a special protocol which is analyzed by the server
prior sending the control signal to the robot. There is also the possibility of using the DTMF
(Dual Tone Multiple Frequency) generated when a keypad button of the mobile is pressed. The
robot makes a call to the user mobile phone and its movements are controlled by sending the
DTMF tone [2].

Current phones are equipped with wireless adapters that avoids the use of an external entity
in order to control the robots. This phones run advanced operating systems like Android or
iOS which allows the development and installation of diverse applications to extend phone
functionalities (such as robots control applications). This so called smartphones, incorporates
WiFi and Bluetooth adapters which allows the user to communicate with outside devices that
implements such protocols.
Due to this fact, several robotics companies have launched new robot series which can
communicate directly with smartphones using Bluetooth or WiFi protocols. Some examples
are the iRobot Ava, a phone-controlled to monitor senior people, or the Lego MINDSTORMS
NXT, a programmable line of robotic toys [7].
In this thesis, a new robot control application, called DroidStorm, is proposed. This application
uses an Android-Enabled smartphone to control the movements of a set of Bluetooth-enabled
Lego MINDSTORMS NXT robots built in tribot configuration. Moreover, the application is
capable of creating and controlling collaborative robotic systems which work together to
arrive to a common objective.

3

The application provides users with a new interface for controlling robots, which allows the
use of the phone as a joystick, thanks to the orientation sensors the smartphones include.
The robots can also be controlled by a joypad-like set of buttons, which the user can use to
send basic orders to the robot as move forwards, move backwards, turn left or turn right.
Movement orders are sent to the robot using the Serial Port Profile (SPP) of the Bluetooth
specification [8].
It provides two main operating modes: synchronization mode and follower mode. In
synchronization mode, the phone controls up to seven connected robots, sending the same
movement commands to all of them.
In follower mode, a leader/follower approach is established. One of the robots becomes the
leader and the rest become followers. The leader robot is the only one controlled by the
phone and the followers follow leader's path. For the leader, a modulated infrared emitter has
been specially built for that purpose. This infrared emitter is used as a point of reference for
the followers. The followers use an infrared sensor capable of filtering modulated signals and
has been programmed in order to use data received by the sensor to be able to follow the
leader.
In addition, the application offers the possibility of recording movements. The user can
perform several movements with the robots and record them in order to reproduce them
later. This mode allows to use a robot as, for example, surveillance robot, covering one space
just once and making it repeat it as many times as wanted without user interaction.
Furthermore, a predefined sets of movements from XML files can be used. This XML files can
be created in external devices (such as computers) and loaded later in the application to
make the robot move as defined. Both records and XMLs are loaded in a so called Demo
mode.
Our proposed system employs Bluetooth, a versatile and flexible short-range wireless
networking technology with low power consumption. Apart from the application, we
developed a whole new Bluetooth library for Android as well as the logic and hardware behind
the follower implementation.
This prototype system allows us not only to confirm the correct behavior of the designed
application, but also to demonstrate the capabilities of mobile systems to control
autonomous systems which uses wireless communications to establish intelligent
communication spaces as well as collaborative robotic systems. All the developed code is
freely available at http://www.grc.upv.es

1.1 MOTIVATION AND OBJECTIVES

The main motivation of this thesis is to develop a mobile application capable of controlling
autonomous systems, using both user input or predefined sets of movements. Also, this
application have to be capable of creating and controlling collaborative robotic systems. We
are also particularly interested in knowing if mobile devices are suitable for controlling
autonomous systems and evaluate whether or not they can be a candidate solution for such
applications.

The main sub-objectives are:

• Bluetooth library development: A new Bluetooth library has to be developed in
order to extend the application to all Android-Enabled devices regardless of the
Android operating system version.

• Lego protocol implementation: A low level protocol has to be implemented in
order to be able to communicate with Lego MINDSTORMS NXT robots.

4

• “Leader lost” protocol: A suitable protocol to control when the follower has lost the
leader has to be developed.

• Modulated IR Emitter building: A modulated IR Emitter for Lego MINDSTORMS
NXT has to be built in order to emit modulated infrared light. This IR emitter has to be
controlled by the application remotely.

• Follower programming: The follower robot has to be programmed in order to follow
leader's path using a infrared sensor.

• Native application: An Android based application, capable of controlling the robots
from different inputs (user input, XML input) has to be developed.
It has to be able to create and control a collaborative robotic system where two
robots work together to arrive to the same target. For this, it has to handle leader
loose. Also, it has to be able to record user inputs and reproduce them later on.

The rest of this document is organized as follows: Chapters 2 and 3 describes the system
architecture and presents the hardware which composes the system. Chapter 4
details the application architecture and its implementation. Chapter 5 describes the how the
interaction between the smartphone and the robot is made. Chapter 6 describes the robot
programming. Chapter 7 illustrates the evaluation of the proposal and finally, in chapter 8,
some concluding remarks are given.

5

2 SYSTEM ARCHITECTURE

The overall system architecture is based on a master/slave model where an Android-Enabled
phone acts as the master and can control up to seven Lego MINDSTORMS NXT robots which
act as slaves. The phone (master) connects to the robots (slaves) and control their
movements depending on an input that may be received from three different sources:

• User input

◦ The user has the possibility to use two interfaces to move the robot.

1. Robots may be moved using the phone in landscape mode as a joystick
(control by movement). Android-Enabled devices are equipped with
movement sensors which are used by the application to translate phone
movements into robot movements.

2. The user may also move the robot using buttons representing a joy-pad
(control by buttons). Each button sends basic orders to the robot: move
forwards, move backwards, turn left , turn right and stop.

• Recorded movements

◦ User can record all movements made in user input modes and reproduce them
later as many times as wanted. In this way, the user can easily create a
predefined path for the robot just making it once.

• XML input

◦ Predefined movements can be loaded from a XML file. This file must follow a well-
defined structure which contains the parameters to be applied to the motors of
the robot.

The phone is also capable of creating a collaborative robotic system, where two robots
collaborate together to achieve a single objective. In this system, one of the robots is
controlled by the phone and the other one follows it autonomously. In this way, one of the
robots guide the second one to achieve a given objective. For its implementation, a IR emitter
that we developed has been installed in guide robot's back, in order to allow the other one to
follow its path by means of an IR sensor.
Figure 1 shows the overall system architecture.

6

The phone uses the Bluetooth Serial Port Profile (SPP) to connect to the robots. Serial Port
profile in one of the Bluetooth specification profiles that emulates a serial cable to provide a
wireless substitute for existing RS-232 standard. SPP is based on the RFCOMM protocol, a
simple set of transport protocols, made on top of the L2CAP protocol, providing emulated RS-
232 serial ports. Lego MINDSTORMS NXT robots use this profile and the LEGO MINDSTORMS
NXT Communication protocol (also known as Lego FANTOM protocol [9]) to receive commands
from outside Bluetooth-Enabled devices such as mobile phones or computers.

This application has been developed using a HTC Dream mobile phone with Android 1.6
installed on it. Due to Bluetooth implementation wasn't introduced into Android until version
2.0 [15], a new Bluetooth library has been developed from scratch.

This new library also guarantees that this application will work in all Android-Enabled devices,
regardless of its Android version. This library has been divided into two layers: a native layer
that has been written in C and uses the Linux Bluetooth stack implementation (BlueZ), and a
java layer, which, by means of JNI, will make calls to the native layer. This library will be
introduced in detail in chapter 4.

The application has two operation modes. The default mode is synchronization mode,
where the phone sends the same movement orders to all the robots it controls.

The second mode is called follower mode. This mode is a functional extension of
synchronization mode and enables a second robot to move autonomously following the robot
controlled by the phone. This mode can be enabled when the phone is connected to more
than one robot. In this mode a leader/follower relationship is established between two robots:
the robot controlled by the phone adopts a leader role, and the one following adopts a
follower role.

7

Figure 1: System architecture.

The phone may also receive commands from the follower. If the followers looses the leader, it
sends a message to the phone indicating which was the last direction where the follower was
seen. In case that the robot is being controlled by the user, robot control passes to the
application until the leader is found again. Depending on the direction, the phone will move
the leader in such a way that the follower can find it. For this purpose, a communication
protocol called “Leader lost” protocol has been created.

As said before, in follower mode, only one robot is controlled by the phone while the second
follow it. Leader tracking has been implemented using a IR follower model which we have
developed (both hardware and software): the leader has a specially built IR emitter installed
in its back, and the follower uses a IR sensor to follow it.

With the purpose of minimizing external sources of noise (sunlight, etc), the IR signal has to
be modulated, and the sensor has to be able to filter IR signals to keep only the modulated
ones.

The leader has a modulated IR emitter specially built for the purpose, because there are no
available IR emitters for LEGO MINDSTORMS at the moment. This emitter has been built to
emit 600hz IR signals. The follower uses the IR Seeker V2 from HITECHNICS. IR Seeker V2 is
an enhanced IR sensor which detects 600hz and 1200hz modulated signals. Also, is capable
of returning the direction where the IR beacon is located.

IR Seeker V2 and home-made IR Emitter will be introduced with more detail in next chapter.

8

3 HARDWARE ENTITIES

Following, all hardware entities used for the development of this thesis will be introduced.
This hardware entities includes the phone used for development (HTC Dream), the Lego
MINDSTORMS NXT, the IR emitter, and the IR Seeker V2.

3.1 HTC DREAM

The Android-Enabled phone used to develop this thesis is the HTC Dream [8].

The HTC Dream (also marketed as T-Mobile G1 in the US and parts of Europe) was the first
phone to the market to use the Android mobile device platform. The phone is part of an open
standards effort of the Open Handset Alliance. The phone was first released in in the US on
22 October 2008 and in the UK on 30 October 2008 and arrived to the rest of Europe during
2009. In Spain, Telefonica also launched a slightly modified version of the phone (control
buttons were modified) on 20 April 2009. Here is a summary list of hardware specifications
for HTC Dream.

9

Figure 2: HTC Dream.

Processor 528 MHz Qualcomm MSM7201A ARM11 processor

Connectivity - Wi-Fi (802.11b/g),

Memory 192 MB RAM

Display 320 x 480 px, 3.2 in (81 mm), HVGA, 65,536 color LCD at 180 pixels per
inch (ppi)

Storage capacity Flash memory: 256 MB
- microSD slot: supports up to 16 GB

Input capacitive touchscreen display, QWERTY keyboard, trackball, volume
controls, 3-axis accelerometer

Camera 3.2 megapixel with auto focus

Power 3.7 V 1150 mAh
Internal rechargeable removable lithium-ion battery

Dimensions 117.7 mm (4.63 in) (h)
55.7 mm (2.19 in) (w)
17.1 mm (0.67 in) (d)

Weight 158 g (5.6 oz)

Table 1: HTC Dream hardware specifications.

The HTC Dream has received official Android OS updates from version 1.0 to version 1.6,
however since on July 27, 2010 it was officially discontinued. Despite of its discontinuity, is
still possible to install later versions of Android OS by installing custom ROMs, but this
requires the phone to be "rooted". When the device is rooted, it gives full access to the
internal files of the phone, in particular, it allows changing and re-flashing the bootloader and
operating system, which means that a totally custom ROM can be installed. One popular
unofficial firmwares site is XDA-Developers [14] where independent developers work together
to port newer Android versions to HTC Dream and other devices.

The Android version used in the thesis is the last official Android version released for the
phone: Android 1.6 codename Donut. The application uses special features of this so called
“smartphones on steroids”, like the 3-axis accelerometer which is used to translate phone
movement into robot movement.

10

3.2 LEGO MINDSTORMS NXT

Lego MINDSTORMS is a line of programmable robotics/construction toys, manufactured by the
Lego Group. It comes in a kit containing many pieces including sensors and cables.

Lego MINDSTORMS originated from the programmable sensor blocks used in the line of
educational toys. The first retail version of Lego MINDSTORMS was released in 1998 and
marketed commercially as the Robotics Invention System (RIS).

The next version was released in 2006 as Lego MINDSTORMS NXT. The newest version,
released on August 5, 2009, is known as Lego MINDSTORMS NXT 2.0.

The NXT version kit comes with three servo motors and one sensor each for light, sound, and
distance as well as 1 touch sensor. The NXT 2.0 kit comes with 2 touch sensors as well as
light, sound and distance sensors, and it supports up to 4 sensors without using a multiplexor.
Lego MINDSTORMS may be used to build a model of an embedded system with computer-
controlled electromechanical parts. Many kinds of real-life embedded systems, from elevator
controllers to industrial robots, may be modeled using Lego MINDSTORMS.

The main component in the kit is a brick-shaped computer called the NXT Intelligent Brick.
Here is a summary list of hardware specifications for the NXT brick.

11

Figure 3: Lego MINDSTORMS NXT: Tribot configuration.

Main processor Atmel® 32-bit ARM® processor AT91SAM7S256
 - 256 KB FLASH
 - 64 KB RAM
 - 48 MHz

Co-processor Atmel® 8-bit AVR processor, ATmega48
 - 4 KB FLASH
 - 512 Byte RAM
 - 8 MHz

Bluetooth wireless communication CSR BlueCoreTM 4 v2.0 +EDR System
 - Supporting the Serial Port Profile (SPP)
 - Internal 47 KByte RAM
 - External 8 MBit FLASH
 - 26 MHz

USB 2.0 communication Full speed port (12 Mbit/s)

4 input ports 6-wire interface supporting both digital and analog
interface
 - Mainly used for sensors connection
 - 1 high speed port, IEC 61158 Type 4/EN 50170
compliant

3 output ports 6-wire interface supporting input from encoders
 - Mainly used for motors connection

Display 100 x 64 pixel LCD black & white graphical display
 - View area: 26 X 40.6 mm

4 button user-interface Rubber buttons
 - Used to navigate a user interface using
 hierarchical menus

Power source 6 AA batteries
 - Alkaline batteries are recommended
 - Rechargeable Lithium-Ion battery 1400 mAH is
available

Connector 6-wire industry-standard connector
 - RJ12 Right side adjustment

Table 2: LEGO MINDSTORMS NXT Hardware specifications.

