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Abstract: Endogenous neurogenesis in stroke is insufficient to 

replace the lost brain tissue, largely due to the lack of a proper 

biological structure  to let new cells dwell in the damaged area.  We 

hypothesized  that  scaffolds  made   of   hyaluronic   acid (HA) 

biomaterials (BM) could provide a suitable environment to home not 

only new neurons, but also vessels, glia and neurofila- ments. 

Further, the addition of exogenous cells, such as adipose stem cells 

(ASC) could increase this effect. Athymic mice were randomly 

assigned to a one of four group: stroke alone, stroke and 

implantation of BM, stroke and implantation of  BM  with ASC, and 

sham operated animals. Stroke model consisted of middle cerebral 

artery thrombosis with FeCl3. After 30 days, ani- mals underwent 

magnetic resonance imaging (MRI) and were 

sacrificed. Proliferation and neurogenesis increased at the sub- 

ventricular zone ipsilateral to the ventricle and neuroblasts, glial, and 

endothelial cells forming capillaries were seen  inside  the  BM. 

Those effects increased when ASC were added, while there was 

less inflammatory reaction. Three-dimensional scaffolds made of 

HA are able to home newly formed neurons, glia, and endothelial 

cells permitting the growth neurofilaments  inside them. The 

addition of ASC increase these effects and decrease the 

inflammatory reaction to the implant. © 2018 Wiley Periodicals, Inc. J 

Biomed Mater Res B Part B: 00B: 000–000, 2018. 
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INTRODUCTION 

In spite of the extensive pharmacological and neurorehabil- 

itation efforts made to recover the neurological deficits, stroke 

is still the main cause of disability in the occidental world. 

Ischemic stroke produces an area of necrosis (core zone) 

surrounded by a partially damaged zone (area of 

 

penumbra).1 Most of the therapeutic efforts up to now have 

been directed to reduce the extent and to improve the func- 

tional recovery of the penumbra zone.2 However,  there  is not 

a reliable way to repair the lost tissue.3 

After an experimental stroke, there is an increase of the 

neurogenesis at the subventricular zone (SVZ), a main adult 
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neurogenic niche, especially at the ipsilateral hemisphere, and 

new neurons and supporting cells migrate massively to the 

area of infarction.4 However, most of these cells disap- pear 

from the lesion by the 5th week.5 We hypothesize that the 

main reason for this is the lack of a proper substrate where 

the cells can survive, reconnect, and recover their function due 

to the generation of an adverse environment after the stroke6,7 

and/or to the absence of a material scaf- fold upon which new 

neurons and supporting structures  such as glia and vessels 

can grow and organize. 

The   use   of   three-dimensional   (3D)   biomaterials (BM) 

could provide a proper scaffold for these newly formed cells, 

permitting the organization of neural tissue with neu- rons, 

glial cells and vessels, guiding the neurite prolonga- tions and 

providing a more appropriate environment for neural 

regeneration.8–12 Among the multiple available bio- 

compatible    materials,    we    chose     hyaluronic     acid   (HA) 

because this is an already used BM in other clinical 

applications and it is simple to make and manipulate.13,14 

Furthermore, mesenchymal stem cells have been shown to 

home endogenous stem cells close  to  the infarcted area,  as 

well as to increase neovascularization at the  same  site and 

proliferation at the SVZ, and also to diminish the inflam- 

matory reaction at the lesion site.15–18 We hypothesized that 

the addition of mesenchymal stem cells to the BM would 

increase their capacity to home endogenous stem cells, and 

possibly to facilitate their entry into the BM by inhibiting the 

scar reaction around the scaffold.19,20 Among the mesenchy- 

mal cells available, we have chosen adipose stem  cells  (ASCs) 

because of practical reasons: they are easily handled, they are 

widely available from lipoaspirate donation for allo- genic use 

and our group has already shown their potential benefits for 

clinical application in stroke.21–23 

The objectives of this study were to determine if 3D scaf- 

folds of hyaluronic acid (HA) implanted at the penumbra zone 

of a vascular stroke lesion in rats were able to home local 

neural and endothelial cells and neurites, and also to compare 

these homing capacities between BM co-grafted with adult 

human ASC and BM without them, as well as to study the host’s 

reaction to the  implant in both cases, both  in terms of glial 

scar formation and neurogenetic production. 

Also, if this represents a viable and safe method in order to 

transfer this to the clinical practice. 

