a "
A llama
— ~Research Institute of Water
and Environmental Engineering

Anthropogenic alteration of the nitrogen
cycle in coastal waters: Case studies from

the Mediterranean Sea and the Gulf of
Mexico

Doctoral Program in Water and Environmental Engineering

Regina Temino Boes

UNIVERSITAT
POLITECNICA
DE VALENCIA

Directors:
Inmaculada Romero Gil and Rabindranarth Romero Lépez

September 2020






To Diego,

who shared this journey with me.







“Lock up your libraries if you like; but there is no gate,

no lock, no bolt that you can set upon the freedom of my mind.”

A room of one’s own - Virginia Woolf







This thesis was carried out with an international cotutelle between the Polytechnic

Unwversity of Valencia in Spain and the Veracruzan University in Mezico.
This thesis has been financed by the following scholarships:

- Erasmus Mundus - MAYANET Grant Agreement Number 2014-0872/001 - 001,

funded with support from the Furopean Commission.
- Cotutelle PhD scholarship granted by the Universitat Politecnica de Valencia

- Fxcellence Scholarship awarded by the Mexican Government through the Mex-
ican Agency for International Development Cooperation (AMEXCID)







Acknowledgements

I write my acknowledgements in the time of COVID-19, when the social distancing
makes me more conscious of the importance of the people I have met all along my
research. All these people have been a key component of this journey, and many of

the relationships have grown into beloved friendships.

My long research started in the Polytechnic University of Valencia, in the group
of Environmental Impact Assessment of the Research Institute of Water and Envi-
ronmental Engineering. 1 would like to thank the members of this group starting
with Inma, the leader of this group and first director of my thesis. She kindly ac-
cepted me in her research group and guided me since the beginning of my PhD. I
would also like to thank Maria and Reme who are the backbone of the group and
generously supported me throughout my research. Thank you Rafa for believing in
my research ability and for our successful collaboration. I also had the chance to
meet several fellow students such as Alexi, Christian, Gema and Quiri, with whom

I shared fun moments and enriching conversations.

Almost three years after the beginning of my research, I traveled to the Ver-
acruzan University in Mexico. I warmly thank Rabin for receiving me and accept-

ing to be my international thesis director. He very kindly introduced me to many



valuable researchers in Mexico and thoroughly guided me throughout my PhD. I
had the pleasure to share the office with great international students such as Paul
and Svenja, as well as with my dear friend Ivonne. I also thank Ernesto for his
friendship and support with the acquisition of field data. Finally, I am very grateful
for having the opportunity to meet Sara, a very strong woman and exceptionally

dedicated researcher.

Aside of the people I met in the academic environment, I have to thank all the
friends [ made throughout these years. Firstly, I would like to thank my friends Ivan,
Lucre, Maite, Rocio, Vero and Kity: thank you for being an essential support for
my life in Valencia. I also thank Igor, for his friendship, his unique sense of humor,
and for introducing me to amazing people. I thank my great Mexican friend Yiya
and all the people I met during the fun dinners at her house such as her husband
Julio, José, Dulce and many others. I thank my friend Selene for all her support,
for receiving me so many times in Xalapa, and particularly for our close and special
friendship. I am also very grateful for the friends I made in Cowok, especially Liz,
Ro and Caro. I dedicate a special thank to Caro to whom I have grown very close

in the last months.

Even though I didn’t see much many friends and family during my research,
many of them have been an important support. I would like to thank first my
“kuadrilla” and especially my childhood friends Maria, Miren and Andrea. Thank
you for the good times every time I come home. Most notably, I thank my family.
Each of them has inspired me with a quality required to develop a critical thinking
and to pursue this research: Ama, her strength, Aita, his thirst for knowledge, Olga,

her passion, Amatxi, her generosity, Amama, her wisdom, Diego, his equilibrium.

Thank you Diego for boosting my passion, work and growth. Thank you for

sharing this journey with me.

Thank you all.

10



11






Abstract

Nitrogen (N) is one of the most important elements for life on Earth. Unfortunately,
the unbalance caused to the N cylce is already causing dramatic damage to many
ecosystems around the world. In coastal waters, the N processes are altered by
anthropogenic activities such as the excessive use of fertilizers, urban development
or energy production. These changes result in a series of consequences for the
biodiversity and for human health, and could aggravate climate change. However,
the mechanisms by which humans contribute to the unbalance of the N cycle in

coastal waters has not been studied in detail and the consequences are still unclear.

The main objective of this research is to contribute to the evaluation of how
anthropogenic activity changes the N dynamics in coastal waters. As such, the
research investigates the activities by which humans modify the N processes, and
focuses on how the N cycle is altered in coastal waters by both pollution and climate
change. For this purpose, two study sites were selected: the Jucar River Basin
District (JRBD) in the Northwestern Mediterranean Sea (Spain) and the Central
Gulf Hydrological Region (CGHR) in the Southern Gulf of Mexico (Mexico). Each
of these locations has different ecological and socio-economic characteristics, which

allowed the evaluation of different aspects of the N processes.
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The thesis is presented as a collection of four research articles, and each arti-
cle focuses on the evaluation of a specific aspect of N in coastal waters. Similarly,
throughout the articles different evaluation tools are developed, with the applica-
tion of different techniques such as a simple biogeochemical model, artificial neural
networks and grey systems theory. These tools are also an important contribution
of the thesis, which could be applied in future studies to other regions of the world

or to evaluate other processes of the N cycle.

The first article evaluates how nitrification in coastal waters is altered by an-
thropogenic pressures and close to urban settlements in the JRBD (Mediterranean
Sea). Through the application of a simple biogeochemical model that simulates
nitrite dynamics (intermediary compound) to nine coastal areas with similar char-
acteristics but different anthropogenic pressures, an evaluation of the decoupling of
the two steps of nitrification was carried out. The main conclusions indicate that
anthropogenic pressures modify the nitrite peaks observed in winter driven by low
temperatures. The research also concludes that the second step of nitrification (ni-
trite to nitrate transformation) is more sensitive to temperature, which entails that

climate change may contribute to the decoupling of the two steps.

The second article evaluates the future trends of dissolved inorganic nitrogen
(DIN) concentrations under climate change in the JRBD (Mediterranean Sea). The
effect of meteorological variables on DIN concentrations was studied through the
application of simple artificial neural networks trained with field data. Decreas-
ing trends of nitrite and nitrate concentrations were observed throughout the 21st
century under both climatic scenarios RCP 4.5 and RCP 8.5, mainly due to rising
temperatures and decreasing rainfall, with major changes expected in winter. On
the other hand, ammonium did not show any significant annual trend but it either

increased or decreased during some months.

The third article develops a new method based on grey systems theory and
Shannon entropy to derive useful information regarding N pollution in areas where

only limited data is available. The method was applied to eight estuaries of the
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CGHR (Gulf of Mexico) associated to mangroves. Two indexes were developed:
the Grey Nitrogen Management Priority (GNMP) index and the Grey Land Use
Pressure (GLUP) index. The two indexes were then confronted to validate the
methodology. The results indicate that the urban development over beaches and

mangroves is the leading cause of N pollution in the study area.

The fourth article is a spatiotemporal analysis of N pollution along two rivers
discharging into a touristic coastal area of the CGHR (Gulf of Mexico) associated
to mangroves. Through statistical techniques such as clustering analysis, the Mann-
Kendall test and the Mann-Whitney W-test, an evaluation of the origine of N pol-
lution and the temporal variations of the N compounds was performed. The results
conclude than organic N concentrations are increasing along the coast, and the main
potential source identified was the decomposition of the invasive species of water hy-
acinths in saline waters, which has completely covered the surrounding beaches and

mangroves, enhanced by N pollution.

Overall, the main conclusions are that both pollution and climate change alter
the N cycle in coastal waters by modifying N processes such as nitrification, the
seasonal variations of N concentrations and by destroying the coastal ecosystems.
The differences in ecological and socio-economic characteristics of the two study sites
played a significant role in the pressures and impacts of anthropogenic activities, as
well as in the methods that could be used to evaluate N pollution. Moreover, the
methods developed, i.e. the mechanistic model for the evaluation of nitrification, the
use of artificial neural networks to evaluate the impact of meteorological variables on
N compounds under climate change and the grey systems methodology developed,
can be applied to other coastal regions to evaluate the anthropogenic alteration of the
N cycle worldwide. Future research should also focus on the evaluation of the overall
impact of anthropogenic activities on N in coastal waters, including all the processes
involved in the N cycle. Finally, the effects on humans and the ecosystems need to
be evaluated in detail in order to propose prevention measures and avoid pushing

the system into an unstable environmental state with catastrophic consequences.
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Resumen

El nitrégeno (N) es uno de los elementos més importantes para la vida en la Tierra.
Sin embargo, la actividad antrépica estda causando un grave desequilibrio sobre el
ciclo del N y provocando danos importantes a muchos ecosistemas en todo el mundo.
En aguas costeras, los procesos del N se ven alterados por actividades tales como
el uso excesivo de fertilizantes, el desarrollo urbano o la produccion de energia.
Como consecuencias, esto provoca una pérdida de biodiversidad, pone en riesgo la
salud humana, y podria agravar los efectos del cambio climatico. Sin embargo, los
mecanismos por los cuales los seres humanos contribuyen a este desequilibrio no se

han estudiado en detalle y las consecuencias aun no se conocen con claridad.

El objetivo principal de esta investigacion es contribuir a la evaluacion de como
la actividad antrépica cambia la dindmica del N en aguas costeras. Como tal, se
investigaron las actividades por las cuales se modifican los procesos del N, enfo-
cando el estudio en cémo el ciclo del N es alterado en aguas costeras por la con-
taminacion y el cambio climatico. Con este proposito se seleccionaron dos lugares
de estudio: la demarcacion hidrografica del Jucar (JRBD) en el Noroeste del Mar
Mediterraneo (Espana) y la Regién Hidrolégica del Golfo Central (CGHR) en el Sur
del Golfo de México (México). Cada uno de estos lugares tiene diferentes carac-

teristicas ecoldgicas y socio-econdémicas, lo que permitié la evaluacion de diferentes
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aspectos del nitrégeno.

La tesis se presenta como un compendio de cuatro articulos de investigacién,
y cada articulo se centra en la evaluacién de un aspecto especifico del N en aguas
costeras. De manera similar, a lo largo de los articulos se desarrollan diferentes
herramientas de evaluacion con la aplicacion de diferentes técnicas, tales como un
modelo biogeoquimico, redes neuronales artificiales y teoria de sistemas grises. Es-
tas herramientas también son una contribuciéon importante de la tesis, y podrian
aplicarse en futuros estudios a otras regiones del mundo o en la evaluacion de otros

procesos del ciclo del N.

El primer articulo evalia como la nitrificacion en aguas costeras se ve alter-
ada por las presiones antropicas y cerca de los asentamientos urbanos en el JRBD
(Mar Mediterraneo). Mediante la aplicacién de un modelo biogeoquimico simple
que simula la dindmica del nitrito (compuesto intermedio) a nueve areas costeras
con caracteristicas similares pero diferentes presiones, se evalué el desacoplamiento
de los dos pasos de la nitrificacién. Las principales conclusiones indican que las pre-
siones antropicas modifican los picos de nitrito observados en invierno debido a las
bajas temperaturas. La investigacién también concluye que el segundo paso de la
nitrificacion (transformacion de nitrito a nitrato) es mas sensible a la temperatura,
lo que implica que el cambio climatico puede contribuir al desacoplamiento de estos

dos pasos.

El segundo articulo evalia las tendencias futuras de las concentraciones de nitrégeno
inorgénico disuelto (NID) bajo los efectos del cambio climatico en el JRBD (Mar
Mediterréaneo). El efecto de las variables meteoroldgicas en las concentraciones de
NID se estudié mediante la aplicacién de redes neuronales artificiales simples en-
trenadas con datos de campo. Se observaron tendencias decrecientes de las concen-
traciones de nitrito y nitrato a lo largo del siglo XXI bajo los escenarios climaticos
RCP 4.5 y RCP 8.5, principalmente debido al aumento de las temperaturas y a
la disminucion de las precipitaciones, con cambios mas significativos en invierno.

Por otro lado, el amonio no mostré ninguna tendencia anual significativa, pero se
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observaron aumentos o disminuciones durante algunos meses.

En el tercer articulo se desarrolla un nuevo método basado en la teoria de los
sistemas grises y la entropia de Shannon para obtener informacion tutil sobre la
contaminacion por N en areas donde los datos disponibles son limitados. El método
se aplicé a ocho estuarios del CGHR (Golfo de México) asociados a manglares.
Se desarrollaron dos indices: el indice gris de prioridad de gestion de nitrégeno
(GNMP) y el indice gris de presion de uso de la tierra (GLUP). Los dos indices fueron
comparados para validar la metodologia. Los resultados indican que el desarrollo
urbano sobre playas y manglares es la principal causa de la contaminacion de N en

el area de estudio.

El cuarto articulo es un anélisis espacio-temporal de la contaminaciéon de N a lo
largo de dos rios que desembocan en una zona turistica costera del CGHR (Golfo
de México) asociada a manglares. Mediante técnicas estadisticas como el andlisis de
cluster, la prueba de Mann-Kendall y la prueba W de Mann-Whitney, se realizé una
evaluacion del origen de la contaminacién de N y las variaciones temporales de los
compuestos de N. Los resultados concluyen que las concentraciones de N organico
estan aumentando a lo largo de la costa, y la principal fuente potencial identificada
fue la descomposicién de la especie invasora de lirio acuatico en aguas salinas, que
ha cubierto completamente las playas y manglares circundantes potenciado por la

contaminacion de N.

El conjunto de la investigacion concluye que tanto la contaminacién como el
cambio climético alteran el ciclo del N en aguas costeras al modificar elementos
importantes del N como la nitrificacion, las variaciones estacionales de las concen-
traciones de N o los ecosistemas costeros. Las diferencias en las caracteristicas
ecoldgicas y socioecondémicas de las dos zonas de estudio desempenaron un papel
decisivo en las presiones e impactos de las actividades antrépicas, asi como en los
métodos que pueden usarse para evaluar la contaminacion. Ademads, los métodos
desarrollados, es decir, el modelo mecanicista para la evaluacién de la nitrificacion,

el uso de redes neuronales artificiales para evaluar el impacto de las variables me-
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teorolégicas en los compuestos de N bajo el cambio climatico y la metodologia de
sistemas grises desarrollada, pueden aplicarse a otras regiones costeras para eval-
uar la alteracién antropica del ciclo del N a nivel mundial. Futuras investigaciones
también deberian centrarse en la evaluacion del impacto global de las actividades
antropicas sobre el N en aguas costeras, incluidos todos los procesos involucrados
en el ciclo del N. Finalmente, los efectos sobre la salud humana y los ecosistemas
deben evaluarse detalladamente para proponer medidas de prevencion y evitar llevar

al sistema a un estado ambiental inestable con graves consecuencias.
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Resum

El nitrogen (N) és un dels elements més importants per a la vida en la Terra.
Desafortunadament, el desequilibri provocat sobre el cicle del N esta causant danys
importants a molts ecosistemes a tot el mén. En aigiies costaneres els processos
del N es veuen alterats per activitats antropogeniques com ara l'is excessiu de
fertilitzants, el desenvolupament urba o la produccié d’energia, amb conseqiiéncies
negatives per a la biodiversitat o la salut humana, i podran agreujar els efectes
del canvi climatic. No obstant aixo, els mecanismes pels quals els éssers humans
contribueixen al desequilibri del cicle del N en aigiies costaneres no s’han estudiat

detalladament i les conseqiiéncies encara no es coneixen amb claredat.

L’objectiu principal d’aquesta investigacié és contribuir a l’avaluacié de com
I’activitat antropogenica canvia la dinamica del N en aigties costaneres. Com a tal,
s'investiguen les activitats per les quals es modifiquen els processos del N, i s’enfoca
en com el cicle del N és alterat en aigiies costaneres per la contaminacio i el canvi
climatic. Amb aquest proposit es van seleccionar dos llocs d’estudi: la demarcacié
hidrografica del Xuquer (JRBD) al Nord-oest (NO) de la Mar Mediterrania (Es-
panya) i la Regi6é Hidrologica del Golf Central (CGHR) al Sud del Golf de Mexic
(Mexic). Cadascun d’aquests llocs té diferents caracteristiques ecologiques i socioe-

conomiques, la qual cosa va permetre ’avaluacié de diferents aspectes del nitrogen.
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La tesi es presenta com una col-leccié de quatre articles d’investigacio, i cada
article se centra en ’avaluacié d’un aspecte especific del N en aigiies costaneres. De
manera similar, al llarg dels articles es desenvolupen diferents eines d’avaluacié amb
I’aplicacié de diferents tecniques, com ara un model biogeoquimic, xarxes neuronals
artificials 1 teoria de sistemes grisos. Aquestes eines també sén una contribucié
important de la tesi, que podran aplicar-se en futurs estudis a altres regions del

mon o en l'avaluacié d’altres processos del cicle del N.

El primer article avalua com la nitrificacié en aigiies costaneres es veu alterada
per les pressions antropogeniques i prop dels assentaments urbans en el JRBD (Mar
Mediterrania). Mitjancant I’aplicacié d’un model biogeoquimic simple que simula la
dinamica del nitrit (compost intermedi) a nou arees costaneres amb caracteristiques
similars pero diferents pressions, es va avaluar el desacoblament dels dos passos de
la nitrificacié. Les principals conclusions indiquen que les pressions antropogeniques
modifiquen els pics de nitrit observats a I'hivern a causa de les baixes temperatures.
La investigacié també conclou que el segon pas de la nitrificacié (transformacié de
nitrit a nitrat) és més sensible a la temperatura, la qual cosa implica que el canvi

climatic pot contribuir al desacoblament d’aquests dos passos.

El segon article avalua les tendencies futures de les concentracions de nitrogen in-
organic dissolt (NID) pel canvi climatic en el JRBD (Mar Mediterrania). L’efecte de
les variables meteorologiques en les concentracions de NID es va estudiar mitjancant
I’aplicacio de xarxes neuronals artificials simples entrenades amb dades de camp. Es
van observar tendencies decreixents de les concentracions de nitrits i nitrats al llarg
del segle XXI tant sota l’escenari climatic RCP 4.5 com RCP 8.5, principalment
a causa de l'augment de les temperatures i a la disminucié de les precipitacions,
amb canvis més significatius a ’hivern. D’altra banda, l’amoni no va mostrar cap
tendencia anual significativa, pero es van observar augments o disminucions durant

alguns mesos.

En el tercer article es desenvolupa un nou metode basat en la teoria dels sistemes

grisos i I'entropia de Shannon per a obtindre informacié ttil sobre la contaminacio
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per N en arees on les dades disponibles son limitats. El metode es va aplicar a
huit estuaris del CGHR (Golf de Mexic) associats a manglars. Es van desenvolupar
dos indexs: I'index gris de prioritat de gesti6é de nitrogen (GNMP) i I'index gris de
pressié d’us de la terra (GLUP). Els dos indexs van ser comparats per a validar la
metodologia. Els resultats indiquen que el desenvolupament urba sobre platges i

manglars és la principal causa de la contaminacié de N en 'area d’estudi.

El quart article és una analisi espacio-temporal de la contaminacié de N al llarg
de dues rius que desemboquen en una zona turistica costanera del CGHR (Golf de
Mexic) associada a manglars. Mitjangant tecniques estadistiques com D'analisi de
cluster, la prova de Mann-Kendall i la prova W de Mann-Whitney, es va realitzar
una avaluacié de 'origen de la contaminaciéo de N i les variacions temporals dels
compostos de N. Els resultats conclouen que les concentracions de N organic estan
augmentant al llarg de la costa, i la principal font potencial identificada va ser la
descomposicié de I'especie invasora de jacints d’aigua en aigiies salines, que ha cobert

completament les platges i manglars circumdants potenciat per la contaminacié de

N.

El conjunt de la investigacié conclou que tant la contaminacié com el canvi
climatic alteren el cicle del N en aigiies costaneres en modificar els processos del
N com la nitrificacié, les variacions interanuals de les concentracions de N i la de-
struccio dels ecosistemes costaners. Les diferéncies en les caracteristiques ecologiques
i socioeconomiques de les dues zones d’estudi van exercir un paper decisiu en les
pressions i impactes de les activitats antropogeniques, aixi com en els metodes que
poden usar-se per a avaluar la contaminacié. A més, els metodes desenvolupats, és a
dir, el model mecanicista per a ’avaluacié de la nitrificacié, 1'is de xarxes neuronals
artificials per a avaluar I'impacte de les variables meteorologiques en els compostos
de N sota el canvi climatic i la metodologia de sistemes grisos desenvolupada, po-
den aplicar-se a altres regions costaneres per a avaluar ['alteracié antropogenica del
cicle del N a nivell mundial. Futures investigacions també hauran de centrar-se en

I’avaluacié de 'impacte global de les activitats antropogeniques sobre el N en aiglies
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costaneres, inclosos tots els processos involucrats en el cicle del N. Finalment, els
efectes sobre la salut humana i els ecosistemes han d’avaluar-se detalladament per
a proposar mesures de prevencié i evitar portar al sistema a un estat ambiental

inestable amb greus conseqiiencies.
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Chapter 1.

1.1 The nitrogen cycle

1.1.1 The global nitrogen cycle

Nitrogen is a common element found in living organisms and an essential require-

ment for plant growth (Galloway et al., 2004). As such, the global N cycle is a
key component of the Earth’s biogeochemistry and nitrogen has a critical role in
controlling primary production (Gruber, Galloway, 2008). Large flows of nitrogen
circulate from the atmosphere to the land and the oceans, mainly through biological
nitrogen fixation (Fowler et al., 2013). Then, the microorganisms found in soil and
water transform nitrogen into a large variety of inorganic and organic molecules
which finally return to the atmosphere through denitrification (Fowler et al.; 2013).

A schematized simplification of the global N cycle can be seen in Figure 1.1.
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Figure 1.1: Processes and fluxes (TgN.yr!) of the global N cycle. Source: Fowler
et al. (2013).

In the atmosphere, dinitrogen (Nj) is the most abundant gas, while nitrogen

oxides (NOy) play a key role in oxidation processes, as well as in the photochemical

46



Background

production of ozone (Fowler et al., 2013). Nitrous oxide (N5O) is an important gas
for the radiative balance of the Earth, representing a strong contribution to the
greenhouse gas effect. Lighting is also an important process of reactive nitrogen in
the atmosphere, by which the stable Ny is transformed into nitric oxide (NO), then
oxidized to nitrogen dioxide (NOg) and nitric acid (HNO3) and finally deposited

into land and aquatic ecosystems (Galloway et al., 2004).

In land processes, the N biogeochemical cycle is also highly influential. Nitrogen
fixation, the main process regulating the flux of nitrogen from the atmosphere to
the soil, is an important mechanism for plant growth (Fowler et al., 2013). Nitrogen
can leach from terrestrial ecosystems mainly carried away by freshwater, and finally

reach the ocean (Gruber, Galloway, 2008).

1.1.2 Nitrogen processes in marine waters

Nitrogen in marine systems can be found both in gaseous, dissolved and particulate
form, as well as in organic or inorganic forms (Statham, 2012). The forms of nitrogen
of greatest interest in marine waters are dinitrogen (Nj), nitrate (NO37), nitrite
(NOg), ammonium (NH,%) and organic nitrogen. Some small amounts of NoO
can also be found. Ny is the most common form of nitrogen in the ocean with an
estimated 95% of the total N (Voss et al.; 2013), due to its high partial pressure
in the atmosphere and to its stability (Romero Gil, 2003). A large amount of the
nitrogen exists as organic nitrogen, either as part of the living biomass, dead biomass
or as dissolved organic nitrogen, which includes a large variety of compounds such
as aminoacids (Statham, 2012). NHy" is the most reduced form of nitrogen and
is therefore generally considered as the preferred species for phytoplankton growth

(Romero Gil, 2003).

All these forms of nitrogen are biochemically interconvertible by marine organ-
isms either to obtain energy or to synthesize structural components (Capone et al.,

2008). Through oxidation-reduction reactions controlled by the prevailing physic-
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ochemical conditions and carried out by autotrophic and heterotrophic microor-
ganisms, nitrogen passes from -3 to +5 valence states (Herbert, 1999). The main

nitrogen processes are schematized in Figure 1.2 and presented below.
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Figure 1.2: Major processes of the marine N cycle. Processes in grey occur in anoxic
conditions. Source: Capone et al. (2008).

Nitrogen fixation

Ny, the most abundant form of nitrogen in marine waters, is generally not bioavail-
able. Nitrogen fixation is the biological reduction of Ny into ammonium which can

be subsequently used for cell production (Arrigo, 2005).

Ny +2H' + 3H,— > 2NHj (1.1.1)

Nitrogen fixation is carried out by certain prokaryotes which possess the enzyme
nitrogenase; however those responsible for most of the fixation in natural waters

are certain species of cyanobacteria (Herbert, 1999). Many parameters can limit
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nitrogen fixation, such as temperature, light, oxygen concentrations, turbulence or

salinity (Capone et al., 2008).

Nitrification

Nitrification is the biological oxidation of ammonium to nitrate performed by some
chemoautotrophic bacteria and archaea to produce energy (Voss et al., 2013). It
is generally described as a two-step process: oxidation of ammonium to nitrite by
ammonium-oxidizing bacteria (AOB) and ammonium-oxidizing archaea (AOA), and

oxidation of nitrite to nitrate by nitrite oxidizing bacteria (NOB) (Kim, 2016).

NH} +1.50,— > 2H* + HyO + NO; (1.1.2)

NOj +0.50,— > NO; (1.1.3)

Hydroxylamine (NH,OH), nitroxyl (NOH) and nitrous oxide (N,O) are inter-
mediary compounds in nitrification (Kim, 2016), which only occurs at aerobic con-
ditions. Some parameters affect the rate of nitrification such as pH, temperature,
ammonia and nitrite concentrations, dissolved oxygen, suspended solids, and organic
and inorganic compounds (Bowie et al., 1985). This process links the reduced and

oxidized forms of nitrogen, and provides nitrate for denitrification (Herbert, 1999).

Denitrification

Under anaerobic conditions, nitrite and nitrate can be used as electron donors by
certain heterotrophic facultative anaerobic bacteria (Kim, 2016). Nitrite is formed
as an intermediate with the principal end-product being dinitrogen. The complete

denitrification process can be expressed as:
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NO; +2e¢~ +2H"— > NO; + H,0O (1.1.4)

Denitrification only occurs at very low oxygen concentrations and it is a fun-
damental process to reduce nitrogen concentrations (Herbert, 1999). NyO, which
is a powerful greenhouse gas, is an intermediary compound in denitrification. This
process is one of the main mechanisms by which nitrogen is removed from the ocean

to the atmosphere (Kim, 2016).

Ammonification

Ammonification is the transformation of non-living organic nitrogen to ammonium.
This process involves several mechanisms including bacterial decomposition. De-
pending on the structure of the organic molecules, ammonification can be a simple

or a complex reaction (Herbert, 1999).

Anammox

Anammox (anaerobic ammonium oxidation) is a process of the nitrogen cycle dis-
covered in 1995. Ammonium is oxidized to nitrogen gas under anaerobic conditions,
using NOy™ as oxidizing agent (IKim, 2016). In contrast to denitrification, anammox

is used for energy production (Capone et al.; 2008).

NHf + NOy — > Ny + HyO (1.1.6)
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Dissimilatory nitrate reduction to ammonium

Dissimilatory nitrate reduction to ammonium (DNRA), also known as nitrate am-
monification, is the reduction of nitrate to ammonium under anoxic conditions (i,
2016). It is carried out by some microorganisms which use nitrate as electron sink

(Lam, Kuypers, 2011).

NO3 +2H" +2¢ — > NO; + 2H,0 (1.1.7)

NO; +6e” +8HY— > NH} + 2H,0 (1.1.8)

Nitrogen assimilation

Nitrogen is an essential element for phytoplankton growth, and is therefore assimi-
lated into biomass in the upper layers of the ocean (euphotic zone) (Capone et al.,
2008). In 1934, Alfred Redfield noticed that the ratio of carbon, nitrogen and phos-
phorus C:N:P in marine systems was controlled by phytoplankton in a fixed ratio
of 106:16:1 (Arrigo, 2005). While ammonium is the preferred form of nitrogen due
to its lower oxidation state, other forms such as nitrate or nitrite are also assim-
ilated into biomass (Zouiten et al.; 2013). Nitrogen has been long believed to be
the limiting nutrient for phytoplankton growth in most marine areas (Paerl, 2018),

although the concept of a nutrient co-limitation (Arrigo, 2005) has gained increasing

attention in the last decades.

When phytoplankton dies, nitrogen is released back through detritus decomposi-
tion and remineralized to inorganic forms. Part of the dead detritus sinks to the deep
waters, and ocean recirculation brings back the remineralized inorganic nitrogen to
the euphotic zone where they can be reused for phytoplankton growth (Capone
et al., 2008). This nutrient loop is essential for the Earth’s climate, as the nutrient

availability in the photic zone allows phytoplankton growth with subsequent carbon
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uptake (Capone et al.; 2008).

Athmospheric deposition

Atmospheric deposition is a transport process by which atmospheric nitrogen is de-
livered to the sea through air masses. It can occur both as wet deposition, associated
to rainfall, or as dry deposition (Pacyna, 2008). It is the main source of nitrogen in

the open ocean (Voss et al., 2013).

1.1.3 Nitrogen in coastal waters
Freshwater inputs

In coastal waters, rivers are the major source of nitrogen (Voss et al., 2013), but
most of the river transported N does not reach the open ocean (Capone et al.; 2008).
Submarine water discharges from coastal aquifers are also an important source of
nutrients to some coastal areas (Voss et al., 2013). These freshwater inputs enhance
primary production, deriving in a high phytoplankton biomass (Statham, 2012),
which is often dependent on temporal patterns in riverine exports (Capone et al.,
2008). Consequently, the nitrogen processes in coastal waters differ considerably

form the open ocean, where the sources of nitrogen are limited.

Sediments

Due to the low depths found in coastal waters, benthic fluxes from the sediment
are often a relevant source of nitrogen to the water column (Voss et al., 2013).
When the organic matter deposited in the sediment decomposes, a nutrient exchange
occurs through diffusion from the sediment to the water column. As such, the
strong benthic-pelagic coupling enhances primary production (Capone et al., 2008).
At the surface of the sediment, an excess of organic matter can lead to anoxic

conditions (Sospedra et al., 2015). Sediments are also habitat for a great number of
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microorganisms, invertebrates and plants, which are an integral part of the N cycle

(Capone et al., 2008).

Coastal upwelling

Wind-driven coastal upwelling results in high nitrogen inputs to the upper coastal
waters, enhancing the primary production. Deep waters are generally rich in nitrate,
which stays unavailable for phytoplankton until coastal upwelling pushes it back to
the photic zone (Capone et al., 2008). The upwelling depends on the wind patterns
and on water stratification, and therefore varies from region to region (Capone et al.,

2008).