3.2.1 PROGRAMMING

Lego MINDSTORMS NXT comes bundled with the NXT-G programming language which uses a
command box programming, rather than code programming. This means that rather than
requiring users to write lines of code, they instead can use flowchart like "blocks" to design
their program. All components (sensors, motors), are represented as this blocks and the data
flow is represented as wires which connects each block. Despite of being really easy to use, it
is very limited because of its limited complexity, and moreover, it shows huge lack of
performance. Due to this limitations, and thanks to open specifications of Lego MINDSTORMS,
other third-party programming languages have appeared.

12

This programming languages normally require to flash a special firmware with the purpose of
enhancing Brick's capabilities. Some popular third-party languages are:

• C and C++, under brickOS, formerly LegOS

• C and Assembly, under the GCC open source firmware kit NXTGCC

• Java, under leJOS or TinyVM

• Not eXactly C, an open source C-like high-level programming language

• Not Quite C (NQC)

• RobotC

Also, the NXT Brick can be remotely controlled by Bluetooth or USB using the LEGO
MINDSTORM Communication Protocol.

This protocol provides a simple interface for outside devices to use basic robot functionality
without the need to write or run specialized remote control programs on the robot.

For this thesis, two tribots has been built as leader and follower. A tribot robot consists of two
drive wheels and a trailing coast wheel and can be made to turn by driving the two drive
wheels at different rates. In order to control the leader, the LEGO MINDSTORMS
Communication Protocol will be used, whereas the logic behind the IR tracking of the follower
will be implemented using RobotC.

3.3 NXT MODULATED IR EMITTER

To achieve the maximum signal reception for the follower, the signal has to be free of
external noise. Since no IR Modulated emitters are available for NXT MINDSTORMS at the
moment, a new one has been built. The core of this emitter is a 8-pin 555 Integrated circuit
which is used in astable mode to produce a 600hz square wave. A 5mm IR Led is connected
to the circuit output to make it flash at that frequency. The whole circuit is connected to a
NXT output for motors, so it can be easily turned on and off remotely using LEGO
MINDSTORMS Communication protocol (as if it was a motor).

13

Figure 4: NXT Modulated IR Emitter

The result is a 600hz modulated IR signal installed in the leader, which can be filtered by the
IR receptor installed in the follower. The following figure shows the schematic of the circuit
used to build the IR Emitter.

3.3.1 CIRCUIT MAIN COMPONENTS

THE 555 INTEGRATED C IRCUIT

The 555 timer IC was first introduced around 1971 by the Signetics Corporation as the
SE555/NE555 and was also the very first and only commercial timer IC available. It provided
circuit designers with a relatively cheap and stable integrated circuit for both monostable and
astable applications. Although these days the CMOS version of this IC, like the Motorola
MC1455, is mostly used, the regular type is still available, however there have been many
improvements and variations in the circuitry. But all types are pin-for-pin plug compatible. In
this thesis, the NE555 is the one used to build an astable circuit [16].

An astable circuit produces a 'square wave', this is a digital waveform with sharp transitions
between low (0V) and high (+Vs). The circuit is called an astable because it is not stable in
any state: the output is continually changing between 'low' and 'high'.

With the output high (+Vs) the capacitor C1 is charged by current flowing through R1 and R2.
The threshold and trigger inputs, monitor the capacitor voltage and when it reaches 2/3Vs
(threshold voltage) the output becomes low and the discharge pin is connected to 0V.

The capacitor now discharges with current flowing through R2 into the discharge pin. When
the voltage falls to 1/3Vs (trigger voltage) the output becomes high again and the discharge
pin is disconnected, allowing the capacitor to start charging again. This cycle repeats
continuously unless the reset input is connected to 0V which forces the output low while reset
is 0V.

An astable can be used to provide the clock signal for circuits such as counters.

14

Figure 6: Circuit diagram

Figure 5: Circuit diagram

RESISTORS AND CAPACITORS

To work as a astable, the 555 IC needs different resistors and capacitors. Depending on this
values, the frequency of the output signal will be different. Following, the resistors and
capacitors values needed to get the 600hz signal will be calculated.

The 555 astable cycle time (or time period) is the the time the square wave needs to
complete one cycle. This cycle time (high time -Th- and low time -Tl-) is given by the following
formulas

Th = 0,693(R1 + R2) * C

Tl = 0,693 * R2 * C

where R is in Ohms and C is in Farads. Having this two formulas we have that the complete
cycle time is

Tcycle = Th + Tl = 0,693*(R1 + 2*R2)*C

since F = 1/T, we should use the following formula in order to get the frequency

F = 1 / 0,693*(R1 + 2*R2)*C

So now, we have to find correct values for capacitor C and resistors R1 and R2 to get the
600Hz output frequency we are looking for. The first value that should be chosen is the
capacitor value, since this value will determine the output frequency range. According to the
555 typical values table, we should use a 0,1 microfarads capacitor, because the output
range that it defines is from 6,8Hz to 680Hz.

Also, from this table, we get that the R1 should be 1KOhm, so the remaining value it's R2. If
we develop the frequency formula, we get that R2 value is 11.5 Ohms

15

Table 3: 555 astable typical values.

3.3.2 INFRARED LED

The IR Led chosen has been the 5mm Vishay TSUS5400 IR emitter [9]. This is a low cost
infrared emitter with low forward voltage, which makes it suitable for this purpose, since in
this way the NXTs power source lasts longer. Moreover, it's a 22 degree viewing angle led
diode, which offers good visibility for the follower.

Every led diode should be used with a resistor in order to limit the current that flows through
it. Excessive current will decrease its useful life, and can reduce the output of the LED
substantially. In worst-case scenario, the led will overheat enough to burn out.

To get the led resistor, the following formula is used

Rs = (Vs - Vl) / I

where Rs is the resistor value in Ohms, Vs is the power supply voltage in Volts, Vl is the led
voltage in Volts, and I is the led current in Amps. As said before, the circuit will be connected
to a output port of the NXT, which offers 7,2 volts, but, due to the 555 IC, it drops to 5,5V.
According to the TSUS5400 datasheet, the led voltage is 1,3V and the led current is 150ma.

Applying this values to the formula we get

Rs = (5,5 -1,3)/(150*10^-3) = 25,33 Ohms.

which is the value of the resistor that should be put between the output of the 555 IC and the
IR diode. Due to, 25,33 Ohms is not a standard value for a resistor, a 33 Ohm will be used.

3.4 HITECHNIC IR SEEKER V2

The IR Seeker V2 is the IR sensor chosen to install in the follower robot [10]. It is a IR sensor
for LEGO MINDSTORMS which has 240 degrees view. It returns the direction and the strength
of the signal, making it perfect for this thesis purposes.

16

Figure 7: IR Seeker V2 for
Lego Mindstorms NXT.

Also, it filters out background signals, like brightly lights or sunlight. It operates in 2
selectable modes:

● Modulated (AC) Mode: The sensor will detect modulated IR signals such as some IR
remote controls. In Modulated mode the sensor will filter out most other IR signals to
decrease interference from lights and sunshine for example. The sensor can be tuned
to detect square wave signals at 600Hz and 1200Hz.

● Un-modulated (DC) Mode: The sensor will detect un-modulated IR signals such as
sunlight.

The IRSeeker V2 detects the signal by using an array of 5 IR detectors. The signal direction
returned is a value that represents a direction zone where the IR source is detected. This
values range from 0 to 9, where 5 indicates that target is directly ahead, 1 indicates that the
infrared target is left and behind, and 9 that the target is to the right and behind. A value of 0
is returned if no signal is detected, and -1 if there has been an error.

According to HITECHNICS documentation, zones are symmetrical areas around the sensor,
but this is not really true. Zones 1, 3, 5, 7 and 9 are calculated using one sensor, while zones
2, 4, 6 and 8 are calculated by the interpolation of the sensors of the adjacent zones.

Direction
value

Sensors
activated (0-based)

1 Sensor 0

2 Sensor 0, Sensor 1

3 Sensor 1

4 Sensor 1, Sensor 2

5 Sensor 2

6 Sensor 2, Sensor 3

7 Sensor 3

8 Sensor 3, Sensor 4

9 Sensor 4
Table 4: IR Seeker V2: sensors activated

depending on the direction.

As seen in the following graph, this approach causes that zones calculated by sensor
interpolation are much narrower than the ones calculated by only one sensor [11].

17

So a more accurate conceptual depiction of the zones for the IRSeekerV2 sensor is presented
here.

For the follower implementation, the sensor has been mounted in such a way that the leader
will be considered in front if the returned value is zone 5. Zones 4 and 6 will be used to know
when the leader has started turning.

18

Figure 9: IR Seeker V2 sensor zones

Figure 8: Relation between zone intensity and zome degrees

4 APPLICATION ARCHITECTURE

In this chapter, the application architecture and its implementation will be presented in detail.
In order to control the robots, the application uses the proprietary Lego MINDSTORMS NXT
Communication protocol which is already implemented in all MINDSTORMS robots firmware.

The Android implementation will be presented using a bottom-up approach, from the low
level layer of the application (communication library and Lego protocol implementation) to
the high level (Application activities). Bluetooth library implementation will be shown,
because, as explained before, it had to be developed due to lack of implementation in the
Android version installed in the developing device. Next, Lego Communication protocol will be
explained and its implementation for Android will be shown.

Once the low layer of the application has been explained, all the activities and the logic
behind them will be detailed with screenshots.

 The Android implementation has two basic operating modes: Synchronization mode and
Follower mode. In the synchronization mode, all movement orders are sent to all connected
in sequential order, so all the devices will reproduce the same action at the same time.
Despite of the delay introduced by Bluetooth communications, there is no significative
difference between the first robot which receives the order and the last one.

In Follower mode, the phone drives one of the robots and a second robot (follower) follows
the first one (leader) by means of a 600 Hz modulated IR beacon installed in the back of the
leader. The follower will use a IR receptor capable of filtering IR signals in order to keep only
those modulated at 600hz.

The application is intended to all Android-Enabled devices regardless of the Android version
they are running, but it's important to remark that currently, this application doesn't work in
HTC devices and Motorola devices. The reason is that both HTC and Motorola devices has
broken BlueZ libraries, due to their UI customization (Sense and Motoblur respectively). It
looks like this customizations had conflicts with some BlueZ libraries and, because of that,
SPP profile is unavailable [29]. Therefore, in order to use this application is such devices, a
custom Android ROM without Sense or Motoblur customization must be installed. This
application has been tested successfully in HTC Dream phone running Android Donut 1.6
(currently outdated), and in HTC Desire HD phone running CyanogenMod 7, a custom ROM
which includes Android Gingerbread 2.3 (the newest Android version when this thesis was
written).

Application architecture can be divided in two main layers. A low layer, which contains the
Bluetooth library and the Lego MINDSTORMS NXT Communication protocol
implementation, and the high layer, which includes all the UI and the logic behind the robot
control. The high layer is composed mainly by handlers and controllers. Handlers process
the input (from user or storage), and passes the results to the controllers, which implements
all the necessary logic to move the robot. All handlers and controllers implemented in this
application will be detailed in next chapter.

Figure 11 shows the application architecture.

19

4.1 LOW LEVEL LAYER: COMMUNICATIONS IMPLEMENTATION

4.1.1 BLUETOOTH LIBRARY (BTMANAGER)

Because of the Bluetooth implementation has not been introduced in Android's application
layer until version 2.0, a Bluetooth library has been developed with the purpose of making
the application work with the selected Android-Based phone. This library is capable of turning
on and off the Bluetooth radio (Bluetooth control), and make connections and disconnections.
The Bluetooth control function uses the Android Bluetooth API in case the phone is running
Android version 2.0 or higher. Otherwise, the library uses the java libraries the operating
system uses to control the Bluetooth. It instantiates these libraries using a reflection
technique and uses its functions in order to control the Bluetooth adapter [22].

BTManager library is implemented using the Java Native Interface framework (JNI). The JNI
framework enables a Java application to call and to be called by native applications.

20

Figure 10: Droidstorm: Application architecture

It is divided in two layers: a native C coded layer, and a Java layer. The native layer uses the
Bluetooth stack implementation for Linux called BlueZ. It is in charge of interfacing directly
with the Bluetooth chipset tat low level.

It makes the connections and disconnections, sends and receives data from Bluetooth. The
Java layer acts as a wrapper for this native layer by means of JNI. This Java layer is used by
the Android application in order to interact with the Bluetooth radio. Figure 12 shows the
Bluetooth library architecture diagram.

 The native layer

The native library manages connection, disconnections and message sending at low level. It
also mantains a relationships between Bluetooth addresses and opened sockets, in such a
way that a possible developer using this library just have to take care of the Bluetooth
addresses of the devices he or she wants to interact with.

In order to enable a native library to call and to be called from a Java application, it must
include the JNI headers. Also, native functions exported by the library must have an equal
method in the Java layer (java native methods).

This Java methods will be marked as native, which tells the compiler that the implementation
of that method has been made in native code.

21

Figure 11: Bluetooth library architecture diagram

The native functions must have a fixed signature format, which is formed by some JNI
keywords as well as the classname and the method name of the Java method which calls it.

JNI Required signature

JNIEXPORT <javaReturnValue> JNICALL Java_<ClassName_methodName>
(JNIEnv *, jclass, <javaArguments>)

When a native java method is called, the execution in the native layer. In order to manipulate
Java objects, all native methods receive a pointer to an struct (JNIEnv)which, in turn, contains
a pointer to the Java Virtual Machine (JVM). This pointer includes all necessary functions to
interact with the JVM and create and work with Java objects.

To use the native library, the Java code must load it first using the method System.load or
System.loadLibrary, which receives the absolute path to the native library in the first case, or
just the library name if it is already in the Java ClassPath. If the library is not loaded properly,
a UnsatisfiedLinkError exception will be thrown when a native method is called.

The native library interacts with the Bluetooth adapter using the Linux Bluetooth
implementation library called BlueZ. Thanks to Android is a Linux-based operating system,
this libraries are available in all Android versions. The only drawback of the native
implementation is that it is machine dependent, which means that the library has to be
compiled for all the system architectures where the application is supposed to run. This
application has been compiled for all systems architectures supported currently for Android,
and they are all included in the same APK file, so that when the application is launched and
the native library is about to be loaded, the Android operating system detects the system
architecture and then loads the correct library file. Table 5 shows the most important files
from this layer and the functions they expose.