 
MATERIALS AND METHODS 

Preparation of HA porous scaffolds 

HA porous scaffolds were made as described Rodríguez- Pérez 

et al.24 Briefly, HA sodium salt from Streptococcus  equii (1.5–

1.8 MDa; Sigma-Aldrich) was dissolved overnight to a 5% 

(w/v) in 0.2 M sodium hydroxide (NaOH, Scharlab). Then, 

divinyl sulfone (DVS, Sigma-Aldrich) was added as a 

crosslinker in a 9:10 DVS:HA monomeric units molar ratio. 

Once homogenized for 10 s more, the solution was vaccuum- 

injected into molds made from sintered beads of poly (ethyl 

methacrylate; PEMA, Elvacite® 2043, Lucite International, 

Inc.). These beads  had  a  diameter  of  between  180  and 250 

μm. The crosslinking reaction of HA with DVS was left   to 

complete for an hour and a half. 

After that, PEMA beads template was removed by leach- 

ing reflux in a Soxhlet extraction apparatus using boiling eth- 

anol as solvent for 48 h. Afterwards, HA scaffolds were 

immersed in distilled water for 3 h, frozen at −20○C for another 

2 h and then lyophilized. All scaffolds were cut into cylinders 
with 0.8 mm diameter and 8 mm of length. Other tests were 

carried out to warrant the absence of pyrogens or endotoxins, 

to guarantee biomaterial’s innocuity. 

 
Analysis of 3D structure of biomaterials 

The HA scaffolds, previously sterilized by chemical means, 

were analyzed by scanning electron microscopy to analyze the 

3D configuration of the scaffold, ensuring that pores are 

between 300 and 150 um in diameter were present, so that 

ASC can easily enter the BM. For this purpose, they were 

processed in a critical dot dryer, followed by gold–palladium 

shading to provide electroconductivity to the sample and 

analyzed in a scanning electron microscope JEOL JSM 5410 

with a voltage of 10 KV at different magnitudes (Figure 1). 

 
Adipose stem cells 

Adipose tissue samples were obtained from donors during 

routine abdominoplasty following informed patient consent 

and according to the guidelines set by the corresponding 

 

 
 

FIGURE 1. Scanning electronic micrographs showing porous scaffolds made of hyaluronic acid at  different  magnifications  (A–D).  A–C:  shows images 

of the biomaterial and the characteristics of the scaffolding and D–E: images of ASC cells colonizing the scaffold. Scale Bar A: 500 μm, B: 300 μm, C: 

150 μm, D: 80 μm, and E: 30 μm. 



  

 
 

Ethics Committee on Biomedical Research. The adipose tis- 

sue was transported in sterile bottles and immediately pro- 

cessed to obtain the ASC and process under GMP conditions 

(Histocell, S.L., Bilbao, Spain). Phenotype characteristics, 

clonic capacity and stem cell differentiation biomarkers as 

described by Gomez-Pinedo et al.23 

The ASC were maintained until phase 7 in culture on the 

material to perform studies of telomerase and C-myc expres- 

sion, to guarantee the stability of the cultured cells on the 

biomaterial. Before use, we proceeded to carry out the 

immunophenotype of the ASC cells to be considered mesen- 

chymal stem cells and useful for our purpose. 

 
Scaffold preloading 

ASC were used in the fourth cell phase. Cells were resus- 

pended in culture medium at a concentration of 5x104/4 μL. 

This concentration was inoculated inside the HA biomaterial 

(dimensions for the preclinical study of 1 x 1 mm) with the 

help of a Hamilton® microsyringe. The biomaterials inocu- 

lated with ASC were maintained in 24-well plates with the 

culture medium composed of DMEM-Glutamax + Antibiotic / 

10%  FBS  and  incubated  at  37○C/5%  CO2  for  72  h,  for 

subsequent implant in the model of athymic nude mice [Figure 

1(D–E)]. 

 
FeCl3 thrombosis model 

Nude-Foxn1NU/nu (dEnvigo -Harlan Laboratories) adult male 

mice were used for the experiments. At 7 weeks of age were 

 
housed in a temperature-controlled room with access to food 

and water ad libitum. They were kept in  individual  cages and 

under standard conditions in the animal facilities of the 

Hospital Clínico San Carlos. All procedures were carried out 

under animal welfare regulations in accordance with EC 

Council Directive November 24, 1986 and approved by the 

local ethics committee. 