Coastal ecosystems

Coastal ecosystems include areas of distinct structure and high biodiversity, such
as seagrass meadows, mangroves, kelp forests, estuaries, coral reefs or salt marshes.
All these ecosystems have particular N cycling and are among the most productive
ecosystems in the world (Capone et al., 2008). For example, seagrass meadows
obtain a large proportion of their nitrogen requirement from nitrogen fixation, which
makes this process an important component of the biogeochemistry of macrophytes
in coastal environments (Capone et al.; 2008). Mangroves and other wetlands lay
between the land and the sea, having a determining influence on the global N cycle
(Gongalves Reis et al., 2017). They promote nutrient recycling (Holguin et al., 2001)
and are regarded as nutrient filters (Geedicke et al.; 2018). Mangroves also play a
significant role as carbon stocks known as "blue carbon”, and provide resilience
for coastal ecosystems (Adame et al., 2018), which tranform N and deliver it to
coastal waters (Goncalves Reis et al.; 2017). In estuaries, the hydrodynamics play
an important role in N processes, and nitrate is the predominant nitrogen form
due to its stability under well oxygenated conditions (Statham, 2012). However,

coastal ecosystems are often fragile, and due to their proximity to the land and to
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human activities, the N cycle in coastal regions is the most affected by anthropogenic

pressures (Pesce et al., 2018).

1.2 Anthropogenic pressures on the N cycle in

coastal waters

The alteration of the N cycle has already surpassed the threshold known as the
“planetary boundary”, which establishes the limit considered safe for humanity
(Rockstrom et al.; 2009). In fact, nitrogen is feared to be “the next carbon” (Battye
et al.; 2017). The highly dynamic character of the marine N cycle makes it especially
sensitive to substantial changes (Capone et al., 2008). In the last decades, many
processes have contributed to the unbalance of the natural N processes in coastal
waters amongst which the following can be highlighted for their relevance: food

production, energy production, urban development and climate change.

1.2.1 Food production

The anthropogenic alteration of the N cycle started many years ago, mainly driven
by Fritz Haber’s patent “synthesis of ammonia from its elements” and the derived
Haber-Bosch process to produce fertilizers (Erisman et al.,; 2008). The role of chem-
ical fertilizers is essential to increase crop production and feed the growing global
population, but the abusive and inefficient use has carried many environmental con-
sequences (Prabakaran et al.; 2018). The cascading effects of fertilizer production
from atmospheric nitrogen fixation include greenhouse gas emissions, biodiversity
loss and water pollution. Today, the overall anthropogenic nitrogen fixation is so

large that it is estimated to double the natural sources (Fowler et al.; 2013).

Concurrently, a large increase in nitrogen-fixing crops such as legumes (e.g. soy-
beans) occurred during the 20th century, with an estimated increase of ten-fold since

1960 (Battye et al., 2017). Soybeans are mainly used for animal feed, which only
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convert a small fraction of the nitrogen to proteins, excreting the rest as urea or
other forms of organic nitrogen. Thus, the increase in animal population for human
consumption derives in higher N excretion which often ends up in natural waters
(Battye et al., 2017). The land clearing for agriculture, such as the large areas of
deforestation in the Amazon rainforest in the last decades, also contribute to the al-
teration of N processes (Boucher et al.; 2011). In China for example, the imports of
soybeans from Brazil have increased a 2,000% since 2000 due to its rapidly growing

meat demand (Fuchs et al.; 2019).

The anthropogenic nitrogen fixation for food production as led to many marine
environmental problems such as eutrophication (Gruber, Galloway, 2008). Much of
the nitrogen in fertilizers ends up in natural waters and in coastal zones, causing
excessive primary production and driving anoxic events (Rockstrom et al.,; 2009). In
the last decades, nitrogen pollution to coastal systems has rapidly increased, largely
due to industrial agriculture and the intensive fertilizer application (Boucher et al.,
2011). Additionally, the use of fertilizers, together with septic systems, has caused
an increasing nitrate pollution in groundwater which ultimately reach marine waters
(Galloway et al., 2004). As such, the future trends of nitrogen in coastal waters is
highly dependent on the global demand for food, dietary choices and agricultural

management practices (Sinha et al., 2019).

Finally, aquaculture is an important source of N pollution to many coastal envi-
ronments (Camargo, Alonso, 2006; Do-Thu et al.; 2011) which is rapidly expanding
worldwide (including mariculture) (Capone et al., 2008). Most of the aquaculture
operations depend on food supply and fertilization to sustain fish productivity, which
translates into a high amount of nitrogen leaching to the surrounding waters (Capone

et al., 2008).
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1.2.2 Energy

The burning of fossil fuels is the major source of NOy gases (NO+NO3) to the
atmosphere, which have a very short lifetime and are deposited into the ocean’s
surface almost immediately (Capone et al., 2008). The deposition of these gases is a
major source of nitrogen pollution to the marine waters, especially in highly popu-
lated coastal regions where fossil fueled based transport is dense (Park et al., 2019).
Globally, anthropogenic sources account for approximately 70% of NO, deposition
(Capone et al., 2008). Additionally, motorized navigation is also a relevant source

of organic pollution to the marine ecosystems (Valdor et al., 2019).

On the other hand, the use of biofuels as energy source also has a great impact on
the N cycle. The production of biofuels increases the demand for nitrogen fertilizers
(Erisman et al.; 2008) and deforestation (Boucher et al., 2011), with the consequent
increase of N runoff to coastal waters (Rabalais et al.; 2009). Nowadays, biofuel
production only accounts for 1.5% of the global energy demand, but the expected
increase in biofuels would increase the impact of this source of energy in N pollution

(Erisman et al., 2008).

1.2.3 Urban development

It is estimated that around 40% of the global population lives within 100km of the
coastline (Valdor et al., 2019). Due to the rapid urbanization of coastal regions, the
increasing sewage discharges have greatly contributed to the N enrichment of marine
waters (Nie et al., 2018). Many coastal cities, especially in developing countries, lack
a proper wastewater treatment and directly discharge into natural water systems
(Djihouessi et al., 2019; Jin et al., 2018). As a consequence, the water quality of
coastal regions with intense anthropogenic activity is often very deteriorated (I'lo

et al., 2019).

Additionally, the increasing deforestation due to urban expansion also contributes

to N pollution of the coastal ecosystems. For example, mangroves recycle nutrients
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within the ecosystem and act as nutrient filters (Holguin et al.,; 2001), but urban
development expands over mangroves destroying them (Adame et al., 2018). Sim-
ilarly, other coastal habitats with a great implication in the biogeochemistry such
as salt marshes or estuaries are destroyed as a consequence of urban expansion

(Rivera-Guzman et al., 2014).

Costal infrastructures may also contribute to the alteration of N processes. Har-
bors, docks or breakwaters alter the hydromorphological characteristics of the coast
(Reyjol et al., 2014), which hinder the dispersion of water pollutants and destroy
habitats (Gottardo et al., 2011). Similarly, the construction of dams for water use
can greatly limit the river flow and consequently the N export to coastal waters

(Capone et al., 2008).

1.2.4 Climate change

Climate change, through the modification of temperature, wind patterns, sea level
rise or pH, affects nutrient processes in coastal waters (Statham, 2012) by increasing

acidification, deoxygenation and other physicochemical conditions (Kim, 2016).

The increasing surface temperatures result in water stratification, which may
have consequences for phytoplankton composition and thus for the N cycle. Diatoms,
which prefer stratified waters, may become more abundant, and the lower N:P ratio
of diatoms compared to other phytoplankton species may drive a shift in the nutrient
ratio of marine waters (Arrigo, 2005). Additionally, the stratification of the water
column derived from global warming limits the supply of nutrients from the bottom

layers, reducing the bioavailable nitrogen (Voss et al., 2013).

Ocean acidification may also result in a shift in marine N cycling (Voss et al.,
2013), as many processes such as nitrogen fixation or nitrification are highly depen-
dent on the pH (Kim, 2016). For example, nitrification may be reduced under lower
pH conditions, reducing the supply of nitrate to the ecosystem (Voss et al., 2013).
On the other hand, the NH3 /NH," equilibrium highly depends on the pH, and thus
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ocean acidification may derive in higher NH,;% concentrations. Being NH,* one
of the essential nutrients in marine waters, the alteration of this equilibrium may
drive a significant change in primary production, and reduce NHj3 emissions from
the ocean to the atmosphere (Capone et al., 2008). On the other hand, increasing
pCO2 may increase marine denitrification, reducing the available nitrogen in water

(Kim, 2016).

Furthermore, climate change is predicted to expand the oxygen minimum zones,
exacerbate eutrophication and consequently altering the N cycle (Voss et al., 2013).
The oxygen depletion of the oceans as a consequence of climate change will likely
increase denitrification and anammox (Kim, 2016), resulting in a lower marine pro-
ductivity (Capone et al., 2008). This would provoke a higher release of CO, from the
atmosphere, which in turn would accelerate the effects of climate change (Capone

et al., 2008).

Another mechanism by which climate change affects the N cycle is through me-
teorological changes such as wind pattern or precipitation, which alter the inputs
of nitrogen from freshwater resources to the coastal areas. As such, the increase
in extreme events enhances nitrogen runoff and modifies the interannual variability
(Sinha et al.; 2019). As a consequence of the changes in freshwater inputs, the shifts

in salinity may induce changes in the coastal biogeochemistry (Pesce et al., 2018).

Finally, sea level rise may change the geomorphology of the coast, enhancing
the erosion and modifying the biogeochemistry of the sediments (Statham, 2012).
Mangroves and other wetlands are expected to be significantly affected by the sea
level rise induced coastal squeeze (Martinez et al., 2014), together with the derived

human pressure to regain the space lost to the sea (Rabalais et al., 2009).

Currently, the effect of climate change on the N cycle may be masked by nitrogen
pollution or natural variability (Rabalais et al., 2009). Nonetheless, the combined
effects of agriculture, urbanization and climate change may have unprecedented
consequences in a near future (Pesce et al., 2018). Further research is needed to

gain a better understanding of the effects of climate change on the N cycle.
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1.3 Impacts of the alteration of the N processes

in coastal waters

As nitrogen is a major nutrient in living organisms, the alteration of its biogeo-
chemical processes leads to cascading effects in the productivity and biodiversity of
ecosystems (Fowler et al., 2013), as well as to a variety of human health problems

(Grattan et al., 2016).

1.3.1 Eutrophication and biodiversity loss

In recent decades population growth and related nutrient sources such as agriculture,
wastewater treatment plants (WWTP), urban runoff, and consumption of fossil fu-
els, have increased nutrient inputs causing eutrophication, which has become one of
the most significant problems in many estuaries and coastal zones (Bricker et al.,
2003). Nixon (1995) defined eutrophication as “an increase in the rate of supply of
organic matter to an ecosystem”, which is mainly caused by nutrient enrichment.
Primary production is enhanced by nutrient pollution, predominantly nitrogen and
phosphorous (Vollenweider et al., 1996). The most relevant impacts of eutrophi-
cation include depletion of oxygen, increased frequency of harmful algal blooms,
increased turbidity, deterioration of coastal food webs and reduction of biodiversity

(Scavia, Bricker, 2006).

When phytoplankton grows excessively due to nutrient pollution and blocks sun-
light, the decomposition of dead biomass can cause a severe depletion of oxygen
known as hypoxia (Du et al., 2018). Massive fish kills have often been associated
to hypoxic events (Bianchi et al., 2010), and entire dead zones have been created
due to nutrient discharges in coastal areas (Yanez-Arancibia, Day, 2004). Hypoxia
can damage a whole ecosystem by affecting benthic communities, changing the bio-
geochemical cycles (Breitburg et al., 2018) and altering the food webs (Du et al.,

2018). Often these zones are created in semi-enclosed areas where water exchange
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is limited, such as the Gulf of Mexico (Rees, 2012).

Eutrophication can ultimately force a shift in local fish and vegetation commu-
nities, with a proliferation of certain macroalgae and phytoplankton species (Voss
et al., 2013). This shift can eventually lead to harmful algal blooms (HAB), or
increase the frequency, amplitude or toxicity of the naturally occurring blooms (Fer-
reira et al,; 2011). The dangerous nature of HABs depends on the type of algal
species: some can generate very harmful toxins even at low concentrations, while
other species cause harm when the biomass is so high that it destroys habitat through
light shadowing and hypoxia (Anderson et al.,; 2002). These blooms sometimes re-
sult in water discoloration, and consequently HABs are generically referred to as

“red tides” (Kudela et al., 2017).

Additionally, the pollution of coastal systems with nutrients such as nitrogen may
facilitate the invasion by exotic species (Geedicke et al.,; 2018), which may be exac-
erbated by the increasing temperatures due to climate change (Statham, 2012). For
example, water hyacinth (Eichhornia crassipes), which is the most widespread inva-
sive aquatic species worldwide, occupies large extensions of freshwater ecosystems
and deltas (Toft et al., 2003). Invasive species can cause big losses of biodiversity
(Erisman et al.; 2008) and alter the biogeochemistry of ecosystems which are often

no longer able of recycling nutrients (Sherman, 2017).

Therefrom, nitrogen pollution is considered the leading cause of biodiversity
loss in marine environments (Galloway, 2003), with devastating impacts on coastal
ecosystems. Coral reefs are very sensitive to eutrophication because it disrupts their
natural oligotrophy (Baker et al., 2013). Seagrass meadows can change their mor-
phology when exposed to nitrogen enrichment, and approximately 60% of the lost
seagrass worldwide has been attributed to N pollution (Capone et al., 2008). Coastal
wetlands such as salt marshes or mangroves are also affected by N pollution, which
modifies processes such as denitrification or nitrogen fixation within the ecosystems
(Gongalves Reis et al., 2017). And yet, the conservation of these coastal ecosystems

is essential for climate change mitigation as they entail large carbon stocks (blue
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carbon) (Adame et al., 2018).

1.3.2 Climate change

Climate change is both a pressure to the N processes and an impact derived from
the alteration of the N cycle, i.e. it is both influenced by climate change and af-
fects it (Galloway et al.; 2008). That is, the marine N cycle could be a significant
feedback factor for climate change (Capone et al.; 2008) as life on Earth links the
associated element cycles (Gruber, Galloway, 2008). The importance of the interac-
tions between the carbon and the nitrogen cycle in the Earth’s climate is of growing
interest for many scientists (Gruber, Galloway, 2008). For example, N deposition
enhances the primary production which leads to the uptake of CO5 from the atmo-
sphere (Gruber, Galloway, 2008). The Earth’s climate is very sensitive to nutrient
upwelling, nutrient recycling and the subsequent phytoplankton growth with carbon

uptake (Capone et al.; 2008).

The formation of N50, a powerful greenhouse gas, is tightly coupled to the mag-
nitudes of the nitrification and denitrification processes (Gruber, Galloway, 2008).
The oceans contribute to approximately 30% of global N,0 production, which is an
intermediary compound of both nitrification and denitrification (Voss et al., 2013).
The rate of N0 production highly depends on the oxygen availability (Voss et al.,
2013). Thus, the deoxygenation of the ocean derived from global warming may
induce a higher release of N,O, aggravating climate change (Rees, 2012). Coastal
ecosystems such as estuaries, intertidal areas or mangroves have been identified as
intense N,O formation sites (Capone et al., 2008). Additionally, the coastal up-
welling releases NoO to the atmosphere where the formation of this gas is favored
due to the anoxic conditions. Coastal eutrophication also results in lower oxygen

environments, deriving in higher NoO formations (Capone et al., 2008).
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1.3.3 Human health

Many people around the world lack a proper sewage management and access to
treated water for cleaning and consumption (Coutinho et al.; 2019). As such, nu-
merous human health problems are related to nitrogen pollution both by direct
intake and by the effects of nitrogen enrichment in aquatic ecosystems (Camargo,

Alonso, 2006).

One of the most widespread illnesses caused directly by nitrogen pollution is
methemoglobinemia (Camargo, Alonso, 2006), also known as the blue-baby syn-
drome, which is caused by the intake of nitrate mainly in young infants (Torka-
maneh et al.; 2019). Drinking nitrite and nitrate rich waters have also been related
to the development of digestive track cancer and other health problems such as birth

defects or respiratory track infections (Camargo, Alonso, 2006).

Nitrogen pollution also causes indirect health problems through the enhancement
of bacteria and other microorganisms’ growth. Waterborne diseases have often been
correlated to the presence of nitrogen and other nutrient pollution, which enable
the proliferation of opportunistic aquatic pathogens (Coutinho et al.; 2019). Many
widespread infectious diseases such as cholera or malaria are related to poor water
quality (Breton-Deval et al.; 2019; Galloway et al., 2008). Moreover, algal toxins
which are enhanced by HABs can cause a series of symptoms such as diarrhea,
nausea or vomiting (Camargo, Alonso, 2006). These toxins, which accumulate in fish
and seafood and subsequently ingested by humans, cause a series of biointoxications
such as paralytic shellfish poisoning, amnesic shellfish poisoning, neurotoxic shellfish

poisoning, diarrhetic shellfish poisoning or ciguatera poisoning (Grattan et al., 2016).
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1.4 The Mediterranean Sea

1.4.1 Overall description

The Mediterranean Sea (MS) (Figure 1.3) is a semi-enclosed sea which is connected

to the Atlantic Ocean through a narrow strait which is only 13 km wide and 350

m deep (Pinet, 1996): the Strait of Gibraltar. It is also connected to the Black

Sea and to the Red Sea through the artificial Suez Canal. The MS is surrounded

by Europe in the north and west, by Africa in the south and by Asia in the east.

It covers approximately 2.5 million km?, and it contains around 3.7 million km?® of

water. Its average depth is about 1,500 m, with a maximum depth of 5,121 m in

the Hellenic Trench (Rodriguez Martinez, 1982). The strait of Sicily divides the MS

in two basins: the Western and the Eastern basins (Romero Gil, 2003).
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As a result of its enclosure, the Mediterranean sea has a microtidal range of

approximately 20-40 cm (Flo et al., 2011). The evaporation exceeds the water inputs

through precipitation and runoff, creating high salinities (37.9 %o mean) (Romero
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Gil, 2003) and high densities (Béthoux, Copin-Montégut, 1986). As a consequence,
low-density Atlantic waters enter the MS through the strait of Gibraltar’s surface.
The temperature usually stays above 12.5°C all year round and at all depths, which
allows vertical mixing (Rodriguez Martinez, 1982). The deep convection events
which occur in winter, brings nutrients to the surface (Garcia-Martinez et al., 2019)

and gives rise to intense spring blooms (Severin et al., 2014).

Due to the water deficit, the Mediterranean Sea is oligotrophic, and nutrients
deficiency increases from West to East (Romero Gil, 2003). Phosphorus rather than
nitrogen limits primary production (Krom et al., 2010), as the P/N ratio is generally
higher than the Redfield ratio (Vollenweider et al., 1996). However, the nutrient
limitation changes from region to region (Powley et al., 2016) and nutrient co-
limitation is also under study (Sebastian, Gasol, 2013). The atmospheric deposition
in the MS is strong, delivering more than half of the nitrogen (Guerzoni et al.; 1999).
Saharan dust deposition is believed to play a significant role in regulating nitrogen
fixation (Ridame et al., 2011). Additionally, the Atlantic waters arriving from the

strait of Gibraltar are also a relevant source of nitrogen (Powley et al., 2017).

1.4.2 Nitrogen pollution in the Mediterranean Sea

In the Mediterranean Sea, there are around 601 cities with populations greater than
10,000 inhabitants, and more than 600 WWTPs along the coastal cities (Stamou,
Kamizoulis, 2008). However, many cities still lack a proper wastewater treatment,
and most of the WW'TPs do not undergo a tertiary treatment to eliminate nutrients
(Powley et al., 2016). As a consequence, nitrogen pollution from urban wastewater

is a major source of pollution to the MS.

The Northwestern Mediterranean Sea is surrounded by three highly industri-
alized countries (Massoud et al.; 2003), which are also among the most touristic
countries in the world: Spain, France and Italy. In contrast, the north of Africa de-

limits the southern Mediterranean Sea, with a lower industrialization, but with high
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urbanization rates and deficient wastewater management (Massoud et al.; 2003).
The difference in economic situations entails a disparity in the sources of nitrogen

pollution, as well as in its management.

On the other hand, agriculture is also an important source of nitrogen pollution
to the Mediterranean Sea. Some agriculture-intensive areas such as the Ebro river
delta are a major source of excessive nitrogen (Herrero et al., 2018). In the Nile river,
the industries of sugarcane and starch significantly contribute to nitrogen loads (Ali
et al., 2011). In the last decades, the intensification of fertilizer use in some areas
such as Egypt or Turkey has increased the eutrophication in certain areas (Malagd

et al., 2019).

Decreases in pH and increases in dissolved organic carbon have also been doc-
umented (Aparicio et al.; 2016; Merlivat et al.; 2018), which affect the dynamics
of nitrogen by several processes described earlier. Additionally, climate change is
expected to decrease continental inputs (Chirivella Osma et al., 2015), altering the
nitrogen sources to coastal waters. An increase in sea temperature has already been

observed in the Mediterranean sea (Lejeusne et al.; 2010).

1.4.3 Legal framework and management

The Mediterranean Action Plan (MAP) was approved by 16 countries and the Euro-
pean community in 1975, which became the first regional seas programme under the
UNEP. Its main objectives were the assessment and management of marine pollu-
tion, as well as the development of new laws to protect the Mediterranean (Massoud
et al., 2003). The Barcelona convention was signed in 1976 to cooperate among
the Mediterranean countries and allow a sustainable development (Massoud et al.,
2003). The Mediterranean Pollution Assessment and Control Programme (MED
POL) became the first operational programme of the MAP as its land-based pol-
lution assessment and control component. Today, the MAP is more active than

ever, with 22 contracting parties: 21 countries plus the European Union (European
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Commission, 2019).

Over the last decades, the European Union has adopted 6 important direc-
tives which protect the marine environments (Flo Arcas, 2017): the Bathing Wa-
ter Directive (76/160/EEC) (European Communities Council, 1976), the Urban
Waste Water Treatment Directive (91/271/EEC) (European Communities Coun-
cil, 1991a), the Directive concerning the protection of waters against pollution
caused by nitrates from agricultural sources (91/676/EEC) (European Communi-
ties Council, 1991b), the Directive concerning integrated pollution prevention and
control (96/61/EC) (European Commission, 1996), the Water Framework Directive
(2000/60/EC) (European Commission, 2000) and the Marine Strategy Framework
Directive (2008/56/EC) (European Commission, 2008). Amongst these directives,
the Water Framework Directive is of special interest for nearshore coastal waters,
and is often seen as the most substantial and ambitious European environmental

legislation to date (Voulvoulis et al., 2017).

At a national level, Spain has adopted several laws to protect marine waters,
being the Water Law the most relevant of them, approved in 1985 and updated in
many occasions (Gobierno de Espana, 2001). The Coastal Law came into force in
1969, and was modified in 1988 to regulate the protection, use and maintenance of
the maritime-terrestrial public domain, and especially of the seashore. However, this
law was substituted in 2013 by a new law which softened the levels of protection of
the seafront in favor of occupation and economic activities, reducing the protection
easement from 100 to 20 meters (Gobierno de Espana, 2013). In 2010 a new law
came into force to incorporate the European Marine Strategy Framework Directive:

the law of protection of the marine environment (Gobierno de Espana, 2010).

The Water Framework Directive

The ”Directive 2000/60/EC of the European Parliament and of the Council es-

tablishing a framework for the Community action in the field of water policy”,
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commonly known as the Water Framework Directive (WFD) was published on the
22nd of December 2000. Some amendments have been introduced since then. The
purpose of the WFD is to establish a framework for the protection of inland sur-
face waters (rivers and lakes), transitional waters, coastal waters and groundwater
(European Commission, 2000). The Directive requires Member States to establish
river basin districts (RBDs) and for each of these, a river basin management plan
which shall include five main activities: characterization of the RBDs, pressures
and impact evaluation, monitoring, establishment of environmental objectives and

design and implementation of the programme of measures.

With regard to the setting of environmental objectives, the Article 4 of the
Directive establishes that Member States shall protect, enhance and restore all water
bodies with the aim of achieving good water status. In order to determine the status
of each water body the WFD defines a criterion for its evaluation. For surface water,
the status is defined as "the status of a body of surface water determined by the

poorer of its ecological status and its chemical state”.

The ecological status is defined as ”an expression of the quality of the structure
and functioning of aquatic ecosystems associated with surface waters”. It can be
classified as high, good, moderate, poor or bad status. Several quality elements
have been established in this Directive for each water body type in order to assess
the ecological status. These elements can be divided in three categories: biological
quality elements, physico-chemical quality elements and hydromorphological quality
elements. For surface water categories, the ecological status classification for a body
of water is represented by the lower of the status achieved for any biological and
physico-chemical quality elements. In Table 1.1, all the proposed elements by the

WED for coastal waters are collected.

On the other side, the chemical status is classified as ”good” or "failing to achieve
good”. A good chemical status is achieved by a water body which is in compliance
with all limit values and environmental quality standards of all relevant legislations

mentioned in the WFD.
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Table 1.1: Water quality elements to determine the ecological status of coastal waters
under the Water Framework Directive. Source: European Commission (2000)

In order to classify the ecological status, the WED defines the terms ‘high status’,

‘good status’ or ‘moderate status’ for each quality element.

Biological elements

Composition, abundance and biomass of phytoplankton
Composition and abundance of other aquatic flora
Composition and abundance of benthic invertebrate fauna

Hydromorphological elements

Depth variation
Structure and substrate of the coastal bed
Structure of the intertidal zone
Direction of dominant currents
Wave exposure

Chemical and physico-chemical elements

Transparency
Thermal conditions
Oxygenation conditions
Salinity
Nutrient conditions

nutrient conditions are as follows:

e High status : Nutrient concentrations remain within the range normally asso-

ciated with undisturbed conditions.

e Good status :

so as to ensure the functioning of the ecosystem and the achievement of the

values specified for the biological quality elements.

e Moderate status : Conditions are consistent with the achievement of the values

specified for the biological quality elements.

1.4.4 The Jucar River Basin District

The Jucar River Basin District (JRBD) (Figure 1.4) is located in the East of Spain,

and discharges into the Northwestern Mediterranean Sea.
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JRBD covers 42,735 km? (44,871 km? including coastal waters) and lies within five
Spanish autonomous communities: Aragon (12.58%), Castilla-La Mancha (37.65%),
Catalonia (0.21%), Valencian Community (49.42%) and Murcia (0.15%). The JRBD
includes 574 km of coastline which fully belong to the Valencian Community (Jucar

Hydrographic Confederation, 2014).
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Figure 1.4: The Jucar River Basin District

Geomorphology

The JRBD is a mountainous inland region with a coastal area consisting of plains.
The system of mountain ranges of greatest importance is the Iberian System, where
the highest point above sea level of the basin (Penarroya, 2.024m) is located. The
Iberian System acts as a barrier to marine fronts, forcing the moisture-laden clouds
to rise to higher atmospheric layers, favouring precipitation events in these mountain

areas. Turia and Jucar rivers, the main rivers of the basin, originate in the Montes
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Universales, a mountain range located in the south-western end of the Iberian Sys-
tem. Likewise, the source of the Mijar river is located in Sierra de Gudar, south-
eastern part of the Iberian System. These three rivers together provide about one
third of the surface runoff flowing over the basin. The channels that constitute
the main river network have a typical Mediterranean regime, characterized by drier
periods in summer and an increase in river flows in autumn (Jucar Hydrographic

Confederation, 2010, 2014).

The coastal area of the JRBD is a Neogene alluvial plain, where the nutrient-
rich soil is responsible for most of the agricultural production of the irrigated land.
The formation of lagoons and marshes are considerably vast and numerous in the
JRBD, and are generally defined as extensive floodplains fed mainly by groundwater.
The most relevant of these wetlands is the so called L’Albufera de Valencia, which
consists of approximately 21,120 hectares including not only the lake but also the
surrounding areas composed of large rice tracts and a dune line that protects it from

the Mediterranean Sea (Jucar Hydrographic Confederation, 2014).

The predominant rocks are calcarenite and marl, although there are some pro-
portions of limestone and alluvial material too. The latter is found primarily in the
final stretches of the main rivers, and is constituted by solid river inputs that after
reaching the coast are quickly dispersed by ocean currents. Terrestrial ecosystems
bring sedimentary materials to the nearshore marine environments (Jucar Hydro-
graphic Confederation, 2014), while most of the surface of the river basin is covered
by very permeable materials that allow infiltration from surface water to groundwa-

ter (Jucar Hydrographic Confederation, 2010).

Climate

The climate in the JRBD is considered to be a typical Mediterranean climate, with
warm summers and mild winters. Average annual temperatures range from 14°C

to 16.5°C, with the highest temperatures recorded during the dry season (July and

70



Background

August). The average annual precipitation is about 500 mm, but there is a large
spatial variation from 300 mm in the southern regions to more than 750 mm in other
regions. Moreover, during October and November rainfall events of high intensity
and short duration may occur, a weather phenomenon locally known as ”gota fria”

(cold drop) (Jucar Hydrographic Confederation, 2014).

Coastal waters

All coastal waters in the JRBD belong to the Mediterranean ecoregion, with average
salinities fluctuating between 30 and 40 kg/m3. Most of Jucar’s coastal waters are
shallow (<30m), to a less extent intermediate (30-50m), and sometimes deeper than

50m but never reach 100m (Jucar Hydrographic Confederation, 2004).

Water bodies need to be differentiated according to types for the implemen-
tation of the WFD. The Med-GIG intercalibration group (European Commission,
2013) has defined five types of coastal waters for the Mediterranean Sea (Furopean

Commission, 2013):
e Type I : highly influenced by freshwater input, salinity <34.5 kg/m?

e Type II-A : moderately influenced by freshwater inputs (continent influence),

salinity between 34.5 and 37.5 kg/m?

e Type III-W : continental coast, not influenced by freshwater input (Western
Basin), salinity >37.5 kg/m?

e Type III-E : not influenced by freshwater input (Western Basin), salinity >37.5
kg/m3

e Island-W : island coast (Western Basin), all ranges of salinity
In the JRBD we find two of these water types: type II-A North from Cabo de

San Antonio, and type I1I-W South from Cabo de San Antonio (Jucar Hydrographic
Confederation, 2014).
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In addition to the types defined by the Med-GIG, the Jucar river basin man-
agement plan defines further ecotypes, taking into account water depth (shallow or
deep) and substratum (rocky or sandy). Consequently, five ecotypes have been de-
fined for natural coastal waters, and one additional ecotype corresponds to heavily
modified coastal waters (Table 1.2). As defined in the Jucar river basin management
plan, 22 water bodies have been identified as coastal water bodies, among which 6

have been defined as heavily modified due to the presence of a harbour (Figure 1.5).

