CONTENTS

Acknowledgements iii
Abstract v
Resumen vii
Resum ix
Contents xi
List of Figures xv
List of Tables xix

Part I Introduction 1

Chapter 1. Introduction 3
 1.1. Motivation .. 4
 1.2. Dissertation Objectives ... 6
 1.3. Dissertation Contribution .. 10
 1.4. Dissertation Overview .. 11
 1.5. Research Methodology .. 13
 1.6. Dissertation Structure .. 15

Part II Investigation Problem 17

Chapter 2. Background 19
 2.1. Overview of the Chapter .. 20
 2.2. Model Driven Development 20
 2.2.1 Models in MDD .. 21
 2.2.2 Domain Specific Language in MDD 21
 2.3. Software Maintenance Tasks 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4. Machine Learning</td>
<td>23</td>
</tr>
<tr>
<td>2.5. Runtime Example</td>
<td>24</td>
</tr>
<tr>
<td>2.5.1 Railway Domain</td>
<td>24</td>
</tr>
<tr>
<td>2.5.2 Train Control and Management Language</td>
<td>25</td>
</tr>
<tr>
<td>3.1. Overview of the chapter</td>
<td>30</td>
</tr>
<tr>
<td>3.2. Search Process</td>
<td>30</td>
</tr>
<tr>
<td>3.3. Related Works</td>
<td>32</td>
</tr>
<tr>
<td>3.3.1 Related works regarding the kind of software artifacts</td>
<td>34</td>
</tr>
<tr>
<td>3.3.2 Related works regarding the ML techniques</td>
<td>35</td>
</tr>
<tr>
<td>3.4. Research Questions for the Systematic Review</td>
<td>37</td>
</tr>
<tr>
<td>Part III Treatment Design</td>
<td>39</td>
</tr>
<tr>
<td>Chapter 4. Ontological Evolutional Encoding</td>
<td>41</td>
</tr>
<tr>
<td>4.1. Overview of the chapter</td>
<td>42</td>
</tr>
<tr>
<td>4.2. Input and output artifacts</td>
<td>43</td>
</tr>
<tr>
<td>4.3. Stages of the ontological evolutionary encoding</td>
<td>45</td>
</tr>
<tr>
<td>4.3.1 Ontological Encoding</td>
<td>45</td>
</tr>
<tr>
<td>4.3.2 Evolutionary Encoding</td>
<td>47</td>
</tr>
<tr>
<td>4.3.3 Feature Selection</td>
<td>48</td>
</tr>
<tr>
<td>4.4. Summary of the ontological evolutionary encoding</td>
<td>49</td>
</tr>
<tr>
<td>Chapter 5. Fitness Function</td>
<td>51</td>
</tr>
<tr>
<td>5.1. Overview of the chapter</td>
<td>52</td>
</tr>
<tr>
<td>5.2. Training phase</td>
<td>53</td>
</tr>
<tr>
<td>5.2.1 Input and output artifacts</td>
<td>54</td>
</tr>
<tr>
<td>5.2.2 Steps of training phase</td>
<td>55</td>
</tr>
<tr>
<td>5.3. Testing phase</td>
<td>57</td>
</tr>
<tr>
<td>5.3.1 Input and output artifacts</td>
<td>58</td>
</tr>
<tr>
<td>5.3.2 Steps of testing phase</td>
<td>60</td>
</tr>
<tr>
<td>5.3.3 Classifier</td>
<td>61</td>
</tr>
</tbody>
</table>
5.4. Summary of the fitness function 62

Chapter 6. Evolutionary Algorithm 65
6.1. Overview of the chapter 66
6.2. Input and output artifacts 67
6.3. Stages of the evolutionary algorithm 69
 6.3.1 Initialization .. 69
 6.3.2 Genetic Operations 70
 6.3.3 Fitness Function 74
6.4. Overview of the FRAME approach 75

Part IV Treatment Validation 77

Chapter 7. Evaluation Design 79
7.1. Overview of the chapter 80
7.2. Real Case: Test Cases and Oracle 82
7.3. Approaches under Evaluation 84
 7.3.1 TLR-FRAME: FRAME approach 85
 7.3.2 TLR-Linguistic: Linguistic Rule-Based approach 86
 7.3.3 TLR-IR: Information Retrieval approach .. 88
 7.3.4 TLR-FNN: Feedforward Neural Network approach ... 89
 7.3.5 TLR-RNN: Recurrent Neural Network approach 91
 7.3.6 TLR-LtoR: Learning to Rank approach 93
7.4. Comparison and Measure 94
7.5. Threats to validity 96