File Exposed functions Summary

Devices
Manager

addDevice Adds a device and its socket to a linked list

delDevice removes a device and its socket to a linked list

BTManager discoverDevices Searches for visible devices

Connect Connects to a device

disconnect Disconnects from a device

Connection broadcastCommand Sends a message to all connected devices

SendSinglecommand Sends a command to a single device

WaitForMessage Waits for a message from the given Bluetooth address

Tabla 5: Bluetooth library: Exposed functions from native layer.

22

Following, this files and its functions are explained in detail. The functions include some code
snippets to show the most important parts of the implementation.

It is noteworthy that this code snippets have been highly summarized since the complete
source code would be too long to be included in this thesis.

1. DevicesManager

This file does not exposes any function to the Java layer, but it's important because it
maintains in memory all the connected robots as well as the opened sockets, and makes a
relationship between them. In this way, the developer just have to take care of the Bluetooth
address of the devices and not of the opened sockets. The relationship is maintained by
means of a linked list formed by descriptor structs.

Descriptor struct

typedef struct descriptor
{

// Bluetooth address
char* bdaddr;
// Socket
int socket;
int connected;

struct descriptor *next;
struct descriptor *before;

}deviceDescriptor;

This library exposes functions to add and remove device descriptors from the linked list. It
also has functions to get the socket id associated to a Bluetooth address, as well as all the
sockets id from all connected devices.

2. BTManager

This file manages device discovery, device connection and disconnection. It includes the
Bluez headers in order to be able to interact with the Bluetooth radio.

Included BlueZ libraries

#include <jni.h>
#include <string.h>
#include <errno.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_lib.h>
#include <bluetooth/rfcomm.h>
#include <sys/socket.h>

23

This file exposes the following functions

discoverDevices

Function signature

JNIEXPORT jobject JNICALL Java_net_kaisoz_droidstorm_bluetooth_BTManager_discoverDevices
(JNIEnv *, jclass)

This function inquiries about visible robots to the local Bluetooth adapter. The discovered
devices are returned back to the java layer in a Java Map object created for the purpose in
the native layer. It's important to know that the result if filtered, so only Lego MINDSTORM
devices will be returned.

Inquiring devices with BlueZ

// Get local device ID
 dev_id = hci_get_route(NULL);
// Open device
 sock = hci_open_dev(dev_id);
 if (dev_id < 0 || sock < 0) {
 LOGE("Error opening local Bluetooth device: %s", strerror(errno));
 throwBluetoothException(env,"Error opening local Bluetooth device");
 }

// Flush previous discovery history
 flags = IREQ_CACHE_FLUSH;
 ii = (inquiry_info*)malloc(max_rsp * sizeof(inquiry_info));

// Search for devices
 num_rsp = hci_inquiry(dev_id, len, max_rsp, NULL, &ii, flags);

Connect

Function signature

JNIEXPORT jobject JNICALL Java_net_kaisoz_droidstorm_bluetooth_BTManager_connect
 (JNIEnv *env, jclass obj, jobjectArray jbtAddresses)

Connects to all Bluetooth addresses passed as arguments. This addresses are passed in a
Java String Array (jbtAddresses). In this way, the application can connect several devices at
once. The connection result is passed back to the Java layer using an Java Map which
contains two entries:

• success: contains a Java Array with the Bluetooth addresses of the robots connected
successfully

• error: contains a Java Array with the addresses of the robots which couldn't get
connected

This Map entries will be used by the java layer to show the connection result to the user.

24

The code to connect to a device with BlueZ is the following:

Connect to a device with BlueZ

// Open Bluetooth stream socket. Use the rfcomm as a transport layer
newsocket = socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM);
// set the connection parameters (who to connect to)
addr.rc_family = AF_BLUETOOTH;
addr.rc_channel = (uint8_t) 1;
// Translate char address to a Bluetooth address struct
str2ba(bdAddr, &addr.rc_bdaddr);
// connect
status = connect(newsocket, (struct sockaddr *)&addr, sizeof(addr));

If the connection has been successful, both the address and the related socket will be added
to the DevicesManager. Also, the Bluetooth address will be added to a Java Array which later
will be linked to the success entry of the Java Map. Otherwise, the Bluetooth address won't
be added to the DevicesManager, but it will be added to the Java Array used for the error
entry in the Map.

Disconnect

Function signature

JNIEXPORT jobject JNICALL Java_net_kaisoz_droidstorm_bluetooth_BTManager_disconnect
 (JNIEnv *env, jclass obj, jobjectArray jbtAddresses)

Disconnects from all Bluetooth addresses passed as argument. This argument is passed in a
Java String Array (jbtAddresses). In this way, the application can disconnect several devices
at once. The connection result is passed back to the Java layer using a Java Map which
contains two entries:

• success: contains a Java Array with the Bluetooth addresses of the robots
disconnected successfully.

• error: contains the addresses of the robots which couldn't get disconnected.

This Map entries will be used by the java layer to show the disconnection result to the user.

The code used to disconnect from a device with BlueZ is the following

Disconnect from a device with BlueZ

shutdown(socket, SHUT_RDWR);
close(socket);

If the disconnection has been successful, both the address and the related socket will be
removed from the DevicesManager. Also, the Bluetooth address will be added to a Java Array
which later will be linked to the success entry of the Java Map. Otherwise, the Bluetooth
address won't be removed from the DevicesManager, but it will be added to the Java Array
used for the error entry in a Map.

25

3. Connection

This file contains functions to translates java messages to native messages and the other
way round. Also, sends and retrieves messages to/from the robots and listens to follower
messages.

The most important functions exposed by this file are the following

broadcastCommand

Function signature

JNIEXPORT jcharArray JNICALL
Java_net_kaisoz_droidstorm_bluetooth_Connection_broadcastCommand

(JNIEnv *env, jclass obj, jobject data, jboolean response)

This function is used in synchronization mode to send the same command to all the
connected robots. This function receives a Java char array which contains the command to
send to the robot and translates it to an unsigned char array.

This is done using a function called translateToNative contained in this same file. This step is
needed because unsigned char is the suitable type of data to hold the bytes that will be sent
to the robot.

The function also receives a boolean value to indicate if a robot response is needed. If this
value is set to false, null value is returned. Otherwise, the function will return only if either
receives a response from the robot or a timeout happens. If response is received from the
robot, it will be translated to a Java Char Array using translateToJava function, and passed
back to java layer.

Once it gets the translated message, it calls the getSocketFromConnDevices function from
DevicesManager to get all the opened sockets. Then, iterates over all the sockets, and uses
its value to send the command using the doCommand function This function will prepare the
Bluetooth packet and will send it to the robot.

sendSingleCommand

Function signature

JNIEXPORT jcharArray JNICALL
Java_net_kaisoz_droidstorm_bluetooth_Connection_sendSingleCommand

(JNIEnv *env, jclass obj, jstring jbtAddr, jobject data, jboolean response)

This function does the same as broadcastCommand, with the difference that this sends the
command only to one robot. This function is used when some operations has to be done in
just one robot, such program listing, or program starting.

It receives the robot Bluetooth address (passed in the jbtAddr variable as a java String), the
command as a java char array and a boolean value, which indicates if the function should
wait for robot response. As broadcastCommand function, the first step it takes is the
translation of Java char array to unsigned char array. After this, it gets the socket associated
to this Bluetooth address from DevicesManager using getSocketByBTAddr function and calls
doCommand function to send the command.

26

doCommand

Function signature

int doCommand(int socket, int waitForResponse, unsigned char *command, int cmdLen,
unsigned char **response, int *respLen)

Although this function is not exposed to the java layer, it's important to mention it because is
the one which sends the commands to the robots. This function receives a socket, a
translated robot command and the command length. If waitForResponse is set to 1, it waits
for the robot response until it arrives or a timeout happens.

If the response is received, the out response variable will be filled with the robot response
and passed back to the calling function.

Send command to the robot

// create a unsigned char pointer to the write buffer
unsigned char *wBuf = NULL;
// Initialize the write buffer with size commandLenght + 2 bytes for Bluetooth headers
wBuf = (unsigned char*)malloc((cmdLen + 2)*sizeof(char));
// Convert the command length to short int in order to put it into the Bluetooth headers
short int si = (short int) cmdLen;
// Fill the write buffer with command length and the command itself
memcpy(&wBuf[0], &si, 2);
memcpy(&wBuf[2], command, cmdLen);
// Write it to the Bluetooth socket
writtenB = write(socket, wBuf, cmdLen + 2);

Receive response from the robot

// Prepare file descriptor set and set the socket to listen to
fd_set set;
FD_ZERO(&set);
FD_SET(socket,&set);

// Prepare timeval struct for timeout.
struct timeval timeout = {1,2};

// create a unsigned char pointer to the read buffer
unsigned char *rBuf = NULL;

// Listen to robot response up to 1 second
rtn = select(socket +1, &set, NULL, NULL, &timeout);
// If some message has been received
if(rtn > 0){

// read the first two bytes which will indicate the incoming message size
while ((readB = read(socket, &rBuf, 2)) == -1) {}
// Save message size in a variable
memcpy(&tamRet, &rBuf[0], 2);
// Initialize the read buffer with the size received
rBuf = (unsigned char*)malloc((tamRet)*sizeof(char));
// Read the rest of the message
while ((readB = read(socket, &rBuf, tamRet)) == -1) {}

}else{
LOGE("No response recieved");

}

27

waitForMessage

Function signature

JNIEXPORT jcharArray JNICALL
Java_net_kaisoz_droidstorm_bluetooth_Connection_waitForMessage

(JNIEnv *env, jclass obj, jstring jBtAddr)

This function is used in follower mode to listen to follower messages. It receives the Bluetooth
address to listen to, and waits for a message by an active waiting controlled by the Java layer.
The function implementation is similar to the response receiving of doCommand function.
Unlike doCommand, when the function receives the message, it returns the translated
response directly to the Java layer.

 The Java layer

The Java layer is the interface the application uses to interact with the Bluetooth adapter.
This layer communicates with the native layer by means of JNI, which is a framework that
enables a Java application to call and to be called by native applications. Since it is a highly
used library, it has been implemented as a singleton in order to reduce the number of
instances of objects in memory. In this way, the library objects are instanced only once and
are available during all application life cycle. Table 5 shows the most important files from this
layer and the functions they expose. Functions exposed in this table, does not include native
functions, because, as explained before, they are just used to pass execution flow to the
native layer.

File Exposed functions Summary

BTManager initialize Initialized Bluetooth adapter

getConnection Returns a connection object which abstracts a Bluetooth
connection to a device

Connection sendCommand Sends a command to a robot

waitForMessage Waits for a follower message

Tabla 6: Bluetooth library: Exposed functions from Java layer.

1. BTManager

This file is the principal one in all the Java layer. It controls the Bluetooth adapter and acts as
a wrapper for the BTManager native file.

Due to the lack of Bluetooth API implementation in Android 1.6, Bluetooth control function
uses the java libraries that the operating system uses in order to control the Bluetooth
adapter. It instantiates these libraries by means of reflection technique and uses its functions
in order to control the Bluetooth adapter. If the application detects that it is running in a
device with Android 2.0 or higher installed, it uses Android Bluetooth API. Bluetooth device
can be turned on, off and can detect its current state no matter the Android version installed.

28

BTManager native methods definitions

public native IndexedMap connect(String[] bdAddresses);
public native IndexedMap disconnect(String[] bdAddresses);
public native IndexedMap discoverDevices() throws BluetoothException;

This file maintains in memory all the connected devices, associating its device name with its
Bluetooth address. It exposes methods which returns the Bluetooth address associated to a
name and the other way round.

The most important methods are explained below

initialize

Method signature

public BTManager initialize(Context context)

This method initializes the singleton, the Bluetooth objects needed to control the Bluetooth
adapter, and loads the native library. If the singleton it's already initialized, it just returns the
instance. Also, it registers a BroadcastReceiver to receive all Bluetooth events that may
happen in the system, such as Bluetooth enabling or disabling from outside of the
application. As said before, this application instances the correct Bluetooth objects files
regardless of the Android version. It is done by reflection.

First, it tries to initialize the adapter by means of Android Bluetooth API. If this fails, means
that the Android version installed is lower than 2.0, so operating system objects are used in
order to get a reference to the Bluetooth adapter.

Android Bluetooth initialization

try {
// Try Android 2.0 Bluetooth initialization

 Class<?> bluetoothAdapterClass = null;
 bluetoothAdapterClass = Class.forName("android.bluetooth.BluetoothAdapter");
 Method getAdapterMethod = bluetoothAdapterClass.getMethod("getDefaultAdapter",
(Class[]) null);
 mAndroid2 = (mDevice = getAdapterMethod.invoke(bluetoothAdapterClass, (Object[])
null)) != null;

}catch(Exception ex){
 // If it fails, means that the Android version installed is lower than 2.0
 mAndroid2 = false;
}

 if (!mAndroid2){
 // If its not Android 2.0 or higher, get Bluetooth by means of a system service

mDevice = mContext.getSystemService("bluetooth");
 }

 try{
 // Get enable, disabled and isEnabled methods. This should be done regardless of
the Android version installed
 if (mDevice != null) {
 Class<?> c = mDevice.getClass();

mEnable = c.getMethod("enable");

29

mEnable.setAccessible(true);
mDisable = c.getMethod("disable");
mDisable.setAccessible(true);
mIsEnabled = c.getMethod("isEnabled");
mIsEnabled.setAccessible(true);

}

// Load the native library
System.loadLibrary("BTCommunication");

 } catch (Exception e) {
e.printStackTrace();
return null;

 }

getConnection

Method signature

public Connection getConnection()
public Connection getConnection(String btAddress)

Returns a connection object to the specified Bluetooth address. In case that the no arguments
method is used, it returns an connection object which will send commands to all connected
devices.

2. Connection

This file acts as a wrapper for the Connection native file. It's constructor is defined as
protected, so a Connection object can only be get by means of BTManager. Depending on
how was created, the command will be send to all the robots or just to one robot

Connection object constructors

// Broadcast command constructor
protected Connection(){
mode = MODE_BROADCAST;
}

// Send singe command constructor
protected Connection(String btAddr){
mode = MODE_SINGLE;
this.btAddr = btAddr;
}

All native methods are marked as private, because previous operations have to be made
before passing the execution to the native layer. For example, before sending a command, it
checks the sending mode to know if the command should be send to all the connected
robots or just to one robot. Therefore, for using the native methods, the public interface
should be used.