Type Ecotype Description Water bodies
I1-A 01 Mediterranean coastal waters moderately C001,C003,C004
influenced by freshwater inputs, sandy shallow C005,C007,C008
C009,C010
I1-A 02 Mediterranean coastal waters moderately C002
influenced by freshwater inputs, rocky shallow
ITI-W 05 Mediterranean coastal waters not influenced C016
by freshwater inputs, sandy shallow
I[II-W 06 Mediterranean coastal waters not influenced C015,C017
by freshwater inputs, mixed shallow
I[MI-W 08 Mediterranean coastal waters not influenced C011,C012
by freshwater inputs, rocky deep C013,C014

Table 1.2: Types and ecotypes of coastal waters in the Jucar River Basin District.
Source: (Jucar Hydrographic Confederation, 2014)

Anthropogenic pressures

The permanent population within the JRBD is about 5,178,000 inhabitants (year
2012), with a density of 121 people/km? (Jucar Hydrographic Confederation, 2014),
and with approximately 80% of the population living in the coastline (Jucar Hydro-
graphic Confederation, 2010). The total water demand of the JRBD in 2012 was
3,232.92 hm?, being agriculture and livestock the main water demands, constituting
almost 80% of the total water use. The estimated pollution from point sources are
originated from urban and agricultural activities, as well as from other economic ac-

tivities such as mining, while diffuse pollution are considered to come mainly from
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Figure 1.5: Coastal water bodies of the Jucar River Basin District
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agriculture and livestock. The Spanish Ministry of the Environment established
reference conditions for nutrient concentrations for each water body type based on

expert judgement (Table 1.3).

Ecotype Ammonium (mgN/L) Nitrite (mgIN/L) Nitrate (mgN/L)
01 0.0644 0.0129 0.4900
02 0.0644 0.0129 0.4900
05 0.0644 0.0129 0.1022
06 0.0644 0.0129 0.1022
08 NA NA NA

Table 1.3: Nutrient reference conditions for coastal water bodies of the Jucar River
Basin District. NA: Not Available. Source: Spanish Ministry of Environment (2015)

As part of the fullfilment of the WFD), the Valencial government registers all in-
dustrial discharges (Table 1.4), as well as urban wastewater which are all discharged

through submarine outfalls (Table 1.5) to the coastal waters of the JRBD.

Company Water Body V (m?®/yr) Total N (mg/L)

B.P. oil Co041 1,828,754 51.55

Iberdrola S.A. C041 69,183 20.22

UBE Chemical Europa C041 2,421,228 35.53
Marina Mediterranea S.L. C005 5,040,920 0.5
Fertiberia S.L. C006 24,559 719

Arcelormital S.L. C006 3,165,62 30.26
Gas Natural S.A. C006 9,859,154 1.11

Fertiberia S.L.-refrigeration C006 46,559,237 0.044
Alevines del Mediterraneo C006 19789 0.5
Urbamar Co081 53,259 4.9
Regrescos Iberia S.L. C010 229,175 22.4

Table 1.4: Industrial discharges into the coastal waters of the Jucar river basin
district, volumes and nitrogen concentrations. Source: Valencian government.
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WWTP Water body Volume (m?/yr) Total N (mg/L)
Vinaros C001 18,471,49 17.56
Benicarlé Co001 3,831,444 48.20
Peniscola C001 3,657,385 25.09
Alcala de Xivert C002 258,500 42.69
Torreblanca C003 656,153 12.20
Oropesa C003 3,059,547 5.63
Benicassim C004 1,896,719 17.77
Castellon C0041 13,184,825 49.09
Burriana C004 4,298,361 18.93
Canet C005 1,246,475 9.41
I’Horta Nord Co07 3,958,224 45.79
Vera C0081 69,617,761 27.93
Pinedo C0081 40,397,176 22.46
Cullera C009 460,138 3.40
Gandia C0101 11,916,007 31.73
Oliva C010 1,153,865 11.68
Denia €010 6,007,226 8.76
Xabia Co11 1,510,369 10.51
Teulada Co012 382,680 50.65
Calpe Co013 1,991,351 8.54
Benidorm C016 4,585,562 29.01
Alicante Co0161 10,875,207 40.64

1.5 The Gulf of Mexico

1.5.1 Overall description

Table 1.5: Wastewater treatment plants discharging into the coastal waters of the
Jucar river basin district, volumes and total nitrogen concentrations. Source: Va-
lencian government.

The Gulf of Mexico (GoM) is a marginal sea of the Atlantic Ocean delimited by the
United States (US) in the North, Mexico in the South and Cuba in the East (Figure
1.6). The extension of the shoreline is of approximately 6,077 km, and encloses an
area of about 1.5 million km? (Mendelssohn et al., 2017), contains 2.5 million km?
of water (UNIDO, 2011) and has an average depth of 1,615m (Mendelssohn et al.,
2017). The Caribbean waters enter the GoM through the Yucatan channel and leave

through the strait of Florida, constituting the Loop Current (Delgado et al., 2019).
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In the Northern GoM, the average sea-surface summer temperature is around 29°C,
while winter temperatures range from 14 to 24°C (Mendelssohn et al., 2017). Due
to its enclosure, the GoM has small tidal ranges (UNIDO, 2011).

100°0'0"W 90°0'0"W 80°0'0"W
1 : {
VRSN .
30°0'0"NH L ey SRy ORNOR 4 LSS - R 30°0'0"N
San Anteni K oA 3
2o i 3
7.
"‘% \ m'andu'
% 7}"‘ Tamp
W
I/
Mmte"é', Brownsville' Miami
25°00'N =T o 25°00'N
k) 3
e gty
¢ v i
K Cuba oy
b ’ 3
& Cub.
20°00°N Tk 20°0'0"N
’ $ P .Mé;‘uca Gty *
| \Pueba >" ; o
B 0
Kingst
’ v & | ‘Mexico 87 % P
AT e ) Wi STt s I 2800, Nop NGl
100°0'0"W 90°0'0"W 80°0'0"W

Figure 1.6: The Gulf of Mexico

The GoM’s climatology ranges from semi-tropical to tropical (Yanez-Arancibia,
Day, 2004). As a consequence, it is an important global reservoir of biodiversity,
with high biomass of fish, sea birds and marine mammals as well as diverse coastal
ecosystems such as coral reefs or mangroves (Mendelssohn et al., 2017). Condi-
tions range from eutrophic in coastal waters to oligotrophic in the deeper ocean
(UNIDO, 2011). One of the major sources of nutrients to the euphotic zone is the
upwelling along the edge of the Loop Current and its associated rings and eddies
(Delgado et al., 2019), which increase the annual primary production by about 2
to 3 fold (UNIDO, 2011). Large rivers such as the Mississippi in the north and the
Usumacinta-Grijalva in the south, deliver high quantities of nutrients to coastal wa-

ters. Nitrogen is believed to limit primary production in the GoM (Turner, Rabalais,
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2013).

1.5.2 Nitrogen pollution in the Gulf of Mexico

Sand dunes, estuaries, marshes, sea grasses, coral reefs, mangroves and other coastal
habitats are being destroyed by urban growth (Martinez et al., 2014). Wetlands have
been cleared for agriculture or urban development, and the local habitats are de-
troyed by changes in salinity derived from water intrusion (Global Environmental
Facility, 2014). This loss of wetlands also increases erosion by waves and tidal cur-
rents and is exacerbated by sea level rise (Martinez et al., 2014). Human alterations

at large and small scales have led to a system on the verge of collapse.

The GoM is exploited for many economic activities such as fishing, oil drilling or
tourism. As a consequence, the whole ecosystem is at risk due to high levels of pol-
lution, habitat destruction and nutrient enrichment (Global Environmental Facility,
2014). The main sources of pollution are the agro-industry, cattle transformation,
oil extraction and textile industries (Global Environmental Facility, 2014). Oil pro-
duction is one of the most important economic activities in the GoM, both in the
U.S. and Mexico. In April 2010, an explosion on the Deepwater Horizon oil drilling
platform released almost 4.9 million barrels of oil into the GoM, and the presence

of oil was documented in more than 1,530km of shoreline (NOAA, 2011).

The region of the Mississippi River outflow has the highest measured rates of
primary production. Each summer, widespread areas on the northern continental
shelf are affected by severe and persistent hypoxia, kown as a dead zone, which often
exceeds 20,000 km? in mid-summer (Del Giudice et al., 2019). Agricultural runoff
has been identified as the main driver of nutrient pollution, which enhances high
phytoplankton concentrations in coastal waters, hypoxia, acidification and harmful
algal blooms (Van Meter et al.; 2017). In a near future, climate change is expected
to exacerbate these impacts (Rabalais et al., 2009). In recent years, Mexican sci-

entists have detected a similar oxygen-depletion zone in the Southern GoM (Global
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Environmental Facility, 2014).

Large quantities of urban wastewater are discharged daily to the coastal waters
of the GoM. While the U.S. treats 100% of the wastewater discharged into the GoM,
Mexico only treats around half of the wastewater (Global Environmental Facility,
2014). These discharges promote an increase in nitrogen concentrations, deriving in

eutrophication and ecosystem deterioration (Rivera-Guzman et al.; 2014).

1.5.3 Legal framework and management

In the Northern GoM, several departments and agencies of the U.S. federal gov-
ernment regulate pollution of natural waters. The U.S. Environmental Protection
Agency (EPA) has a special program to protect the GoM, established in 1988,
by which the Action Plan for reducing, mitigating and controlling hypoxia in the
Northern GoM was approved (Heileman, Rabalais; 2009). Additionally, the EPA’s
Environmental Monitoring and Assessment Program monitors and assesses the sta-
tus and trends of national ecological resources for nearshore and estuarine waters,
while the National Estuary Program monitors and improves the quality of estuaries
(UNIDO, 2011). On the other hand, the National Ocean and Atmospheric Admin-
istration (NOAA), through the National Marine Fisheries Service, surveys fishery
resources and water quality in the GoM. NOAA’s National Status and Trends Pro-
gram monitors contaminants and other physicochemical properties in estuarine and
coastal waters of the U.S. (UNIDO, 2011). Additionally, the Clean Water Act which
was first enacted in 1948 and amended since then, regulates the discharges of pol-

lutants into the waters and establishes quality standards (U.S. Government, 2002).

In Mexico, the National Law of water regulates the exploitation, distribution and
control of water as well as water quantity and quality to achieve a sustainable devel-
opment (Congreso de los Estados Unidos Mexicanos, 1992). The Official Mexican
Standard NOM-001-Semarnat-1996 establishes the contaminants’ limits in wastew-

ater discharges into the environment. However, nitrogen discharges to natural water
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bodies are not well controlled, and no data exists on direct inputs from urban or
industrial sources. On the other hand, the Mexican National Commission of Water
(CONAGUA) through its water quality monitoring network analyzes several wa-
ter quality parameters in many monitoring stations along natural waters, including
coastal waters, such as biological oxygen demand (BOD), chemical oxygen demand
(COD), dissolve oxygen or nutrient concentrations (CONAGUA, 2018a). Other laws
such as the National policy of seas and coasts of Mexico and the Mexican law NMX-

AA-120-SCFI-2016 protect the coastal ecosystems from pollution and degradation.

Several international programs regulate the collaboration for the protection of
the Gulf of Mexico: the Gulf of Mexico Alliance, the Gulf of Mexico Coastal Ocean
Observing System, the Gulf of Mexico University Research Collaborative, and, es-
pecially, the Gulf of Mexico Large Marine Ecosystem (GoM LME) project (Almrcz
Torres et al., 2017). This project started in 2009 as a long-term partnership between
the U.S. and Mexico to protect and restore the Gulf of Mexico with an integrated
approach. Trough the Transboundary Diagnosis Analysis (TDA) and the subse-
quent Strategic Action Plan (SAP) the LME approach seeks to accomplish regional
integrated management and enables a paradigm shift to an ecosystem-based ap-
proach (UNIDO, 2011). Cuba did not have much interaction in the last years but
is expected to increase the collaboration in the coming years (Almroz Torres et al.,

2017).

Both the U.S. and Mexico depend economically on the GoM. However, a deficient
management such as overfishing, overcapitalization of environmental resources or
recreational harvesting has led to the deterioration of the GoM. Additionally, a
poor knowledge exchange between these two countries leads to uniformed decision-

making (Global Environmental Facility, 2014).
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1.5.4 The Central Gulf Hydrological Region

The Central Gulf Hydrological Region (CGHR) (Figure 1.7) includes territories of
four states: Veracruz (54.7%), Oaxaca (30.8%), Puebla (13.4%) and Hidalgo (1.1%)
(IMTA, 2013). Tt covers 102, 354 km? (CONAGUA, 2015a) of land and 538km of

coastline which fully belongs to the state of Veracruz.
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Figure 1.7: The Central Gulf Hydrological Region
Geomorphology

The CGHR consists of a mountainous inland region with a plain coastal area known
as the Gulf coastal plain. The mountain range of greatest importance is the Sierra
Madre Oriental, which has a rugged topography with frequent valleys, canyons and
ravines (IMTA, 2013). Pico de Orizaba, also known as Citlaltepetl in nahuatl, is the

highest peak of the CGHR, which rises 5,636 m above sea level. This active volcano
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is also the highest mountain in Mexico and the third in North America. Its peak is
covered in snow all year round, and is home to the largest glacier in Mexico (Viola

et al., 2019).

The Veracruz moist forests ecoregion extends over the northern coast of the
CGHR, and encompasses lowlands of the Sierra Madre Oriental. It is composed
of sedimentary rocks from the Cretaceous period and soils rich in organic matter
(Mendelssohn et al., 2017). Numerous rivers drain geologic deposits to coastal salt-
water lagoons and Gulf beaches (Mendelssohn et al., 2017), where coastal sand dunes
are common (Moreno-Casasola, Espejel, 1986). On the other hand, the Veracruz
dry forests ecoregion is located in central Veracruz, surrounded by tropical forests.
In this ecoregion which is considerably humid, the soil is calcareous derived from
sedimentary rocks (Mendelssohn et al., 2017). The Tuxtla rainforest is located in the
south of the CGHR, characterized by volcanic coastal mountains and an important
biodiversity. Unfortunately, land clearing for agriculture and livestock ranging has
led to the destruction of a significant extension of the rainforest (Yanez-Arancibia,

Day, 2004).

The delimitation of the CGHR has political and administrative purposes, but it
tends to follow the hidrological limits. Three sub-hidrological regions make up the

CGHR: Tuxpan-Nautla, Papaloapan and Coatzacoalcos (IMTA, 2013).

The region of the Tuxpan-Nautla rivers, in addition to the secondary chan-
nels and lagoon-estuarine systems associated with this region, is characterized by
presenting the main geomorphological expressions of the coast, such as the dunes,
islands, coral reefs or lagoon-estuarine systems. It is the hydrological region with
the highest extension of mangroves, i.e. 215.44 km? of mangrove area. The annual

river discharge is about 14,193 million m? (Pereyra Diaz et al., 2010).

The river system of Papaloapan is composed of the Papaloapan river basin and
the Actopan, La Antigua and Jamapa rivers as secondary basins. The annual dis-
charge is 44,829 millon m? of water and the mangrove extension is 169.47 km?. Its

main estuarine ecosystem is the Alvarado lagoon, which corresponds to the larger
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coastal flood surface (Pereyra Diaz et al., 2010).

The river system of Coatzacoalcos has an annual discharge of 32,941 millon m?

and a mangrove extension of 46.59 km? (Pereyra Diaz et al., 2010).

Climate

The low elevation and the wet winds from the Gulf of Mexico, together with the
location within the intertropical zone, result in almost 65% of the CGHR having a
warm weather, with mean annual temperatures of 24-26°C. This weather is observed
in the Veracruzan coastal plain, as well as in the northern region (IMTA, 2013). In
the mountain range of Sierra Madre Oriental, the climate varies from semi-arid to
temperate, while in the peaks of Pico de Orizaba and Cofre de Perote (4,200 m) the
climate becomes cold (IMTA, 2013). The mean annual precipitation is 1,590 mm,

with a spatial range of 407 mm to 4,380 mm (IMTA, 2013).

Anthropogenic pressures

The population living within the region is of approximately 10.5 million people
(CONAGUA, 2018b), of which 57% live in urban areas and 43% in rural areas
(IMTA, 2013). The population density is 96 inhabitants per km?  with 10 cities of
more than 100,000 inhabitants (IMTA, 2013).

84.3% of the Veracruzan urban area has a sewarage service (2015) (CONAGUA,
2015b), but Dominguez Serrano (2010) alerts of the considerably lower coverage in
rural areas (about 58.6% in the whole country). 51% of the Veracruzan population
has access to treatment of wastewater, of which 36% undergoes a biological treat-
ment with biological filters and 47% with activated sludge (CONAGUA, 2015b). As
a consequence, there are 325 point of discharges in Veracruz which do not undergo

any treatment.

In the Central Gulf hydrological region, there are 151 WWTPs with a mean
flow of 5.11 m?/s (CONAGUA, 2015b). Some WWTPs directly discharge to coastal
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water bodies (Table 1.6) amongst which the North Beach plant of Veracruz stands
out for its capacity. The wastewater is discharged directly to the sea with no subma-
rine outfall, which increases the pollution of the nearby coastal waters and beaches.
In addition to these WWTPs, many others discharge into rivers which end up in
the sea. Unfortunately, there is no record of the amount of nitrogen discharged to

coastal waters.

WWTP City Volume (m?/s)
U.H. Costa de Oro Boca del Rio 4,815,547
Tuxpan Tuxpan 5,518,800
Torres Arrecifes Veracruz 157,680
North Beach Veracruz 50,457,600

Table 1.6: Watewater treatment plants discharging into the coastal waters of the
Central Gulf Hydrological Region. Source: (CONAGUA, 2015b)

Additionally, agriculture and livestock are an important source of nitrogen pollu-
tion in the area. The use of fertilizers is not well regulated in Veracruz (SAGARPA,
2009), which is one of the states which uses more fertilizer per cultivated area
(SAGARPA, 2009). The government stimulated the use of agrochemicals through
the Agriculture Development Program in its agroincentives section. However, farm-
ers lack information regarding the use and application of fertilizers (Anguiano-
Cuevas et al., 2015), and consequently around 20-40% of N is lost as ammonium

through continental runoff (Anguiano-Cuevas et al., 2015).
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CHAPTER 2

The research project

Overall description of the research hypothesis, objectives and structure.
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2.1 Problem statement

Nitrogen is one of the most important elements for life on Earth. The biogeo-
chemical nitrogen cycle regulates many key ecological processes such as primary
production (Gruber, Galloway, 2008). In the ocean, nitrogen pollution is one of the
leading causes of ecosystem degradation (Sinha et al., 2019), and the marine nitro-
gen processes are altered by anthopogenic activities through many processes such
as wastewater discharges (McLaughlin et al.; 2017), climate change (IKim, 2016)
or through the destruction of marine ecosystem (Baker et al., 2013), as discribed
in the introduction chapter. However, there is still a lack of research on how the
anthropogenic pressures alter the nitrogen cycle. Some researchers investigated the
alteration of processes such as nitrification or denitrification (Voss et al., 2013), or
the deterioration of coastal ecosystems such as coral reefs due to nitrogen pollution
(Baker et al., 2013; Capone et al.,; 2008). But the overall understanding of the al-
teration of the N cycle in coastal waters and its consequences is still very limited.
The processes by which human activities modify the N cycle have to be studied in
different geographical locations in order to propose prevention and recovery mea-
sures, as the consequences may be disastrous for both the environment and humans
(see section 1.3). In coastal waters the anthropogenic pressures are especially rele-
vant due to the high population living along the coast and due to the influence of

continental water inputs in the coastal biogeochemistry.

As such, in this thesis the processes and activities by which humankind modi-
fies the N cycle in coastal waters are evaluated through the analysis of two study
areas with different characteristics: the Mediterranean Sea and the Gulf of Mexico.
In the Mediterranean Sea, nitrogen pollution is a growing environmental problem
mainly derived from the urbanization along the coast (Stamou, Kamizoulis, 2008).
Although many laws regulate nitrogen emissions to coastal waters as developed in
section 1.4.3, the alteration of the nitrogen cycle is not yet well understood. On the
contrary, in the Southern Gulf of Mexico nitrogen pollution is less regulated and

the disposal of wastewater is not well controlled (see section 1.5.3). Additionally,
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the location of the CGHR in a tropical location entails a significant diversity of
coastal ecosystems in comparison to the Mediterran Sea. Therefore, the use of the
mentioned case studies allows a diversification of the studies of nitrogen pollution

and processes.

2.2 Aims of the research project

The main objective of this doctoral thesis is to evaluate the pressures and impacts of
anthropogenic activities on the nitrogen processes in coastal waters of the Northwest-
ern Mediterranean Sea and the Southern Gulf of Mexico to estimate the potential
consequences for coastal ecosystems. The main objective is divided in four particular

objectives:

1. Estimate how coastal anthropogenic activities modify nitrogen dynamics in
coastal waters of the Northwestern Mediterranean Sea and the Southern Gulf
of Mexico in order to estimate the impacts to coastal ecosystems and provide

a basis for coastal management

2. Evaluate how meteorological variables affect dissolved inorganic nitrogen con-
centrations in coastal waters of the Northwestern Mediterranean Sea and pro-
cesses such as nitrification in order to estimate the potential impacts of climate

change

3. Estimate the differences in nitrogen pollution between the two study areas

based on geomorphological, ecological and socio-economical characteristics

4. Develop new tools to evaluate the alteration of the N cycle in coastal waters
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2.3 Research hypothesis

e Anthropogenic activities alter the nitrogen cycle in coastal waters by modifying

nitrogen species concentrations and key processes such as nitrification.

e Meteorological variables play a key role in nitrogen species concentrations and
processes in coastal waters, which entails a significant impact of climate change

on the N cycle.

e Nitrogen processes are modified by human activities in both the Mediter-
ranean Sea and the Gulf of Mexico but geomorphological, ecological and socio-
economical characteristics play a significant role on the pressures and impacts

of nitrogen pollution.

e New tools can be developed to evaluate the alteration of the N cycle in coastal
waters by using mechanistic models, artificial neural networks and grey sys-

tems theory.

2.4 Thesis structure

This thesis is presented with the structure of a collection of articles, i.e. as a thesis
of published works. A total of four research articles were published in journals
indexed in both the SCImago Journal Rank (SCI) and the Journal Citations Report
(JCR). The first and the second article correspond to research carried out in the
Mediterranean Sea in Spain while the third and the fourth article correspond to
research from the Gulf of Mexico in Mexico. The research hypothesis are tested
thoughout the articles and the research questions are answered in the final discussion

by interpreting the results of the four articles altogether.

The first article is an evaluation of how anthropogenic pressures alter the process
of nitrification in coastal waters of the Jucar river basin district, in Spain. This

article was written in collaboration between the doctoral candidate, the two thesis
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directors and two researchers of the Water and Environment Engineering Institute
(ITAMA) of the Polytechnic University of Valencia: Remedios Martinez-Guijarro
and Maria Pachés. The PhD candidate is the leading author of the publication and
developed the conceptualization and the methodological framework, performed the

data curation and analysis and wrote the manuscript.

Then, a second article evaluates the impact of climate change on the trends of
dissolved inorganic nitrogen concentrations in a coastal region of the JRBD. The
manuscript was prepared in collaboration between the doctoral candidate, the two
thesis directors and a professor of the Polytechnic University of Valencia: Rafael
Garcia Bartual. The PhD candidate is the leading author of the publication, con-
tributed to the conceptualization, the methodology, the data curation and analysis

and wrote about two thirds of the original draft.

The third article presents a new methodology based on grey clustering which
allows the establishment of nitrogen management strategies in areas where only a
limited amount of data regarding coastal water pollution is available. This method
was applied to the Southern Gulf of Mexico, where very limited data about nitrogen
pollution was available. This article was written in collaboration between the doc-
toral candidate, the two thesis directors and a post-doctoral researcher of the Ecole
de Technologie Supérieure in Montreal: Sara Patricia Ibarra-Zavaleta. The PhD
candidate is the leading author of the publication, developed the conceptualization

and the methodology, performed the data anlysis and curation and wrote the article.

The fourth and last article is an evaluation of nitrogen pollution in the area
identified in the third article as the most polluted by nitrogen concentrations. This
corresponds to a mangrove area of the Southern Gulf of Mexico where the pollution
has had several environmental consequences such as the proliferation of the invasive
water hyacinths. The publication was developed and written by the PhD candi-
date, in collaboration with the two thesis directors who supervised and guided the

research.

Finally, a general discussion is carried out which discusses the overall results of
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the four articles as part of the same research project which is the doctoral thesis.
The research question is answered, and the hypothesis and objectives are discussed
based on the obtained results. Also, general conclusions are made which sumarize

the results of the four articles as part of the same research.

2.5 Significance of the research

This research thesis establishes new perspectives on the mechanisms by which hu-
mans modify nitrogen processes in the coastal waters of the Mediterranean Sea and
the Gulf of Mexico. Through the evaluation of samples collected in two inshore
coastal regions (<200m), an estimation of the impacts of both nitrogen pollution
and climate change is carried out. The results and discussion presented herein en-
tail new inshights into the anthropogenic alteration of the N cycle in coastal waters
and the potential consequences. As nitrogen is one of the main elements driving
primary production in coastal ecosystems, the understanding of its processes and
the modifications caused by human activities allows a better understanding of the
prevention and recovery measures to be addopted. Moreover, the tools developed
throughout the research for the evaluation of nitrogen alteration also constitute an

important contribution which could be applied to other study areas.

2.6 Methodological framework

For each of the four research articles a different methodology was used to deal with
the requirements of the different objectives. The tools developed throughout the

articles are also an important contribution of this PhD thesis.

The first publication uses a simple biogeochemical model to identify the anthro-
pogenic impact on nitrification dynamics. Based on the principle of conservation of

mass nitrite dynamics are modeled through a mass balance in zero dimensions.
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The second article uses models based on artifitial neural networks and climate
change projections from regional models in order to estimate the future trends of
dissolved inorganic nitrogen concentrations in coastal waters of the Jucar River

Basin District.

The third article develops a new methodology based on grey clustering and en-
tropy weighting to derive useful information for nitrogen pollution management
under limited data availability. The grey systems theory is used to propose cientif-
ically sound management practices for coastal areas where only a small amount of

data exists.

The fourth and last publication uses statistical technics such as cluster analy-
sis and the Mann-Kendall test to carry out a spatiotemporal analysis of nitrogen

pollution in a mangrove area.

Each of the methodologies are developed throughout the publications.
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3.1 Abstract

The anthropogenic alteration of the nitrogen cycle results in the modification of
the whole food web. And yet, the impact caused on nitrogen dynamics in marine
systems is still very uncertain. We propose a workflow to evaluate changes to coastal
nitrification by modelling nitrite dynamics, the intermediary compound. Nitrite
concentrations were estimated with a simple steady state nitrification model, which
was calibrated in 9 NW Mediterranean coastal sites with different anthropogenic
pressures, located within 250 km. The results obtained indicate that nitrite peaks
are observed in winter and explained by nitrification response to temperature, but
these dynamics are altered in impacted coastal waters. We found the second step of
nitrification to be more sensitive to temperature, which entails a significant impact
of climate change on the decoupling of the two steps of nitrification. The results
could be extrapolated to numerous coastal regions of the Mediterranean Sea with

similar characteristics.

3.2 Introduction

Rockstrom et al. (2009) established the alteration of the nitrogen (N) cycle as one
of the three planetary processes, together with climate change and biodiversity loss,
sufficiently altered by human activity as to potentially have disastrous consequences
for humans. Some authors are concerned about nitrogen being “the next carbon”
(Battye et al., 2017). Due to their vulnerability to anthropogenically driven change,
coastal zones have been highly impacted (Arhonditsis et al.,; 2000; De Vittor et al.,
2016; Smith et al., 2014). Population growth and related nutrient sources such
as agriculture, wastewater, urban runoff, and fossil fuels have increased nutrient
inputs to coastal waters to many times their natural levels (Bricker et al., 2008).
As such, many researchers have evidenced the impact that human activities have

caused to food webs or biogeochemical processes in many coastal systems (Borja
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et al., 2004; Lundberg et al., 2005; Wang et al., 1999). In the Mediterranean Sea,
direct wastewater discharges account for a large amount of the total nitrogen input
(Powley et al., 2016; Stamou, Kamizoulis, 2008). Nearshore coastal waters (0-200
m) are particularly vulnerable and need a special attention, as the nutrient gradient

from land to ocean is considerably large in the Mediterranean Sea (Flo et al., 2011).

Nitrification plays a crucial role in marine primary production (Yool et al.; 2007)
and in the N cycle of coastal zones (Damashek et al., 2016; McLaughlin et al., 2017).
This process alone does not change the total amount of nitrogen in an ecosystem,
but it affects its speciation and fate: nitrate (the product of nitrification) serves as
substrate for denitrification, which removes N from the system via Ny gas (Carini
et al., 2010). Nitrification is generally described as a two-step process occurring
under aerobic conditions: oxidation of ammonium to nitrite and oxidation of nitrite
to nitrate (Kim, 2016). It links reduced and oxidized forms of nitrogen. Although
ammonium oxidation is considered the limiting step, both steps are expected to be
tightly coupled. However, evidence of decoupling in coastal waters was observed
especially at high temperatures (Beman et al., 2013; Heiss, Fulweiler, 2016), which
leads to the accumulation of nitrite. As an intermediary compound in many key bio-
logical processes, nitrite dynamics have historically been used as an indicator of the
balance between oxidative and reductive pathways in marine systems (Lomas, Lip-
schultz, 2006). Nitrite production processes in aerobic waters include the oxidation
of ammonia and assimilatory nitrate reduction by phytoplankton and heterotrophic
bacteria, while removal pathways for nitrite include oxidation by nitrite-oxidizing

bacteria and phytoplankton uptake (Schaefer, Hollibaugh, 2017).

Increasing evidence indicates that many environmental factors such as pH, tem-
perature or oxygen concentration affect nitrification processes (Damashek et al.,
2016; Schaefer, Hollibaugh, 2017). However, when it comes to how humans al-
ter inorganic nitrogen transformations in marine environments research is still very
scarce. Kim (2016) summarized how climate change will alter marine N cycle and

indicated the need for further research on marine inorganic N transformations, while
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McLaughlin et al. (2017) and Bartl et al. (2018) studied the alteration of nitrifica-
tion caused by wastewater discharges and pointed out the need for further research
on anthropogenic nutrient effect on coastal biogeochemistry. Ocean acidification
results in reduced nitrification rates (Beman et al., 2010; Huesemann et al., 2002;
Kitidis et al., 2011) while other anthropogenic pressures such as N deposition (I<im,
2016) or wastewater efluents might increase nitrification (McLaughlin et al., 2017).
Clearly, the overall anthropogenic effect on nitrification in coastal systems needs
to be evaluated further. In the Mediterranean Sea, the urbanization on the littoral
zone has severely impacted the natural balance of ecosystems (Lejeusne et al., 2010).
Nitrification dynamics are altered in those areas with high anthropogenic pressure,
leading to a change in nitrogen cycling along the year (Kapetanaki et al., 2015). The
modification of such an important process in the N cycle may have consequences on
phytoplankton abundance and diversity, with cascading effects on other organisms.
The importance of nitrification in the N biogeochemistry in coastal waters has al-
ready been proved by many authors (Damashek et al., 2016; Heiss, Fulweiler, 2016;
Huesemann et al., 2002), but the mechanisms by which anthropogenic activity alters

nitrification in coastal waters need to be studied in more detail.