Mice were anesthetized with 80–100 mg/kg ketamine and 

10 mg/kg xylazine. A small craniotomy was performed  to 

access the middle cerebral artery. For  the  formation  of the 

ischemia model, a FeCl3 solution (20%) was applied to the 

surface of the artery for 1 min. In the control group (sham) 

0.9% of saline solution was used.15,16 

 
Experimental and control groups 

Four groups were defined: Stroke (mice subjected to the 

stroke model), Stroke+BM (mice subjected to the stroke model 

to whom HA biomaterials alone  were  implanted  at the core 

zone), Stroke+BM+ASC (mice subjected  to  the stroke model 

to whom HA biomaterials co-grafted with ASC were implanted 

at the core zone) and sham (animals under- going the 

operation for the stroke model except the applica- tion of the 

thrombotic FeCl3 solution). Six animals were assigned 

randomly to each group. 

Seven days after the ischemic procedure, animals belong- 

ing to groups Stroke+BM and Stroke+BM+ASC were again 

anesthetized and the wound reopened. A burr hole was per- 

formed at the cranial vault just medial to the temporal crest 

 

 
 

FIGURE 2. Magnetic resonance imaging demonstrating the infarcted area in the control group (only stroke) and the implanted groups. In the latter, 

the biomaterial is fully integrated, and it is associated with less cavitation. 
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FIGURE 3. Analysis of the glial scar. Representative immunohistochemical image showing glial fibrillary acidic protein (GFAP), (A) stroke; (B) stroke 

+BM; (C) stroke+BM+ASC; (D) The graph shows that in the group of animals with stroke, in which ASC were administered in biomaterials, they showed 

less expression of the GFAP, in the other two groups (stroke and stroke+BM) the expression of GFAP was significantly higher (**p < 0.05 and *p < 

0.01) Scale Bar: 100 μm. 

 
 

at the same coronal plane at which the occluded MCA branch 

was located. A cannula was inserted to implant the biomate- 

rials (with or without ASC) at a depth of 13 mm from the dural 

plane. (Supporting Information Figure 2). 

 
Magnetic resonance imaging 

The day of the sacrifice, the mice were anesthetized with iso- 

flurane 1.5–2% to obtain a brain MRI. All the MRI experiments 

were performed on a BIOSPEC BMT 47/40 (Bruker, Ettlingen, 

Germany)   spectrometer   operating   a  4.7  T,  equipped   with a 

11.2   cm   actively   shielded   gradient   system,   capable   of  200 
mT/m gradient strength and 80 μs of rise time. During the MRI 

procedure, the animals were kept at 37○C and a MR com- patible  
respiration sensor  was used to control the animals. The 

MRI experiments consisted of three-dimensional T2WI, a series 

of DWI to calculate the ADC maps and a series of PWI to calcu- 

late CBF maps. A 7-cm birdcage radiofrequency coil was used for 

transmission and reception. Image analysis was performed using 

ParaVision 3.0.1 (Bruker, Ettlingen, Germany). This calcu- lation 

was carried out using MATLAB 7.3 (MathWorks, Inc., Natick, MA). 

 
BrdU administration. The BrdU is an analog of the thymi- dine 

that the cell incorporates in the cellular cycle when entering 

into cellular division. Two hours before the sacrifice of the 

animals an intraperitoneal pulse of BrdU (60 mg/kg, 

 
Sigma-Aldrich) dissolved in physiological saline was adminis- 

trated to evaluate the proliferative activity of the endoge- nous 

stem cells in the SVZ, as well as implanted ASC cells.23 

At 37 days after stroke surgery, mice in each group were 

anesthetized with a dose of pentobarbital (60 mg/kg) and 

fentanyl (0.3 mg/kg) for subsequent intracardiac infusion 

with 0.9% solution Saline followed by 4% buffered parafor- 

maldehyde (0.1 M phosphate buffer). After perfusion, the 

brain was removed and washed with 0.1 M PB and cryopro- 

tected by immersion in 30% sucrose. The cuts were per- 

formed in a cryostat (model Micron 1800) at 50 microns thick 

containing the infarct area and  the  biomaterial  implant area. 