30

Connection object public interface

public char[] sendCommand(char[] values, boolean response) throws BluetoothException
public char[] waitForMessage() throws BluetoothException

4.1.2 THE LEGO MINDSTORMS NXT COMMUNICATION PROTOCOL

Commands are sent to the robot using the Lego MINDSTORMS NXT Communication Protocol
[33] (also known as Lego FANTOM), a proprietary protocol from Lego used to control
MINDSTORMS robots from outside devices, such as mobile phones or computers. This
protocol provides a simple interface for these outside devices to utilize basic robot
functionality without the need to write or run specialized remote control programs on the
robot. It makes possible to control the robot either through the USB communication channel
of through the Bluetooth communication channel. It defines two types of telegrams: Direct
command telegrams (ie: motor control, sensor readings, playing sounds..) and System
command telegrams (system management: read files, write files, run programs...).

Figure 12 shows the general telegram architecture.

Byte 0: Telegram type

0x00: Direct command telegram. Response required

0x01: System command telegram. Response required

0x02: Reply telegram

0x80: Direct command telegram. No response

0x81: System command telegram. No response

Byte 1-N: The command itself or a reply, depending on
 telegram type. Bytes from N+1 will be ignored

The LEGO FANTOM protocol specification states that any incoming protocol telegram may be
marked with the 0x80 mask on its telegram type byte to indicate that no response is
expected. Direct commands is a primary use case for this functionality, as requiring a
response on all telegrams could lead up to approximately 60ms latency.

All response packages include a status byte, where 0x00 means success and any non-zero
value indicates a specific error condition.

All single byte values are unsigned, unless specifically stated. Internal data type is listed for
all multi-byte values and all are assumed to be little-endian.

31

Figure 12: Lego MINDSTORMS NXT Communication protocol. Telegram architecture.

 Maximum command length

Total direct command telegram size is limited to 64 bytes, including the telegram type byte.
This limit doesn't include Bluetooth additional two bytes used for packet size. So the
complete Bluetooth message will look like this

SETOUPUTSTATE COMMAND

The most used command in the application is the SetOuputState command. This command is
used to control the robot behavior: it allows the sender to control motors power, motors turn
ratio and motor travel distance amongst other things. A fixed command configuration is used
in the application.

The chosen configuration applies synchronization to two motors to make them go at the
same speed. NXT firmware takes care of the speed of each motor, braking one of them if it
goes faster than the other. Also, motor synchronization allows the application to control each
motor turn ratio, with the purpose of making the robot turn as the user wants. To apply motor
synchronization, the same command has to be sent two times, one for each motor. The first
motor will be the master motor and the other one will be slave, which will be synchronized to
the master. This forces the application to send two commands for each movement, one for
each motor, although there is not impact in the application performance.

The chosen MINDSTORM configuration has been the tribot. A tribot robot consists of two drive
wheels and a trailing coast wheel and can be made to turn by driving the two drive wheels at
different rates. The achieve this with MINDSTORMS, it is needed to use motor synchronization
and the turn ratio value. The synchronized wheel speed, will determine the turn direction: for
example if the right wheel goes slower than the left wheel, the robot with turn left.

Depending on the turn ratio value, the NXT firmware sets different power to the synchronized
wheel: the lower the turn ratio value is, the less power will be applied to the motor, so then,
the sharpest the curve will be. Travel distance can be also set in TachoLimit byte. This byte
determines how many degrees the wheels will turn before stopping. In this application, the
TachoLimit is set to 0 (no travel distance applied) because this is not know in beforehand.

The SetOuputState command has the following fixed configuration

• Byte 0: 0x80. No response required

• Byte 1: 0x04. Command type (Motor Control)

• byte 2: Output port (Range 0-2)

• byte 3: Power byte (Range -100,100. Negative values means that the motor should
turn backwards. Positive values make the motor to turn forward)

• Byte 4: 0x01 | 0x04 (Turn on the specified motor and turn on the regulation)

• Byte 5: 0x02 (Motor synchronization will be enabled. Needs enabled on two output)

32

Figure 13: Lego MINDSTORMS NXT Communication protocol. Bluetooth packet.

• Byte 6: Turn Ratio (UnsignedByte. Range -100,100).

◦ Only works when synchronization is enabled. Turn ratio of a motor regarding to
the other one. Positive values will apply the turn ratio value to the slave motor.
Negative values will apply the turn ratio values to the master motor, so it could
be seen like role exchange.

◦ A value of 0 means that both motors should turn at the same speed and the
same direction as the master motor.

◦ A value of 100 means that the slave motor should go at the same speed but in
the opposite direction than the master direction.

◦ A value of -100 means the same as 100 value, but exchanging directions: slave
motor goes in the direction as the master motor should, and the master motor
goes in the opposite direction.

• Byte 7: 0x20 (Output will be running)

• Byte 8 -12: 0 (No Travel distance applied)

Maximum message size: 13 bytes

 Implementation

For the Lego FANTOM protocol implementation, two entities has been implemented: the
command itself and the message. Short commands (3 bytes or less) has been implemented
directly in a class (discussed later). Long commands (for example SetOutputState) has a
message object associated (MotorMessage). A message object is a java bean object which
contains all the values needed to perform the command. Not all the commands has been
implemented, only a subset suitable for the developing of this thesis.

 Message object implementation

In the Java Virtual Machine, bytes, shorts and ints are all four bytes long and are all signed.
Hence, when two bytes are added together, a 32-bit arithmetic is performed. And when the
result is stored back into a byte, the high 24 bits are not looped off, because the number is
signed, and sign bit has to be retained. This same applies to the Dalvik Virtual Machine used
in Android.

As said before, all values in Lego Fantom Protocol must be unsigned, so the chosen data type
in Java to hold protocol values has been the char value, because it is the only Java data type
that is unsigned. Since each Java char is 2 bytes long, each char will hold two bytes of a Lego
message. This approach also reduces the data quantity passed to the native layer of the
Bluetooth library, what is an expensive operation.

A message object contains a char array with size equal to half of the Lego message size
rounded up. For example, In case of the SetOutputState command (13 bytes message), the
MotorMessage object has a char array with size 7. Each message object has getter and
setters for each command field, such as power field or turnRatio field. Each setter does the
proper logical operations in order to fill correctly the char value which is meant to hold the
byte. It takes into account if the value should be in the first or second byte of the char value.

33

Set the turn ratio in MotorMessage

**
 * Sets the turnRatio byte field
 * @param turnRatio int range from -100 to 100
 */
 public void setTurnRatio(int turnRatio)
 {

// turnRatio and runState will share the same char
// Put high part of the message char to 0

 values[3] = (char) (values[3] & 0x00FF);
 // Get the integer has a char
 char bTurnRatio = (char) (Integer.valueOf(turnRatio).byteValue() & 0xFF);

// Left shift the turnRatio char in order to have it in the high part
 bTurnRatio = (char) (bTurnRatio << 8);

// OR operation with the message byte to set it in the high part
 values[3] = (char) (values[3] | bTurnRatio) ;
 }

The messages implemented as java objects are the following:

• MotorMessage: Message for SetOutputState message command. Contains all the
values needed to set the behavior of the motors

• MotorStateResponse: Response from a GetOutputState command which contains
the motor state. Returns the operation result and same values that are send with
SetOutputState command, as well as the current distance traveled, number of motor
counts since the last reset of the motor counter, current position relative to the last
programmed movement and the current position relative to last reset of the rotation
sensor.

• GenericResponse: Generic response from a Direct command. Contains the
operation result as well as an error code in case of the operation was unsuccessful.

• FindFileResponse: Generic response from FindFirst and FindNext operations. These
operations are used to list all the programs installed in the robot. Contains the
operations result as well as a file handler and a file name.

• CloseHandleResponse: Generic response from closeHandle operation. Returns the
operation result code as well as the handle that has been closed.

 Command implementation

Commands has been implemented as functions grouped in classes depending on its purpose.
For example, all the commands that act on motors, are grouped in a class called
MotorInterface, and the commands related to program run and program list, has been
grouped into a class called MiscInterface.

These classes extend a base class called NXTInteface. This class includes a setConnection
method in order to set the connection object that will be used to perform the command. It
also contains all needed constants for the direct command messages such as motor Ids or
regulation mode.

This constants are hold also in java chars and have the correct byte order with the purpose of
reducing the number of logical operations during the message construction.

34

The implemented interfaces are the following:

1. MotorInterface

This class groups all the commands used to control motor's behavior The most important
methods are the following:

setOutputState

Method signature

public GenericResponse setOutputState(MotorMessage message) throws BluetoothException

Sends a message motor to control a motor. It receives a MotorMessage object with contains
the motor values to be set to the robot. Returns a GenericResponse in case the message
requires a response from the robot.

resetMotorPosition

Method signature

public GenericResponse resetMotorPosition(char motor, boolean isrelative, char
messageType) throws BluetoothException

Resets motor distance counter. It should be send to each motor before performing a new
movement, because otherwise, the robot returns to its start position before the next
movement.

This function receives three values:

• motor: Motor ID constant. Motor Ids are specified in NXTInferface.
• isrelative: if true, the counter should be reset relative to motor last movement. If

false, the counter will be reset to a absolute position.
• messageType: constant specified in NXTInterface. Determines if the message should

return a robot response. In case it should, a GenericResponse object is returned.

getOutputState

Method signature

public motorStateResponse getOutputState(char motor) throws BluetoothException

Gets the state for a given motor ID. Motor Ids are specified in NXTInterface. Returns a
motorStateResponse object.

2. MiscInterface

Groups all the commands related to program listing and execution. The most important
functions are the following

startProgram

Method signature

public GenericResponse startProgram(String name, char messageType) throws
BluetoothException

35

Starts a program already stored in the robot. This method receives two arguments

• name: Name of the program.

• MessageType: constant specified in NXTInterface. Determines if the message should
return a robot response. In case it should, a GenericResponse object is returned.

findFirst

Method signature

public FindFileResponse findFirst(String findIt) throws BluetoothException

Search for the the first file in robot storage which name contains findIt.

It returns a FindFileResponse object, composed by a handler id used to search for the next
file using the same pattern, and the found file name. The application search files with “.rxe”
extension, which are the executable programs installed in NXT.

findNext

Method signature

public FindFileResponse findNext(int handle) throws BluetoothException

Used in conjunction with findFirst method. It receives the handler returned by findFirst
method to search for the next file which contains the same string as the one searched in
findFirst function. It returns a FindFileResponse object, composed by the next handler id that
should be used in next search, and the found file name.

This method should be called several times after findFirst until the result code is
FILE_NOT_FOUND, which means that no more files match the specified pattern. Each opened
handler must be closed with closeHandler method after it is not longer needed.

closeHandle

Method signature

public CloseHandleResponse closeHandle(int handle) throws BluetoothException

Closes an opened file handle in the robot. Receives the handleid. Returns a
CloseHandleResponse object that contains the result code and the handler that has been
closed.

Once introduced the most relevant methods used to control the robot, here is shown the
source code that moves the robot.

SetOutputState command configuration from Java

motorInterface.resetMotorPosition(masterWheel, true,
MotorInterface.MESSAGETYPE_NORESPONSE);
motorInterface.resetMotorPosition(slaveWheel, true,
MotorInterface.MESSAGETYPE_NORESPONSE);

message.setTachoLimit(0L);
message.setMode(MotorInterface.MOTOR_MODE_ON_REGULATED_BRAKE);
message.setTurnRatio(turnRatio);
message.setMotorNum(masterWheel);
message.setPower(power);

36

message.setRegulationMode(MotorInterface.MOTOR_REGULATION_MOTORSYNC);
message.setRunState(MotorInterface.MOTOR_RUNSTATE_RUNNING);
motorInterface.setOutputState(message);
message.setMotorNum(slaveWheel);
message.setOutputState(message);

4.2 HIGH LEVEL LAYER: USER INTERFACE

After explaining the low level layer of the application, the high level (the one related with the
user) will be explained. According to its functionality, the application can be divided into two
modes: synchronization mode and follower mode. Synchronization mode is the default
mode where the application controls all the robots in the same way. Follower mode is actually
a functional extension of synchronization mode, because it just adds the possibility of
changing the leader behavior according to the follower needs.

Android applications interact with the user by means of Activities. An Activity is one of the
main components of an Android application and represents a single screen with a user
interface. Normally, an Activity will be the entry point of an Android application.

Each activity can then start another activity in order to perform different actions. Each time a
new activity starts, the previous activity is stopped, but the system preserves the activity in a
stack (the "back stack"). When a new activity starts, it is pushed onto the back stack and
takes user focus. Activities works directed by callback methods that must be implemented.
Android system will call this callback methods when the activity transitions between various
states of its lifecycle, such as when the activity is being created, stopped, resumed or
destroyed [15].

Activities are often presented to the user as full-screen windows, although they can also be
used in other ways: as floating windows or embedded inside of another activity. The Activity
class takes care of creating a window where Views can be placed. A View is a basic user
interface element (like buttons or checkboxes) represented as a class, which handle screen
layout and interaction with the user. Every view extends from the View class.

All different activities of the application will be exposed with some screenshots in order to
make the explanation clearer. First, all activities related to synchronization mode will be
explained, starting from the moment when the application is first launched. Finally, activities
related with follower mode will be shown.

4.2.1 SYNCHRONIZATION MODE

The application starts with an splash screen, which initializes the BTManager and loads the
native library. In case the Bluetooth radio is not enabled, the activity enables it. Also, it loads
the language selected by the user (if any was selected previously). If no language was
selected, it loads the default phone language.

37

Once everything has been initialized, the ConnectionManagerActivity appears. It presents
three main buttons labeled as Connect, Disconnect and Search.

When the application launches, only the Search button is enabled, the connect and
disconnect button will be disabled until some device is selected. When the user taps search
button, a floating window appears informing the user that he has to wait for the searching.

After searching, all MINDSTORMS devices found will be listed. Searching results are filtered so
only MINDSTORMS devices will appear in the list.