The aim of this study was to propose a simple workflow for the evaluation of
nitrification alteration in coastal waters due to anthropogenic activity. Nitrite, as
the intermediary compound in the two steps of nitrification, was used to study ni-
trification. We modelled nitrite dynamics in several coastal sites located within
approximately 250 km of coast. All modelled water bodies have similar characteris-
tics but different anthropogenic pressures, so that nitrification parameters could be
related to anthropogenic pressure. This methodology is applicable to other coastal
areas of the Mediterranean Sea, where nitrification is the main driver of nitrite

dynamics (Bianchi et al., 1994).
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3.3 Materials and Methods

3.3.1 Study area

The Jucar River Basin District (JRBD) lies in the Mediterranean coast of Spain,
covering 42,735 km? with 574 km of coastline. The management plan defines 16
natural coastal water bodies. In this study we focused on 9 of them, which belong to
the typology II-A (moderately influenced by freshwater inputs with salinity between
34.5 and 37.5 g.kg!). These water bodies (presented in Figure 1.4) have similar
geomorphology, littoral transport, dominant winds, rainfall, area of fluvial basins,
continental inputs and wet zones. C002 is the reference site for typology II-A with
no relevant anthropogenic influence, as determined by Romero et al. (2013) and
Pachés et al. (2012) who evaluated pressures and impacts according to annex V
of the Water Framework Directive (WFD). Some coastal waters in the JRBD are
considered under the WFD as heavily modified due to the presence of a harbor

(Figure 3.1); these water bodies were not included in our study.

Hermosilla Gémez (2009) studied the influence of the sampling locations in the
evaluation of the anthropogenic pressures and the ecological status of the coasts
of Valencia. By means of statistical analysis, she determined that sampling sites
should be located inshore (over the coast) and at the surface so that samples are
taken from the area affected by anthropogenic eutrophication. Besides, the data and
methods developed in Spain for the intercalibration exercise of the Mediterranean
intercalibration group (MedGIG) within the WEFD are most based on inshore sam-
pling stations (MedGIG, 2009). Thus, in order to compare the results obtained in
this study with previous ecological evaluations in the water bodies considered, in-
shore sampling was more convenient. 46 monitoring sites were distributed all along
the coast, with 4 to 7 stations in each water body. Each month from August 2008
until January 2011, water samples were taken from beyond the wave breakpoint at
a 10 cm depth. Temperature was measured in situ with a multiparametric probe

YSI (6600 V2).
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Figure 3.1: Jucar River Basin District: natural coastal water bodies of typology
II-A; heavily modified coastal water bodies (which as a result of physical alterations
by human activity is substantially changed in character) and monitoring sites.

Water samples were collected in plastic bottles, refrigerated, and carried to the
laboratory within 12 hours. A Portasal 8410A salinometer was calibrated to de-
termine salinity (I.A.P.S.O. Standard Seawater, Ocean Scientific International Ltd.,
K15 = 0.99986, S = 34.995%0). Samples were divided into several sets following
the conservation procedures suggested by APHA (2005) and filtered through 0.45 m
cellulose acetate membrane filters (Millipore HAWP). These membranes are stored

at -20°C in order to break the cells for chlorophyll-a analysis.

For the determination of chlorophyll-a, the trichromatic method was used, based
on visible spectroscopy APHA (2005). The filters are introduced in 6 ml of 90%
acetone in water with 1% calcium carbonate. The optical density of the extract was

determined at different wavelengths (630, 647 and 664 nm) to determine the pigment
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content, and at 750 nm to determine the optical density not due to chlorophyll-a.
The equations proposed by Jeffrey and Humprey (1975) were used for concentration

calculations. The detection limit was 0.2 mgC.m™ of chlorophyll-a.

Nutrients (ammonium, nitrite and nitrate) were analyzed with an Alliance In-
struments Integral Futura air-segmented continuous-flow autoanalyzer, following the
procedure described by Treguer, Le Corre (1975) and taking into account the re-
marks made by Kirkwood et al. (1991) and Parsons et al. (1984). The equipment
optimization is carried out following Coakley (1981) theories. Ammonium and ni-
trite were analyzed with the filtered samples, right after filtration, while the samples
kept for nitrate determination were frozen for a later analysis. Ammonium was mea-
sured based on Berthelot’s reaction. Under alkaline conditions, ammonium reacts
with the hypochlorite forming a monochloramine. This compound, in the presence of
phenol and an excess of hypochlorite, forms indophenol blue. The nitroprusside ion
catalyzes the reaction and trisodium citrate eliminates the interference of Ca and Mg
(Solorzano, 1969). Nitrite concentrations were determined with Shinn (1941) wa-
ter analysis method, adapted for seawater by Bendschneider, Robinson (1952). This
method is based on the reaction of nitrite ion with sulfanilamide in acidic conditions,
producing a diazo compound that forms a pink complex with N-naphthylethylene
diamine. For the determination of nitrate concentrations, this compound is reduced
to nitrite by means of a Cu/Cd reducing column in basic conditions (pH = 8.5),
following the method described by (Grasshoff, 1976). Subsequently, nitrite is ana-
lyzed by the procedure described above. High purity Merck reagents for analysis
and ultra-pure water (Milli-Q 185) were used. The detection limits were 1.4x1073

mgN.L?! for ammonium and nitrate and 1.4x10* mgN.L"! for nitrite.

3.3.2 Workflow

The proposed workflow is schematized in Figure 3.2 and explained in detail in next

sections.
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Formulate a simple kinetic model
to estimate nitrite dynamics.

Calculate Spearman Rank
correlation between input and
output variables

Find model parameter limits in the
literature

Adjust model parameters by
minimizing RMSE

Simulate nitrite with validation
dataset for each water body
Calculate RMSE in validation data

Calculate R? in validation data

Evaluate source of error

Calculate Spearman correlation
between model parameters and
ecological quality indicator

Compare model parameters among
water bodies and urban areas

Figure 3.2: Descriptive diagram of the research workflow.

3.3.3 Model formulation

The equation solved is based on the principle of the conservation of mass. The main
processes driving nitrite dynamics were studied from the literature and used for the
development of the model, neglecting the less relevant processes. We applied a mass
balance in zero dimensions in each water body which was considered as a control
volume. As samples were taken at the surface, we considered appropriate to neglect

the effect of the sediment. Simple and well-known principles can be used to build
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simple models which can give an overall understanding of nitrogen processes. When
a basic understanding of the system is aimed and the requirement to the precision
of estimated values is low, simple models perform better (Hojberg et al., 2007).
Complex models require large amounts of data and such a model would not add

value to our research purpose.

Nitrite production pathways in coastal waters include ammonia oxidation and
assimilatory nitrate reduction by phytoplankton and heterotrophic bacteria, while
removal pathways for nitrite include nitrite oxidation and phytoplankton uptake
(Schaefer, Hollibaugh, 2017). Ammonium is the preferred form of nitrogen for phy-
toplankton uptake (Chau, Jin, 1998; Zouiten et al., 2013), so we considered direct
nitrite uptake to be negligible. Additionally, the study area is characterized by low
phytoplankton concentrations in natural conditions (Pachés et al.; 2012). Thus, ni-
trite release by phytoplankton was also neglected. An analysis of the relationship
between the model error and phytoplankton concentrations was carried out to con-
firm this assumption (see section 3.3.4). Bianchi et al. (1994) also determined that
nitrite concentrations in the NW Mediterranean Sea are regulated by the two steps
of nitrification. Therefore, we considered only nitrification processes to estimate
nitrite: formed with ammonium oxidation (nitrification first step) and eliminated
by nitrite oxidation (nitrification second step). Studies carried out in other coastal
areas also pointed out the significant role of nitrification (Damashek et al., 2016;

Schaefer, Hollibaugh, 2017).

At low nitrogen concentrations as those found in natural systems, the process of
nitrification is generally represented by a first order kinetic reaction (Bowie et al.,
1985). Previous studies typically considered only the temperature effect on nitrifi-
cation. Some authors also introduced the effect of dissolved oxygen as a limiting
factor (Chau, Jin, 1998; Umgiesser et al., 2003; Zouiten et al., 2013). Nonetheless,
the samples used in this study, which were taken at the sea surface, had all high
oxygen concentrations (averaged 8.3 £+ 1.4 mgO.L™! measured during campaigns).

Consequently, we did not add oxygen limitation to our model. pH, which also af-
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fects nitrification rates (Park et al., 2007), was measured during the campaigns and

variations were not relevant (averaged 8.14 + 0.13).

Flo et al. (2011) showed that continental influence is the main driver of nutrient
variability within 200 m of coast in the NW Mediterranean Sea. The water bodies
considered in this study have a length of >13 km along the coast, and samples were
taken at less than 50 m from the coastline. As such, the continental influence on
nutrient concentrations is much larger than the effect of the dispersion along the
coast. Additionally, as the two steps of nitrification are tightly coupled (Schaefer,
Hollibaugh, 2017), nitrite is oxidized to nitrate almost as fast as it is created (see
Table 3.1), whereas longitudinal mixing along >13 km is expected to be a much
slower process (Stamou, Kamizoulis, 2008). Therefore, we decided not to consider

dispersion with adjacent water bodies to simplify our model.

The main nitrogen sources to the JRBD coastal waters are agriculture and urban
population (Romero et al., 2013), which means that most of the nitrogen inputs are
in the form of ammonium or nitrate. Hence, we considered no relevant direct nitrite
inputs. An analysis of the relationship between the model error and salinity was
carried out to confirm this assumption (see section 3.3.4).

Equation 3.3.1 represents nitrite mass balance under these assumptions.

I[NO; |

T k0T 20 INH[] — ky62 " [NOy ] (3.3.1)

Where, [NO| is nitrite concentration (mgN.L!), [NH; ] is ammonium concentration
(mgN.L™!), t is time (day), k; is ammonium oxidation rate at 20°C (day™'), 6, is
temperature coefficient for ammonium oxidation, k5 is nitrite oxidation rate at 20°C

(day™!), 65 is temperature coefficient for nitrite oxidation, T is temperature (°C).

The steady state approach is very frequently used in water quality modelling
(Chapra, 1997; Wang et al., 2013). This approach enables the calculation of the
nitrite concentration each month, if the conditions found at the time of the sampling

were maintained. Under this assumption the accumulation term was set to zero.

102



First publication

Nitrite concentrations can be estimated with the following equation, derived from

Equation 3.3.1
ky

Fiy O
k2

NO3] = ()G

)(-) TN H] (3.3.2)

ki1 and ky depend mathematically on each other (see Equation 3.3.2), making the
separate calibration of both parameters unfeasible. The same applied to 6; and
0. We defined K and © as new parameters equivalent to the ratios ’]z—; and Z—;
respectively:

[NO;| = KOT"[NH]] (3.3.3)

Thus, K represents the ratio of ammonium oxidation to nitrite oxidation, while ©

represents the ratio of ammonium to nitrite oxidation sensitivity to temperature.

Output sensitivity to input variables can be estimates with Spearman rank cor-
relation coefficient in nonlinear but monotonic relationships (Pianosi et al., 2016).
As such, the Spearman correlation coefficient was calculated between selected input
(temperature and ammonium) and output variables to determine the relative im-
portance in nitrite estimation. The calculation of this correlation confirms whether
the selected input variables are relevant for the estimation of nitrite concentrations,

or else the simplified model needs to be re-evaluated.

3.3.4 Model calibration and validation

We carried out a literature review to set parameter limits. The values found are

presented in Table 3.1.

Parameter = Range  Units
kq 0.05-0.5  d7!
ko 0.5-10 d-!
0, 1.02-1.12 -
05 1.02-1.12 -

Table 3.1: Bibliographical parameter values. References: (Bowie et al., 1985; Chau,
Jin, 1998; Myszograj, 2015; Zouiten et al., 2013)

Mean monthly values for all variables were calculated for each water body from
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August 2008 to January 2011. The dataset was divided in two sub-datasets; one was
used as calibration data and the second as validation data. Odd monthly observa-
tions (1,3,4...,29) of input and output variables were used for calibration whereas
even observations (2,4,6,...,30) were left for validation (see Figure 3.2). The pa-
rameters K and © were optimized to reproduce nitrite observed concentrations by
minimizing the rooted mean squared error (RMSE) in calibration data. Then, the
model was run with the validation dataset and nitrite estimations were compared to
observations. The RMSE and the coefficient of determination (R?) were calculated

to estimate the goodness of fit.

Two of the neglected processes during the model formulation may be the main
source of error to our model: phytoplankton release and continental inputs. To eval-
uate the source of error in the model, we calculated Spearman correlation between
monthly error and phytoplankton and between monthly error and salinity in each

water body.

3.3.5 Parameter variation analysis

Once the model was validated, the relationship between model parameter differences
among water bodies and two physicochemical variables was evaluated to determine
the source of spatial changes in nitrification dynamics. pH and dissolved oxygen
were very similar in all water bodies as mentioned above and consequently not
included in this evaluation. The two physical variables analyzed were temperature
and salinity. The Spearman correlation coefficient between these two variables and
calibrated model parameters was calculated to determine whether they may influence

the studied nitrification parameter values.

Phytoplankton biomass is established as an indicator of the ecological status
of coastal waters under the WFD. In the JRBD, Pachés et al. (2012) identified
chlorophyll-a 50" percentile to be the most appropriate statistical parameter to

measure anthropogenic pressure, and Romero et al. (2013) related phytoplankton
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to anthropogenic pressures such as population density, agriculture and industry. As
such, we used chlorophyll-a 50" percentile as an indicator of the alteration provoked
by human pressures. We calculated the Spearman correlation coefficient between
model parameters and chlorophyll-a 50" percentile to determine whether anthro-

pogenic pressures may have altered nitrification parameters.

3.4 Results

3.4.1 Variable values

Ammonium, nitrite and nitrate concentrations in each water body are presented in
Figure 3.3, as well as temperature, salinity and chlorophyll-a.

The highest N concentrations were found in C007, the water body located north
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Figure 3.3: Boxplot of ammonium, nitrite and nitrate concentrations of all water
bodies from August 2008 to January 2011. Each data point corresponds to the mean
concentration of all monitoring sites of a water body for a given time.

of Valencia city. Chlorophyll-a was also high in C007; the most polluted site of the
JRBD (Pachés et al., 2012; Temino-Boes et al., 2018). C002, the reference water
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body, had low N concentrations, together with C001 and C003. The lowest salinities
were found in C005 and C007, with some low salinity events in C009. The latest

water body corresponds to the discharge of the Jucar river. Temperature is slightly

lower in sites C001 to C003.

3.4.2 Model results

Spearman correlation between model forcings (water temperature and ammonium)
and output variable (nitrite concentration) was calculated to determine which vari-
able had the highest influence on nitrite concentrations in each water body. We
found a significant rank correlation between nitrite and temperature in all water
bodies except C005 and C007 (Table 3.2) which correspond to the sites with highest

continental influence (see salinity in Figure 3.3).

Water Body T NH
Co001 -0.38*%  0.49*
C002 -0.67* 0.28
C003 -0.55*%  0.30
C004 -0.61%  0.44
C005 -0.36  0.56*
C007 0.08 0.79*
C008 -0.60* 0.85*
C009 -0.44* 0.57*
C010 -0.37%  0.52*

*Significant correlations at the 95% confidence level

Table 3.2: Spearman rank correlation between output variable (nitrite) and input
variables (temperature and ammonium).

On the other hand, ammonium was significantly correlated to nitrite in all water
bodies except C002 to C004. These sites correspond to the lowest observed inorganic

nitrogen concentrations and chlorophyll-a (Figure 3.3).

We calibrated and validated the model for each water body, and the obtained
results are presented in Figure 3.4. The parameters K and © obtained for each water

body are shown in Table 3.3. We calculated the RMSE and R? in validation data
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Figure 3.4: Mean nitrite measured (red line) and estimated (blue line) concentrations
in all water bodies from August 2008 to January 2011.
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(Table 3.3). Ammonium oxidation rate is often estimated as an order of magnitude
lower than nitrite oxidation for surface water quality modelling as shown in Table

3.1. This observation agrees with our findings which established a K mean value of

0.17 (Table 3.3).

Water Body K © RMSE(mg.L™') R?
Co01 0.15 0.94 1.33E-03 0.55%
C002 0.08 0.80 7.10E-04 0.84%*
C003 0.13 0.91 6.75E-04 0.71%*
C004 0.20 0.98 1.49E-03 0.95%
C005 0.33 0.92 5.97E-03 0.70*
Coo7 0.09 1.27 2.46E-02 0.74*
C008 0.11 1.10 1.30E-02 0.72*
C009 0.25 0.97 8.37E-03 0.46*
C010 0.19 0.97 2.61E-03 0.31%*

*Significant correlations at the 95% confidence level

Table 3.3: Calibrated parameters (K and ©) for each water body, root mean squared
error (RMSE) and coefficient of determination (R?) between measured and estimated
nitrite concentration in validation data.

In most water bodies © was below 1, which indicates that nitrite oxidation is
more sensitive to temperature changes than ammonium. Under this circumstance,
nitrite peaks are observed in low temperature periods (December and January). The
sites with the lowest anthropogenic pressures (C002 and C003) show clear nitrite
peaks in the mentioned period. Only two water bodies (C007 and C008) presented
a © higher than 1. No significant correlation was found in any water body between
monthly error and chlorophyll-a (as a measure of phytoplankton), while the correla-
tion with salinity was significant in water bodies C005 and C010 (Table 3.4). When
salinity was low, the model error was higher due to continental nitrite inputs which

were not considered in the model.

3.4.3 Analysis of spatial parameter variations

Spearman rank correlations between salinity, temperature and chlorophyll-a with

model parameters and RMSE are calculated in Table 3.5. Both © and the RMSE
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Water Body S Chl-a

C001 -0.27  -0.06
€002 -0.26  -0.11
C003 0.15 0.01
€004 0.34 0.29

C005 0.52* -0.16
Coor 0.34 0.26
C008 0.03 -0.09
C009 0.48%  -0.22
€010 0.33* -0.05

*Significant correlations at the 95% confidence level

Table 3.4: Spearman rank correlation between error with chlorophyll-a (Chl-a) and
salinity (S)

have a high rank correlation with chlorophyll-a 50" percentile, an indicator of the
ecological status of coastal waters. Additionally, salinity is related to the RMSE.

Figure 3.5 shows how the parameter ©, which represents the difference in temper-
ature influence between ammonium and nitrite oxidation, is influenced by anthro-
pogenic activity. Closer to big urban areas, like the city of Valencia in C007, ©
increases, while it decreases in C002 or C003 where the population is smaller. On

the contrary, K does not have an anthropogenic influence (Table 3.5).

Parameter S T P50 chlorophyll-a

K -0.41  0.45 0.02
S -0.42  0.50 0.80*
RMSE  -0.73% 0.42 0.97*

*Significant correlations at the 95% confidence level

Table 3.5: Spearman Rank Correlation of model parameters and root mean squared
error (RMSE) with mean salinity, mean temperature and chlorophyll-a 50" per-
centile.)
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population and Heavily modified water bodies (HMWB) due to the presence of a
harbour.
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3.5 Discussion

The natural annual cycle of nitrite showed peaks in cold months (December and
January), as found in the reference water body C002 (Figure 3.4). However, this
cycle was highly perturbed in anthropogenically altered coastal zones, with peaks
occurring both in cold and warm seasons driven by ammonium concentrations. Our
results demonstrate that the two steps of nitrification are decoupled in coastal wa-
ters, agreeing with late findings (Heiss, Fulweiler, 2016; Schaefer, Hollibaugh, 2017).
Different speeds in the two steps of nitrification were also observed in the Jucar es-
tuary (Romero et al.; 2007). In our model, peaks occur due to the different response
to temperature in ammonium and nitrite oxidation (parameter ©). Many previous
studies found high nitrite concentrations at warmer seasons (Bristow et al., 2015;
Heiss, Fulweiler, 2016; Schaefer, Hollibaugh, 2017) while others (such as this study)

observed nitrite peaks at low temperatures (Pitcher et al.; 2011).

The changes observed in nitrite dynamics among water bodies indicate a shift
in nitrification temperature dependence parameter © due to anthropogenic activity
(Figure 3.5). Nitrification requires the mediation of a vast diversity of microorgan-
isms, which makes it an essential process for marine life. Pachés et al. (2012) proved
how anthropogenic activity is changing microorganism composition in coastal wa-
ters of the JRBD, which may explain the spatial differences found in ammonium and
nitrite oxidation temperature parameters. Although no previous study considered
this dependence in coastal waters, studies carried out in wastewater determined the
dependence of nitrification temperature coefficient on microorganism composition
and abundance (Myszograj, 2015). In addition, wastewater effluents alter the bio-
geochemical cycling and phytoplankton composition (Howard et al.; 2017) which
may have caused shifts in nitrification temperature dependence. Future research
is required to describe the processes driving nitrification dependency on temper-
ature. Previous studies identified a dependence of nitrification rates on salinity
(Bernhard et al.; 2005; Heiss, Fulweiler, 2016), and low salinity events with elevated

concentrations of certain ammonium oxidizing archaea (Schaefer, Hollibaugh, 2017).
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Bernhard et al. (2005) indicated that the abundance and diversity of ammonium ox-
idizing bacteria is highly controlled by salinity, and Heiss, Fulweiler (2016) found
lower nitrite oxidation rates with higher salinity events. Bianchi et al. (1999) linked
high ammonium oxidizing rates with low salinity events in the NW Mediterranean

Sea.

We found temperature to be an important driver of ammonium and nitrite oxi-
dation decoupling under natural conditions, which entails climate change could have
a great impact in this process. In the reference water body C002, which represents
unaltered nutrient concentrations, the value of ©® was lower than 1. This result
indicates that under pristine conditions the second step of nitrification (nitrite ox-
idation) is more sensitive to temperature than the first step. Climate change will
therefore have a greater impact in this second step. In addition, some studies fore-
cast an important precipitation loss in the Jucar area (Chirivella et al., 2016; Mird
et al., 2018) which would considerably reduce the riverine inputs of ammonium and
other forms of nitrogen. The decrease in ammonium concentrations would have a
direct effect on the rate of nitrification. Therefore, it may be expected to have lower
nitrite concentrations due to reduced nitrification rates and a shift in nitrite peaks
due to higher temperatures. Further research is needed to evaluate how the com-
bined effect of nitrogen pollution and climate change will modify the nitrification

process in coastal waters.

The model performed well in general. However, there was a wide variation
among sites in the accuracy of the model. The coefficient of determination R? is
lower in C001, C009 and C010 (Table 3.3). As the number of stressors increases, the
functioning of the ecosystem is altered, and the estimation of nutrient concentrations
is hindered (O'Meara et al., 2017). High nitrite events no longer occur due to natural
conditions but rather to an unusual increase in human inputs. Continental inputs
are the main source of error to sites C005 and C009 as shown by the Spearman
correlations between error and salinity (see Table 3.4). Those water bodies have

higher continental influence as indicated by the low salinities. The Jucar river
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discharges in C009, which is most probably the source of nitrite during the peaks
not reproduced by the model. High nitrite concentrations in C010 also correspond
to low salinity event indicating an external source of nitrite not simulated in our
model. Although nitrite concentrations in C001 did not have a significant correlation
with salinity, this water body is located close to the Ebro delta, which may influence
nitrification dynamics in this water body. On the other hand, phytoplankton does
not have a significant correlation with the error (Table 3.4) which indicates that
neglecting phytoplankton uptake and release is not an important source of error to

the model.

The proposed workflow is applicable to other coastal areas with samples taken
at the surface to avoid the effect of dissolved oxygen limitation. pH variations along
the year in the Mediterranean Sea are usually less than £+ 0.1 pH units (Flecha
et al., 2015), and therefore pH is not expected to be one of the main drivers of
nitrification. The effect of phytoplankton and external inputs are the most important
processes to be considered before applying the model to other coastal areas. In the
Mediterranean Sea, marine waters are often oligotrophic (Vollenweider et al.; 1996)
and phytoplankton release of nitrite is presumably negligible in most areas. The
nitrification kinetic model proposed could be extended to add other processes in the
application to other study sites. However, the steps proposed in the workflow of
Figure 3.2 can be followed for the study of any areas if the model is adapted. Future
studies are needed to evaluate the mechanisms by which nitrification dynamics are

altered by human activity and which are its most relevant consequences.

3.6 Conclusion

Our results show how nitrification dynamics are perturbed in highly populated
coastal zones. Under natural conditions nitrite peaks are observed in winter due
to low temperatures, but this tendency is completely altered in anthropogenically

impacted water bodies. The change observed in the sensitivity to temperature of
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the two steps of nitrification was highly correlated to chlorophyll-a 50" percentile,
a measure of the ecological status (Spearman correlation r=0.80). Temperature was
the main driver of monthly variation in natural conditions, which indicates a poten-
tial effect of climate change on nitrification dynamics. Nitrification is a fundamental
process of nitrogen biogeochemistry. As a key nutrient, the alteration of the nitrogen
cycle may result in the change of the whole food web in marine ecosystems. Fur-
ther research concerning the human driven changes of the nitrogen cycle in marine
environments is essential to enable experts to propose recovery measures and avoid

reaching a point of no return.
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4.1 Abtract

This research analyzes the effect of meteorological variables on dissolved inorganic
nitrogen (DIN) species in coastal inshore waters of a Northwestern Mediterranean re-
gion under climate change. We built simple mathematical schemes based on artificial
neural networks (ANN), trained with field data. Then, we used regional climatic
projections for the Spanish Mediterranean coast to provide inputs to the trained
ANNSs, and thus, allowing the estimation of future DIN trends throughout the 21st
century. The results obtained indicate that nitrite and nitrate concentrations are
expected to decrease mainly due to rising temperatures and decreasing continental
inputs. Major changes are projected for the winter season. Ammonium concentra-
tions are not expected to undergo a significant annual trend but may either increase
or decrease during some months. These results entail a preliminary simplified ap-
proach to estimate the impact of meteorological changes on DIN concentrations in

coastal waters under climate change.

4.2 Introduction

Climate change is expected to exacerbate the imbalance of the nitrogen cycle (Gru-
ber, Galloway, 2008), which could already be even greater than expected (Paulmier,
Ruiz-Pino, 2009). Coastal areas are known to be particularly vulnerable. In fact,
some authors envisage that the future management of nutrient export might have
a dramatic impact on coastal water quality (Sinha et al., 2019). Other researchers
underline that anthropogenic pressures such as population increase and agricultural
practices, plus the cumulative effect of climate change, will probably aggravate nu-
trient cycling alteration in coastal waters (Rabalais et al., 2009; Sinha et al.; 2019).
Several investigations outline that nutrient processes will be modified as a response
to changes in temperature (Wagena, Easton, 2018), wind patterns (Deng et al.,

2018), hydrology, sea level rise (Statham, 2012) and precipitation (Stormer, 2011).

118



Second publication

Global warming can also contribute to hypoxia in coastal areas by reducing the ver-
tical exchange, making the system more sensitive to nutrient loads (Du et al., 2018).
As a consequence of the changes induced, a shift in the relationship between nutri-
ents and phytoplankton should be expected, which might require a re-evaluation of
nutrient criteria for ecological status assessment (Liu et al., 2018). Complex inter-
actions among environmental and climate drivers regulate phytoplankton in coastal
zones (Pesce et al., 2018), which entails a significant impact of climate change on
primary production. The combined effect of higher temperatures and changes in
nutrient availability can have drastic consequences for phytoplankton production
in coastal waters (Lee et al., 2019), which will add up to the impact of increasing
anthropogenic nutrient loadings (Huo et al., 2019). Additionally, the macrobenthos
community may also be affected by sea level rise, leading to an increase in nitrogen

flux to the water column (Brito et al., 2012).

Dissolved inorganic nitrogen (DIN), i.e. ammonium, nitrite and nitrate, are the
most reactive forms of nitrogen in marine waters and play an important role in
primary production (Camargo, Alonso, 2006). Nitrate is the most stable form of
inorganic nitrogen in oxygenated environments and is generally the dominating form
of DIN in estuaries and the surrounding coastal waters (Statham, 2012). Ammo-
nium is also a relevant N species which is often associated to urban influence (Flo
et al., 2011). Finally, even though nitrite is the less abundant of the three forms of
DIN due to its instability, it is often used as an indicator of the balance between
oxidative and reductive reactions (Temino-Boes et al., 2019a). As a consequence
of climate change, the variations in rainfall patterns may lead to the reduction of
DIN inputs to coastal waters through river discharges (Pesce et al., 2018), while
processes such as ammonification, nitrification and denitrification could be altered
by rising temperatures or ocean acidification (Temino-Boes et al.; 2019a; Wannicke

et al., 2018).

The Mediterranean coast has been identified as one of the most responsive re-

gions to climate change, driven by a significant decrease in the expected mean pre-
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cipitation (Herrmann et al., 2014). According to some authors, a reduction in the
system’s biomass can be expected in the Mediterranean Sea during the 21st century
(Lazzari et al., 2014), as well as seagrass degradation (Ontoria et al., 2019), sur-
face water warming, salinity increase (Vargas-Yanez et al.; 2017) and a decrease in
nutrient availability (Herrmann et al.; 2014). On the other hand, renewable water
resources are also expected to decrease (Garcia-Ruiz et al.; 2011), due to higher rates
of sea surface evaporation and reduced rainfall (Romanou et al., 2010), while water
demand continues to rise (Garcia-Ruiz et al.; 2011; Wang, Polcher, 2019). Under
future climate scenarios in the Northwestern Mediterranean Sea, changes in deep wa-
ter convection mechanisms in winter will likely diminish the importance of nutrient
upwelling, whilst horizontal currents will become a more relevant fertilization mech-
anism (Macias et al., 2018). These alterations may lead to significant changes in
both nutrient distribution and phytoplankton community structures (Severin et al.,
2014), which in turn could possibly shift towards small-size groups (Herrmann et al.,

2014).

Flo et al. (2011) defined coastal inshore waters (CIW) of the Mediterranean Sea
as the coastal waters laying between the shore and 200 m into the sea. This reduced
region is a unique habitat for many species, and a major socio-economic interest,
with tourism activities increasingly threatening the ecosystems (Colella et al., 2016).
The Mediterranean CIW are particularly vulnerable to anthropogenic influences,
and its characteristics differ considerably from other coastal regions located further
into the sea (> 200m). Significantly higher DIN concentrations were reported in
CIW, where continental influence is the major driver of nitrogen concentrations
(Flo et al., 2011), mainly derived from river discharges. The Ebro river delta, the
most important delta in the Iberian peninsula, has a mean surface elevation of 0.87
m over the average sea water level, which makes it very sensitive to potential sea
level rise, critically threatening nutrient removal dynamics (Genua-Olmedo et al.,
2016). Both climate change and agricultural practices have significant impacts on

nitrate concentrations in the Ebro basin, while phosphate concentrations are mainly
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driven by agricultural and industrial practices (Aguilera et al.; 2015). In the case of
the Jucar River Basin District (Southeast of Spain), temperatures are expected to
increase up to 4.86°C in summer by 2040 (Chirivella et al.; 2016) and consequently

alter nitrogen transformation processes (Temino-Boes et al.; 2019a).