 
Histochemistry and immunofluorescence analysis 

The sections were washed with PBS, permeabilized with 0.1% 

Triton X-100 and blocked with 10% normal goat  serum. The 

following primary antibodies were then applied overnight at 

4○C: anti-HuNu (Millipore, human cells); GFAP (Dako 

Cytomation, astrocytes); Anti-CD31 (Abcam, newly formed 

endothelium); Anti-NueN (Millipore, neurons); Anti- DCX 

(Santacruz, neuroblasts); Anti-BrdU (Millipore, thymi- dine 

analogue); Anti-NF 160 and anti-NF 200 (Millipore, 
neurofilaments). Subsequently the samples were washed in 

PBS  three  times  for  subsequent   incubation   in   Alexa   488, 

555, or 647 (1:500, Invitrogen) conjugated secondary 
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TABLE I. Counting of Immature (NF 160 kD) and Mature 

(NF 200 kD) Neurofilaments Found in the Ischemic Zone in 

Stroke Controls, Stroke Animals After Placement of 

Biomateriales, and After Placement of Biomaterials with ASC 

(Units: Neurofilaments Per mm3) 
 

 

NF in the Ischemic Zone NF Into Biomaterial 

 
by the Bonferroni post hoc multiple comparisons test was used 

to draw comparisons between three groups. We used the 

program SPSS Statistics 20.0. For the graphical represen- 

tation of results, the Prism v 5.0 Graph Pad program was used. 

All data are expressed as mean standard error. The graphs of 

the results were performed using the same pro- 

Group  
  

NF 160 kD NF 200 kD NF 160 kD NF 200 kD 
gram. The criterion for statistical significance was p < 0.05. 

 
 

Stroke 9.3 T 6.7 2.1 T 1.9 – – 
Stroke+ASCs – – 36.2 T 17.9   12.6 T 9.4 

Stroke+BM+ASC – – 89.7 T 13.2   20.4 T 3.7 

Volume analyzed 0.69 mm3. 

 
antibodies, DAPI-contracted and mounted with the Fluorsave 

reagent (Calbiochem). Immunofluorescence images were 

obtained with the Olympus AF2000 confocal microscope. 

The quantitative study both at the SVZ and at the areas 

around the biomaterial consisted in the analysis of 10 differ- 

ent fields for each of the antibodies studied (BrdU, DCX, and 

GFAP) and the result was the average of 10 determinations. 

Within the BM, a volumetric analysis was performed using 

confocal microscopy of 12 optical segments 800 nm thick. 

The NF were counted in four optical planes by confocal 

microscopy in z projection. In cases where the unit of mea- 

surement was the observed mark quantity per field (Optical 

Density, DO), the software program Image J, v1.46r of the 

National Institutes of Health was used for its calculation. 

To estimate the DCX/DAPI index, DAPI-positive and DCX- 

positive cells were quantified in an area of 300 microns from 

the ischemic border region at the per-infarct zone. This esti- 

mation consists in the number of DCX+ cells divided per the 

total amount of cells (counted by their nuclei, which is stained 

with DAPI). Quantification was performed under blind 

condition. 

 
 

Statistical analysis 

Results are reported as the meanSD. Differences between 

means were determined by Student’s t test, with p < 0.05 

considered significant. One-way analysis of variance followed 

 
RESULTS 

After 72 h of incubation, cells were easily inserted into the 

scaffolds, and they were adhered to the walls  of the same in  a 

homogeneous way (Figure 1). Karyotype and phenotype did 

not show any alteration. 

The application of FeCl3 induced a limited and constant 

brain infarction located at the left parietotemporal cortex 

(Supporting Information Figure 1). Neurological deficits 

appearared 4 h after the surgery, as forelimb flexion, resis- 

tance to lateral push and circling behavior; but all animals 

returned to a normal neurological examination 12 h later. 

Animals did not show any further neurological alteration 

after the implant of the biomaterials, without inducing or 

inciting fever or implant rejection, suggesting the absence of 

pyrogenic elements. Magnetic resonance imaging showed that 

the implanted biomaterials were fully integrated  into the host 

tissue and reduced the cavitation provoked by  stroke in 

control animals. The reduction was more evident when ASC 

were added to the biomaterials (Figure 2). 

After stroke, there was an astrocytic reaction around the 

infarcted area. The astrocytic reaction to the biomaterial was 

not intense (similar to the one produced with stroke alone), 

but it was much less to the biomaterials precharged  with ASC, 

as we show in Figure 3 (Sham: 0.341 0.028  Stroke: 1.780 

0.106; Stroke+BM: 1.681 0.066; Stroke+BM+ASC: 

0.935 0.0868). 