38

Figure 15:
ConnectionManagerActivity:

Device search

Figure 14: DroidStorm: Splash screen

Once the user has selected one or more MINDSTORMS devices, the Connect button is
enabled. If the user taps the Connect button, the application will make the connection and
show a pop up informing the result.

Once connected to one or more devices, the HandlerSelectorActivity is launched. This
activity shows three different buttons to allow the user which kind of handler it want to use.
Each handler is implemented by an activity.

Following, each handler will be shown in detail.

39

Figure 16:
ConnectionManagerActivity:

Found devices.

Figure 17:
HandlerSelectorActivity.

1. Movement control

This activity is implemented by MovementHandlerActivity class. It allows the user to move
the robot using the phone as a joystick. In this control mode, the phone should be hold in
landscape mode, in order to enhance control experience. When the phone is tilted forwards
or backwards, the robot will start moving in the same direction. If the phone is tilted
sideways, the robot will turn. When this activity is shown, a radar-like view is presented. This
view shows an arrow which points the direction the phone is tilted, and its lengths grows or
reduces depending on how far the phone is tilted.

Also, if the screen is tapped the recording mode will be started, recording all movements in a
database.

If it's tapped again, it will stop recording and a dialog will be shown to the user in order to
make him set a demo name. This demo can be reproduced later in Demo mode.

40

Figure 18: MovementHandlerActivity.

Figure 19: MovementHandlerActivity: save record.

2. Button control

This activity is implemented by ButtonHandlerActivity class. It allows the user to control the
robot using a joy pad. Six buttons are presented in this activity. Each one has a image on it
will indicates each button purpose

 Makes the robot go forwards

 Makes the robot go backwards

 Makes the turn around left

 Makes the turn around right

 Stops the robot

 Start/Stop recording mode

As seen in buttons descriptions, there is no possibility of making curves with the robot in this
activity. When a button is tapped, the robot starts moving until the stop button is pressed.

Also, there is a seek bar view which is used to control the power applied to robot motors.
When the seek bar is dragged right, the power increases, when is dragged left, the power
decreases.

41

Figure 20:
ButonHandlerActivity.

There is no need to stop robot movement to change the power, it can be changed while it is
moving, and the effects will be seen immediately.

3. Demo

Demo is the only activity which doesn't need user interaction to move the robot. It's
implemented by DemoHandlerActivity and is also the only handler which doesn't use any
controller since it has all robot control implemented.

In this activity, the user can load sets of movements from either previous movements
recorded in MovementHanderActivity or ButtonHandlerActivity or from an external XML files
with a well-defined structure. This sets of movements are called Demos and can be
reproduced in this mode.

When DemoHandlerActivity is launched, a window with three buttons is presented, as well as
a black space in the bottom of the screen that will show the commands that are being sent to
the robot (commands screen).

The first two buttons are used to load predefined movements from different sources
(database or XML), while the third is only available when some demo is already loaded.

This activity allows data loading from different sources:

• Database: Allows the user to load a previously saved set of movements (Demo) from
database. The button is labeled as Load from database

• XML: Sets of movements can be load from external XML files with a well-defined
structure. The button is labeled as Load from XML file

Once a demo is loaded either from database or XML, the button labeled as Start
demonstration is enabled.

Then, the activity starts sending all the movements to the robot until there are no more
movements to send.

42

Figure 21:
DemoHandlerActivity.

All the movements sent are shown in the commands screen while they are sent. Per each
movement, the applied power, turn ratio, tacholimit and duration will be shown.

Following, both methods of demo loading will be shown in detail.

 Database loading

When this button is pressed, the activity DemoSelectorActivity is launched. This activity reads
all available demos from database and list them in a view.

43

Figure 23:
DemoSelectorActivity: List

all demos available in
database

Figure 22:
DemoHandlerActivity:

running a demo

If the user performs a long click on a demo name, a contextual menu appears. This menu
offers two options: rename (which changes the name associated to this demoID), and
delete (which delete this demo and all associated actions). If the user presses the Menu
button in the phone, a menu options appears offering the possibility of deleting all available
demos. If the user touches a demo name, the demoId associated to that name is passed back
to the DemoHandlerActivity in order to load the demo.

DemoHandlerActivity receives the demoId and enables Start demonstration button . If the
user taps it, the activity starts a thread reads each action associated to the loaded demo, and
sends a movement command to the robot with its parameters. Once there are no more
actions available, the thread stops the robot and finishes execution.

 XML Loading

When the XML loading is selected, the FileExplorerActivity is launched. This activity
implements a file explorer that shows only XML files and directories. Root folder of this file
explorer is the /sdcard folder which is the folder where the SD card is mounted. The user can
navigate throughout the files of its sdcard and select the XML file of the demo he wants to
load. The application then confirms the selection and passes the absolute path of the file to
the DemoHandlerActivity.

When the execution comes back to DemoHandlerActivity, it parses the XML file. As explained,
the XML has to be well-defined. If the loaded XML doesn't follow this structure, it won't be
loaded and a error will be shown to the user.

44

Figure 24:
FileExplorerActivity: select

XML file

Demo XML Structure

<?XML version="1.0" encoding="UTF-8"?>
<demoactions>

 <!-- Each movement will be implemented in the following way.
 There should be a nxtaction tag which attributes will be

 the movement parameters that has to be sent to the robot
 These parameters are the following:

– power: Power to be applied during this movement

– turnratio: Turnratio to be applied during this movement

– tacholimit: Travel distance in degrees

– duration: duration of this movement in ms
 -->

 <nxtaction power="60" turnratio="0" tacholimit="0" duration="5000"/>
 <nxtaction power="60" turnratio="10" tacholimit="0" duration="6000"/>

</demoactions>

Each nxtaction tag has been implemented as a DemoAction object, which contains all the
parameters of each entry. When the DemoHandlerActivity parses the XML file, it creates an
ArrayList of DemoAction objects, one per each entry and will enable the Start demonstration
button.

Once the user taps this button, the activity launches a thread that iterates over the ArrayList
and sends movement commands to the robots based on each object parameters, updating
the commands screen each time a new movement is sent. Once there are no more actions
available, the thread stops the robot and finishes execution.

4.2.2 FOLLOWER MODE

The follower mode is an extension of the synchronized mode. It does not add any new
handler nor controller, it adds the logic of controlling the leader behavior depending on the
follower. This mode is available to all handlers since it is implemented in the
NXTHandlerBaseActivity, and all handlers extends it.

If the phone is connected to two robots, follower mode can be enabled in the preferences
activity. When follower mode is enabled, motor port where the IR emitter is connected must
be selected. Now, if the user launches a handler, instead of launching the handler, the
application launches the FollowerConfiguratorActivity. This activity lists all the connected
devices allowing the user to select which robot will be the follower.

45

Once the follower is selected, the application lists all the programs that are already installed
in the robot. The user selects which program will be used for leader following and the activity
starts it remotely. In order to list the programs installed in the robot, both findFirst and
findNext methods of the MiscInterface object of the Lego FANTOM implementation are used.
To start the program, startProgram method from NXTMisc is used.

Code to read files from the follower robot

response = fileReader.findFirst("*.rxe");
fileNames.add(response.getFileName());
handle = (int)response.getHandle();
while(response.getStatus() != FindFileResponse.FILE_NOT_FOUND){

response = fileReader.findNext(handle);
nextHandle = (int)response.getHandle();
fileNames.add(response.getFileName());
fileReader.closeHandle(handle);
handle = nextHandle;

}
fileReader.closeHandle(handle);

46

Figure 25:
FollowerConfiguratorActivity:

select follower.

Only when a program is started in the follower, the handler is launched. The handler detects
follower mode and turns on the IR Emitter, and after, waits for follower initialization until a
READY message is received. During this waiting, user interaction is disabled and user is
notified by a phone vibration and a pop up message. When the activity receives this
message, the handler enables user interaction and will continue as in synchronization mode.
In order to enable and disable interaction, disableHandler and enableHandler methods of a
handler are used.

If, during the leader movement, the follower gets lost, it sends messages to the phone,
indicating that it has lost the leader and which was the last position that the leader was seen.
In all these cases, user interaction is disabled and the user is notified.

47

Figure 26:
FollowerConfiguratorActivity:
IRFollower program started.

Figure 27: Follower mode: Wait for the follower to
be ready.

In order to control when the follower gets lost, a simple protocol has been implemented. This
messages are received by a thread. This thread listens for follower messages by an active
waiting and when it receives one, it takes control of the execution. It disables user
interaction, notifies the user, and moves the leader in the way explained in the above table
until the follower finds it. For the application, the follower has not found the leader until a
READY message has been received. Table 5 shows this messages in detail.

Message Values Meaning Leader behavior

LEADER_LOST Byte 0: 0x02
Byte 1: 0x00

The follower has lost the
leader and notifies the phone
and does a surveillance spin
in order to find the leader

The leader is stopped.

LEADER_SEARCH Byte 0: 0x02
Byte 1: Last known
 direction:
 - 0x04:Left
 - 0x05:Right
 - 0x04:Front

After the surveillance spin,
the leader has not been
found. The follower notifies to
the phone, sending the last
direction known direction of
the leader

If the last known
direction is front, the
leader will go backwards
slowly during 100
degrees.

Otherwise, the leader
will spin in the opposite
direction as the one sent
from the follower during
100 degrees

LEADER_FOUND Byte 0: 0x04
Byte 1: 0x00

The follower has found the
leader. It notifies the phone
and moves towards it until
reaches its back

Leader is stopped

READY Byte 0: 0x00
Byte 1: 0x00

The follower is ready to
continue.

Waiting messages are
disabled and user
interaction is enabled.
The execution can now
continue normally.

Table 7: Messages sent from the follower to the phone.

48

5 SMARTPHONE AND ROBOT INTERACTION

In this chapter, the interaction between the smartphone and the robot will be explained,
detailing all the logic behind the translation from the user input to the robot movements.

The activities that control the robots somehow are called Handlers. All handlers extends
from an abstract class called NXTHandlerBaseActivity that is the one which implements all
the logic that all handlers must use. In this way, it is really easy to implement a new handler
to control the robot. The only requirement in order to be able to use this logic is to implement
this class.

A handler may use a controller, which is a class that implements the logic behind the robot
control. All implemented controllers must extend NXTBaseController class. These controllers
“translates” the user input (such phone movements, or button touch) into robot movements.

Following, these two base classes will be detailed in order to make clearer the explanation of
the activities which control the robot from user inputs, such phone movements or buttons.

 NXTHandlerBaseActivity

All handlers must extend NXTHandlerBaseActivity abstract class, which implements all the
logic related with basic robot control as well as the follower mode. It handles all connections
and robot settings (such wheel ports or IR Emitter ports) as well as application modes.

When the application is used in synchronization mode, NXTHandlerBaseActivity maintains a
unique connection object which is used to broadcast all messages to all connected robots. In
case the application is used in follower mode, it handles two connection objects, one for the
leader and one to the follower with the purpose of being able to send different commands to
different robots.

All NXTHandlerBaseActivity subclasses must implement enableHandler and disableHandler
methods. This methods will be called when there is a need to disable or enable user
interaction. User interaction must be disabled, for example, when a new message is received
from the follower, and must be enabled when the follower is ready to continue following the
leader.

In turn, NXTHandlerBaseActivity extends the Activity class and overrides its main callback
methods. The methods overridden by NXTHandlerBaseActivity are the following:

• onCreate: Called by Android system when the activity is created. In this callback
method, NXTHandlerBaseActivity will initialize all basic objects (such as the
preferences manager or the BTManager) and will check if this is the first time the
application is started. In such a case, the preferences activity will be launched. Must
be overridden by subclasses.

• onResume: Called by Android system when the activity resumes. In this method, the
activity will check if any preference has been changed, and, in that case, it will set it
in to the controller. Also, in case, follower mode is selected, will launch an the
FollowerSelectorActivity, and activity used to configure this mode.

• OnPause: Called when the user is leaving the activity. In this method, the handler is
disabled and after that, the robot is stopped as well as all pending recordings. Also, if
follower mode is enabled, it turns the Ir Emitter off and stops the follower listener.

49

 NXTBaseController

A Handler normally uses a controller class to interact with the robot. All controller classes
must extend NXTBaseController in order to use the basic robot methods. NXTBaseController
maintains all the robot configuration, such as the ports used for the motors, or the port used
for the Ir Emitter (in case of follower mode). It also exposes methods to turn on and off the Ir
Emitter.

The class automatically establishes wheels roles for motor synchronization, being the left
wheel the master wheel and the right wheel the lave wheel. In this way, the developer
doesn't have to take care of the parameters it has to use in order to move the robot. The
developer just have to call the move method exposed by NXTBaseController passing both the
turn ratio and the power.

This method will set received arguments as well as the rest of needed parameters to move
the robot in the proper direction. Anyway, a full parametrizable move method is also
exposed.

The class also controls movement recordings, the so called demos. Demo recording is
implemented using the SQLite database which stores the movements. SQLite is a simple,
lightweight and reliable transactional database engine that occupies a small amount of disk
storage and memory, so it's a perfect choice for creating databases on many mobile
operating systems.

All the movements are recorded in a simple database composed by two tables

• DEMO: contains the following columns: demoID and demoName. demoId is the
primary key and is defined as and autoincrementable integer. demoName is the
name given to the demo. By default this field value is “unnamed”.

• DEMO_ACTIONS: contains the following columns:

◦ demoActionId: Id of the action. Primary key and is defined as and
autoincrementable integer.

◦ demoId: Foreign key. Relates this action to one demo .

◦ power: power to be applied to the robot during this action's duration.

◦ tacholimit: travel distance in degrees to be applied to the robot during this
action's duration.

◦ turnRatio: turnRatio to be applied to the robot during this action's duration.

◦ duration: duration in milliseconds of this action .

If the recording mode is enabled, NXTBaseController will save in the database all the
movements sent to the robot. To measure the duration of each movement, a timer is started
just before the command is sent. When the next movement is ready, the timer is stopped,
and the movement is recorded with the duration calculated from the timer.

Following, all types of robot control will be explained along with the implementation of the
handler and controllers that composes them.

50

5.1 CONTROL BY MOVEMENT

The application allows the user to control the robot by moving the phone. In this control
mode, the user uses the phone as a joystick, and the application registers phone movements
and translates them to robot commands.