The aforementioned impacts and the systems implicated are extremely difficult
to model successfully due to their inherent complexity and the great number of
variables involved. In this context, artificial neural networks (ANN) provide a very
attractive modelling framework, which has become increasingly popular, particularly
in the evaluation of climate change impacts (Altunkaynalk, 2007; Liu, Lin, 2010). The
human brain inspired the mechanisms used for ANNs development. They have been
extensively used in many fields, including water quality evaluation (He et al.; 2011).
One of the main advantages of ANN models in comparison to deterministic models
is that an extensive knowledge of the physicochemical processes is not required (He
et al., 2011). Besides, ANN models can deal with nonlinear relationships among
variables (Liu, Lin, 2010), improving the accuracy of long-term forecasts (Dogan
et al., 2016). The effect of climate change on water resources has been estimated
with ANNs in urban areas (Al-Zahrani, Abo-Monasar, 2015), aquifers (Coppola Jr.
et al., 2005), deltas (Byakatonda et al., 2016), rivers (Piotrowski et al., 2015), lakes
(Altunkaynak, 2007; Dogan et al.; 2016) or marine environments (Coutinho et al.,
2019). Results show that ANN models often outperform conventional methods (Al-
Zahrani, Abo-Monasar, 2015). Nutrient mechanisms, biogeochemical cycling (Bittig
et al., 2018) and primary production (Mattei et al., 2018) in the ocean under climate

change scenarios have also been evaluated with ANNs .

Nonetheless, only few studies have focused on the forecasting of global warming
effects on nutrient cycling in coastal regions (Basu et al., 2010; Wang, Polcher, 2019).
In this research, we developed simple ANN modelling schemes as a first approach
to evaluate regional climate change impacts on DIN concentrations trends in CIW
through meteorological variables. More specifically, we propose a non-linear three-

layered feedforward artificial neural network structure, containing a single output
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node. We trained and tested three different ANN models with such topology with
field data, in order to estimate ammonium, nitrite and nitrate concentrations. Using
these trained ANNs expected changes in DIN species concentrations are then esti-
mated, considering two meteorological projections under regional climate change
scenarios corresponding to the representative concentrations pathways (RCP) 4.5
and 8.5 respectively (Moss et al., 2010). Due to the necessary simplifications of
the physical processes, the results obtained are of qualitative interest rather than
quantitative. Our study site is an inshore Mediterranean coastal area of the South

East of Spain, exposed to very limited anthropogenic pressures.

4.3 Materials and Methods

4.3.1 Study area

The Jucar River Basin District is located in the Spanish Mediterranean coast. In this
study we focus in the water body C002 (Figure 4.1) which is the pristine reference
site for the moderately influenced by continental inputs region. As very limited
anthropogenic alteration of water quality exists in this area (Romero et al.; 2013),
it becomes easier to study the effect of physical and meteorological variables on
nitrogen concentrations. Five monitoring sites were located within C002, which are
presented in Figure 4.1. Ebro river delta is located approximately 60 km North
from the study site and represents the highest continental water input with a mean
annual flow of 286 m3.s for the period 2000-2018. Additionally, the aquifer of El
Maestrazgo discharges directly to our study site through several submarine springs

with a mean approximate flow of 1.5 m3.s™! (Garcia-Solsona et al., 2010).

In this study, we focus on coastal inshore waters (0 - 200 m), in which continental
influence is the main driver of nutrient concentrations (Flo et al.; 2011). The samples
collected for the development of this work were taken at < 50 m from the shore,

where the depth is < 1.5 m. As a consequence, the water column is completely
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Figure 4.1: Study site corresponding to the water body C002 identified as reference
site of the Jucar River Basin District. Five monitoring sites are shown.

mixed, and no stratification exists. Additionally, samples were taken at the surface,
which implies that the effect of the sediment can be neglected. The small tidal range
in the Mediterranean Sea prevent the dispersion of nutrients into the sea (Flo et al.,

2011).

Water samples were collected from each monitoring site once per month from
February 2006 to January 2011. Samples were taken in plastic bottles at the surface
and from beyond the wave breakpoint, refrigerated and carried to the laboratory.
The temperature and pH were measured in situ with a YSI 6600 Multi Parameter
V2 Sonde. Salinity was measured at the laboratory with a Portasal 8410A salinome-
ter. The procedures to measure ammonium, nitrite and nitrate are explained with
detail in Temino-Boes et al. (2019a). Air temperature, wind speed and rainfall data

were obtained from the Ministry of Agriculture, Fisheries and Food, and Ebro river
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discharges were obtained from the Ebro Water Authority.

4.3.2 Data pre-analysis

Considering that continental influence is the main driver of nutrient concentrations
(Flo et al., 2011) in CIW of the Northwestern Mediterranean, several physical and
meteorological variables were selected as potential input variables to model nutrient
concentrations. These variables were: wind speed, rainfall, salinity, Ebro river flow,
pH and water temperature. The output sensitivity to input variables relationships
can be estimated based on the Spearman rank correlation if a nonlinear but mono-
tonic relationship is assumed (Pianosi et al., 2016). In order to determine to which
variables nitrogen concentrations are more sensitive, we calculated the Spearman
rank correlation coefficients. The results of this analysis were used to select the

most appropriate input variables to the model.

Rainfall can significantly affect nitrogen in CIW trough different processes: by
diluting nutrient concentrations, through river runoff or through submarine ground-
water discharge (SGD). Nitrogen discharges through SGD have been reported to
be significant in the study area (Garcia-Solsona et al., 2010), particularly in the
form of nitrate (Ballesteros et al., 2007). The aquifer of E1 Maestrazgo, which dis-
charges through coastal springs in Irta National Park, is mainly recharged through
rainfall infiltration (Ballesteros et al., 2007). The time lag between SGD flux re-
sponse to freshwater infiltrated has been reported to be approximately 3 months
(Garcia-Solsona et al.; 2010). In order to determine the time lag between rainfall
and nitrate concentrations in our model, we calculated the cross-correlation with R

version 3.5.1.

4.3.3 Artificial neural networks

Artificial neural networks (ANN) are data-driven models that have shown to be very

successful modelling tools in a diversity of research areas (Abrahart et al., 2004;
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Alanis et al., 2019; Govindaraju, 2000). In particular, they have proved to be very
efficient in the prediction of relevant variables in complex systems characterized by
nonlinear dependencies of data, as it is the case of the ones analyzed herein. Several
ANN schemes were trained in this research, in order to extract the most relevant
interactions between the measured variables and synthesize them through simple
network topologies. These ANN schemes are built with the final aim of simulating
long-term future expectable trends in the system under different climatic scenarios,
as other authors have proposed (Abdullahi, Elkiran, 2017; Elgaali, Garcia, 2007).
These modelling steps can also be helpful to gain a better understanding of the
studied system behavior and its internal relationships between the involved physical
variables mentioned before. The type of ANNs employed herein is the well-known
feed forward multilayer perceptron of three layers with supervised learning, trained
with the classical error-backpropagation learning algorithm (Gardner, Dorling, 1998;

Rumelhart et al., 1986).

The structure of the networks is made up of three layers: an input layer compris-
ing a group of explanatory variables, a hidden layer with nodes including non-linear
activation functions, and an output layer corresponding to a selected target variable
to be predicted. The training process of the networks allows to configure the network
internal weights in order to minimize the error function, in this case, the average
squared error with respect to the measure (known values) of the target variable.
The activation function used for the hidden nodes was the popular logistic function

(Kohonen, 1988):

o(x) = (4.3.1)

Where x is the input value to the particular node, resulting from operations in
previous layers and connections to the node. ¢(x) is the value produced by the

activation function, i.e., output of the particular node under consideration.

The choice of the number of hidden nodes (ny,) affects the training process and the
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effectiveness and final performance of the network. Complex relationships between
inputs and outputs are difficult to be captured with too few hidden nodes, while too
many hidden nodes may result in network over-training and a loss of generalization
capacity of the network. Due to the sample size available for this study, the option
for a parsimonious model is generally recommended. According to it, we applied
the criteria (Lachtermacher, Fuller, 1994), adopting the minimum ny, value matching

this criteria:

1IN 3N
<y (T 41) < = 4.3.2
o S +1) <5 (4.3.2)

where N is the sample size, and I is the number of input variables.

The data used for network training is the sample corresponding to the period
from February 2006 to January 2010, while the period from February 2010 to Jan-
uary 2011 is reserved for validation. This partition is consistent with the criteria

suggested by (Haykin, 1999):

V2IW -1 —1
2 (W —1)

(4.3.3)

Tval = 1—

where W is the number of weights in the neural network, and ryay, is the pro-

portion of the total data used for training.

As it is the case with other black-box models, the overall performance is highly
influenced by the data preprocessing (Nawi et al.; 2013). In particular, the compu-
tational efficiency of the networks is enhanced if both input and output variables are
scaled. Consequently, all variables involved in the ANN modelling were previously

pre-processed through equation 4.3.4:

¥ = ( L TN )7 (4.3.4)

TMAX — TMIN

where x represents the original variable, xyn is the minimum value, xyax is the
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maximum value of the sample, x’ is the transformed variable, and ~ is an exponent
introduced in order to reduce the final skewness. + values are conveniently chosen
for each of the variables considered in the ANN modelling process, ranging from 0.3

to 1.0.

The back-propagation algorithm was used to train all the networks. This se-
quential iterative method adjusts the network weights in small steps, following the
direction of negative gradient of the error function. The learning rate was manually
modified to smaller values as the training process advanced, to avoid undesirable
oscillatory behavior of the training error function. During the learning process, the
order of presentation of patterns was randomized through the shuffling of the cases,
which is usually advantageous to avoid local minima. While other more power-
ful and quicker algorithms are commonly used (Burney et al.; 2007), the reduced
size of the networks involved herein allowed an efficient use of the simpler error-
backpropagation algorithm until the error function reached a specified convergence

with satisfactory quickness.

Training and validation processes of the different ANNs proposed were performed

using the software STATISTICA.

4.3.4 Climate change scenarios

The National Plan for Adaptation to Climate Change (PNACC), through the Scenarios-
PNACC initiative, collects regional climate information for Spain, both of current
climate and of future scenarios for the next decades. The projections of meteoro-
logical variables are based on the Fifth Assessment Report (AR5) of the Intergov-
ernmental Panel on Climate Change (IPCC). The initiative integrates the results of
international dynamic and statistic regionalization projects such as Euro-CORDEX
and VALUE, with national projections developed by the National Meteorological
Agency (AEMET) and by the Meteorology Group of Santander (CSIC - Univer-

sity of Cantabria). We downloaded projections of daily meteorological variables for
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future emission scenarios from the Platform of Exchange and Consultation of Infor-
mation on Adaptation to Climate Change in Spain (AdapteCCA.es), under RCP 4.5
and RCP 8.5. Mean monthly estimations for air temperature, humidity and rainfall

were calculated from 2011 to 2100 for both RCPs.

Due to the lack of water temperature and salinity projections under climate
change in the study area a simplified approach to estimate these variables is nec-
essary. Linear stepwise regression models were used to estimate salinity and water
temperature from meteorological variables, i.e. air temperature, rainfall and hu-
midity. For the estimation of salinity also Ebro river flow was used. All variables
were previously normalized through a unity-based normalization. The first 4 years

of measurements were used for model calibration and the last year for validation.

The Spanish center for studies and experimentation of public works (CEDEX)
assessed the impact of climate change on water resources in a natural regime in
the Spanish basins throughout the 21st century. The model developed is the Inte-
grated Precipitation Simulation model (SIMPA), a distributed simulation model of
the hydrological cycle that establishes water balances for the different processes. It
estimates the contribution from meteorological data and the physical characteristics
of the territory. The model is fed with regionalized projections of climate change
procured by AEMET and provides the expected values of the main hydrological
variables. The results are available online through a downloadable computer appli-
cation (CAMREC), a plugin for QGIS 2.18. The changes expected in the Ebro river
flow at its mouth throughout the 21st century under RCP 4.5 and RCP 8.5 were
obtained from CAMREC.

Monthly DIN concentrations from 2011 to 2100 were estimated by means of
the developed ANN model. For each month, Mann-Kendall trend test was applied
to determine whether the trends observed are statistically significant. This test is
a non-parametric monotonic trend analysis which identifies the increasing or de-
creasing patterns in time series data (Chaudhuri, Dutta, 2014; Colella et al., 2016).

The magnitude of the trend was evaluated with Sen’s slope (Sen, 1968), a non-
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parametric method which does not require assumptions on the normal distribution
of the data (Kitsiou, Karydis, 2011). The annual trend is evaluated with the season
Mann-Kendall test and the seasonal Sen’s slope. These tests are performed with the

package “trend” in R version 3.5.1.

4.4 Results

4.4.1 Monitoring data

The data obtained from the monitoring campaigns are presented in Figure 4.2.
Water temperature and pH are similar between monitoring sites. Salinity however
is lower in DP010 which can be attributed to SGD inputs. DIN concentrations are
higher in DP010, nitrate concentrations particularly. This monitoring site is located
close to an urban area as opposed to the other sites which are within Irta National
Park. Additionally, the SGD in this area entails an input of DIN especially in the

form of nitrate (Ballesteros et al., 2007).

As indicated in section 4.3.2, the cross-correlation between nitrate and rainfall
was evaluated. The result of the analysis is presented in Figure 4.3. The correlation
is maximum with a time-lag of 4 months between rainfall and nitrate concentrations.
This finding is in close agreement with the time lag in the aquifer’s discharge time

in Garcia-Solsona et al. (2010).

The Spearman correlations between physicochemical variables and DIN concen-
trations is shown in Table 4.4.1. Based on these correlations the input variables
selected for DIN species estimation were water temperature, salinity and rainfall
(with a 4-month time lag). Ebro river flow, the pH and the wind speed were dis-

carded for not having any significant correlation.
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Figure 4.2: Boxplot of water temperature, salinity and pH (left) and dissolved in-
organic nitrogen species concentrations (right) obtained during monthly monitoring
campaigns from February 2006 to January 2011, in the 5 monitoring sites. The
median is represented by a black horizontal line, outliers are not represented.
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Figure 4.3: Cross-correlation between nitrate concentration and rainfall. Horizon-
tal axis shows the time lag in nitrate concentrations while vertical axis shows the
correlation between nitrate and rainfall.

NH,;t* NOy NOj3" R-4 Q WT pH S W
NH,* - -0.05 023 0.19 0.09 0.25% 0.10 -0.39* -0.07
NOy” - 0.43* 0.19 0.06 -0.54* -0.05 -0.11 0.03
NO3~ - 0.46* 0.23 -0.33* 0.10 -0.64* -0.16
R-4 - 0.32* -0.02 0.16 -0.37* -0.06
Q - -0.35% -0.04 -0.46* -0.04
WT - 0.29* 0.12 -0.02
pH - -0.08 -0.14
S - 0.20
*Significant correlations at 0.05 significance level
Table 4.1: Spearman correlations between studied variables. NH; ™, NOy™ and NO3"

in mgN.L~

! R-4: rainfall in mm.day™ with a 4-month time lag, Q: Ebro river flow in

m?.s1, WT: water temperature in °C, S: salinity in g.kg!, W: wind speed in m.s™.)
The asterisk indicates a statistically significant correlation at a 0.05 significant level.
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4.4.2 ANN model

A simple artificial neural network architecture is proposed to predict values of each
of the DIN species, i.e., NH;T, NOy and NOj3. One network is built and trained
for each of these variables, although the three networks developed have the same

3-layer topology.

The variables used as predictors, that is, the input variables of the networks,
are the same for each of the three neural networks. The selected predictors are
those physical parameters that showed higher correlation: salinity, temperature and
rainfall. Consequently, the number of nodes in the input layer is three, and the

number of nodes in the output layer is one.

The number of hidden nodes was calculated with equation 4.3.2, resulting in
n,=2, which is also consistent with recommendation (Wanas et al., 1998). This
network size proved to be optimal, as other networks with n,=1, 3 and 4 were later
tested, yielding to worse performance indexes. Consequently, the architecture of the
proposed ANN consists on a 3-layer feedforward neural network with 3 input nodes,
two hidden nodes and one output node (either NH;*, NOy™ or NOj37), as indicated

in Figure 4.4.

Salinity
H.
Temperature f - OUTPUT
Rainfall

Figure 4.4: Feedforward neural network topology

The obtained rooted mean squared errors (RMSE) for training and validation
data are presented in Table 4.2. While Figure 4.5 shows the model outputs for

ammonium, nitrite and nitrate and the R? for each model.
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RMSE NH,* NOy NOj3
Training 4.10E-03 1.48E-03 2.63E-02
Validation 3.15E-03 8.15E-04 1.99E-02

Table 4.2: Rooted mean squared error (RMSE) in mgN.L! for training and valida-
tion data

0.03 ‘ :

I
——Measured - calibration
——Estimated - calibration

R2=0.36

002k AE=00028 —#—Measured - validation ||
—+#—Estimated - validation

NHE
mgh-L!
0.0

0.0f | ‘

0.008 R2=051
AE=0.000

NOz 0.006
mgN- L’
0004

0.002

0 | | | | . |
July2006 January2007 July2007 January2008 July2008 January2009 July2009 January2010 July2010 January 2011

02 T T T

015 AE =0.0187

NO3 g4 4 }

mah. !

005

July2006 January2007 July2007 January2008 July2008 January2009 July 2009 January2010 July2010 January 2011

Figure 4.5: NH,", NO,  and NO3™ models based on artificial neural networks. Rain-
fall with a 4-month time lag, water temperature and salinity are the input variables.
The coefficient of determination R? and the absolute error (AE) in mgN.L! is shown.
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4.4.3 Water temperature and salinity models

Linear regression model parameters to estimate water temperature and salinity are
presented in Table 4.3. Water temperature is estimated from air temperature solely,
while salinity is estimated with rainfall (with a 4-month time lag), humidity and
Ebro river flow. Both models are found to be statistically significant as determined
by the R?, adjusted-R? and p-value shown in Table 4.4. Durbin-Watson statistic
tests the residuals to determine if there is any significant correlation based on the
order in which they occur in the data. There is no serial autocorrelation in the

residual at a 95 % level of significance as indicated in Table 4.3.

As indicated in section 4.3.4, the first 48 measurements corresponding to the first
4 years were used to build the model and the last 12 values were used for validation.
Both calibration and validation data are shown in Figure 4.6. The coefficient of

determination R? was very similar in calibration and validation for both models.

Model Parameter Estimate Standard Error T statistic p-value

1. Water Constant 0.1032 0.0242 4.2700 0.0001
Temperature Tair 0.8944 0.0424 21.0767 0.0000
Constant 0.1032 0.0242 4.2700 0.0001

2. Salinity R-4 -0.1927 0.0947 -2.0353 0.0479
H -0.2734 0.0996 -2.7454 0.0087

Q -0.5436 0.1055 -5.1549 0.0000

Table 4.3: Stepwise linear regression models of water temperature (1) and salinity
(2). Tapp: air temperature, R-4: 4-month lag rainfall, H: humidity and Q: Ebro flow.

Parameter Model 1: Water Temperature Model 2: Salinity
R? 90.62 50.99
R? adjusted 90.41 47.65
Standard error 0.0937 0.1589
Durbin-Watson statistic 1.9702 1.5951
Durbin-Watson p-value 0.4079 0.0722
ANOVA F-Ratio 444.23 15.26
ANOVA p-value 0.0000 0.0000

Table 4.4: : Model R?, standard error, Durbin-Watson statistics and ANOVA
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Figure 4.6: Linear models for the estimation of water temperature (left) and salinity
(right). The coefficient of determination R? and the absolute error (AE) are shown
for both calibration and validation data

4.4.4 The effect of climate change on DIN concentrations

Estimations of air temperature, humidity and rainfall from 2011 to 2100 under
climate change scenarios were downloaded from AdapteCCA.es website and changes
in Ebro river flow were obtained from CAMREC as mentioned in section 4.3.4. The
changes projected for theses variables under climate change each month for the

period 2070-2100 relative to 1971-2000 are presented in Figure 4.7.

Salinity and water temperatures for both RCP 4.5 and RCP 8.5 emission sce-
narios were calculated with the linear models developed in the previous section. By
means of the ANN models, DIN concentration trends between 2011 and 2100 were

estimated. Results are represented in Figure 4.8.

The Sen’s slope for each month was calculated to measure the magnitude of
the increasing or decreasing trend for DIN species over the period 2011 to 2100.
Additionally, Mann-Kendall test was applied to evaluate whether the observed trend
is statistically significant. The results are shown in Table 4.5. Nitrite and nitrate

concentrations are expected to decrease both under RCP 4.5 and RCP 8.5 on an
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Figure 4.7: Changes in air temperature, rainfall, humidity and Ebro river flow for

the period 2070-2100 compared to 1971-2000 (1961-2000 for Ebro river flow).

annual basis, with greater decrease found for RCP 8.5. Nitrite peaks, which are

observed under low temperature conditions, are expected to decline. On the other

hand, ammonium is expected to increase mainly between January and March and

decrease from September to December, but the global trend was not statistically

significant.
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Figure 4.8: Projections of ammonium, nitrite and nitrate concentrations from 2011
to 2100 by means of the ANN models under RCP 4.5 and RCP 8.5 scenarios.

4.5 Discussion

Artificial neural networks have proved to be a useful tool to evaluate the effects of

climate change on DIN species. The proposed models showed the ability to estimate

the impact of future meteorological conditions on the trends of DIN concentrations

in CIW. Nonetheless, the results should be interpreted cautiously due to the as-

sumptions made throughout the evaluation. Nitrite and nitrate models reached R?

values over 0.50, which can be acceptable, considering the high variability generally

found in coastal waters. Due to the high uncertainty in ammonium concentrations

in Northwestern Mediterranean coastal waters (Paches et al., 2019), the model per-

formance was lower for this nutrient (Figure 4.5). Also, the additional uncertainty
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introduced by the linear models developed for water temperature and salinity esti-
mations should be pointed out. Water temperature model reached R? = 0.90; but
salinity model had R? = 0.50, implying a degree of uncertainty introduced to ANN
model inputs for future projections. The observed errors in ANN outputs can be
attributed to both natural and anthropogenic sources. Anthropogenic nitrogen in-
puts, even if considered to be very limited in our study area (Romero et al.; 2013),
may account for some of the uncertainties. For instance, nitrogen inputs through
Ebro river or submarine groundwater discharges are not constant along the year.
On the other hand, the discharges of the aquifer El Maestrazgo are related to other
parameters on top of precipitation. Nonetheless, the main contribution of this work
lies in the evaluation of the overall expected tendency of nitrogen concentrations un-
der climate change scenarios. In this sense, and according to the modelling results
obtained, nitrite and nitrate concentrations are expected to drop under both RCP
4.5 and RCP 8.5 climate change scenarios, with greater decreases under RCP 8.5.
Nitrite peaks generally occur due to low temperatures which decouple both steps
of nitrification (Temino-Boes et al., 2019a). In accordance to this, future projec-
tions show a reduction of peaks during December and January, mainly due to the
expected increase in minimum temperatures. Overall, the decaying trend of nitrite
levels under climate change scenarios is basically driven by future rising temper-
atures. Nitrate is also expected to decrease, driven by both higher temperatures
and decreasing rainfall. It is interesting to note that maximum monthly cumulative
rainfall occurs in September, resulting in higher aquifer recharge during this month.
This yields to groundwater discharge peaks during successive months, with an av-
erage time delay of 4 months, i.e., January. A decrease of future expected rainfall,
more particularly during this rainiest month, will result in significant groundwater
discharges reduction, which in turn will affect nitrate levels. This is consistent with
simulation results obtained under RCP 8.5, where the most significant decreases in

future nitrate concentration are expected during January.

The expected trends derived from the presented simulations herein, are consis-
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tent with known processes governing the dynamics of the nitrogen cycle. As pointed
out by previous researchers, higher nitrification and denitrification rates are actually
driven by higher temperatures, and thus, are expected to decrease future nitrogen
availability (Wagena, Faston, 2018). Other authors already indicated that changes
in temperature and precipitation could decrease nitrogen yields in coastal waters
(Alam et al., 2017). Some studies point out a significant imbalance of the ocean’s
nitrogen budget, with greater losses than inputs (Voss et al., 2013). Bi et al. (2018)
also found a negative correlation between nitrogen concentrations and temperature.
Precipitation was also correlated to nitrogen concentration in previous studies, indi-
cating that climate change might reduce nitrogen loads (Bi et al., 2018). Concerning
ammonium concentrations, our results indicate that significant changes are not ex-
pected on an annual basis. While ammonification and other related processes are
intensified due to higher temperatures, other factors are counteracting such effect,
such as lower future precipitation and lower river discharges. Not being simultaneous
drivers, though, smaller changes and trend fluctuations are expected for individual

months.

The modelling framework presented herein necessary implies an important over-
simplification of the complex systems under investigation. It neglects certain under-
lying physicochemical processes involved, and therefore, many uncertainty sources
need to be accounted for. Although most relevant climatic drivers were considered
in the analysis, other pressures such as changes in anthropogenic nutrient loads were
not taken into consideration. For instance, 65% of the Ebro delta is occupied by
rice fields (Genua-Olmedo et al.; 2016), which implies that nutrient management in
agriculture is a key factor for future export of DIN (Jennerjahn, 2012). The future
fertilization policy applied in the Ebro catchment is uncertain, ranging from a 10%
increase to a 15% decrease (Herrero et al., 2018). Obviously, the sort and amount of
fertilizer will change due to changes in rainfall and air temperatures, which would
influence coastal nutrient loads (Statham, 2012). Socioeconomic decisions about

land use and management will have determining consequences for hydrological pro-
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cesses (Zarzuelo et al.; 2019) and thus, on coastal nutrient enrichment (Sinha et al.,
2019). Clearly, an interdisciplinary collaboration is necessary between natural and
social sciences (Jennerjahn, 2012). Another aspect to be outlined is the highly regu-
lated Ebro river, affecting its average discharges to the Mediterranean. About 96%
of the catchment is regulated by dams (Jiménez et al., 2017), causing significant
reductions of river flow over the past decades (Fatori¢, Chelleri, 2012). In the fu-
ture, higher water regulation due to increasing water demand (Wang, Polcher, 2019)
and more intense human activity is generally expected in the Mediterranean region
(Herrero et al., 2018). Depletion of river flows in the delta areas may enhance
saline intrusion in the lower reaches of rivers and into the groundwater reserves
(Garcia-Ruiz et al., 2011). Under such conditions, the vulnerability of the Ebro val-
ley will likely increase (Barrera-Escoda et al., 2014), influencing the nitrogen export
to coastal waters. Natural and human-induced hydrodynamic alterations (Zarzuelo
et al., 2019) may also have a significant impact on nutrient discharges. Furthermore,
the potential changes in phytoplankton community and their ability to assimilate
nitrogen induced by higher temperatures was not considered in this study (IKumar
et al., 2018). In spite of these limitations, the study area selected corresponds to an
area of low anthropogenic inputs (Romero et al., 2013) which indicates that climate

change may have a greater impact than changes derived from direct human inputs.

On a global scale, the alteration of nitrogen transformations leads to many com-
plex cascading effects (Gruber, Galloway, 2008). For example, the enhancement of
nitrification and denitrification processes may lead to further emissions of greenhouse
gases such as nitrous oxide (Jennerjahn, 2012). The nitrogen cycle is closely related
to other biogeochemical cycles such as carbon or phosphorus (Gruber, Galloway,
2008), which implies that a change in nitrogen dynamics would cause important
alterations to these elements through stoichiometric biological requirements (Voss
et al.,, 2013). As a consequence, changes in DIN speciation and cycling along the
year would have important impacts on phytoplankton production (Lee et al.; 2019).

Nutrient limitation conditions could be modified as a consequence of climate change
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impacts (Paerl, 2018). Additionally, a decreased nutrient availability may provoke a
change in phytoplankton communities (Herrmann et al.; 2014), leading to changes
in the food chain. Altered species distribution and bloom timing can affect the food
web structure, affecting higher trophic levels (Stormer, 2011). Ecosystem services
provided by coastal systems may consequently be affected by the impacts of climate
change (Baron et al., 2013; Pesce et al., 2018). For instance, shifts in nitrogen trans-
formation processes may lead to changes in the potential for carbon sequestration

or may cause a loss of biodiversity (Baron et al., 2013).

Overall, the results obtained in this study indicate that climate change is ex-
pected to decrease DIN concentrations in Mediterranean CIW due to increasing
temperatures and lower continental inputs. The results obtained are of practical in-
terest for management purposes, but the limitations of a simplified analysis should
be recognized. Future studies should focus in the development of more sophisticated
models with a combined evaluation of climate change and changes in anthropogenic
nutrient loads. Additionally, the consequences for primary production and higher
trophic levels should be evaluated, as well as the expected disruption of the whole

coastal ecosystem.

4.6 Conclusion

The modelling approach proposed herein, together with the results derived from the
performed simulations, represent a first approach to evaluate the potential climate
change impact on dissolved inorganic nitrogen concentrations in coastal inshore wa-
ters (< 200 m). More specifically, we focused on the effect of the main meteorological
variables on DIN species in the CIW of a Northwestern Mediterranean region with
low anthropogenic inputs. As such, quantitative conclusions are necessarily limited,

as many uncertainty sources need to be accounted for, as explained previously.