Neurofilaments were scarcely seen at the infarcted area  in 

control animals, but they were found within the biomate- rials. 

After 30 days of scaffold implantation (with or without ASC) 

more neurofilaments, both immature (160 kD) and mature 

(200 kD), were encountered inside the biomaterial 

 
 

 
 

FIGURE 4. Immunohistochemical image showing the neurofilaments found inside the biomaterial+ASC 30 days after implantation. (HA: hyaluronic  

acid, DAPI: nucleus, NF160: 160 kD neurofilaments, NF200: 200 kD neurofilaments. Scale Bar: 100 μm B: Detail from image A. Scale Bar: 10 μm. 
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FIGURE 5. Immunohystochemical image showing implanted  biomate- rials 

plus ASC, showing CD31 positive cells inside, forming vessel-like 

structures. Scale Bar: 50 μm. 

 
 

than in the periphery of the  lesion  or  in  the  controls  (Table 

I). 

More neurofilaments  were  seen  in  the  biomaterial  plus 

ASC than in the one without them. Most of the neurofi- laments   

were   immature   (160   kD)   (Stroke:   9.3         6.7; 

Stroke+BM:   36.2         17.9;   Stroke+BM+ASC:   89.7        13.2; 

Table I and Figure 3), but mature neurofilaments (200 kD) 

were  also  seen  (Stroke:  2.1  T 1.9;  Stroke+BM:  12.6  T 9.4; 

Stroke+BM+ASC: 20.4 3.7, data expressed in NF into bio- 

material; Table I and Figure 4). 

CD31 positive cells were seen inside  the  implants (Figure 

5), but not in the infarcted area in control animals. Some of 

them were organized in tubule-like structures, resembling 

vessels. Also, more CD31 positive cells were seen inside the 

biomaterials pre-charged with ASC. 

There was a proliferative reaction at the SVZ after the stroke, 

in  the  number  of  BrdU  (Sham:  122        8; Stroke:  174        16; 

Stroke+BM: 241      11; Stroke+BM+ASC: 305       26) DCX (Sham: 

0.51         0.07;   Stroke:   0.94         0.08;   Stroke+BM:   1.52    0.09; 

Stroke+BM+ASC: 1.83 0.12) positive cells. The implantation of 

biomaterials increased this reaction. The preloaded cells (ASC) 

increased even further this effect (Figure 6). 

Newly formed neurons showing DCX were not seen inside the 

infarcted areas in control animals, although some of them were 

seen in the vicinity of the core zone. More cells were seen in the 

vicinity of the scaffold alone and even more around the 

biomaterials plus ASC. Inside the biomaterials we found some 

newly formed neuroblasts, and this number increased when  ASC  

were  co-grafted  (Stroke:  0.032 0.0082;   Stroke+BM: 0.061 

0.0096; Stroke+BM+ASC: 0.096 0.0169; Figure 7). 

Neither HuNu positive cells, not teratomas or any other 

neoplasic formation were found inside the biomaterials or  in the 

surrounding brain tissue after 30 days of implantation of human 

ASC. 

 
DISCUSSION 

Here, we show that the implant of biomaterials made of HA at 

the core of a brain stroke lesion permits the migration of 

endogenous new neurons, glia, and endothelial cells, and the 

proliferation of neurofilaments and vessel-like structures 

 

 
 

FIGURE 6. Immunohistochemical image showing cell proliferation at the SVZ. A–E: Immunostaining against BrdU. F–J: Immunostaing against dou- 

blecortin (DCX) with higher expression of DCX in the SVZ in the experimental group with biomaterials plus ASC. The images correspond the sham 

group (A and F), stroke (B and G), stroke plus biomaterials (C and H), and stroke plus biomaterials plus adipose stem cells (D and I), and the graph 

shows the cell count of DCX positive cells. Scale Bar: 200 μm. 



   

 

 

 

FIGURE 7. Neuroblast integration index. Graph show a data of doble- 

cortin cells express in neuroblast integration index in the vicinity of the 

lesion. The graph shows a mean T standard error. 

 
into the biomaterials. Furthermore, the implants increase the 

proliferation of neuroblasts at the SVZ. The addition of ASCs to 

the biomaterials increase the proliferative response and the 

homing effect of biomaterials, plus decreasing the astro- cytic 

reaction to stroke, implantation surgery and biomate- rials. It 

also increases the number of neurofilaments found inside the 

scaffolds and the number of newly formed vessels inside the 

biomaterials. The biomaterials are easily inte- grated into the 

core zone, and this integration was even bet- ter when ASC 

were associated (Supporting Information Figure 2). 