Phone movements registered thanks to that all Android-Enabled phones are provided of
sensors which can be read in order to know which way up the phone is, how far its tilted etc.
The classes of readings available are the orientation (which way up the handset is, which way
it is tilting etc), how fast it is moving and where it is. These are termed readings for
ORIENTATION, the ACCELEROMETER and the MAGNETIC_FIELD.

Handlers can be written to read this sensors. The Handler has to register itself as a sensors
listener and since then, it will be notified about this signals throughout its runtime. The
Handler will be interrupted every time a new reading is available, so new sensor values can
be used.

1. MovementHandlerActivity

MovementHandlerActivity is the handler which implements this kind of robot control. In order
to be able to read sensors values, it implements SensorEventListener interface and its
onSensorChanged method, which is the one called by the Android system when new sensor
values are available. Each time it is called, it receives a SensorEvent object which contains
the new sensor values [16].

MovementHandlerActivity also extends from NXTBaseHandlerActivity in order to be able to
handle preferences change and be able to use the follower listener .

Three values are sent from the orientation sensors: Azimuth, Pitch and Roll.

• Azimuth, describes the angle between the magnetic north direction and the y-axis,
around the z-axis (0 to 359). 0=North, 90=East, 180=South, 270=West

• Pitch describes the rotation along the x axis in degrees. This is measured from -180
to +180

• Roll describes the rotation along the y in degrees. This is measured from -90 to +90

By default the phone coordinate-system is defined relative to the screen of the phone in its
portrait orientation. The axes are not swapped when the device's screen orientation changes.

The X axis is horizontal and points to the right, the Y axis is vertical and points up and the Z
axis points towards the outside of the front face of the screen. In this system, coordinates
behind the screen have negative Z values.

51

In order to improve controls, the movement control is used in landscape mode, which implies
that axes must be changed to the world's coordinate system.

In this mode, the power applied to robot motors is defined by the tilt along the Y axis, and the
turn is defined along the tilt along the X axis.

MovementHandlerActivity transforms sensor values from the device coordinate system to the
world's coordinate system in runtime. To make such a transformation, Android provides some
methods useful for this purpose. Actually, ORIENTATION sensor values are calculated from
ACCELEROMETER and MAGNETIC_FIELD sensor values, so instead of letting Android make the
calculation using the phone coordinate-system, the activity does the calculation by itself.

Get and register ACCELEROMETER and MAGNETIC_FIELD sensors

// Get Android's sensor service
mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
// Get all sensors as a list
List<Sensor> listSensors = mSensorManager.getSensorList(Sensor.TYPE_ALL);
// Get accelerator sensor (first value of the sensors list)
mAcceleratorSensor = listSensors.get(0);
// Get magnetic sensor (second value of the sensors list)
mMagneticSensor = listSensors.get(1);

52

Figure 28: Android device
coordinate system

Figure 29: Android device coordinate
system transformed to world

coordinate system

// Register both sensors
mSensorManager.registerListener(this,

mAcceleratorSensor,SensorManager.SENSOR_DELAY_GAME);
mSensorManager.registerListener(this, mMagneticSensor,SensorManager.SENSOR_DELAY_GAME);

MovementHandlerActivity registers ACCELEROMETER and MAGNETIC_FIELD sensors instead
of ORIENTATION sensor, and once it has values from both sensors, calculates the orientation
values based on world's coordinate system and returns them as radians. The following code
will return the new orientation coordinates based on the world's coordinate-system.

System coordinates translation

// Get rotation matrix to translate coordinates
SensorManager.getRotationMatrix(Rarray, Iarray, accels, mags);
/* Remap coordinates using the rotation matrix (first argument).
 It also receives the new X and Y axis.
 -In new coordinate system, X axis will be what in phone coordinates was Y axis
 -In new coordinate system, Y axis will be what in phone coordinates was X axis
pointing the opposite direction
*/
SensorManager.remapCoordinateSystem(Rarray,SensorManager.AXIS_Y,

SensorManager.AXIS_MINUS_X, outR);
// Get Orientation values based on the new coordinate system in mOrientationValues array
SensorManager.getOrientation(outR, mOrientationValues);

This new values must be filtered because they may contain noise from the sensors. On tested
phones there were some jitters when the device was close to an electromagnetic field such
those created by computers or televisions. This jitters produced weird readings, and
therefore, weird reactions in the robot behavior

To filter this jitters, a SensorAverageDamper class have been created. This class adapts the
sensor output values by damping them over a window of previous sensor values. The new
sensor values will be the average over all sensor values in the window. The window size
applied is 6. SensorAverage damper implementation can be seen in the source code.

Although these values are the rotation in degrees around and axis, actually they can be
treated as the more convenient form to the application. One of the most popular way of
treatment for this values is as rectangular coordinates, as if they define points on a graph
relative to a fixed origin and axis. There values are then converted to polar coordinates to get
the angle and the distance they describe. Both the angle and the distance will be used to
determine the turn ratio and power applied to the robot motors.

The code for rectangular to polar coordinate conversion is the following

Rectangular to polar coordinate conversion

/* Convert from radians to degrees.
 mOrientationValues array contains the new orientation values:
 - mOrientationValues[0]: contains new Azimuth value (Z)
 - mOrientationValues[1]: contains new Pitch value (X)
 - mOrientationValues[2]: contains new Roll value (Y)

*/
for(int i =0; i < mOrientationValues.length; i++){

OrientationValues[i] = (float) Math.toDegrees(mOrientationValues[i]);
 }

53

// If there is no Y value, return
if (mOrientationValues[2] == 0) return;

// Angle = arctan(Y/X)
mAngle = (int) (Math.toDegrees(Math.atan(mOrientationValues[2] / mOrientationValues[1])));
// Distance = sqrt(Y^2 + Y^2)
mTilt = (int) Math.sqrt((

Math.pow(mOrientationValues[2], 2))
 + (Math.pow(mOrientationValues[1], 2)));

/* Tilt is magnified in order to adapt it to the phone movement (when the phone is
almost vertical,
 it raises its maximum value)
*/
mTilt *= TILT_MAGNIFIER;
// Limit distance to 100, because is the maximum power value for the robot
if (mTilt > 100) mTilt = 100;

Both distance (mTilt variable) and angle (mAngle variable) are passed to the
NXTMovementController to move the robot

2. NXTMovementController

NXTMovementController is a class which implements the logic behind the robot control based
on phone movements. This class, as all controllers, extends from NXTBaseController, which
enables it to use the basic movement functions.

When the MovementHandlerActivity has the sensor values ready, it passes them down to the
NXTMovementController using the moveNXT method. This method receives both angle and
distance and makes some checks to them to assure if the robot should be moved or not. It's
noteworthy that these values are compared to the ones received from the previous
movement. If new values are equal to the previous ones, no command will send to the robot.
In this way, the number of transmissions are reduced in order to save phone and robot
battery.

Before moving the robot, both distance and angle are checked to assure that they have a
minimum value. Minimum values are established to avoid the control to be too sensitive to
the user. Almost nobody can hold a phone perfectly flat on their hands, and if no minimum
value is set, it will be very difficult to have the robot hold still.

Power value is the one which rules in robot movement. If distance value is in ranges from -11
to +11, no command will be send to the robot. Otherwise, angle value will be checked. If it
ranges from -5 to +5, the command sent to the robot will have turn ratio value of 0, which
means “move forward”. If the angle is over this minimum limits, it will be used to set the turn
ratio.

Range values received from MovementHandlerActivity ranges from 0 to 90, been 0 when the
phone is completely flat, and 90 when it describes a 90 degrees angle with the X axis. As
explained in LEGO Fantom section, the higher the turn ratio is, the less power is applied to
the slave motor.

So, and taking into account the angle minimum value of 5, the turn ratio values applied from
angle values will range from 5 to 90, almost the same range values the turn ratio has.

54

This means that, the more the phone is tilted to one direction, the higher the turn ratio is,
causing the slave wheel to turn slower. And, due to the tribot configuration, the slower the
slave wheel turns, the sharpest the described curve by the movement is, causing the
impression that the robot turns more as the tilt angle increases.

Turn direction will be defined by the angle sign. As explained in Lego Fantom protocol section,
depending on the the turn ratio value sign, the turn ratio will be applied to one wheel or the
other.

When the phone is tilted left, angle sign will be negative, and when tilted right, it will be
positive.

NXTMovementController uses the default movement function from NXTBase Controller, which
sets the left wheel as the master wheel. So, when the robot receives a negative turn ratio,
wheels roles (master/slave) will be exchanged, making the left wheel go slower than the right
wheel and therefore, making the robot turn left. When it receives positive turn ratio values,
the right wheel (slave wheel) will go slower than the left wheel (master wheel), making the
robot turn right. This implementation gives complete control feeling with phone movements.

Code to send movements to the robot

// Check if new values are different from the previous ones
if(power != mPrevPower || angle != mPrevAngle){

// Check if the power value is greater than the minimum
if(power > MIN_POWER || power < (MIN_POWER * -1)){

if(angle > MIN_ANGLE || angle < (MIN_ANGLE * -1)) {
// If angle value is greater than the minimum, use it to turn
move(angle, power);

} else {
// If not, the robot should go straight ahead
move(STRAIGHT_ANGLE, power);

}
}

}

5.2 CONTROL BY BUTTONS

Apart from controlling the robot using phone movement, the user can also use a control
based in buttons. A joypad-like set of buttons is presented to the user. Each button has
associated a basic movement such as move forwards, move backwards, turn around left, or
turn around right. Each time the user taps one of these buttons, a basic order is sent to the
robot with undefined duration. The command will be running until the user decides to stop it
by pressing a stop button.

1. ButtonHandlerActivity

ButtonHandlerActivity which handles all button control. It creates all movement buttons and
associates a NXTButtonController method to each one, depending on its purpose. Each time a
button is taped, its action associated will be saved, and the corresponding

55

NXTButtonController method will be called. This activity extends from NXTBaseActivity in
order to be able to handle preferences and to use the follower listener. It also creates
recording button that, when tapped, starts the recording mode, recording all movements in a
database. If it's tapped again, it will stop recording and a dialog will be shown to the user in
order to make him set a demo name. This demo can be reproduced later in Demo mode.

In order to use the seek bar view, ButtonHandlerActivity implements
SeekBar.OnSeekBarChangeListener interface and its onProgressChanged method. This
method will be called by Android system each time the seek bar is dragged. When
onProgressChanged method is called, the new progress value saved as the new power, and
then, the saved action is checked in order to know which movement the robot is currently
performing. Once the movement is known, its method is called again with the new power.

2. NXTButtonController

Like all controllers, NXTButtonController is a class which implements the logic behind the
robot control and extends from NXTBaseController in order to use the basic movement
functions.

This controller has five methods, one for each button in ButtonHandlerActivity. Depending on
the purpose of this button, the move method from NXTBaseController is called with proper
parameters in order to move the robot.

56

6 FOLLOWER IMPLEMENTATION: IR FOLLOWER

Because of the follower has to move autonomously, it has been programed for that purpose.
For programming the robot, the RobotC programming language has been selected.

RobotC [31] is a C based programming language with additional language extensions
specifically for robotic use. It is the only one programming language for robots that includes a
powerful Windows environment IDE with fully integrated software debugger that allows
developers to step line by line through program execution and analysis of all variables.
Additional debugging tools allow the user to see the real time states of all motors and sensor
without the need of an external program. Also, includes an advanced source code editor with
smart indenting, automatic code competition and a tabbed interface to allow multiple
program to be open at the same time. In order to program MINDSTORMS robots with RobotC,
a new firmware must be installed in the robot. This new firmware enhances Lego original
firmware improving motor control and adding the debug possibility.

All remote control using LEGO MINDSTORMS NXT Communication protocol is
working, but the use of motor synchronization, which is broken [33]. That's why, a
robot using RobotC firmware can only be used as a follower. The application can connect to it,
but no turns can be performed because of the lack of motor synchronization.

6.1 ROBOT PROGRAMMING

The follower program uses the HITECHNICS IR Seeker V2 in order to track the leader's path.
To use this seeker HITECHNICS provides drivers for RobotC with an API that provides several
functions to read sensors values as well as the calculated direction.

As told in the IR Seeker V2 section, this sensor is divided in 9 zones that are not symmetrical,
some zones are much narrow than others. The configuration chosen is to use one of the wide

57

Figure 30: RobotC IDE with remote NXT screen enabled

zones as the center (zone 5) and two narrow for the sides. Therefore, three zones of action
has been defined: center (zone 5), left (zone 4) and right (zone 6).

Zones 4 and 6 are calculated by the firmware by interpolating the values of two sensors. This
two sensors are used to calculate the turn ratio that has to be applied to the wheels. The
value difference is multiplied by a value, and then, the result is subtracted from the turn ratio
value needed to make both wheels go synchronized. If the direction returned is different from
this three zones (4, 5 or 6), it means that the follower has turned too much, so the follower
turns around to that direction.

If returned direction is 0, the leader has been lost. It's important to remark that turn ratio
definition is RobotC is different than in the Lego FANTOM protocol . In RobotC, a value of 100
for turn ratio means that both wheels should go to the same direction at the same speed.
Also, the sign of the turn ratio doesn't affect wheels roles, only affect in slave wheel direction.
If the sign is negative, the slave wheel will go backwards, if not, will go forwards.

Figure 31 shows IR Follower dataflow.

58

 Yes

 Yes

 No

 Left (dir = 4) or
 right (dir = 6)

59

Program start

Initialize system

Inform the user about
center direction

Calibrate sensor

Read sensor direction

Centered?

Lost?

Direction?

Inform the master Do surveillance spin

Found?No. spins = 8?

Ask for help to the user

No Yes

No

Yes

Found?

No

Yes

Calculate power
and move the robot

straight ahead

Calculate power,
turn ratio, and

move the robot with
those parameters

Calculate power
and turn around

to the sensor direction

No

Other direction

Figure 31: IR Follower dataflow

Center (dir = 5)

When the program is started, the user is requested to put the follower robot just behind the
leader. It also gives instructions to help him to center the sensor to the IR Emitter. This
instructions are shown in NXTs screen telling the user if the robot has to be moved left or
right to be centered.