Chapter 8. Results of the Evaluation 101
8.1. Overview of the chapter 102
8.2. Reported results 102
8.3. Statistical Analysis 103
 8.3.1 Statistical Test 103
 8.3.2 Post Hoc Analysis 104
 8.3.3 Effect Size ... 105
8.4. Research Questions for the Evaluation .. 108
8.5. Discussion ... 109
 8.5.1 Prerequisites and Properties .. 109
 8.5.2 Advantages of TLR-FRAME ... 112

Part V Conclusion .. 117

Chapter 9. Conclusion and Ongoing Research 119
 9.1. Overview of the chapter ... 120
 9.2. Research Questions .. 120
 9.2.1 Results of the Objective 1 ... 120
 9.2.2 Results of the Objective 2 ... 121
 9.2.3 Results of the Objective 3 ... 122
 9.3. Ongoing Research ... 123
 9.3.1 Feature Location and Bug Localization 123
 9.3.2 Ontological Evolutionary Encoding: Granularity 124
 9.3.3 Fitness Function: Deep Learning 125
 9.3.4 Domain Ontology: Metamodel 125
 9.3.5 Knowledge Base: Size and Model Fragments 126
 9.4. Concluding Remark .. 126

Bibliography ... 129

Part VI Publications ... 145

Chapter 10. Publications ... 147
 10.1. REVE’17 Paper (First page) .. 148
 10.2. ER’17 Paper (First page) ... 150
 10.3. CoopIS’17 Paper (First page) ... 152
 10.4. MODELS’18 Paper (First page) 154
 10.5. JSS’20 Paper (First page) ... 156
List of Figures

Chapter 1. Introduction
1.1 Example of a product model and a model fragment for fragment retrieval in software maintenance tasks on models 5
1.2 Design problem behind RQ2: Characterization of model fragments 7
1.3 Design problem behind RQ3: Assessing model fragments regarding a query .. 8
1.4 Design problem behind RQ4: Extraction of model fragments from a model .. 9
1.5 Overview of the work performed as part of the dissertation ... 12
1.6 Design cycle of the research methodology followed in this dissertation ... 14

Chapter 2. Background
2.1 Example of a TCML model and model fragment 26

Chapter 3. State of the Art
3.1 Overview of the search process 32
3.2 Number of articles by year ... 33
3.3 Number of articles by software maintenance task according to their main software artifact .. 34
3.4 Number of articles by software maintenance task according to the ML technique applied .. 36

Chapter 4. Ontological Evolutionary Encoding
List of Figures

4.1 Overview of the ontological evolutionary encoding in the FRAME approach 42
4.2 Example of a domain ontology 43
4.3 Example of a sample in the knowledge base 44
4.4 Example of a feature vector in the training set 45
4.5 Example of the inputs and output for the ontological encoding stage 46
4.6 Example of the input and output for the evolutionary encoding stage 48
4.7 Example of feature selection based on a mask 49
4.8 Overview of the ontological evolutionary encoding approach. 50

Chapter 5. Fitness Function
5.1 Overview of the process to evaluate and rank model fragments 53
5.2 Example of k-fold method 57
5.3 Example of queries: requirement and feature descriptions 58
5.4 Example of two model fragments from the same model 59
5.5 Example of a feature vector in the testing set 60
5.6 Example of a model fragment ranking 60
5.7 Overview of the ontological evolutionary encoding approach. 63

Chapter 6. Evolutionary Algorithm
6.1 Overview of the evolutionary algorithm in the FRAME approach 67
6.2 Example of a model, taken from a real-world train 68
6.3 Examples of Model Fragment Encoding 71
6.4 Example of genetic operations 72
6.5 Overview of the FRAME approach 76
Chapter 7. Evaluation Design

7.1 Setup of the evaluation .. 81
7.2 Distribution of fitness values in the knowledge base 83
7.3 Example of requirement-to-object-model rules 86
7.4 Example of Traceability Link Recovery using Latent Semantic
 Indexing .. 88
7.5 Feedforward Neural Network 90
7.6 Elman Simple Recurrent Neural Network 92
LIST OF TABLES

Chapter 3. State of the Art
3.1 Terms for the search string regarding PICO criteria 31
3.2 Articles grouped by Software Maintenance Task 33
3.3 Articles grouped by software maintenance task and software artifact 35
3.4 Articles grouped by software maintenance task and ML technique 37

Chapter 7. Evaluation Design
7.1 Threats to Validity 96

Chapter 8. Results of the Evaluation
8.1 Mean Values and Standard Deviations for Precision, Recall, F-Measure, and Matthews Correlation Coefficient (MCC) for the approaches 102
8.2 Quade test statistic and $p – Values$ 103
8.3 Holm’s Post Hoc $p – Values$ 104
8.4 \hat{A}_{12} statistic for each pair of approaches 106
8.5 Required artifacts for each approach 109
8.6 Artifacts whose properties have an impact on the results 110