In order to evaluate the impact of climate change on DIN concentrations, we

used artificial neural network models trained with real field data collected monthly
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during a period of 5 years. The most relevant climatic variables were considered as
drivers. Results indicate that nitrite and nitrate concentrations are expected to de-
crease under climate change scenarios RCP 4.5 and RCP 8.5. Cold months such as
December, January and February are expected to undergo the major concentration
changes due to rising temperature and decreasing continental inputs. Ammonium
did not show a significant annual tendency but may increase from January to March
and decrease from September to December. The alteration of the nitrogen cycle in
coastal waters may have serious consequences for upper trophic levels, disrupting
the whole food web. Future research should focus on the evaluation of the combined
effects of climate change and other human induced changes such as river flow regu-
lations or nitrogen pollution. The evaluation of future nitrogen dynamics in coastal
waters with more complex approaches is essential in order to develop preventive

action plans.
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5.1 Abstract

Many techniques exist for the evaluation of nutrient pollution, but most of them
require large amounts of data and are difficult to implement in countries where
accurate water quality information is not available. New methods to manage sub-
jectivity, inaccuracy or variability are required in such environments so that water
managers can invest the scarce economic resources available to restore the most
vulnerable areas. We propose a new methodology based on grey clustering which
classifies monitoring sites according to their need for nitrogen pollution management
when only small amounts of data are available. Grey clustering focuses on the ex-
traction of information with small samples, allowing management decision making
with limited data. We applied the entropy-weight method, based on the concept of
information entropy, to determine the clustering weight of each criterion used for
classification. In order to reference the pollution level to the anthropogenic pres-
sure, we developed two grey indexes: the Grey Nitrogen Management Priority index
(GNMP index) to evaluate the relative need for nitrogen pollution management
based on a spatiotemporal analysis of total nitrogen concentrations, and the Grey
Land Use Pollution index (GLUP index), which evaluates the anthropogenic pres-
sures of nitrogen pollution based on land use. Both indexes were then confronted to
validate the classification. We applied the developed methodology to eight estuaries
of the Southern Gulf of Mexico associated to beaches, mangroves and other coastal
ecosystems which may be threatened by the presence of nitrogen pollution. The
application of the new method has proved to be a powerful tool for decision making
when data availability and reliability are limited. This method could also be applied

to assess other pollutants.
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5.2 Introduction

Many methods have been developed to identify nutrient pollution (Andersen et al.,
2011; Ferreira et al., 2011; Garmendia et al., 2012; Lundberg et al., 2005; Primpas
et al.,, 2010). However, most of these methods were developed in countries where
large water quality datasets are available and nutrient emissions are regulated. Con-
sequently, they consider many variables and tend to require large amounts of data.
These tools become difficult to implement for those countries where environmental
monitoring and policy is less developed. The progress towards the implementation
of nutrient pollution management tools entails a challenge for these countries and
requires a gradual implementation (Garmendia et al., 2012). It has been recognized
that results of environmental management should not be generalized worldwide as
economic development plays an important role in sustainable practices (Sanchez-
Herndandez et al., 2017). The development of tools to be implemented in areas of
limited data is necessary and has proven to contribute to bringing useful nutrient
management information and prioritize problems for attention (Do-Thu et al., 2011;
Firmansyah et al., 2017; Montangero, Belevi, 2007, 2008). New methods are nec-
essary for a rapid overall evaluation of coastal water quality with the scarce and
sometimes unreliable data available (Shaban et al., 2010; Xianyu et al., 2017), while

governments switch to more restrictive environmental policies.

Multivariate statistical techniques such as cluster analysis are widely used for the
spatiotemporal variation analysis of water quality (Hajigholizadeh, Melesse, 2017;
Kitsiou, Karydis, 2011; Shaban et al., 2010; Vadde et al., 2018). But in developing
countries decision making often relies on limited data (Scharer et al.; 2006), and
traditional methods cannot deal with the uncertainty from data collection, storage,
processing and interpretation (Lermontov et al., 2009). Conventional water quality
indexes are weak in dealing with inaccuracies or vagueness (Azarnivand, 2017), and
thus, new methods to asses uncertainty are required. Fuzzy logic has proven to be
a useful and robust method under these circumstances (Schirer et al., 2006), which

enables the processing of imprecise information (Adriaenssens et al., 2004). However,
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most fuzzy indexes require many parameters and are not reliable when information
of a single pollutant is available or when samples are too small. In opposition to
fuzzy logic, grey systems can deal with small samples (Delgado, Romero, 2016) and
focus on objects with clear extension and unclear intension (Liu, Lin, 2010), as

further explained by Delgado, Romero (2016).

The grey systems theory was developed by Deng (1985) to deal with situations
where the available information is poor or the samples used are small (Liu, Lin,
2010). This theory works with uncertain systems in which only partial or low qual-
ity data are available (Gong, Forrest, 2014), allowing the decision maker to excavate
and extract useful information and to reach an accurate conclusion. A few au-
thors have investigated the implementation of grey theory in water quality analysis
(Zhang et al.; 2019; Wen, Wei, 20006; Zhu, Liu, 2009), which is a useful technique
when the system is only partially known. Grey clustering is one of the most useful
contents of the grey systems theory, which allows the classification of objects into
definable classes (Delgado, Romero, 2016). The grey clustering method based on
whitenization weight functions is mainly used to verify whether objects belong to
predetermined classes so that objects of each class can be treated differently (Liu,
Lin, 2010). As such, several criteria can be combined for decision-making by as-
signing a weight to each criterion which can be determined by different weighting

methods.

The entropy weighting method is an objective multiple criteria decision approach
based on the concept of information entropy developed by Shannon (1948). The in-
formation entropy of a criterion is a measurement of its disorder degree and the
useful information it can provide (Vatansever, Akgiil, 2018). As such, the higher
the entropy of a criterion is, the lower the information it can provide and the lower
the clustering weight should be, and vice versa (Sepehri et al., 2019). Delgado,
Romero (2016) proposed the incorporation of the entropy weighting method to de-

termine the clustering weights in grey clustering analysis for environmental conflict

analysis. Since then, other researchers have evaluated the suitability of integrat-
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ing grey clustering and the entropy weighting method in other applications such
as power systems security risk assessment (Peng et al., 2017), green transportation
planning (Ma et al., 2017) or power quality assessment (Sacasqui et al., 2018). The
entropy weighting method has also been used for the development water quality
indexes in combination with other tools which deal with uncertainty such as fuzzy

systems theory (Chen et al., 2019).

For the first time, this paper proposes a methodology to evaluate a pollutant with
limited data which uses grey clustering based on whitenization weight functions and
the entropy weighting method. The aim is to classify estuaries based on their need
for nitrogen pollution management with the limited and inaccurate data available
as a first step for its remediation. The assignment of high priority areas allows the
water managers to invest the limited economic resources to those areas. Firstly,
we developed a pollution management priority index based on grey clustering: the
Grey Nitrogen Management Priority index (GNMP index). This index was applied
to the evaluation of nitrogen pollution based on spatiotemporal variations of a single
pollutant: total nitrogen. Then, we developed a second index with grey clustering
which evaluated the nitrogen pollution pressures based on land use: Grey Land
Use Pressure index (GLUP index). The results of both indexes were compared
to determine the accuracy of the methodology. This method was applied to eight
estuaries with mangroves and other wetlands of the Southern Gulf of Mexico where
nitrogen pollution is a threat to the ecosystems but where very little information is

available.

5.3 Materials and Methods

Water pollution management decisions often needs to be taken out of limited data,
i.e. samples which are too small for statistical analysis or where only information
from one pollutant is available. With the aim of classifying nitrogen pollution and

its management requirements in several estuaries for which only limited information
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is available, we developed two indexes based on grey clustering:

e Grey Nitrogen Management Priority index: GNMP index

e Grey Land Use Pressures index: GLUP index

Since water pollution should be evaluated in relation to the anthropogenic pres-
sures (Nincevic-Gladan et al., 2015), both indexes were confronted in order to deter-
mine the relationship between nitrogen pollution and land use pressures. As such,
nitrogen pollution management priorities can be established, and remediation plans

can be proposed based on the GLUP index. The method developed is schematized

in Figure 5.1 and explained with detail in the next sections.

Grey pollution index: GNMP index

Grey pressure index: GLUP index

Clustering

Criteria Ctemporal Cspatial Cagriculiure CIivesto:k Curban
Classification criterion Classification criterion Agricultural Livestock Urban
based on Sen’s slope based on the median pressure pressure pressure
i i based on based on based on
of Total Nitrogen of Total Nitrogen
Land Use Land Use Land Use
Y Y A 4
Entropy weighting Entropy weighting
Use the entropy weighting method to determine Use the entropy weighting method to determine
the weight of each classification criterion the weight of each classification criterion.

Y

Grey Clustering

Use whitenization weight functions to classify
sites according to their nitrogen pollution.
Create 3 classes: High, Medium, Low

Y

Grey Clustering

Use whitenization weight functions to classify
sites according to their anthropogenic pressures.
Create 3 classes: High, Medium, Low

Compare GNMP index
and GLUP index

Figure 5.1: Schema of the methodology developed to evaluate nitrogen pollution
with limited data. GNMP: Grey Nitrogen Management Priority Index. GLUP:

Grey LandUse Pressure
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5.3.1 Study area

The Mexican legislation does not consider nutrient pollution in natural water bodies
and the accurate monitoring of nitrogen in coastal systems is not regulated. As a
consequence, the lack of data prevents stakeholders from implementing the existing
assessment methods and proposing recovery measures. Phytoplankton growth is
generally nitrogen limited in the Gulf of Mexico (Turner, Rabalais, 2013) and the

control of nitrogen pollution is a must for environmental protection.

The Mexican state of Veracruz is located in the Southwestern Gulf of Mexico and
covers 745 km of coastline. Approximately 27% of the state population lives within
20 km of the coast (Macauley et al.,, 2007). The estuaries in Veracruz have been
affected by nutrient enrichment for decades (Macauley et al., 2007; Temino-Boes
et al., 2019b), but agriculture, urbanization and other economic activities such as
tourism along the coast are still a grown source of water pollution (Adame et al.,
2018; Rivera-Guzman et al., 2014). The Mexican legislation does not regulate nitro-
gen emissions to natural water bodies, and no data exist on direct inputs from urban
or industrial sources. Nonetheless, nitrogen pollution has dramatic consequences for
mangroves in estuaries, and it allows the massive intrusion of water hyacinths into
beaches and mangroves (Temino-Boes et al.; 2019b). Clearly, management deci-
sions need to be taken as soon as possible to set remediation plans and avoid further

deterioration.

We evaluated 8 monitoring sites located within estuaries with mangroves of the
Central Gulf hydrological region of the state of Veracruz in Mexico (Figure 5.2). The
local government provided the nitrogen concentrations used in this study, who mea-
sured nitrogen concentrations in several monitoring sites located along the coast.
Total nitrogen was measured according to the Mexican standards NMX-AA-026-
SCFI-2010 and NMX-AA-079-SCFI-2001. The data used for this study includes
four annual measurements from 2013 to 2016: two measures correspond to the dry

season (16 October to 15 May) and two correspond to the wet season (16 May to
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15 October). However, the campaigns were not always equally spaced, and some
uncertainties exist related to the exact date of the sampling. To deal with the inac-
curacies and the uncertainty in the methods used during the campaigns (locations
of the monitoring site, time of sample collection, etc.), we considered grey systems
theory to be a reliable tool. The land use associated to mangroves from 2010 and
2015 was downloaded from the National Commission for the Knowledge and Use
of Biodiversity website (CONABIO, 2016). The main objective was to prioritize
nitrogen pollution management within the estuaries due to the consequences it may

have for the surrounding ecosystems such as mangroves.
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Figure 5.2: Study area with the eight monitoring sites and the corresponding wa-
tersheds
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5.3.2 Spatiotemporal criteria for Grey Nitrogen Manage-
ment Priority (GINMP) index

Water pollution evaluation has always relied on spatiotemporal analysis (Ali et al.,
2016; Hajigholizadeh, Melesse, 2017; Temino-Boes et al., 2019b). As such, a good
water pollution evaluation should consider both spatial and temporal variations of
water quality, which should be reflected when developing a classification method
(Li et al.,, 2016). The detection of upward temporal trends in environmental pa-
rameters is necessary to not only rank concentrations but also identify those areas
with increasing pollution (Chaudhuri, Dutta, 2014), especially in developing coun-
tries where water quality problems are often rapidly increasing (Li et al., 2016).
The evaluation of differences in spatial mean concentrations of pollutants gives an
idea of which site is more polluted now but does not provide information on the
future trends. Additionally, an increasing trend clearly indicates a growing source
of pollution. Considering the above-mentioned, and with the aim of developing a
method which evaluates a single pollutant based on its spatiotemporal variations,
we selected two criteria as inputs for the GNMP index: spatial nitrogen differences

among sites and temporal trends in each site.

Temporal criterion

The first parameter evaluates the temporal trend of total nitrogen concentrations
in each monitoring site. The usual method to determine the trend is based on least
squares regression. However, this method requires a linear trend, assumptions on
the normal distribution of the data and is very sensitive to outliers. Hence, we
used a non-parametric estimation of the trend called Sen’s slope (Sen, 1968). Non-
parametric methods do not require assumptions on the normal distribution of the
data and are not distorted by outliers or missing data (Kitsiou, Karydis, 2011).
These methods show useful results for the evaluation of incomplete environmental

monitoring data (Scannapieco et al., 2012). Sen’s slope has been used in many
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applications for water quality analysis to detect trends in pollutants (IKoh et al.,
2017; Machiwal et al., 2019; Tabari et al.; 2011) as it represents an absolute measure
of change (Miro et al., 2018). As such, we used the Sen’s slope to derive an indicator
which represents the temporal trend in nitrogen concentrations. We calculated the
Seasonal Sen’s slope for total N concentrations in each monitoring site with the
package “trend” in R version 3.5.1. The Seasonal Sen’s slope takes into account the
seasonality of the data. In our case study, the seasonality was four, as four samples
were collected each year. The scores are first computed for each season separately
and finally the corrected Z-statistics for the entire series is calculated (Pohlert, 2020).
In order to generate a normalized criterion ranging from zero to one which would

allow us to compare pollution trends in each site, we used the following equation:

Ctemporali = %i " Smin (531)

Smaz — Smin
Where, Ciempora; is the temporal variation criterion in site i, s; is Sen’s slope in i,
Smin 1S the minimum Sen’s slope between all sites and s,,,4, 18 the maximum Sen’s

slope between all sites.

Spatial criterion

To evaluate the spatial differences of nitrogen concentrations among the monitoring
sites we used the median of total N of each site. The median is a robust measure
of central tendency, which is not skewed by outliers. As the sampling size is not
large and data reliability is not clear, the median was selected as a better measure
than the mean. We determined a normalized criterion with values going from 0 to

1 which allows the comparison of nitrogen concentrations among sites:

. M — My,
spatial; —
P M,

max ~ Mmzn

(5.3.2)

where, Cgpariqi; 1S the spatial variation criterion in site i, M; is the median of
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total nitrogen in site i, M,,;, is the minimum median value between all study sites

and M4, 1s the maximum median value between all sites.

5.3.3 Pressure criteria for the Grey Land Use Pressure (GLUP)

index

For the development of the GLUP index, we defined the criteria by evaluating the
anthropogenic pressures on N pollution based on land use. We downloaded maps of
land use from the National Commission for the Knowledge and Use of Biodiversity
website (CONABIO, 2016), which used SPOT images to create them. The images
which more closely correspond to nitrogen data were images from 2010 and 2015.
Although this timeframe does not correspond fully with nitrogen monitoring years
(2013-2016), it represents the trend of land use changes. Nonetheless, the inaccuracy
in the dates of land use maps is addressed by grey clustering which can deal with
incomplete information. After carefully reviewing the scientific literature we iden-
tified three main sources of nitrogen pollution associated to land use in the study
area: agriculture, livestock and urban expansion along the coast. We defined one

criterion for each source.

Agriculture

Veracruz is the second state in Mexico with the highest amount of land used for
agriculture. The agriculture production is mainly composed of cereals (40.1% of
the cultivated land), industrial crops (31.5%) and fruit trees (21.6%) (SAGARPA,
2009). The application of fertilizers to increase agricultural productivity is encour-
aged by governmental policies, while farmers are not provided with appropriate
training (Anguiano-Cuevas et al.; 2015). Consequently, natural water bodies are
being increasingly impacted by diffuse nutrient pollution generated from such prac-
tices. Besides, the conversion of forest and grassland to crop agriculture also may

contribute significantly to nitrogen loading to coastal systems (Lopez-Portillo et al.,
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2017). As such, the first pressure criterion Cogpicuture Used as input for the GLUP

index calculation was the percentage of the watershed used for agriculture.

Livestock

The livestock subsector in Mexico is very diverse and widespread throughout the ter-
ritory. Livestock farming in Veracruz consists of both farms that are managed with
modern and competitive systems and others which use the most traditional prac-
tices. It is also characterized by its extensive management and seasonal production.
Most cattle feed is based on grazing, with pastures managed in a free grazing system.
Livestock occupies about 51% of the total area of the state with 3.7 million hectares.
The bovine cattle stands out for its importance in production, which is used both
for meat and milk production (SAGARPA, 2009). As a consequence, land clearing
for cattle ranching is also a predominant source of pollution throughout the studied
watersheds (Gonzalez-Marin et al., 2017; Lépez-Portillo et al., 2017; Rivera-Guzmén
et al., 2014; Rodriguez-Romero et al., 2018; Vazquez-Gonzélez et al., 2015). There-
fore, the second pressure criterion used for the calculation of the GLUP index is the

percentage of the watershed used for livestock production, Ciestock -

Urban

Most of the urban areas in Veracruz are located along the coast and consequently
urban development expands over beaches, dunes and mangroves, parallel to the
coastline (Martinez et al., 2014). In fact, many researchers identified the rapid
urbanization over beaches and mangroves throughout the coast as one of the main
source of water pollution to our study sites (Marin-Muniz et al., 2016; Martinez
et al., 2017; Martinez et al., 2014; Mendoza-Gonzalez et al., 2012; Rodriguez-Romero
et al., 2018). The accelerated urban development does not allow the implementation
of the required wastewater treatment facilities (Rodriguez-Romero et al., 2018) or

the adequate coastal ecosystem management (Martinez et al., 2014). Moreover,
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direct urban pollution affects the lower course of the watersheds, adding to the fact
that self-purification is not as efficient as in the upper course (Rodriguez-Romero
et al., 2018). As such, for the urban pressure criterion we considered more adequate
to focus on the urban development along the coast. The aim of this criterion was
to represent exclusively the urban expansion over the coastal ecosystems such as
beaches, dunes or mangroves. This expansion occurs generally at less than 1km
from the coast, especially in touristic areas (Mendoza-Gonzalez et al., 2012). As
such, the selection of a buffer of 1km around the sampling points was considered
adequate. Therefore, we calculated the urban expansion within 1km of the sampling
points observed between 2010 and 2015, which was the third input criterion Cypan
for the GLUP index.

5.3.4 Grey clustering

In grey systems theory, a system with totally unknown information is called a black
system, while a system with fully known information is a white system. In between
we find grey systems which have partially known information (Tseng, 2009), with
small samples and poor information (Liu, Lin, 2010). Similarly, a grey number is a
number whose value lies within an interval, but whose exact value is unknown. In
this context, whitenization weight functions are used to determine the preference a
grey number has over the interval of values it might take by describing what is known
(Liu, Lin, 2010). Grey clustering is a method developed to classify observation
objects into classes using either grey incidence or whitenization weight functions
(Liu, Lin, 2010). The second method is mainly used to check whether objects
belong to predefined classes (Liu, Lin, 2010).

The point of a grey class with a maximum degree of greyness is known as the
center A (Liu, Lin, 2010). The center-point triangular whitenization weight func-
tion relies on the center of the interval, where the cognitive certainty of the object
belonging to a defined class is higher and therefore is often considered more reliable

and scientific (Delgado, Romero, 2016). For grey clustering in s classes, the left
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and right endpoints are extended horizontally from \; to zero and from A, to the
highest possible value of the criterion (Ye et al.; 2018). As such, an object whose
criterion is lower than A; totally belongs to the first grey class, while an object
whose criterion is greater than A, totally belongs to the highest class. Center-point
triangular whitenization weight functions were used in other environmental applica-
tions, demonstrating the usefulness of this method to solve such problems (Delgado
et al., 2018; Delgado, Romero, 2016). The steps followed for the grey clustering are
described below (Liu, Lin, 2010):

Step 1. Define n criteria (j=1,2,...1n), m objects (i=1,2,...m) to be classified

in s classes (k=1,2,...s), and the observed data values z; ;

Step 2. Divide the values field of each criterion into s equal grey intervals ([a,
a1], la1, asl, ... [as_1, as]) and define the center-points Ay of each interval (Ai, Ag,

. /\s>

Step 3. Determine the whitenization wheight function fj’fC (z; ) for each k™ class

of each j* criterion with the next equations:

For k=1
4
1 T < )\1
fi=1 Qamt g e Ay, Mg (5.3.3)
0 T > A
\
Forl<k<s
(
0 x ﬁé [)\kfla )\k+1]
fjl'c = % T & [)\kfl, )\k] (534>
s v Dl
For k=s
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(
0 T < )\571
f= ;c—:\_/\: T € Ao, Ay (5.3.5)
1 T > A

\

Step 3. Select a clustering weight 7; for each criterion j

Step 4. Calculate the clustering coefficients for each criterion j and each class

k as:

of = e ff(zy)i=12.m j=12.n k=12 s (5.3.6)

J=1

Step 5. If =1 < kMAX < s {o¥} = 0" then object i belongs to grey class k*

For each criterion, we defined three classes corresponding to “High”, “Medium”
and “Low” priorities, and thus, the whitenization weight functions are as represented
in Figure 5.3. The clustering objects correspond to the monitoring sites. The
clustering criteria used were the spatial and temporal criteria defined in section
5.3.2 for the GNMP index and the agriculture, livestock and urban criteria defined
in section 5.6 for the GLUP index (Table 5.1). The clustering weights are defined

based on the entropy weighting method explained in 5.3.5.

Index Criteria Description

GNMP  Clemporai Normalized index based on the Sen’ slope (equ. 5.3.1)
Cpatial Normalized index based on the median of total

nitrogen (equ. 5.3.2)

GLUP  Cogricuiture Percentage of the watershed used for agriculture
Clivestock ~ Percentage of the watershed used for livestock production
Clurban Increase in urban area within 1km of the sampling site

from 2010 to 2015 (ha)

Table 5.1: Description of the criteria used for Grey Nitrogen Management Priority
(GNMP) and Grey Land Use Pressure (GLUP) indexes
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Figure 5.3: Center-point whitenization weight functions used for each criterion and
with three grey classes (high, medium and low)

5.3.5 Entropy weighting method

The clustering weights are calculated with the Shannon entropy, which measures the

uncertainty in the information provided by each criterion (Delgado, Romero, 2016):

Step 1. Normalize each criterion:

Zlfij

D i1 Tij
Step 2. Calculate the entropy Hj of each criterion:
H ! Xm: In (pi) (5.3.8)
o i n i O,
J In(m) 2 Digttv \Pij

Step 3. Calculate the degree of divergence div; of the average intrinsic infor-

mation provided by each criterion:
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Step 4. Calculate the clustering weight 7; of each criterion:

div;

i 3.1

5.4 Results

5.4.1 Total nitrogen concentrations

Total nitrogen concentrations in each sampling site are presented in Figure 5.4. The
median was greater in the Northern regions with a maximum value in Nautla. The
lowest total nitrogen concentrations were found in Papaloapan and Coatzacoalcos.
In Figure 5.5, the time variations of total nitrogen between 2013 and 2016 are
represented with four measurements per year. An upward tendency was observed

in Tuxpan, Tecolutla and Nautla.
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Figure 5.4: Boxplot of total nitrogen concentrations in all monitoring sites, between
2013 and 2016 with four values per year
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Figure 5.5: Total nitrogen concentrations in all monitoring sites, between 2013 and
2016 with four values per year

5.4.2 Grey Nitrogen Management Priority (GNMP) index

Sen’s slope and the median of total nitrogen are shown in Table 5.2, together with
temporal and spatial criteria and their clustering weights. The spatial criterion,
which compares the current total nitrogen concentrations in each site, had a higher
clustering weight (0.60) derived from the entropy-weighting method, compared to
the temporal indicator which measures the trend in total nitrogen concentrations in

cach site (0.40).

Three grey classes were obtained corresponding to low, medium and high N
pollution management priority. The clustering coefficients for each class and each
criterion, together with the global clustering coefficients and the derived GNMP
index are shown in Table 5.3. Two sites, Tuxpan and Nautla, were classified with a
high nitrogen management priority, while two sites, Papaloapan and Coatzacoalcos,

were classified with low priority. The other sites had a medium priority.
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Site Sen’s slope Median TN  Cipporat Cspatial
(mgN.L™1) (mgN.L™1)

Tuxpan 0.34 0.99 0.78 0.64
Cazones -0.13 0.90 0.07 0.51
Tecolutla 0.36 0.89 0.81 0.49
Nautla 0.49 1.24 1.00 1.00
Actopan -0.18 0.90 0.00 0.51
Jamapa 0.07 0.86 0.37 0.45
Papaloapan 0.06 0.55 0.36 0.00
Coatzacoalcos 0.00 0.60 0.27 0.07
Clustering weight - - 0.40 0.60

Table 5.2: Sen’s slope, Median total nitrogen (TN), Ctemporal, Cspatial and clus-
tering weights

Site Cremporal Copatial Global GNMP
L M H|L M H|L M H
Tuxpan | 0.00 0.17 0.83 [ 0.00 059 041|000 042 0.58| High
Cazones | 1.00 0.00 0.00 | 0.00 0.99 0.02|0.40 059 0.01 | Medium
Tecolutla | 0.00 0.08 0.92|0.02 0.98 0.00 | 0.0l 0.62 0.37 | Medium
Nautla | 0.00 0.00 1.00 | 0.00 0.00 1.00|0.00 0.00 1.00| High
Actopan | .00 0.00 0.00 | 0.00 0.99 0.02|0.40 0.59 0.01 | Medium
Jamapa | 0.38 0.62 0.00 | 0.15 0.85 0.00 | 0.24 0.76 0.00 | Medium
Papal. |0.43 058 0.00|1.00 0.00 000|077 023 0.00| Low
Coatza. | 0.69 0.31 0.00 | 1.00 0.00 0.00|088 0.2 0.00| Low

Table 5.3: Clustering coefficients for each criterion, the global clustering coeffi-
cients and the derived Grey Nitrogen Management Priority (GNMP) index. L:low,
M:Medium, H:high

5.4.3 Grey Land Use Pressure (GLUP) index

We evaluated the extent of the agricultural area within each watershed, together
with the livestock area (Figure 5.6). Additionally, we calculated the increase in
urban areas around the study sites. As an example, the three sites with a greater

increase in the urban areas are shown in Figure 5.7.

The three criteria for land use evaluation and their clustering weights are pre-
sented in Table 5.4, while the clustering coefficients and the derived GLUP index
are presented in Table 5.5. The classification agrees with the results obtained with

the GNMP index (see Table 5.3). The urban criterion had the highest clustering
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Figure 5.6: Agricultural and livestock production areas within the studied water-
sheds

weight (0.67), while the agricultural criterion weight (0.22) and the livestock weight

(0.11) were lower.

Site Cagriculture C(li'uestock: Curban
Tuxpan 43 29 14.9
Cazones 51 28 6.5

Tecolutla 49 13 9.6
Nautla 56 22 18.7
Actopan 45 32 6.8
Jamapa o7 25 6.9
Papaloapan 30 21 4.4
Coatzacoalcos 9 40 0.0
Clustering weight 0.22 0.11 0.67

Table 5.4: Cogricuiture; Clivestock, Curban and their clustering weights for all monitoring
sites
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Nautla 2015
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Figure 5.7: Urban area development between 2010 and 2015 in a 1km buffer around
the study sites Nautla, Tuxpan and Tecolutla

165



Site Q@@lnﬁ?ﬁ%m Q:cmmuonw QS&Q: Global GLUP
L M H L M H L M H L M H
Tuxpan 0.00 0.40 0.60 [ 0.00 0.67 0.33]0.00 0.11 0.89|0.00 0.24 0.76 | High
Cazones 0.00 0.00 1.00 [ 0.00 0.79 0.21|0.46 0.54 0.00|0.31 045 0.24 | Medium
Tecolutla 0.00 0.00 1.00|1.00 0.00 0.00{0.00 097 0.03]0.11 0.65 0.24 | Medium
Nautla 0.00 0.00 1.00|0.46 0.54 0.00|0.00 0.00 1.00 [ 0.05 0.06 0.89 | High
Actopan 0.00 0.26 0.74 [ 0.00 0.36 0.64 | 0.41 0.59 0.00 | 0.27 0.49 0.23 | Medium
Jamapa 0.00 0.00 1.00|0.16 0.84 0.00{0.39 0.61 0.00 | 0.28 0.51 0.21 | Medium
Papaloapan | 0.18 0.82 0.00 | 0.61 0.39 0.00 | 0.79 0.21 0.00 | 0.64 0.36 0.00 Low
Coatzacoalcos | 1.00 0.00 0.00 | 0.00 0.00 1.00 [ 1.00 0.00 0.00|0.89 0.00 0.11 Low

Chapter 5.

Table 5.5: Clustering coefficients for each class (low, medium and high) and each criterion and the Grey Land Use Pressure
(GLUP) index for all monitoring sites. L:low, M:Medium, H:high
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5.5 Discussion

The GNMP index, based on the global clustering coefficients presented in Table 5.3,
was high for Tuxpan and Nautla. In terms of the temporal criteria both sites were
classified as high while the spatial criterion indicated high priority for Nautla and
medium priority for Tuxpan. Similarly, Tecolutla was high according to the tempo-
ral criterion indicating rapidly increasing nitrogen concentrations but was classified
medium based on the spatial criterion; its overall classification was medium. The
remaining monitoring sites could be evaluated similarly, indicating that the integra-
tion of both temporal and spatial differences among sites derives in a more accurate
evaluation of the nitrogen management requirements. The inclusion of temporal
trends into the index developed is a new proposal which was not used in most of the
water quality assessment indexes developed to date (Da Costa Lobato et al., 2015;
Gharibi et al., 2012; Islam et al., 2013; Ocampo-Duque et al., 2007; Shooshtarian
et al.; 2018). Yet, the detection of temporal trends is especially important in areas
where water pollution increases rapidly due to the lack of water pollution manage-

ment (Li et al., 2016), which are the areas aimed by the newly developed method.

Environmental managers could determine the restoration practices required based
on whether the nitrogen pollution is increasing over time or on whether the current

concentrations are high.

The comparison of the classification of the GNMP index with the GLUP index
is necessary in order to validate the nitrogen pollution evaluation. The linkage
between pollution levels and pressures allows the evaluation of the anthropogenic
influence on nutrient concentrations. It also allows to check whether the selected
land use pressures have a real impact on nutrient pollution and to guide management
plans (Romero et al.; 2013). All monitoring sites were placed in the same class
by the GNMP and the GLUP indexes, indicating that land use pressures were
detected accurately. The results indicate that Nautla and Tuxpan estuaries have

the highest urgency for N pollution management which agrees with previous studies
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which indicated the existence of N pollution in these estuaries (Gonzdlez-Marin et al.,
2017; Marin-Muniz et al., 2016; Rivera-Guzman et al., 2014; Rodriguez-Romero
et al,, 2018; Temino-Boes et al., 2019b). Studies in Nautla river indicated that
human settlements are a major source of N pollution to the river at its lower course
(Rodriguez-Romero et al., 2018). Casitas, the town located at Nautla estuary, has
undergone severe changes in physicochemical characteristics of water in the last
years (Rivera-Guzman et al.,, 2014); and has lost most of its mangroves losing its

filtering capacity (Marin-Muniz et al., 2016; Rivera-Guzman et al., 2014).