Once centered, the calibration starts. First of all, the sensor is set to register only 600hz
signals. Also, sets wheels synchronization and configures wheels roles. Then, the follower
starts turning around to each direction slowly, registering the maximum value for each
direction. This value is saved in a array and it's used during movement to know if the follower
is too close to the leader.

When the calibration has finished, the follower is ready to follow the leader. Then, it sends a
READY message to the phone and waits for leader's movements. From now on, the program
starts a control loop that reads continuously the direction and the sensor values from the
seeker. Sensor values units indicate how strong is the signal they are receiving. The stronger
the signal is, the higher the value is and therefore, the closer the leader is.
When the program has both direction and sensor values, it computes desired movement,
always depending on the direction. To calculate the power that should be applied to the
wheels, the program uses an algorithm based on the dynamic arrival from video games For
each sensor, a “slow down radius” is defined. This “slow down radius” is the sensor value
that indicates that the robot should begin to slow down. During this radius, the desired speed
is an interpolated intermediate value controlled by the sensor value. Outside this radius, the
robot moves at maximum speed. The desired speed during the “slow down radius” is
calculated as follows

Motor speed calculation

speed = MAX_SPEED * (sensorSlowRadius/sensorValue)

where MAX_SPEED is 100 (maximum power for the NXT motors), sensorSlowRadius is the
sensor value that indicates that the robot should begin to slow down, and sensorValue is
current sensor value.

If the robot is outside the slow down radius, the division will be >=1 (as the sensorValue will
be lower than slowRadiusValue), so the robot will go at maximum speed.

TurnRatio algorithm is based on photovore algorithm for robotics. This simple algorithm is
used for light follower robots.
When read direction is 4 or 6, both sensors used for this zones calculation are subtracted.
Fuzzy logic has been used to calculate a multiplier value which will raise this difference up.
The result of this operation is subtracted from the turn ratio value used to synchronize both
wheels. The final result is the turn ratio that will be applied to the wheels during this zones.

60

Turn ratio calculation

// Get maximum value of both sensors
int maxS = max(acS[sensorPointer],acS[sensorPointer +1]);
// Get minimum value of both sensors
int minS = min(acS[sensorPointer],acS[sensorPointer +1]);
/* Multiply the difference by a sensor multiplier. Subtract the result to the turn ratio
value used to synchronize wheels */
int turnRatio = 100 - ((maxS - minS) * SENSOR_MULTIPLIER);

So, basically, the actions performed for each direction are the following

• Zone 5 (center): Leader is just ahead. Calculate power and apply to the wheels. The
turnRatio applied will be 100.

• Zone 4 (left) or zone 6(right): The leader is turning. Calculate turn ratio and
power and apply them to the wheels

• Other zone: Leader is too right or too left. Turn around in order to align to it

• Zone 0: Leader lost. Start searcher mode.

When the leader has been lost (zone 0 read), searcher routine is started. First of all, a
LEADER_LOST message is sent to the phone, in order to inform the phone. Phone application
then stops the leader and disables user input. From now on the algorithm varies depending
on the last direction the leader was seen.

If direction is 5 (ahead), means that the follower went too slow to follow the leader. Then, the
leader moves backwards slowly to be visible. When it becomes visible, follower sends a
READY message to the phone indicating that he is ready to continue.

If direction is different than 5, the follower attempts to see the leader turning around 360
degrees. If leader wasn't seen, the follower sends a LEADER_LOST message, indicating the
last known direction, and then the leader starts turning around in the opposite direction
during 100 degrees of the robot wheels (around 45 degrees in flat).

For each leader's movement, the follower makes a 360 turn. This continues until the leader
has reached a complete turn (the follower has made eight 360 turn).

Should this happen, the follower starts beeping to inform the user that the leader can't be
seen by itself and needs user help. If the leader is found, a LEADER_FOUND message is sent
to the robot in order to make it stop turning. Then, the follower moves to leader's back and
sends a READY message. From this moment, the execution can continue normally.

61

7 TESTS AND RESULTS

In this chapter, several experiments are going to be described, in order to evaluate the
developed application's functionality. In particular, robot control (synchronized mode) and
follower mode are the main goals of the experiments. Also, recording and demo mode will be
evaluated, as it is needed in order to test both functional modes. All tests have been made
using full charged batteries in both leader and follower.

Following, robot control will be evaluated. For its evaluation, is important to confirm that
communications with the robot are working properly, since one depends on the other.
Therefore, both points will be evaluated at the same time.

For these evaluations, the application has been modified to poll motors state after each sent
command. NXTHandlerBaseActivity has been modified in order to show on screen the
response of the robot. In this way, both Bluetooth library and Lego FANTOM implementation
are checked by testing if the parameters are correctly arriving to the robot. Robot control,
which relies in communications, is also tested, since it generates the commands that have to
be sent to the robot.

We are particularly interested in Power, TurnRatio and TachoLimit values, just because they
are the only calculated values which change robot behavior

It's important to remark that this modification has only been implemented for testing.
According to Lego FANTOM protocol documentation, robot response can introduce a latency
around 60ms. This is highly noticeable in the application, because each time a command is
sent, the application has to wait for the response, which introduces quite severe latency in
application response. Lego firmware can not attend new messages while it is processing a
response, so there is no possibility to have a different thread waiting for the response.

First of all, control by movements (NXTMovementHandlerActivity) is tested. We want to
test that when the phone is tilted forwards and backwards, the power value changes. Also,
the power value sent has to be positive when the phone is tilted forwards, and negative when
the phone is tilted backwards. As explained in the Lego FANTOM protocol implementation, the
power value depends on the rotation around the X axis, and the turn ratio value depends on
the rotation around the Y axis.

In order to test the power applied to the robot, the phone is tilted forwards and backwards
and both power values sent to the robot and the ones received from the robot are compared.
The objective is to pass over the full range of power value, from -100, to 100.

After testing power values, turn ratio value is evaluated. The method followed is the same:
compare sent values with the ones received from the robot. Since turn ratio values are
independent from the power, it can be tested independently. The only rule is to have at least
a minimum power, but this is not a robot constraint, this is implemented in the application to
enhance robot control. Thus, the phone is tilted slightly forwards to achieve minimum
required power, and then is tilted sideways. The same is done with the phone tilted slightly
backwards, in order to test how the application behaves with negative power values.

Tables 8 and 9 shows both power and turn ratio values from the phone and the robot. The
tables have been reduced because its full version would be too big for this document.

62

Phone power Robot power

100 100

80 80

60 60

40 40

20 20

0 0

-20 -20

-40 -40

-60 -60

-80 -80

-100 -100

Table 8: Comparison of power values sent to the robot
and received from the robot

Phone turnRatio Robot turnRatio

90 90

70 70

50 50

30 30

10 10

0 0

-10 -10

-30 -30

-50 -50

-70 -70

-90 -90

Table 9: Comparison of turn ratio values sent to the robot
and received from the robot. Power value of 60 is applied in all cases

As seen in Tables 8 and 9, the values received from the robot are the same as the values that
the phone is sending. This means that the robot behavior is perfectly controlled by phone
movements.

Following, control by buttons (ButtonHandlerActivity) is evaluated. Since we already
confirmed that communications with the robot are working, testing objectives changes. We
are interested of knowing if each buttons sends the correct order to the robot and if the seek
bar changes the power. Table 10 shows buttons results.

63

Button Behavior expected Behavior observed

Robot moves forwards Robot moves forwards

Robot moves backwards Robot turns around right

Robot turns around left Robot turns around left

Robot turns around right Robot turns around right

Robot stops Robot stops

Tabla 10: Control by buttons: Behavior results

As seen in the table above, the behavior the buttons provoke in the robot are the ones
expected.
Also, is important to check that the seek bar changes the power correctly. The robot will be
moving forwards and backwards, and, meanwhile the seek bar will be dragged. The robot is
expected to change its power while moving as the seek bar is dragged. If the robot is moving
forwards, power values should be positive. If the robot is moving backwards, power values
should be negative. Both power values sent and the ones received from the robot are
compared in the following tables. Again, these tables has been reduced for this document.

Phone power Robot power

100 100

80 80

60 60

40 40

20 20

0 0

Tabla 11: Control by buttons: Speed changes
results moving forwards

Phone power Robot power

0 0

-20 -20

-40 -40

-60 -60

-80 -80

-100 -100

Tabla 12: Control by buttons: Speed changes
results moving backwards

64

We can conclude that user input robot control work properly since both act as expected.
Lastly, tacholimit sending will be evaluated.

Due to handlers are implemented in such a way that don't use tacholimit value (since, is not
possible to know the travel distance beforehand when the user is controlling the robot), it has
been tested in DemoHandlerActivity using a XML file.

In this way, XML functionality of DemoHandlerActivity is tested as well by creating a XML file
that contains a set of movements which makes the robot turn around some degrees.

As said in Lego FANTOM protocol implementation, this degrees are the degrees the wheel
turns. In order to be sure that the robot doesn't stop turning because of the action duration
has expired, this duration value has been set very high (around 10 seconds). The robot
should stop turning around when it has traveled the specified degrees, although action
duration is not expired.

Two points should be taken into account:

● The robot turns around but stops after some time.

● The tacholimit value sent is the same as the one received from the robot

Second point is important, because, we want to assure that the robot stops after the specified
degrees regardless of action duration hasn't expired. Since tacholimit value is a long value,
all its possible values can't be tested, since its range is very high. Therefore, only a subset of
possible values has been tested.

Table 13 shows the results for tacholimit

Phone turnRatio Robot turnRatio

100 100

800 800

1500 1500

5000 5000

10000 10000

Table 13: Comparison of tacholimit values sent
to the robot and received from the robot

Table 13 demonstrates that tacholimit is correctly sent to the robot. Also, XML files are well
read and processed.

After testing synchronized mode, the recording mode is evaluated. The result of this
experiment will be useful in order to test Follower mode later. For testing recording mode,
three paths have been designed.

65

The black point represents the starting point, and the arrow the direction the robot is
following. This three paths covers straight lines and curves. Three paths have been designed
to simplify testing.

The application is expected to reproduce this paths once they have been recorded. All three
paths have been recorded using control by movement.

The test have been done as follows. The robot has been situated in a start point and from
there each circuit has been recorded. Later, the robot has been situated at the same start
point and each path has been reproduced three times. The results has shown that the robot
follows the paths just the same way it made it the first time.

The experiments has been made in two different types of floor in order to test if the surface
affects robot movements: wood floor and marble floor.

The results has shown that the robot can alter its course depending on the surface of it is
moving. If the robot experiments abrupt speed changes on slippery surfaces (such marble or
similar), its wheels can drift enough to alter its course, since in a drift, one wheel tends to
turn faster than the other. This problem is more noticeable during turns. It has been tested
with competition-like tires as well as with truck-like tires, and it always suffers from the same
problem. Anyway, it can be overcame by avoiding abrupt speed changes or moving the robot
in different surface, since this problem didn't appear in the wood floor.

Lastly, Follower mode has been evaluated. In this mode, we are interested to test if the
follower can follow the leader correctly, and, should it happen, how many times it looses the
leader.

In order to test follower mode two paths has been designed. These paths have been
recorded previously. All experiments has been made on a wood floor.

66

Figure 32: Recording mode paths: a) 90 degrees angles. b) 180 degrees angles. c) Diverse angles

The first one (a) is just a straight line where the leader changes its speed linearly. It starts
from 0 power and increases it to 100. Then it decreases again to 0.This behavior is repeated
10 times during 11 seconds. The follower is expected to accelerate when the leader is going
faster and decelerate when it is slowing down.

The second path (b) combines serpentine curves of different degrees with some straight
lines. The objective with this second circuit is to see how it behaves with curves and if it gets
lost. In this last case, “Leader lost” protocol should be activated.

This second circuit has been made at fixed power of 60 with full battery in both leader and
follower. The duration of the complete path is around 54 seconds.

Both circuits are repeated five times. Tables 14 and 15 show the results of these experiments

Attempt No. times the
follower gets lost

No. of times the
follower needs user

help

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

Table 14: Follower mode results: Straight line path with
accelerations and decelerations

67

Figure 33: Follower mode paths: a) Straight line to test speed changes. b) Combination of serpentine curves with
straight lines

Attempt No. times the
follower gets lost

No. of times the
follower needs user

help

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

Table 15: Follower mode results: Serpentine curves at fixed power of 60

As seen in the results, the follower does not get lost in proposed paths, so the “Leader lost”
protocol couldn't be tested. In order to test it, a new more complicated path is designed.

Unlike the other paths, this one has been made at maximum speed (100). The complete path
has a duration of 54 seconds. Table 12 shows the results of follower mode for this path

Attempt No. times the
follower gets lost

No. of times the
follower needs user

help

1 3 1

2 2 1

3 2 1

4 3 1

5 0 0

Tabla 16: Follower mode results: Path to test "Leader lost" protocol

68

Figure 34: Follower mode: Path to test "Leader lost" protocol

In table 16 we can see that the follower needs such a complicated path in order to get lost.
The maximum times it got lost is three, and almost in all the circuits, it needed user help
once. The majority of looses are due to the leader goes much faster than the follower.
However, as the results show, “Leader lost” protocol can recover the lost most of the times.

The only time when the follower needs user help is when the leader performs loops at speed
higher than the follower, because there is a moment when the leader stays perpendicular to
the follower. In that moment, the IR Emitter is not visible by the follower due to the leader's
shape, which hides it. The last direction registered by the follower is ahead, since the leader
has not changed its direction angle, but its rotation angle, and, for the IR sensor, the IR
emitter stays in the same position. In such a situation, “Leader lost” protocol tries lost
recovery from ahead direction, making the leader to go backwards, when it should turn
around. This problem should be addressed easily by changing leader's build configuration.

As seen in results, the application can control the robot successfully. Both control methods
have been tested correctly, which proves that both Bluetooth library and Lego MINDSTORMS
NXT Communication protocol implementation are working properly. Control by movement has
been tested by checking that power and turn ratio values sent to the robot depends on
specific movements made with the phone.
Control by buttons works correctly as it sends basic movements when the proper buttons is
pressed. In both cases, all values sent to the robot are arriving as they should, and therefore,
we can conclude that robot behavior is totally controlled by the phone.