ASC has been used to diverse inflammatory pathologies by 

many authors; being recovery objectives not only in the 

central nervous system,25,26 ASC have shown to increase SVZ 

neurogenesis,27–31 and have antiinflammatory and cytotactic 

properties when administered in stroke models,32,33 and to 

improve function in animal models, both when administered 

locally or even through the systemic route.21,23,34,35 In addi- 

tion, it has been shown their neuroprotector effect that inter- 

venes directly in the apoptosis mechanism as describe Wei   et 

al.22,36;  and  their  secretor  effect  as  show  Cunningham  et 

al.36 However, these approaches do not seem to replace  the 

totally brain tissue lost.37,38 

Conversely, the use of scaffolds leads to true regenera- tion 

or re-formation of new cerebral tissue, not only reduc- ing the 

bulk cavitation provoked by stroke, but with the presence of 

new neurons, neurites and supporting cells and vessels, which 

might functionally integrate with the sur- rounding brain, as 

shown Fuhrmann et al., who propose the strategy of favoring 

the microenviroment.9,39–41 

Scaffolds made of HA showed compatibility with the brain, 

as previously noted.13,14 This confirms the innocuous nature of 

this biomaterial, which can be designed to fit the 

particularities of the host tissue, therefore favoring the 

migration of healthy cells adjoining the lesion zone in several 

models of injury.10,42,43 Recently, biomaterials is a growing 

sector, with very different compositions, such as plasma,  PCL, 

or hydrogels with adhered molecules. All of them share  a 

structural function to restructure the damage tissue.44–48 

The combination of HA BM+ASC has a synergistic effect, 

promotes the proliferative activity in the SVZ (increase BrdU 

and DCX positive cells), enhancing the attraction of 

 
endogenous cells, therefore, promoting an appropriate niche 

to recovery.49–51 The increase in proliferation of the SVZ 

analyzed by BrdU agrees with the increase of DCX cells in    the 

group with HA plus ASC. In the group where ASC was   not 

administered, a lower amount of DCX and a greater amount of 

GFAP is observed. So the administration of ASC and its 

immunomodulatory or anti-inflammatory effects pos- sibly 

influence the proliferation and differentiation of GFAP and 

DCX cells.23,49–51 

Furthermore, ASC increases the biocompatibility and 

homing ability of HA scaffolds.52–54 This is  done probably  by 

the antiinflammatory and cytotactic properties of ASC, but 

not by becoming part of the  final  implanted  struc-  ture, 

since no antigens marking human nuclei were found 30 days 

after implantation. Also, ASC showed a good inte- gration 

with HA when the scaffolds were preloaded with these cells, 

as shown earlier. The  combination of  the  two is safe, as no 

abnormal cell proliferation of ASC was seen neither in 

culture nor after  implantation.  Simultaneously to enhance 

an appropriate niche and the damage tissue is reduced; the 

plasticity mechanism is favored.55–57 

We used immunocompromised animals to explore safety 
in terms of possible neoplastic proliferation of ASC after 
implantation.23,48 However, these cells have not shown rejec- 
tion issues when used in immunocompetent rodent stroke 

models.36,37,58 

In control animals receiving stroke, newly formed neu- 

rons (DCX) coming from the ipsilateral SVZ were seen in the 

vicinity of the core zone, but were not seen inside the 

infarcted areas. This confirms the observations by others 

showing that stroke induces per se a repair reaction, but 

these cells are unable to stay and organize within the core 

zone.5,59 

The stroke model we used induced an infarction pattern 

which is more constant than other models.60 However,  as this 

model produces few neurological side effects in the ani- mals, 

we could not observe if this treatment strategy may produce 

functional improvement.61–63 Further studies in dif- ferent 

models should be done in rodents, or higher mammals should 

be tested to determine this. 

In conclusion, in stroke, the use of HA and ASC is novel. The 

present results show how scaffolds of HA implanted at the core 

zone of a stroke lesion permit the proliferation and migration 

of new neurons, neurites, glia, and vessels, and the addition of 

ASC increases this proliferation and  homing  effect 

(Supporting Information Figure 2). This may permit formation 

of new brain tissue after stroke. 
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