The entropy weighting method allowed the detection of the most divergent cri-
teria for nitrogen management. As such, in the studied area the spatial criterion
had a higher clustering weight (0.60) than the temporal criterion (0.40), indicating
that the divergence in the values of the median of total nitrogen are higher than
the divergence in the Sen’s slope. The entropy weighting method allows a more
flexible determination of the importance of each criterion depending on the charac-
teristics of the area under study by evaluating the useful information provided by
each criterion. On the other hand, the clustering weights assigned to the GLUP
index indicate which land use criterion has a higher divergence and thus which land
use activity may have a higher influence in nitrogen pollution. The highest clus-
tering weight for the GLUP index was assigned to the urban criterion, indicating
that the urban development along the coast should be the first pollution source to
be addressed for nitrogen management. Tecolutla and Nautla are located within a
popular touristic area named Costa Esmeralda, where tourism expansion has led to
urban development over beaches and mangroves (Martinez et al., 2014). Tecolutla
river basin experienced an increase of 67% of the urban area between 1994 and 2010
(Osuna-Osuna et al., 2015) and in Tuxpan the human population almost doubled
in 20 years (Rivera-Guzman et al., 2014). At large, urban expansion in Veracruz
has taken place over mangroves, grasslands, beaches and croplands (Martinez et al.,
2014), and tourism has increased along the coast (Mendoza-Gonzdlez et al., 2012),

reducing the coastal resilience of Veracruz while population grows (Martinez et al.,
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2017).

While conventional clustering methods assign a fixed class to each object, grey
clustering does not provide a deterministic solution, but rather allows the partial
assignment of an object to a class by means of grey numbers. For example, both
Cazones and Tecolutla were classified in the medium class. However, the GNMP
index of Cazones is somewhere between low (0.40 clustering coefficient) and medium
(0.59 clustering coefficient), while Tecolutla’s GNMP is localized between medium
and high (Table 5.3). The same applies for the GLUP index (Table 5.5). This flexi-
bility in the classification allows the pollution managers to make decisions which are
aligned with the ecosystems’ requirements, the site restoration strategies or the eco-
nomic resources available, allowing a scientific understanding of nitrogen pollution
when only small sampled are available. The exploration of the information provided

by the available data enables a comprehensive evaluation of nitrogen pollution.

The limitations of the developed methodology should be clear before its appli-
cation. This approach evaluates one single pollutant while no additional data is
available, but the development of more frequent and exhaustive campaigns is neces-
sary for the management of the coastal water quality. When economic resources are
limited, governments and scientists could start by managing nutrient pollution in the
areas indicated by the method developed. But once more data become available, the
use of integrative methods to evaluate the overall water quality would be a necessary
step forward. Additionally, it is important to point out that as no pristine site ex-
ists, it is not possible to indicate whether all monitored sites are polluted. Although
the priority should be put in those areas with a greater pollution, the sites with
a lower priority should not be completely left aside. On the other hand, it is also
important to consider that the studied estuaries belong to watersheds of different
sizes. As such, the cleaning capacity of rivers via dilution differs among sites. The
risk of water pollution in Coatzacoalcos and Papaloapan is therefore reduced due
to their dilution capacity, compared to Actopan river for example. The aim of our

approach is to evaluate the pollution within the estuary to estimate the potential
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consequences of nitrogen pollution to the surrounding ecosystems such as beaches or
mangroves. For example, the consequences of nitrogen pollution in Nautla estuary
include the degradation of touristic beaches with consequences for the local econ-
omy, as well as the deterioration of mangroves (Temino-Boes et al.; 2019b). But the
impact of high nitrogen concentrations in Papaloapan river in the eutrophication of
the Gulf of Mexico as a whole would be much worse than N pollution in Actopan

river. The large marine ecosystem perspective is not addressed by this study.

Nitrogen pollution in estuaries, mangroves and coastal waters has severe envi-
ronmental consequences. In Veracruz, 75% of the estuaries rated poor for water
quality a decade ago (Macauley et al., 2007), and the urbanization along the coast
has since then increased nutrient pollution (Temino-Boes et al.; 2019b). Massive
mats of water hyacinths, driven by nutrient pollution, were observed in Nautla
and Tecolutla estuaries, extending over mangroves, altering their nutrient cycles
and blocking sunlight (Temino-Boes et al., 2019b). Nitrogen pollution also has big
economic impacts, as many of the small villages located in the coastal regions of
Veracruz depend on tourism and fishing, activities which are directly affected by
nitrogen pollution (Gonzalez-Marin et al., 2017). Ultimately, water pollution also
affects wildlife populations (Gonzdlez-Marin et al.; 2017) and eutrophic conditions
in coastal systems along the Gulf of Mexico may drive harmful algal blooms (Ulloa
et al.,; 2017). Despite the consequences mentioned, the lack of effective water moni-
toring and evaluation programs prevents stakeholders from developing management
plans. The methodology developed herein allows the detection of high N concen-
trations in estuaries as well as those estuaries with increasing trends and links the
pollution to land uses. As such, based on our results, Nautla and Tuxpan estuar-
ies have a high priority for N pollution management which should be approached
mainly through the sustainable management of urban development. Both Tuxpan
and Nautla are touristic destinations, which has enhanced urban growth. Tecolutla
which is also a touristic destination was classified as medium priority, but the high

temporal criterion indicates that N pollution increased over time and could reach
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higher N concentrations in a near future. Therefore, the sustainable management
of tourism growth could lead to a reduction of the coastal pollution which in turn

would allow a conservation of the natural heritage.

In regions where the monitoring of coastal waters is not regulated, simple meth-
ods which allow the evaluation of water pollution with limited data are very useful.
It is necessary to recognize the scarcity factor to allow the distribution of the avail-
able resources efficiently (Sanchez-Hernandez et al.; 2017). As such, grey clustering
allows the detection of areas with a high urgency for N management and allows the
planning of the available economic and human resources. When data sources are
limited and inaccurate, the grey evaluation developed can help with the establish-
ment priority areas to allow decision makers to identify potential threats and propose
recovery measures. This method could be used to evaluate other pollutants, and
could be applied in other countries with limited data such as most Latin Ameri-
can countries which present similar limitations with water pollution assessment and
management (Gomez et al., 2012; Kathuria, 2006). Future research should focus on
how to efficiently combine the existing tools to deal with uncertainty, such as fuzzy
logic, grey systems or rough sets theory, whose employment can deal with real-world

problems especially in countries with limited economic resources.

5.6 Conslusion

Many countries lack proper coastal water monitoring programs and consequently the
data available for pollution assessment is limited. As such, the application of grey
clustering together with entropy weighting significantly contributes to the accurate
prioritization of N pollution management. The integration of spatial and temporal
variations in a unique index, i.e. the GNMP index, evaluated both current and
future trends of N pollution. On the other hand, the analysis of land use changes
through the GLUP index and the application of the entropy weighting method

identified the main sources of N pollution based on land use. For the study area
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we found urban development around the sampling site to be the main driver of
N pollution. This allows the establishment of N pollution management strategies,
such as the control of the urban expansion over beaches and mangroves, allowing
a sustainable development while conserving the natural heritage. When economic
resources are limited, the establishment of priority areas is necessary in order to

allow a scientifically sound assignment of the scarce economic resources.

It is nonetheless crucial to understand and consider the limitations of the method-
ology. Grey clustering provides useful information derived from small and inaccurate
samples, which can be extremely useful when the situation from which we departed
is a completely lack of pollution evaluation. From this perspective, the information
provided by the grey clustering analysis is with no doubt an important step forward.
However, this is not an ideal situation which provides a thorough and unique diag-
nosis of the pollution levels, its pressures and impacts. The implementation of more
stringent coastal monitoring programs and the development of strict environmen-
tal policies to protect water resources is necessary for the correct management of
coastal pollution. But this situation is far from realistic in many developing coun-
tries. Meanwhile, research should focus on how to deal with the lack of data by
combining and implementing tools such as fuzzy logic, grey systems or rough sets

theory.
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6.1 Abstract

Nitrogen pollution is a growing problem in many rivers and estuaries of the South-
ern Gulf of Mexico. In Costa Esmeralda, a tourist destination in Veracruz, the
increasing nitrogen pollution is causing severe environmental damage. However,
very few studies addressed nitrogen pollution and its consequences for beaches and
mangroves. In this study, a spatiotemporal evaluation of nitrogen concentrations
was performed along two rivers discharging into Costa Esmeralda and the associated
mangrove and coastal areas. The data used was obtained from the local government,
which measured ammonium, nitrate and organic nitrogen concentrations between
2013 and 2016 with four annual measurements. Clustering analysis was used to
detect the nitrogen concentration differences between riverine and coastal sites. Ad-
ditionally, Mann-Kendall test was used to detect the trends throughout the study
period. The Mann-Whitney W-test determined the difference in the median con-
centrations between the dry and the wet season. The results indicate that organic
nitrogen concentrations are increasing in river mouths and coastal waters. Nitrogen
pollution caused an intrusion of water hyacinths in touristic beaches and completely
covered mangroves. The decomposition of these plants in saline waters was iden-
tified as the main potential source of increasing organic concentrations, driven by
nitrogen pollution from wastewater, deforestation and fertilizers, and causing many
environmental and socio-economic damage to the area. The results shed light on

the prevailing water pollution problems in the Southern Gulf of Mexico.

6.2 Introduction

The Gulf of Mexico is a semi-enclosed coastal sea with moderately high productivity
that supports great biological diversity. It provides many goods and services such as
oil and gas production, fisheries, habitat for endangered species, tourism and support

for state economies (Munoz-Sevilla, Le Bail, 2017). The Gulf of Mexico is a shared
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ecosystem in which environmental solutions are a common responsibility among
governments, primarily the United States and Mexico (Yanez-Arancibia et al., 2013).
In the Northern Gulf of Mexico, nitrogen (N) riverine discharges from Mississippi and
Atchafalaya rivers have caused high phytoplankton concentrations in coastal waters,
hypoxia (Bianchi et al., 2010), acidification (Laurent et al., 2017), toxic algal blooms
(Bargu et al., 2016), and have generated one of the largest marine hypoxic zones
known as a dead zone (He, Xu, 2015). Agricultural runoff has been identified as the
main driver of eutrophication (Alexander et al.; 2008). While nutrient pollution and
its consequences in the northern Gulf is a long-standing problem and has been largely
addressed by scientists and the U.S. government, the southern Gulf corresponding
to the Mexican coast is still a growing ecological and human health issue with
limited attention. The Southern Gulf of Mexico has a much higher poverty rate
and increasing populations are degrading coastal ecosystems and the services they

provide to society (Alvnroz Torres et al., 2017).

The Mexican state of Veracruz has a significant share of the Southern Gulf of
Mexico’s coastal waters. The alteration of the coast in Veracruz started many years
ago, and today human activity is still a growing pressure to the coast (Martinez
et al., 2017). Veracruz estuaries have long been affected by nutrient over-enrichment,
which has caused poor water quality (Macauley et al., 2007). Eutrophic conditions
in coastal lagoons have prevailed for at least 30 years, with significant anthropogenic
impact all along the coast as they receive excess nutrients (Rivera-Guzman et al.,
2014). Over 10 years ago already scientists determined that deforestation and agri-
cultural runoff were significantly contributing to the degradation of coastal waters
in Veracruz due to nutrient loads (Macauley et al.; 2007). And yet, there is still an
intensification of agriculture, urbanization and other economic activities along the
coast (Rivera-Guzman et al.; 2014). The application of fertilizers to increase agri-
cultural productivity has been encouraged by governmental policies, while farmers
are not provided with appropriate training (Anguiano-Cuevas et al.; 2015). Con-

sequently, natural water bodies are being increasingly impacted by diffuse nutrient
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pollution generated from such practices. Additionally, sewage discharges which most
of the time lack a proper treatment process, also represent a significant input of nu-
trients to coastal waters (Okolodkov et al., 2016). As a consequence, harmful algal
blooms are an issue of concern in the Mexican coast of the Gulf of Mexico (Ulloa
et al., 2017), and the prevalence of cholera has been related to poor water quality

(Mokondoko et al., 2016).

Mexico is the fourth mangrove-richest country in the world (Giri et al., 2011), one
of the most productive ecosystems on Earth that grow in coastal areas. Mangroves
provide food and shelter for many marine species and birds, and act as natural
barriers against hurricanes, tsunamis and sea level rise (Holguin et al.; 2006). More-
over, mangroves are a large carbon stock known as blue carbon (Thorhaug et al.,
2019), and the deforestation of these ecosystems entails large greenhouse gas emis-
sions (Kauffman et al., 2016). Despite all of the above-mentioned, 35% of mangroves
were lost worldwide between 1980 and 2000 (Giri et al., 2011) and still continue to
decrease (Feller et al.; 2017). If the current deforestation rate does not change all
mangroves could be gone by next century (Duke et al.; 2007). The high primary
production in mangroves is generally attributed to leaf degradation processes (Tor-
res et al., 2018), which recycle nutrients within the ecosystem (Holguin et al.; 20006).
Mangroves play a significant role in N dynamics, which indicates that anthropogenic
nutrient enrichment may cause extensive impact in the N cycling (Gongalves Reis
et al., 2017). With urban development, mangroves receive more nutrients, which
could lead to an accelerated change (Geedicke et al., 2018). For instance, N en-
richment alters biological processes such as nitrogen fixation or denitrification and
modifies the competitive ability among species. As a consequence of anthropogenic
N, mangroves may increase NoO fluxes to the atmosphere, also contributing to global
warming (Goncalves Reis et al.; 2017). The alteration of mangrove functioning as a
consequence of N enrichment may reduce the goods and services they provide, such
as coastal fisheries or improvement of water quality (Holguin et al., 2006). In Mexico,

tourism, agricultural and urban development along the coast cause serious mangrove
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degradation (Adame et al., 2018), affecting the resilience of coastal lagoons (Lopez-
Portillo et al., 2017). Additionally, high N concentrations in mangroves enables the

growth of exotic species (Geedicke et al.; 2018).

Water hyacinth (Eichhornia crassipes) is considered to be one of the most in-
vasive aquatic species on Earth (Villamagna, Murphy, 2010). This floating plant
prevails in tropical and subtropical areas where nutrient pollution exists due to
agricultural runoff, deforestation or untreated wastewater discharges (Villamagna,
Murphy, 2010). Nutrient availability and temperature regulates its growth (Oliveira-
Junior et al., 2018; Ruiz Téllez et al., 2008). As such, water hyacinth blooms in
summer as a result of high temperatures and sustained by the nutrient pollution.
The presence of water hyacinth in the ecosystem may have both beneficial and
detrimental effects. On one side, this plant is often used for phytoremediation, as
it absorbs pollutants such as nutrients or heavy metals (Tabla-Hernandez et al.,
2019). Nonetheless, when the extent of the invasion is too large the threads to the
ecosystem can be very significant. Decaying plants may reduce the available oxygen
and unbalance the nutrient cycling (Fox et al.; 2008). This free-floating plant was
introduced in Veracruz’s rivers many years ago. Due to the rapid urbanization of
the coast over beaches and mangroves (Martinez et al., 2014) and to the lack of
wastewater treatment, nutrient pollution is a growing problem in many estuaries of
Veracruz (Rivera-Guzman et al., 2014), which may lead to the unlimited growth of

water hyacinths.

Despite the growing environmental damage in the Southern Gulf of Mexico,
few studies (Macauley et al., 2007; Rivera-Guzmén et al., 2014; Ulloa et al., 2017)
have addressed nitrogen pollution and its consequences. In this paper, we evaluate
the spatial and temporal variations of ammonium, nitrate and organic nitrogen
concentrations along two rivers and their coastal areas associated to mangroves
where water hyacinth invasion is prevalent. The main objective was to determine
whether nitrogen pollution or changes in N speciation may have occurred along the

river and the coast and determine the possible sources and consequences for beaches
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and mangroves. Our results can be extrapolated to other regions of the Southern

Gulf of Mexico with similar characteristics.

6.3 Materials and Methods

6.3.1 Study Area

This research focused on two rivers of the state of Veracruz discharging to the
Gulf of Mexico. The river mouths are located within Costa Esmeralda, a tourist
destination with low and medium density tourism (Pérez-Maqueo et al.; 2017). Most
of the communities in the studied areas are marginalized, with a high percentage of
the population living in poverty (Gonzalez-Marin et al., 2017). The inhabitants are

mainly engaged in fishing, agriculture or tourism.

The coastal area is covered by wetlands, including mangroves. A large area of
mangroves has been lost in the last decades, mainly due to agriculture and cattle
ranching (Marin-Muniz et al., 2016) or to disturbance from hurricanes (Gonzalez-
Marin et al., 2017). Urban wastewater does not undergo any treatment before the
discharge into natural systems and industrial waste such as fruit juice companies
discharge their waste into the rivers (Gonzdlez-Marin et al., 2017). In order to study
the source of nitrogen to mangrove areas and to the coast through Tecolutla and
Nautla rivers, we selected 6 and 4 monitoring sites along each river respectively. An
additional site was located in each river mouth. One coastal site was placed 1 km
from Tecolutla river mouth and three sites 1 km, 4 km and 7 km from Nautla river
mouth respectively. The study area is presented in Figure 6.1 and the monitoring
sites in Table 6.1, together with the distance to the coast and the mean salinity,

which was calculated with four measurements from 2016.

The data used was obtained from the local government, which measures nitrogen
concentrations in these monitoring sites. Ammonium and organic nitrogen were

measured according to the Mexican standard NMX-AA-026-SCFI-2010 and nitrate
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Figure 6.1: Study area with monitoring sites
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based on NMX-AA-079-SCFI-2001. The data used for this study includes four
annual measurements from 2013 to 2016. Each year two measurements were made

during the dry season and two during the wet season.

Code Name Location Distance to sea salinity

km gLt
T1 Espinal bridge Tecolutla river 65 0.13
T2 Paso Valencia Tecolutla river 55 0.12
T3 Remolino bridge Tecolutla river 35 0.14
T4 Tecolutla bridge Tecolutla river 10 0.31
TH Cruz de los esteros Tecolutla river 2 1.56
T6 Los Naranjos Tecolutla river 1 6.35
T7 Tecolutla estuary ~ Tecolutla esturay 0.2 15.97
T8 Tecolutla beach Coast 0 36.61
N1  Martinez de la Torre Nautla river 55 0.12
N2 El Pital Nautla river 30 0.12
N3 Nautla bridge Nautla river 4 0.30
N4 Casitas bridge Nautla river 1 6.16
N5 Nautla estuary Nautla estuary 0.5 8.81
N6 Casitas beach Coast 0 31.29
N7 El Palmar Coast 0 37.01
N8 Monte Gordo Coast 0 37.31

Table 6.1: Codes and locations of the monitoring sites used in this study and pro-
vided by the local government. Mean salinity was calculated with 4 measurements
during 2016 provided by the local government.

6.3.2 Data analysis

The spatiotemporal analysis of water quality parameters allows the assessment of
possible sources and consequences of water pollution (Ali et al.; 2016). Therefore,

we performed several spatial and temporal statistical analysis to our data.

Spatial analysis

Firstly, spatial variations in nitrogen species concentrations were identified. As wa-
ter quality data do not usually meet the requirements for the use of parametric

statistics (IKitsiou, Karydis, 2011) non-parametric methods were selected. Clus-
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ter analysis (CA) is a non-parametric multivariate statistical method which groups
objects in clusters based on similarities among objects of the same group and dif-
ferences within groups. The clusters obtained are consequently groups of observa-
tions with similar characteristics. In this study CA was used to classify monitoring
sites (objects) into groups of different nitrogen concentration level (clusters). Ward
method was used as clustering strategy as it has been defined as the most appro-
priate method to evaluate eutrophication (Kitsiou, Karydis, 2011; Primpas et al.,
2010). The squared Euclidean distance was selected as the distance measure to
increase the importance of large distances among monitoring sites (Hajigholizadeh,
Melesse, 2017). Three variables were used for classification: ammonium, nitrate
and organic N concentrations. Outliers are not discarded as they carry information
related to ecosystem’s stress (Kitsiou, Karydis, 2011). We considered that using
the median of each monitoring site was more robust due to the presence of outliers.
Each variable was standardized prior to CA implementation. Two groups (clusters)

were defined which correspond to coastal and riverine samples.

Temporal analysis

Mann-Kendall test was used to detect temporal trends in nitrogen species concentra-
tions and to identify whether the observed trends are statistically significant. This
test is a non-parametric monotonic trend analysis which identifies the increasing or
decreasing patterns in time series data (Chaudhuri, Dutta, 2014). Non-parametric
methods do not require assumptions on the normal distribution of the data and
are not distorted by outliers or missing data (IKitsiou, Karydis, 2011). The test
was applied to ammonium, nitrate and organic N concentrations from 2013 to 2016.
Mann-Whitney (Wilcoxon) W-test was used to compare the medians of each nitrogen
species in the dry and wet seasons. Additionally, for those sites with a statistically

significant trend the temporal variation for each season was analyzed.
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6.4 Results

6.4.1 Spatial variations

Ammonium, nitrate, organic N and total N concentrations in each monitoring site

are presented in Figure 6.2.
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Figure 6.2: Boxplot of ammonium, nitrate, organic N and total N in all monitoring
sites, with four annual measurements from 2013 to 2016. Outliers are not repre-
sented. Green is used for riverine sites, grey for estuaries and blue for coasts.

Both ammonium and nitrate concentrations were lower in coastal areas than
in river sites due to the dilution of riverine nutrients with marine water. However,
organic nitrogen was higher in coastal sites of both Tecolutla and Nautla watersheds.

Total nitrogen did not present any difference between riverine and coastal sites.

Cluster analysis identified two groups which correspond to rivers (including estu-
aries) and coastal sites respectively (Figure 6.3). River sites had higher ammonium

and nitrate concentrations, while organic nitrogen was higher in coastal sites. These
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differences can be observed in Figure 6.4.
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Figure 6.3: Cluster Dendogram using squared Euclidian distance and Ward’s

method. Classification variables are ammonium, nitrate and organic nitrogen con-

centrations.
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Figure 6.4: Scatterplot of organic N versus ammonium (left) and organic N versus
nitrate (right). The cluster Coast is plotted in blue and Rivers cluster in green.

6.4.2 Temporal variations

Mann Kendall test was applied to each N compound in each monitoring site. Kendall

tau’s coefficient is shown in Figure 6.5, and significant upward or downward trends

are located above or below the red lines respectively. Ammonium had a significant
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Figure 6.5: Kendall’s tau coefficient for ammonium, nitrate, organic N and total N
in rivers (green), estuarine (grey) and coasts (blue). 90% and 95% confidence levels
are located above (increasing trend) or below (decreasing trend) red lines.

upward tendency in T6 and a downward tendency in N3. T6 corresponds to a
mangrove-covered area close to Tecolutla river mouth. Nitrate also showcased an
upward trend in T6, while it decreased in coastal sites. On the other hand, organic
N has a general upward tendency in coastal waters and close to both Tecolutla and
Nautla river mouths. The tendency observed for total nitrogen was similar to that

of organic nitrogen.

Differences in ammonium, nitrate and organic nitrogen among the wet and dry
season were analyzed with Wilcoxon W-test and results are presented in Table 6.2.
Nitrate and organic nitrogen did not have a significant difference in any of the
monitored sites. On the other side, ammonium had a significant difference between
the dry and the wet season only in T3, N4 and N8 at a 0.05 significance level.
The dry season presented higher concentrations in T3, while N4 and N8 had higher

concentrations in the wet season.

184



Fourth publication

Site  W-NH,* p-value W-NOj;~ p-value W-ON p-value
T1 33 n.s. 40 n.s. 35 n.s.
T2 35 n.s. 28 n.s. 37 n.s.
T3 55 0.01 22 n.S. 36 n.s.
T4 25 n.s. 17 n.s. 33 n.s.
T5 26 n.s. 26 n.s. 32.5 n.s.
T6 16 n.s. 28 n.s. 34 n.s.
T7 33 n.s. 21 n.s. 36 n.s.
T8 21 n.s. 42 n.s. 31 n.s.
N1 40 n.s. 23.5 n.s. 39.5 n.s.
N2 34 n.s. 24 n.s. 29 n.s.
N3 43.5 n.s. 22 n.s. 45 n.s.
N4 9 0.01 40 n.s. 35 n.s.
N5 27 n.s. 35 n.s. 28 n.s.
N6 17 n.s. 19 n.s. 38 n.s.
N7 14 n.s. 32 n.s. 33 n.s.
N8 11 0.03 16 n.s. 34 n.s.

Table 6.2: Wilcoxon W test results testing the differences in ammonium (NH4"),
nitrate (NOj3") and organic nitrogen (ON) between the dry and the wet season. p-
values are shown only for significant differences (p-value < 0.05) and reported as
n.s. (not significant) when p-value > 0.05.

Additionally, the increases in organic nitrogen concentrations in coastal sites and
the lower course of Nautla and Tecolutla river were analyzed seasonally in Figure 6.6.
T6 has an extreme value in the dry season which may be due to an unusual input of
nitrogen, while N7 did not have an increasing trend in the dry season. Nonetheless,

in most sites increasing trend appears in both the dry and the wet season.

6.5 Discussion

Our main findings together with the potential causes and consequences of nitrogen

pollution are summarized in Figure 6.7.

The limit to consider poor conditions for inorganic nitrogen concentrations in
Veracruz estuaries was established at 0.1 mg.Lt by (Macauley et al., 2007). Our
study sites were all above the established limit which indicates poor water conditions

in both Tecolutla and Nautla estuaries. The spatial analysis showed that both
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Figure 6.6: Organic nitrogen concentrations between 2013 and 2016 in the dry (blue)
and wet (red) season; 2 values are shown per season.

ammonium and nitrate are diluted when reaching coastal areas, as indicated by
the lower concentrations in coastal waters than in both rivers. However, organic
nitrogen is higher in coastal sites than in riverine sites. On the other hand, temporal
analysis indicated a clear increase in organic nitrogen concentrations during the
studied period in coastal waters and a decrease in nitrate concentrations. The lack
of trends along both rivers indicates that the nitrogen source does not come from the
upper course but is rather localized in the river mouth and the surrounding coastal
areas. Total nitrogen also showed an upward tendency which implies an external
source of nitrogen to the system (Figure 6.5). Ammonium concentrations increased
only in T6, which is located within a mangrove area. In this particular site, nitrate
and organic nitrogen are also increasing. This may indicate the deterioration of

mangroves, which are subject to pollution and deforestation. N3 is located within
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an urban area, which explains the high ammonium and nitrate concentrations which
are derived from urban pollution. Nonetheless, a decreasing trend of ammonium
concentrations in this site indicates that the pollution may have been reduced during
the study period. The results of seasonal variations in nitrogen pollution indicates
that the pollution is similar along the year. In general, no differences were observed
between the dry and the wet season (Table 6.2), which is in agreement with previous
studies in Veracruz coastal systems (Rivera-Guzmén et al., 2014). Nautla estuary
has receives a high amount of freshwater runoff all year round, and fluctuations in
nutrient concentrations are rather linked to changes in organic matter decomposition

(Rivera-Guzman et al., 2014).

The coastal resilience of Veracruz has been reduced by population growth and
the increasing need for goods and services (Martinez et al., 2017). The urbanization
of the coast and the lack of wastewater treatment (Ulloa et al., 2017) are driving
the increase in N concentrations in river mouths and coastal waters (Figure 6.5).
A study in Nautla river indicated that the lower course of the river is the most
affected by water pollution, human settlements being the major source of N pollution
(Rodriguez-Romero et al.; 2018). Eutrophic conditions were detected in Casitas
(Nautla estuary) (Ulloa et al.; 2017) and eutrophication in Veracruz’s coastal waters
have been pointed out by many studies (Okolodkov et al., 2016; Rivera-Guzman
et al., 2014; Ulloa et al., 2017). Additionally, the deforestation and overexploitation
of natural resources in Tecolutla are seen as a major problem causing ecosystems
degradation (Gonzalez-Marin et al., 2017). In the whole coastal region known as
Costa Esmeralda beaches and mangroves decreased while urban coverage increased
(Martinez et al., 2014). The fertilizers used in agriculture may also have a significant
impact in N enrichment of coastal systems: an estimated 20-40% of N fertilizer is
lost as ammonium in coastal systems through continental runoff (Anguiano-Cuevas
et al., 2015). Veracruz is one of the states in Mexico which uses more fertilizer
per cultivated area (SAGARPA, 2016). The water hyacinth invasion is a sign of the

urgent need for nutrient pollution management in the area, which can be exacerbated
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MAIN FINDINGS

- Ammonium and nitrate are lower in coastal waters than along the river while organic nitrogen is higher
- Nitrate concentrations decreased in coastal waters during the study period while organic concentrations increased in all
coastal sites

POTENTIAL CAUSES

- Ammonium and nitrate are dilluted when reaching coastal waters

- Organic nitrogen is higher in coastal waters due to the decomposition of water hyacinths and other organic matter, and
decreasing nitrate concentrations may be linked to higher uptake of hyacinths

- Increasing nitrogen pollution along the coast is attributed to a lack of wastewater treatment, deforestation and unefficient
fertilizer use

CONSEQUENCES

- Poor water quality along the coast due to increasing organic nitrogen concentrations
- Eutrophic conditions
- Water hyacinth intrusion in beaches and mangroves

Figure 6.7: Summary of main findings and potential causes and consequences of
nitrogen pollution. Nitrogen concentrations were calculated as the median of four
annual measurements from 2013 to 2016; temporal trends were evaluated with Mann-
Kendall test for the same study period.

by the increasing water temperatures due to climate change. Massive mats of water

hyacinths were recently observed in Nautla and Tecolutla rivers as can be observed in
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Figure 8. The extension of the invasion has reached a point in which ecological and
socio-economic impacts may be critical. Water hyacinths absorb nutrients, leading
to a reduction in ammonium or nitrate concentrations (Villamagna, Murphy, 2010),
as observed in our study area. Nitrogen pollution (as ammonium or as nitrate) can
be absorbed by water hyacinths (Fox et al.; 2008) which prevents the detection of
increasing concentrations in the water column. Salinity limits the plant’s survival
(Villamagna, Murphy, 2010), which leads to the accumulation of dead hyacinths in
the river mouths and the surrounding beaches (Figure 6.8 (d) and (f)). AS such,
increasing organic nutrient concentrations in the water column (Figure 6.5) may
be attributed to the decomposition of water hyacinth (Villamagna, Murphy, 2010).
We found increasing organic nitrogen trends in T6 to T8 and N4 to N8, which
corresponds with sites which have a salinity above 6 g.L't. According to the latest
studies, water hyacinths are only able to survive at salinities lower than 5 g.L

(Guezo et al., 2017).

Mangroves have also been invaded by water hyacinth (Figure 6.8 (e)), which may
lead to the disruption of the ecosystem. The floating plants cover the whole water
surface, which may prevent the oxygen from dissolving into the water body or disturb
the primary production by blocking sunlight (Villamagna, Murphy, 2010). Oxygen
levels can reach dangerous concentrations for fish under the matt of hyacinth, espe-
cially if a large amount of plants decompose at the same time consuming most of
the system’s oxygen (Villamagna, Murphy, 2010). The nutrient cycle is also affected
by the absorption of inorganic forms and the release of organic compounds through
plant decomposition. The detritus generated in mangrove areas is the basis of a
food web which supports a large variety of species (Holguin et al.; 2001). When the
N cycle in mangroves is altered, the impact affects the whole ecosystem including
zooplankton, macroinvertebrates or fish (Toft et al., 2003). Water pollution and wet-
land degradation ultimately cause decreasing wildlife populations (Gonzalez-Marin

et al., 2017).