Regarding to Follower mode and “Leader lost” protocol, we can conclude that both work as
expected. The follower is capable of following leader's path in almost all situations. The
experiments show that the leader get lost very few times and in extreme situations, such
those which imply very complicated paths at top speed. In case of lost, “Leader lost” protocol
is capable of recovering in the majority of cases, needed user help only in specific situations
such as loops. However, this problems can be addressed easily by changing robot build
configuration.

69

8 CONCLUSION

In this document, we demonstrate that Bluetooth-based mobile systems might be a
candidate in order to control autonomous systems wirelessly. DroidStorm was presented, as
an experimental Bluetooth-based application developed for Android-Based mobile phones
which provides different human interfaces to control Bluetooth capable autonomous systems
such Lego MINDSTORMS NXT robots. Furthermore, this application shows that mobile systems
can create and control collaborative robotic system where the robots collaborate together to
reach the same objective.

The system is composed by a Android-based smartphone which controls the Lego
MINDSTORMS NXT robots by means of Bluetooth wireless technology. We developed a new
Bluetooth library from scratch, by using BlueZ libraries embedded in the operating system, as
Android didn't have a Bluetooth API until version 2. The two layers that compose this library
were presented: the native layer coded in C language, which interacts with the BlueZ library,
and the Java layer, which is used by the Android application to interact with the native layer.
Both native and Java layer communicates by means of the JNI framework. This library is
compatible with all Android versions.

Also, we wrote a Lego MINDSTORMS NXT Communication protocol library for Android in order
to be able to control the robot remotely. This protocol uses Bluetooth Serial Port Profile (SPP)
to communicate the robot with outside devices such as mobile phones or computers.

Application operating modes were presented: synchronized mode and follower mode. In
synchronized mode, the movements of up to seven Lego MINDSTORMS robots can be
controlled synchronously by sending all movement commands to all connected robots. This
mode includes all available human interfaces with the robot. Control by movement mode
allows the user to control the robot using the phone as a joystick by means of movement
sensors included in Android phones. This control mode has to be used in landscape mode.
The application gathers all the values returned by these sensors and calculates the
movement command that will be sent to the robot. Depending on where the phone was tilted
and how far, the robot will move to different direction at different speed. Control by buttons
mode allows the user to control the robot using a joypad-like set of buttons. This buttons send
basic behavior movements (such as move forwards, move backwards or turn around) and
allows speed control. In any of these interfaces, the user can record the movement
commands he is sending to the robot in order to be able to reproduce them whenever he
wants. This movements are stored in SQLite database we designed for the purpose. The user
can also load sets of movements from XML files with a well-defined structure.

Follower mode establishes a collaborative robotic system when two robots are connected. In
this mode, the phone controls only one robot and the other one follows it autonomously. The
phone establishes a leader/follower relation between the robots where the robot controlled by
the phone becomes the leader and the other becomes the follower.

For the implementation, we built a IR emitter which emits modulated IR signals at 600Hz. This
emitter is the point of reference for the follower and therefore has been installed in the
leader's back.

The follower uses a IR sensor capable of filtering modulated IR signals in order to avoid
external sources of noise (such as the sunlight). We programmed follower robot in RobotC
programming language to follow leader's path based on the sensor values.

In order to control when the follower has lost the leader, we developed . This protocol a new
protocol, called “Leader lost protocol”. This protocol recovers the follower from leader looses
autonomously. The follower uses this protocol to notify the phone that it has lost the leader

70

and where was the last direction it was seen. Depending on the type of loose and the last
direction, user interaction is disabled and the phone moves the leader to help the follower to
find it. This protocol covers all possible states of looses, since the moment when the leader
has been lost, until it has been found.

Both robot control and leader's tracking where evaluated. First, communications between the
phone and the robots where tested, in order to assure that both Bluetooth and Lego
MINDSTORMS NXT Communication protocol library were working properly. We were interested
in power, turn ratio and distance to travel values, which are the main variables which change
robot behavior For this, motors state were pulled after sending each command, and then they
were compared. Commands were sent using both user interfaces (movement and buttons),
as user interface relies on communications. This gave us the opportunity to test both things
at the same time. Results show that all messages are arriving properly and that the
interfaces are sending the commands as expected.

After communications and robot control, recording was evaluated. For this, different paths
where recorded. Since later this movements can be reproduced, we were able to test if
movements were recorded correctly. Experiments showed that recording is working properly,
as all proposed paths were reproduced successfully.

Finally, follower mode performance was evaluated. We were particularly interested in
knowing how the built IR emitter performs as well as if the follower is capable of following the
leader. For this, different predefined paths were used to test how many times the follower got
lost and how many times it needed user help. First of all, two simple circuits where
reproduced five times each. These circuits combined straight lines and curves. In the first
circuit, the leader performs accelerations and decelerations in straight line in order to test
how the follower behaves in such a situation. The second circuit introduces curves to test
follower turns and to try to make it lost. This second circuit was performed at fixed speed of
60 in order to simplify tests. Results show that the follower can follow the leader perfectly in
such a situations since it didn't get lost any time. After, a new more complicated path was
used. This one introduces loops as well as increases leader speed. This path was performed
at maximum speed (value of 100). Three was the maximum number of times the follower got
lost, and it only needed user help once. As seen in results, the “Leader lost” protocol can
recover from the majority of looses, needing user help in specific situations like when the
leader stays perpendicular to the follower. However, such problem is due to leader's build
configuration, since it's shape hides the IR emitter in that position.

Further research work should be done to improve “Leader lost” protocol in order to be able to
recover from more difficult and different situations . Also, some research could be done with
the IR emitter to see if it's performance can be improved and, in such a case, how it affects to
the overall system.

71

9 REFERENCES

1. T. Kubik, M. Sugisaka, “Use of a cellular phone in mobile robot voice control”, Oita
University of Japan, Wroclaw University of Technology, 2001

2. Yu Chan Cho, Jae Wook Jeon, “Remote Robot Control System based on DTMF of
Mobile Phone”, SungKyunKwan University, Suwon, Korea

3. Ali Sekmen, Ahmet Bugra Kosku, Saleb Zein-Sabatto, “Human Robot Interaction via
Cellular Phones”, Tenesee State University (USA), METU Ankara (Turkey), 2003

4. 0. Rogalla, M. Ehrenmann, R. Zollner, R. Becher and R. Dillmann, “Using Gesture and
Speech Control for Commanding a Robot Assistant”, Universitat Karlsruhe (TH)
(Germany), 2002

5. iRobot Roomba. Webpage: http://www.irobot.com/

6. Sony Aibo. Webpage: http://support.sony-europe.com/aibo/

7. Lego Mindstorms NXT. Webpage: http://mindstorms.lego.com/en-us/Default.aspx

8. HTC Dream. Webpage: http://www.htc.com/es/product/dream/overview.html

9. Vishay TSUS5400 Infrared Emmiter. Datasheet available at:
http://www.vishay.com/docs/81056/tsus5400.pdf

10. Hitechnics IR Seeker V2. Webpage: https://www.hitechnic.com/cgi-bin/commerce.cgi?
preadd=action&key=NSK1042

11. First Tech Challenge. IR Seeker V2 Characteristics. Document available at
http://usfirst.org/uploadedFiles/Community/FTC/Team_Resources/IRSeekerV2character
isticsR2-rev3.pdf

12. Bluetooth Serial Port Profile overview – Palowireless. Available at:
http://www.palowireless.com/infotooth/tutorial/k5_spp.asp

13. RobotMag. Webpage: http://find.botmag.com/100701

14. XDA-Developers: Webpage: http://www.xda-developers.com

15. Led Flasher circuit – Electronic circuits for beginners. Available at:
http://electroniccircuitsforbeginners.blogspot.com/2009/04/led-flasher-circuit.html

16. 555 as astable - Electronics club. Available at:
http://www.kpsec.freeuk.com/555timer.htm#astable

17. 555 calculator. Available at:
http://freespace.virgin.net/matt.waite/resource/handy/pinouts/555/

18. Android activity lifecycle. Webpage:
http://developer.android.com/reference/android/app/Activity.html

19. Android Sensor Event.
http://developer.android.com/reference/android/hardware/SensorEvent.html

20. Android developer guide. Webpage:
http://developer.android.com/guide/topics/fundamentals.html

72

http://www.irobot.com/
http://developer.android.com/guide/topics/fundamentals.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/app/Activity.html
http://freespace.virgin.net/matt.waite/resource/handy/pinouts/555/
http://www.kpsec.freeuk.com/555timer.htm#astable
http://electroniccircuitsforbeginners.blogspot.com/2009/04/led-flasher-circuit.html
http://www.xda-developers.com/
http://find.botmag.com/100701
http://www.palowireless.com/infotooth/tutorial/k5_spp.asp
https://www.hitechnic.com/cgi-bin/commerce.cgi?preadd=action&key=NSK1042
https://www.hitechnic.com/cgi-bin/commerce.cgi?preadd=action&key=NSK1042
http://www.vishay.com/docs/81056/tsus5400.pdf
http://www.htc.com/es/product/dream/overview.html
http://mindstorms.lego.com/en-us/Default.aspx
http://support.sony-europe.com/aibo/

21. Sensor arrow tutorial - Android academy. Available at:
http://www.androidacademy.com/1-tutorials/43-hands-on/114-sensor-arrow

22. Android developers group. Webpage:
http://groups.google.com/group/android-developers?pli=1

23. Android Native Development Kit (NDK) developers group. Webpage:
http://groups.google.com/group/android-ndk

24. Android developers group. Only Droid Support Bluetooth API?. Available:

http://groups.google.com/group/android
developers/browse_thread/thread/f8fa2b873e6d7e27#

25. How to enable/disable bluetooth programmaticaly – Anddev forums. Available at:
http://www.anddev.org/viewtopic.php?p=14671

26. Android 1.6 source code. Available at: http://www.netmite.com/android/mydroid/1.6/

27. Android-Spa forums. Webpage: http://www.android-spa.com/index.php

28. Android Bluetooth hacking using the NDK. Available at:
http://pythonstring.myloger.com/2009/07/26/stephans-hacks-musings-android-
bluetooth-hacking-using-the-ndk/

29. Albert Huang. “An Introduction to Bluetooth Programming”. Available at:
http://people.csail.mit.edu/albert/bluez-intro/

30. Lego Mindstorms NXT Bluetooth library in C for Linux Webpage:
http://www.quietearth.us/nxtlibc.htm

31. Android Sensors study – Mystic Lake software blog
http://blog.mysticlakesoftware.com/2009/07/sensor-accelerometer-magnetics.html

32. Having Bluetooth issues?. HTC Forums. Available at: http://community.htc.com/na/htc-
forums/android/f/91/p/2336/8570.aspx

33. Rick Rogers, John Lombardo, Zigurd Mednieks, Blake Meike “Android Application
Development: Programming with the Google SDK”,O'Really, 2009

34. RobotC. Webpage: http://www.robotc.net

35. Direct commands and RobotC 2.0.. is motor sync possible?. RobotC forums. Available
at:
http://www.robotc.net/forums/viewtopic.php f=1&t=3214&p=13531&hilit=direct+com
mand+sync#p13531

36. RobotC drivers documentation. Webpage:
http://rdpartyrobotcdr.sourceforge.net/documentation/index.html

37. Lego MINDSTORMS NXT Bluetooth developer kit. Available at:
http://mindstorms.lego.com/en-us/support/files/default.aspx

38. Michael L. Gasperi and Philippe “Philo” Hurbain, “Extreme NXT”, Technology in
action, 2009

39. Albert W. Schueller. Walla, Washington “Programming with Robots”, Department of
Mathematics, Whitman College in Walla, 2010

73

http://mindstorms.lego.com/en-us/support/files/default.aspx
http://rdpartyrobotcdr.sourceforge.net/documentation/index.html
http://www.robotc.net/forums/viewtopic.php?f=1&t=3214&p=13531&hilit=direct+command+sync#p13531
http://www.robotc.net/forums/viewtopic.php?f=1&t=3214&p=13531&hilit=direct+command+sync#p13531
http://www.robotc.net/forums/viewtopic.php
http://www.robotc.net/
http://community.htc.com/na/htc-forums/android/f/91/p/2336/8570.aspx
http://community.htc.com/na/htc-forums/android/f/91/p/2336/8570.aspx
http://blog.mysticlakesoftware.com/2009/07/sensor-accelerometer-magnetics.html
http://www.quietearth.us/nxtlibc.htm
http://people.csail.mit.edu/albert/bluez-intro/
http://pythonstring.myloger.com/2009/07/26/stephans-hacks-musings-android-bluetooth-hacking-using-the-ndk/
http://pythonstring.myloger.com/2009/07/26/stephans-hacks-musings-android-bluetooth-hacking-using-the-ndk/
http://www.android-spa.com/index.php
http://www.netmite.com/android/mydroid/1.6/
http://www.anddev.org/viewtopic.php?p=14671
http://groups.google.com/group/android-developers/browse_thread/thread/f8fa2b873e6d7e27#
http://groups.google.com/group/android-developers/browse_thread/thread/f8fa2b873e6d7e27#
http://groups.google.com/group/android
http://groups.google.com/group/android-ndk
http://groups.google.com/group/android-developers?pli=1
http://www.androidacademy.com/1-tutorials/43-hands-on/114-sensor-arrow

	1 Introduction
	1.1 Motivation and objectives

	2 System architecture
	3 Hardware Entities
	3.1 HTC Dream
	3.2 Lego MINDSTORMS NXT
	3.2.1 Programming

	3.3 NXT Modulated IR Emitter
	3.3.1 Circuit main components
	The 555 Integrated Circuit
	Resistors and capacitors

	3.3.2 Infrared led

	3.4 HITECHNIC IR Seeker V2

	4 Application Architecture
	4.1 Low level layer: Communications implementation
	4.1.1 Bluetooth library (BTManager)
	4.1.2 The Lego MINDSTORMS NXT Communication Protocol
	SetOuputState command

	4.2 High level layer: User interface
	4.2.1 Synchronization mode
	4.2.2 Follower mode

	5 Smartphone and Robot Interaction
	5.1 Control by movement
	5.2 Control by buttons

	6 Follower Implementation: IR Follower
	6.1 Robot programming

	7 Tests and results
	8 Conclusion
	9 References