In addition to the damage caused to mangrove ecosystems, water hyacinths can
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also affect the economy of the coastal villages. On one hand, if the hyacinth invasion
is large (as seen in the photos of Figure 6.8) fishermen could be affected by a reduced
quantity of fish or by a shift in fish communities (Villamagna, Murphy, 2010). Man-
groves provide shelter and food for fish and seafood, and fisherman develop most
of their activity in the surrounding areas (Marin-Muniz et al., 2016). On the other
hand, the study area is located within a touristic destination known as Costa Es-
meralda, and sun tourism yields important economic revenues (Pérez-Maqueo et al.,
2017). The tourism industry can be greatly affected by the incursion of decaying
water hyacinths into the beaches. Many local businesses clean up the decomposing
plants, but this practice becomes inefficient if the invasion is too large. Mangroves
are also used as a tourist attraction and local people offer boat tours (Marin-Muniz
et al., 2016), which become unfeasible when these ecosystems are completely covered

by the exotic floating plants.

Water hyacinth is very difficult to eradicate (Villamagna, Murphy, 2010). How-
ever, there are many management decisions that could be considered to reduce
nitrogen pollution and improve water quality. Firstly, wastewater treatment plants
should be implemented in the whole area, especially in touristic areas where peak
tourism seasons can bring up to 79 tourists per hectare (Pérez-Maqueo et al.; 2017).
Moreover, the use of fertilizers has an urgent need for regulation in the Southern
Gulf of Mexico. Nutrient management technics need to consider the right source,
rate, time and place for fertilizer application (Ulrich-Schad et al.; 2017). The use
of the optimum rate would result in less fertilizer applied for an equivalent yield,
which implies reduced production costs. In fact, higher N fertilizer application rates
do not imply a higher nutrient use efficiency (Thorburn et al., 2017). Nutrient man-
agement plans provide a written guide to help farmers efficiently utilize fertilizers
and simultaneously protect water resources (Ulrich-Schad et al., 2017). Besides, the
conversion of mangroves, forests and grasslands also may contribute significantly
to nitrogen loading to coastal systems (Van Meter et al.; 2017). Mexico has ex-

hibited one of the highest rates of deforestation in Latin America in recent years
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(Mokondoko et al., 2016). The potential practices for lowering N loadings involve
both the implementation of conservation policies and a change in human behavior.
Motivating behavioral change requires both available technology and understanding

the incentives and disincentives (Robertson, Vitousek, 2009).

Recovery projects need to take into consideration the engagement of the local
population. Nautla inhabitants see mangroves as food supply, material for construc-
tion and tourist attraction; while they perceive wetland loss as a threat, they do
not generally understand what is causing it (Marin-Muniz et al.; 2016). The use
of wetlands by local communities in Veracruz is also decreasing wildlife populations
due to water pollution, hunting or deforestation (Gonzdlez-Marin et al.,; 2017). In
order to improve their socioeconomic conditions while preserving mangroves and
beaches, new sustainable economic opportunities need to be generated. Medium
density tourism in the area can be compatible with coastal ecosystems’ protection
(Pérez-Maqueo et al., 2017), but social involvement and environmental education
are key to achieving a sustainable development (Zaldivar-Jiménez et al., 2017). At
a large scale, mangrove conservation and restoration is a major priority in the Gulf
of Mexico Large Marine Ecosystem (LME) (Zaldivar-Jiménez et al., 2017). Several
international collaborations have already been started between the United States
and Mexico (Alvaroz Torres et al., 2017). Common strategies are required as prob-
lems originating in one country may impact the whole LME (//\lvzxrez Torres et al.,
2017). Joint efforts to preserve the Gulf of Mexico’s natural resources would allow
a dramatic improvement in both ecosystems health and human development (Hud-
son, 2017), as well as a great climate change mitigation effort through blue carbon
storage (Thorhaug et al., 2019; Vazquez-Gonzalez et al., 2015), even with small

mangroves (Adame et al., 2018).
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Figure 6.8: Photos of Tecolutla and Nautla rivers at their lower course: (a) Man-
grove in Tecolutla with touristic boat (14/07/2019) (b) Tecolutla river mouth with
fisherman and some water hyacinths (14/07/2019) (c) Nautla bridge with water
hyacinths in the riverside (14/07/2019) (d) Casitas estuary (Nautla) with dead hy-
acinths when they reach saline waters (16/07/2019 (e) Mangrove in Nautla river
invaded by water hyacinth (16/07/2019) (f) Casitas beach at Nautla river mouth
covered by decomposing water hyacinths (16/07/2019).
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6.6 Conclusions

Our results indicate that organic nitrogen concentrations are increasing in coastal
waters of Costa Esmeralda. The main potential cause is the decomposition of wa-
ter hyacinths, an invasive aquatic species which grows disproportionately driven by
nitrogen pollution from deforestation, untreated wastewater and fertilizers. Water
hyacinths die when reaching saline coastal waters, leading to an incursion of touristic
beaches and an increase in organic concentrations. Additionally, mangroves in the
area are also affected by nitrogen pollution and by the invasion of water hyacinth.
The nutrient enrichment of such important ecosystems may lead to the disruption
of the whole food web, altering fish communities and wildlife, and causing many
environmental and socio-economical problems. The results of this study could be
extrapolated to other regions of the Southern Gulf of Mexico with similar charac-
teristics. Recovery measures should include the establishment of sewage treatment
plants, a management plan for the use of fertilizers and policies regulating the defor-
estation of coastal mangroves and other ecosystems. Additionally, the involvement
of the local population is required for the achievement of a sustainable development
which allows the maintenance of ecotourism activities while conserving natural re-

sources.
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Final Discussion

Interpretation of the results and contextualization.
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7.1 Anthropogenic land uses which modify nitro-

gen dynamics in coastal waters

7.1.1 Urban development

Urban development has been identified as an important source of nitrogen pertur-
bation in coastal waters in both the Mediterranean Sea (section 3) and the Gulf of

Mexico (sections 5 and 6).

In the Northwestern Mediterranean Sea, we observed how the anthropogenic
pressure modifies the response of nitrification to temperature. The urban expan-
sion along the coast has driven shifts in phytoplankton communities (Pachés et al.,
2012), which in turn modify the main processes of the nitrogen cycle carried out
by microorganisms such as nitrification. These results could be applied to other

processes such as denitrification, which also depend on microorganisms.

On the other hand, in the Gulf of Mexico we observed that urban expansion
along the coast which occurs mainly for tourism activities, was the first driver of
nitrogen pollution in estuaries (section 5). The results from the fourth publication
(section 6) indicate how urban expansion and the derived nitrogen pollution also
alters nitrogen dynamics through the proliferation of invasive species such as water
hyacinths. These plants decompose in beaches impacting the local economy which

depends on tourism.

Globally, the urban development along the coast has been identified as a leading
cause of nitrogen alteration by modifying both nitrogen concentrations and trans-
formations (Stamou, Kamizoulis, 2008; Geedicke et al., 2018; Holguin et al., 2006).
The biogeochemical cycles of nutrients such as nitrogen have long been altered in
densely populates areas (Struyf et al., 2004), and coastal waters are particularly vul-
nerable to anthropogenic pressures due to the large populations living close to the
coastline. Urban expansion often takes place without a proper sustainable manage-

ment which deteriorates coastal ecosystems and water quality, altering the processes
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of important biogeochemical cycles such as the nitrogen cycle (Stamou, Kamizoulis,

2008).

7.1.2 Agriculture and livestock

The influence of agriculture and livestock on nitrogen pollution of coastal waters was
evaluated in the Gulf of Mexico through the study carried out in the third publication
( section 5). The results indicate that both agriculture (n=0.22) and livestock
(n=0.11) have an influence on nitrogen concentrations in estuaries, although the

influence of the urban expansion (n=0.67) is considerably higher.

These results are particular to the study area, and may not apply to other regions
where the influence of agriculture or livestock may be higher. For instance, Van
Meter et al. (2017) indicated that nitrogen pollution from fertilizers in the Mississippi
river mouth in the Northern GoM is the main cause of the coastal hypoxia and the
derived dead zone. Similarly, the Ebro delta in the Northwestern Mediterranean
has significant nitrogen pollution derived from the use of fertilizers for agriculture
(Herrero et al., 2018). Worldwide, nitrogen-use efficiency in agriculture is generally
very low (Erisman et al., 2008), which leads to the nitrogen enrichment of coastal
ecosystems (Rockstrom et al.; 2009). Livestock production has also largely increased

resulting in the unbalance of the nitrogen cylce (Battye et al., 2017).

7.2 The alteration of the nitrogen processes in

coastal waters by climate change

7.2.1 Temperature

The effect of temperature on nitrogen processes was evaluated in the Mediterranean

Sea through the first (section 3) and second (section 4) articles.

197



Chapter 7.

Firstly, temperature was identified as an important driver of nitrification in
coastal waters (section 3), which entails a significant impact of climate change on
this nitrogen transformation process. The second step of nitrification (nitrite to
nitrate) was found to be more sensitive to temperature than the first step (ammo-
nium to nitrite) under natural conditions. As such, the increasing temperatures
derived from climate change may modify the decoupling of the two steps of nitrifica-
tion. With increasing temperatures, the tranformation of nitrite into nitrate would
increase faster than the tranformation of ammonium into nitrite, resulting in a re-
duction of nitrite concentrations, which agrees with the results found in the second

publication (section 4).

A reduction of both nitrite and nitrate concentrations was predicted by the
model developed in the second article (section 4). Temperature was negatively
correlated to both nitrite (r=-0.54) and nitrate (r=-0.36), which entails a reduction
of these compounds under climate change. These decreasing trends driven by the
rising temperatures will be particularly noticeable in winter, which is when nitrite
peaks are observed due to low temperatures (sections 3 and 4). This reduction was
observed under both RCP 4.5 and RCP 8.5 scenarios, although for the RCP 8.5
the decreasing trends were significant for all the individual months. On the other
hand, the correlation of ammonium concentrations with temperature was positive
(r=0.25), although this correlation was not statistically significant (« > 0.05). The
annual trend of ammonium was not statistically significant, neither for RCP 4.5
nor for RCP 8.5, although increasing or decreasing trends were observed for some

individual months.

Finally, urban settlements modified the response of the nitrification process to
temperature (section 3), which indicates that the combined effect of nitrogen pollu-
tion and climate change will significantly impact nitrification. An intercollaboration
of disciplines will be required to understand the interactions between human soci-

eties and the nitrogen cycle (Jennerjahn, 2012).
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7.2.2 Rainfall and river runoff

The response of dissolved inorganic nitrogen (DIN) concentrations to the alteration
of precipitation patterns was evaluated through the model developed in the second
publication for the JRBD (section 4). Rainfall is expected to undergo important
changes in the JRBD under both RCP 4.5 and 8.5, with mean annual reductions
of around 10% and 20% respectively (IPCC, 2014). Similarly, the Ebro river flow
would experience a mean annual reduction of 14% under RCP 4.5 and of 28% under
RCP 8.5 (section 4). This lower precipitation rates in the JRBD will result in lower
inputs of DIN to coastal waters. In the study area, nitrate is the most affected
DIN compound by the reduction of freshwater inputs driven by lower groundwater
discharges. The reduced freshwater inputs through the Ebro river flow will also
impact DIN concentrations, which have a significant positive correlation with salinity

(section 4).

The positive correlation between precipitation and total nitrogen loads was also
observed in previous studies (Bi et al., 2018). Kumar et al. (2018) indicated that
changes in salinity due to the alteration of precipitation patterns may affect the N
uptake of phytoplankton, modifying the N cycle in coastal waters. However, the
local response of nitrogen dynamics to changes in precipitation patterns depends on
the trends under the different climatic scenarios for each region. For example, in
other areas of the Mediterranean Sea the water flow is expected to increase in winter
and decrease in summer (Pesce et al.; 2018). In our study area, the mean rainfall
rate for 2070-2100 relative to 1971-2000 is expected to increase only in January
and February under RCP 4.5 (between 5% and 10%) and in November under RCP
8.5 (almost 15%) (section 4). For the rest of the months a significant reduction of

rainfall is expected.
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7.2.3 Overall impact of climate change

The overall impact of climate change on the N cycle is the result of the combined
effects of temperature rise, changes in precipitation, sea level rise, acidification and
other indirect factors such as the modification of plankton communitites (Herrmann
et al., 2014). In the JRBD the trends in DIN concentrations were analyzed, de-
tecting an overall decreasing trend of nitrite and nitrate (section 4), and changes in
nitrification dynamics (section 3). These changes are the consequence of tempera-
ture rise and changes in rainfall and river runoff. However, the effect of sea level rise
and acidification were not taken into account, but they are also expected to have
an impact on N dynamics. For example, ocean acidification might have a signifi-
cant influence on decreasing nitrification rates (Kim, 2016), and sea level rise may
also have important consequences for phytoplankton uptake, especially in shallow
waters (Pesce et al., 2018). Additionally, the future biogeochemistry of nitrogen in
coastal waters depends both on climate change and the nitrogen pollution fluxes
from riverines exports (Richon et al.; 2019). The use of fertilizers is expected to
increase in the next decades (Bosch et al., 2018), as well as the flow regulation due

to the reduction of flow in certain rivers (Pesce et al.; 2018).

In order to evaluate the overall impact of climate change in the whole Mediter-
ranean Sea (not only coastal waters), other factors such as the changes in nitrogen
inputs from the strait of Gibraltar need to be accounted for (Richon et al., 2019).
However, the major changes are expected to occur close to river mouths, where
the anthropogenic influence is higher (Lazzari et al., 2014). In other regions such
as the United States, the changes observed in precipitation and temperature will
likely reduce nitrogen yields to most coastal areas (Alam et al., 2017). In China,
temperature was also negatively correlated to total nitrogen while precipitation was
proportional to nitrogen loads (Bi et al., 2018). Moreover, a reduction of nitrogen
discharges due to climate change are expecte in the Mekong river in Asia (White-
head et al.; 2019). Globally, climate change is expected to induce major changes on

the nitrogen dynamics in coastal waters.
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7.3 Aspects of the N cycle altered by anthropogenic

pressures

7.3.1 Modification of the biogeochemical processes

We evaluated how urban pressures alter nitrification dynamics and the possible sim-
ilarities that could be applied to other processes such as denitrification (section 3).
Because the oxidized and reduced forms of nitrogen are linked through nitrification
(Herbert, 1999), the alteration of nitrification will have significant cascading effects
for other processes of the N cycle. Nitrification provides the nitrate used as substrate
for denitrification, which in turn eliminates nitrogen from the system. Therefore,
the alteration of nitrification will also impact the nitrogen loss to the atmosphere
through denitrification. Alam et al. (2017) predicted an increase in denitrification
rates derived from rising temperatures, which would reduce nitrate concentrations in
coastal waters, such as predicted by the results found in the second article (section
4). High temperatures may also enhance nitrogen uptake for primary production
or ammonium release from the sediment (Pesce et al., 2018). Additionally, increas-
ing coastal hypoxia derived from warmer waters are expected to alter the nitrogen
processes which depend on dissolved oxygen (Du et al., 2018). As such, both ni-
trification and denitrification could be affected by oxygen depletion (Voss et al.,

2013).

Similarly, the proliferation of the invasive species as a consequence of N pollution
modifies the N dynamics, as observed in the GoM through the fourth publication
(section ). The growth of hyacinths can cause a reduction of nitrogen compounds
such as nitrate and ammonium driven by the uptake for the plant’s growth (Villam-
agna, Murphy, 2010). Then, these plants die when they reach the sea because they
do not survive in saline waters. This decomposition drives an increase in organic
nitrogen concentrations along the estuaries and the surrounding coastal waters. Con-

sequently, the alteration of the nitrogen species drives a shift in the biogeochemistry
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of the coast.

7.3.2 Changes in seasonal variations

The nitrite concentrations evaluated in the Mediterranean coastal area showed peaks
in winter under natural conditions, but these peaks were altered in the most pop-
ulated coastal areas (section 3). Cold periods result in the decoupling of the two
steps of nitrification due to the different response to temperature of the two steps. In
the polluted areas, the alteration of the biogeochemistry derives in a modification
of this process, and peaks no longer occur as a response to changes in tempera-
ture but rather depend on the changes in ammonium concentrations. As such, the

anthropogenic pollution modifies the intra-annual dynamics of nitrification.

On the other hand, the changes provoked by climate change on DIN concentra-
tions in the JRBD vary from month to month (section 4). Nitrite concentrations are
expected to undergo higher decreasing trends in January and December under both
RCP 4.5 and RCP 8.5 due to the increase of the minimum annual temperatures.
The rate of nitrate decrease was highest in December under RCP 4.5, and in January
and February under RCP 8.5. These changes are partly due to the rising tempera-
tures, although the decrease in rainfall and the derived lower groundwater and river
discharges are the major driver of the trends observed in nitrate concentrations. Fi-
nally, ammonium is expected to increase in January under RCP 4.5, while for RCP
8.5 decreases are observed from January to March and decreases from September to

December.

In the GoM, seasonal differences were evaluated in the fourth publication (section
6), although no statistically significant differences were observed. Both the wet
and the dry season presented increasing trends of organic nitrogen concentrations
in coastal waters. Other researchers indicated that the inputs of nitrogen from
freshwater were similar all year round (Rivera-Guzman et al.,; 2014). Nonetheless, a

more specific analysis of the seasonal differences may expose the seasonal variations
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in pollution.

Other researchers also concluded that the anthropogenic impacts to the nitrogen
dynamics varies depending on the season. For instance, the changes in precipitation
patterns are expected to modify the seasonal export of nitrogen concentrations to
coastal regions (Whitchead et al., 2019). Cerkasova et al. (2018) found different
nutrient load changes for each season under climate change, and Voss et al. (2013)
indicated how seasonal coastal upwelling or winter mixing may be destroyed by
climate change. We conclude that the anthropogenic pressures alter the seasonal N

dynamics.

7.3.3 Destruction of coastal ecosystems

The anthropogenic pressures such as the urban development along the coast result
in the destruction of the coastal ecosystems. In the GoM, we evaluated how the
urbanization over beaches and mangroves destroys the ecosystems and increases
the nitrogen pollution to coastal waters (section 5). We also studied the potential
influence of mangrove destruction in the alteration of the N dynamics. Mangroves
recycle nutrients, and consequently their destruction can increase the N inputs to
coastal waters (Gongcalves Reis et al., 2017). Additionally, the detritus generated
in mangroves is the basis of a whole food web, which can be completely modified if

mangroves are destroyed (Holguin et al., 2001).

Overall, coastal ecosystems play a significant role in the global N cycle, as devel-
oped in the introduction (section 1.1.3). The destruction of these ecosystems entails
an important alteration of the N cycle, which has global consequences. For example,
the destruction of mangroves may increase the release of NoO (Gongalves Reis et al.,
2017) and enchance global warming. Therefore, the conservation of coastal ecosys-
tems such as wetlands, coral reefs or dunes is essential to minimize the alteration of

the N cycle in coastal waters.
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7.4 Differences between the two case studies

7.4.1 Geomorphological and ecological differences

Both the Gulf of Mexico and the Mediterranean Sea are semi-enclosed seas, which
entails they have a series of common characteristics. Both have micro-tidal ranges,
and the enclosure generates particular mixing conditions. Land surrounds both seas,
making the anthropogenic pressures especially relevant. Nonetheless, important
differences exist as well. The Mediterranean Sea is considered oligotrophic, with
low naturally occuring nutrient concentrations, and phosphorus is considered the
limiting nutrient (Krom et al.; 2010). On the other hand, the Gulf of Mexico has
higher nutrient concentrations and nitrogen is said to limit primary production

(Turner, Rabalais, 2013).

We studied a particular area of each sea located within the nearshore coastal
waters. Inorganic nitrogen concentrations were higher in the studied region of the
GoM (section 6) than in the Mediterranean Sea (section 4), but the reference con-
ditions to evaluate pollution cannot be the same independently of the region under
evaluation. The low nitrogen inputs in the pristine site C002 of the JRBD allowed
us to develop a model which forecasts inorganic nitrogen cocentrations under the
different climate change scenarios. Similarly, the pristine conditions allowed the
estimation of nitrite dynamics under natural conditions. The study of these phe-
nomenons becomes infeasible in the CGHR of the GoM because of the inexistence

of unpolluted areas.

The climatic differences amongst the two sites studied also entail the existence of
diverse ecosystems. For example, in the Gulf of Mexico due to its location in tropical
latitudes, we were able to evaluate the pollution in mangroves. The deforestation of
mangroves and other ecosystems along the coast of the GoM play an important role
in the unbalance of the N cycle as discussed in the previous section. The different

biodiversity existing in the Mediterranean Sea and in the Gulf of Mexico derive
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in different consequences of nitrogen pollution. For example, the water hyacinth
invasion found in Veracruz indicates particular nitrogen pollution conditions which

were not found in the Mediterranean studied area.

7.4.2 Socio-economic differences

In Spain, the regulation of nitrogen pollution is controlled by several laws including
european directives, which strictly control the nitrogen inputs to coastal waters.
Each direct input from WWTPs or from the industry is registered by the local gov-
ernment (section 1.4.4). Additionally, the regular monitoring campaigns allowed the
obtention of a large database which can be used for many data analysis. Unfortu-
nately, in the last years the monitoring campaigns have been less frequent which has
hindered the evaluation of N pollution and processes in the coastal waters of the
JRBD. Nonetheless, for this study we counted on a large database to carry out the

research.

On the other hand, Mexico does not have a strict control of the nitrogen emis-
sions to coastal waters and wastewater is often discharged without treatment. Ad-
ditionally, the monitoring of coastal waters is very limited and irregular. As such,
the limited data available does not allow the application of statistical techniques or
mechanistic models. Furhtermore, the economic resources available to restore the
ecosystems are limited and thus the most affected sites need to be assessed in the

first place.

The differences mentioned were decisive in the election of the different techniques
used in each publication. In the Mediterranean Sea, we developed models to assess
on one side nitrification and climate change on the other. The first model was a
mechanistic model (section 3) while we used artificial neural networks to evaluate cli-
mate change (section 4). These techniques require quality information to be applied.
As such, the use of these models was not possible in the GoM where the available

information was limited. Grey systems are a specific technique developed to derive
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useful information when only limited data is avalaible. Therefore, we developed a
method to evaluate N pollution with limited data based on Grey clustering, which
allowed us to reach scientifically sound conclusions (section 5). Then, we performed
a statistical evaluation of a more reduced area where more information was available

(section 6).

We conclude that the techniques used and therefore the results obtained depend
drastically on the socio-economic characteristics of the area under study. It is not
possible to apply the same techniques worldwide as the economic development plays
a decisive role. Additionally, the restoration measures would as well depend on
the economic resources and on the societies living within the coastal area. Other
researchers also pointed out the need for specific sustainable practices depending on
national differences (Sanchez-Hernandez et al.; 2017) or the resources availability

(Do-Thu et al., 2011; Firmansyah et al., 2017).

7.5 New tools to evaluate the anthropogenic al-

teration of the N cycle in coastal waters

7.5.1 Biogeochemical model

A simple biogeochemical model was developed in the first publication (section 3)
to evaluate the anthropogenic impact on the process of nitrification. Through the
modelling of the intermediary compound, nitrite, the differences in nitrification pa-
rameters among the sites with different anthropogenic pressures was evaluated. The
results obtained indicate that the application of simplified mechanistic models is a
useful method to compare the processes of the N cycle in coastal waters under dif-
ferent human pressures. When more information becomes available, the application

of more complex models could be a step forwards.

Mechanistic biogeochemical models have long been used to study the nitrogen
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processes in water (Bowie et al., 1985). However, our study represents the first
attempt to use a simplified biogeochemical model with the aim of evaluating the
anthropogenic pressures to a N process in marine waters. The same approach could
be used to study the human impact on other N processes and allow a comprehensive

estimation of the overall impact to the N cycle in coastal waters.

7.5.2 Artificial neural networks

Artificial neural networks have proved to be a useful tool to model complex intera-
tions (section 4). In this context, we were able to model dissolved inorganic nitrogen
concentrations based on physical variables under pristine conditions. Then, we es-
timated the future trends of DIN concentrations under the different climate change
scenarios. Although simplifications needed to be made, ANNs allowed a preliminary
forecast of the future trends of DIN concentrations in the pristine inshore coastal

waters of the NW Mediterranean Sea.

Other researchers also evaluated the use of ANNs in the evaluation of the impact
of climate change on nutrients in marine waters (Wang, Polcher, 2019; Bittig et al.,
2018). Nonetheless, this is the first time that ANNs are used to evaluate the future
trends of nitrogen concentrations in coastal waters. Although the data availability
limited the study to a simplified approach which considered only qualitative con-
clusions rather than quantitative, further research could be carried out to develop
more complex ANN models with the ability to forecast the quantitative trends of

nitrogen species concentrations in coastal waters under climate change.

7.5.3 Grey systems theory

Grey systems theory was used to derive a nitrogen evaluation method when only
small and uncertain samples are available (section 5). The method was applied
to the coastal waters of the GoM, where the index which prioritizes N pollution

management (GNMP index) matched with the index developed to evaluate the
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pressures related to land use (GLUP index). This study represents the first attempt
to incorporate grey systems theory to the evaluation of N pollution in coastal waters,
which could be very useful for countries which do not have a historical database of
water quality parameters. We also incorporated the concept of Shannon entropy to
identify the anthropogenic activities which have a greater impact on the N pollution.

The method developed could be also applied to evaluate other water pollutants.

7.6 Tying results to the big picture

This research entails new insights into the anthropogenic alteration of nitrogen in
coastal waters. For the first time, an evaluation of how anthropogenic pressures
modify the decoupling of the two steps of nitrification and a preliminary estimation
of the climate change impact on DIN concentrations in nearshore coastal waters
of the NW Mediterranean Sea was carried out. In the GoM, a new method based
on Grey systems was developed to derive useful information on nitrogen pollution,
which allowed us to conclude that urban expansion along the coast is the main
driver of nitrogen pollution in Veracruz estuaries. Finally, an evaluation of nitrogen
pollution in a mangrove area was carried out and the impact for the expansion of

the invasive water hyacinth was discussed.

The results of this thesis contribute to the evaluation of the anthropogenic al-
teration of the N processes in coastal waters. The modification of nitrification as
well as the changes in DIN concentrations in coastal waters derive in an unbalance
of the whole N cycle, which may carry important consequences for the ecosystems.
Similarly, the destruction of mangroves and other wetlands, as well as the prolifer-
ation of invasive species as a consequence of N pollution results in a significant loss

of biodiversity.

On a global scale, we can conclude that anthropogenic pressures modify the bio-
geochemistry of nitrogen in coastal waters as endorsed by previous studies in diverse

ecosystems around the world (Beman et al., 2010; Kim, 2016). The consequences
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of this alteration inlcude the deterioration of marine ecosystems, human health
problems and the exhacerbation of climate change, as developed in section 1.3. Ul-
timately, the alteration of the N cycle provokes cascading effects which derive in the
unbalance of other cycles such as the carbon cycle, with dramatic consequences for

life on Earth (Gruber, Galloway, 2008).

7.7 Limitations of the research

For this research, only two study areas were used, and therefore the extrapola-
tion of the results to other regions needs to be done with caution. As the coastal
ecosytems are very diverse and the socio-economic circumstances play a key role, the
conclusions reached in this study cannot be extrapolated worldwide. Nonetheless,
these results can be used as a starting point for the evaluation, interpretation and

comparison of research carried out in different geographical locations and contexts.

Due to the limitation of data and the restriccion of the research to the study
areas, only certain aspects of the alteration of the N cycle in coastal waters was
evaluated. For instance, the process of nitrification was evaluated while many other
processes are also modified my human activity. Similarly, the trends of DIN concen-
trations were forecasted while organic nitrogen was not taken into consideration. In
the GoM, a mangrove area was studied while many other coastal ecosystems take

part in the N cycle.

Additionally, simplifications were necessarily made throughout the research. Both
the biogeochemical model and the artifitial neural networks model were simplified
to study the effect of the urban settlements and climate change respectively. In the
third article, the Grey systems theory was used to derive useful information, but
additional data would be needed to reach robust conclusions. Therefore, the results
found in this research need to be corroborated with further studies and replication

of the research in other regions with different characteristics.
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7.8 Future research

Future research should focus on the evaluation of the alteration of the processes
of the N cycle in coastal waters altogether. Additionally, further research should
evaluate the combined effects of the changes in anthropogenic nitrogen inputs and
climate change. While more data become available, the development of more com-
plex models would allow an exhaustive evaluation of the mechanisms by which hu-
mans modify N dynamics in marine waters. Furthermore, the interconnection of the
nitrogen cycle with other important elements such as carbon or phosphorus should
be evaluated in order to determine the full impact on the Earth’s ecosystems and
on climate change. Finally, the consequences of the alteration of the nitrogen cycle

on biodiversity, human health and climate change should be evaluated.

7.9 Final conclusions

Throughout the research an evaluation of the pressures and impacts of anthropogenic
activities on nitrogen dynamics in coastal waters of the Northwestern Mediterranean
Sea and the Southern Gulf of Mexico was carried out. The main conclusions shed
light on the research questions and objectives raised. Both nitrogen pollution and cli-
mate change modify the nitrogen species concentrations and the nitrogen processes.
Important differences were found between the two study areas selected based on
both the geomorphological and ecological characteristics and on the socio-economic
conditions. Additionally, useful tools were developed based on simple mechanistic
modelling, artificial neural networks and grey systems theory. The main conclusions

reached are enumerated hereafter:

1. Urban development along the coast is the main cause of the alteration of the

N processes in the nearshore coastal waters of the two study areas.

2. Climate change can modify nitrogen processes in coastal waters by modifying

both the biogeochemistry and the continental nitrogen inputs. In the stud-
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ied area of the NW Mediterranean Sea DIN concentrations are expected to

decrease under both RCP 4.5 and RCP 8.5.

. Anthropogenic pressures alter nitrification in coastal waters of the Mediter-

ranean Sea, a key N process, which can have cascading consequences for the

whole N cycle.

The interannual cyles of nitrogen are modified by human activities, both

through nitrogen pollution and climate change.

. The destruction of coastal ecosystems such as mangroves modify the N con-

centrations in coastal waters.

Geomorphological and ecological differences amongst the study sites result
in different results and conclusions concerning the impact of anthropogenic

pressures on the N dynamics.

Socio-economic development plays a significant role in the pressures and im-
pacts of nitrogen pollution, as well as in the methods that need to be applied

to study the alteration of nitrogen processes.

Simplified mechanistic biogeochemical models are useful for an overall evalu-

ation of the impact of anthropogenic pressures on nitrogen processes.

. Artifitial neural networks can be used to forecast the trends of nitrogen com-

pounds under climate change scenarios.

Grey systems theory is a useful technique for the evaluation of nitrogen pol-

lution under limited data availability.
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