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Resumen

El uso de la enerǵıa eólica para la generación de enerǵıa es cada vez más atractivo y está

ganando una gran participación en el mercado de producción de electricidad en todo el mundo.

En este estudio se podrán ver los diferentes pasos que hay que dar para diseñar y analizar

un aerogenerador, pudiendo ver qué cosas merecen la pena tener en cuenta, qué problemas

pueden surgir y cómo solucionarlos. Además, se identificarán los puntos óptimos de operación,

pudiendo ofrecer un rango de trabajo en el que la turbina obtendrá la máxima potencia

manteniendo una producción segura y mı́nimos gastos de mantenimiento.

Se observarán los efectos de varios parámetros básicos de diseño teóricamente, aśı como

las ventajas y desventajas de las suposiciones realizadas. Al final, una vez sentadas las bases

teóricas, se realizará un modelado fluidodinámico para que el análisis de Dinámica de Fluidos

Computacional (CFD por sus siglas en inglés) estudie más en profundidad los fenómenos que

rodean estos casos, averiguando cuáles son los aspectos más importantes, y hasta qué punto la

teoŕıa o el CFD es capaz de predecir algunos de estos efectos.

Además, este documento tiene la intención de proporcionar un punto de vista ilustrativo

sobre el análisis CFD de una forma aerodinámica, que podŕıa resultar útil para otros

estudiantes, investigadores o incluso personas aficionadas al tema.





Abstract

The use of wind energy for power generation purposes is becoming increasingly attractive

and gaining a great share in the electrical power production market worldwide.

In this study, one will get to see the different steps that have to be made in order to design

and analyse a wind turbine, being able to see which things are worth taking into account,

and which problems may arise and how to solve them. In addition, the optimum operation

points will be identified, being able to offer a range of operation in which the wind turbine

will obtain the maximum power while keeping a safe operation and minimum maintenance costs.

The effects of several core design parameters will be observed theoretically, as well as the

pros and drawbacks of the assumptions made. In the end, once the theoretical background has

been determined, a fluid dynamic modelling will be carried out and the Computational Fluid

Dynamics (CFD) analysis will study more in deep the phenomena surrounding these cases,

finding out which are the most important aspects, and up to which point theory or CFD is

able to predict some effects.

Moreover, this document intends to provide an illustrative point of view on CFD analysis

of an aerodynamic shape, which might prove useful to any other students, researchers or even

intriguing people.
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1 Introduction
In Spain 16% of electricity demand is met by wind, and at times provides over half the

electricity needed. The European Commission believes wind energy will supply 25% of the

EU’s electricity by 2025 and between 32% and 49% by 2050[1]. The key will be a Europe-wide

power grid which will transport wind energy from where it is produced to where it is consumed,

needing a well-optimized field of wind turbine.

Since the energy model changing cycles are quite long and involve a high initial investment,

it is necessary to consider the long term. The objective would be to have a globalized,

decentralized and non-polluting electrical network, without sacrificing quality, safety and a

continuous access to it (not depending on conflicts between countries, meteorological events,

etc). This means reaching important international agreements, as well as maintaining a

balance that guarantees investment without falling into a lack of regulation that could lead to

monopolies. There are two levels of scope of any project of this type: a local one more focused

on generation and more immediate transportation, and another that ensures the connection of

different more distant points, which needs, as already mentioned, an important cooperation.

According to windeurope.org[1], Spain installed 2.3 GW of onshore wind, 15% of all new

wind capacity in Europe last year. This is its highest volume since 2009. Most of the installed

capacity was presented in the 2016 and 2017 auctions, when more than 4 GW of wind energy

projects were approved. The remaining capacity from those auctions should be build in 2020.

Moreover Figure 1.1 illustrates how 55% of new wind power in Europe was installed just in

four countries: the UK, Spain, Germany and Sweden.

Figure 1.1: 2019 new onshore and offshore wind installations in Europe

1

windeurope.org


Figure 1.2: Total installed wind power capacity by country

In total 205 GW of wind power capacity are now installed in Europe (Figure 1.2)[1], from

which 89% of this is onshore and 11% of it is offshore. Germany remains the country with the

largest installed capacity in Europe, followed by Spain, the UK, France and Italy.

By reading this, one realizes wind turbines industry is growing each year, being onshore

wind the cheapest form of new power generation in Europe nowadays, which makes it essential

to develop research tools and validations for new designs, however, experiments cannot always

be carried, so the widely used alternative is CFD.

For this project the Star-CCM+ program was used, offering a versatile range of options

and tools for the study of fluid interaction and behaviour with the blades, which in addition

to the benefits from the economic point of view (testing a 20 m wind turbine is not always

physically feasible), makes it an essential tool not only for designing these type of rotors, but

for many other engineering problems and fields. The workflow of the CFD analysis that will

be followed in this project is illustrated in Figure 1.3.

In addition, Matlab was used as well, a very popular program which allows matrix

manipulations, plotting of functions and data, implementation of algorithms, creation of user

interfaces, and interfacing with programs written in other languages, so in this case it was used

in order to manage and plot data extracted from Star-CCM+ so that it could be easier to

work with as well as providing a better-looking result. Of course, regarding data management,

Microsoft Excel was used as well to carry out some calculations and graphs.
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Figure 1.3: Workflow of the CFD simulation
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2 Fundamentals of Aerodynamics,

Mechanics and Dynamics of Wind

Turbines
2.a General Overview

Horizontal axis wind turbines transform wind into useful energy making use of a well

designed blade. This section will provide with a theoretical background in order to better

understand the energy transformation that takes place and how power generation can be

optimized thanks to the airfoil and blade design analysis.

For the current objective, only the aerodynamic forces generated by an steady blow of wind

will be considered, not taking into account the small variations with time. However, a brief

introduction to unsteady rotor performance will be given at the beginning of Section 3.f.

Since the analysis carried out by Betz [2] and Glauert [4] in the 1920s and 1930s, theory

on the analysis of wind turbines is being developed and expanded widely, but this section will

try to explain all these concepts in the most accessible way to readers without any engineering

background following the concepts and equations stated by Manwell et al.[5].

2.b One-dimensional Approach

In 1919, Albert Betz, a German phycisist, stated that the maximum power that can be

extracted from the wind has a theoretical limit[3]. In order to prove it, he made use of a simple

one-dimensional model based on linear momentum theory, which can be also used to make a

first approximation of the power a horizontal axis wind turbine can produce.

This model assumes a control volume in which a wind entrance and exit are bounded by

the surface of a stream tube, being the wind turbine an ’actuator disk’ that represents an

infinite number of blades and consequently a pressure drop in the air flow (see Figure 2.1).

4



Figure 2.1: Actuator disk model of a wind turbine; U, mean air velocity; 1, 2, 3, and 4 indicate locations

The analysis takes the following considerations: homogeneous, incompressible, steady state

fluid flow with no drag nor viscous effects, an infinite number of blades, non-rotating wake,

uniform thrust around the disk and the static pressure far upstream and downstream (locations

1 and 4) is the ambient one.

Applying the conservation of linear momentum equation in the control volume the net force

of the wind turbine is equal and opposite to the thrust the blades generate:

T = U1(ρAU)1 − U4(ρAU)4 (2.1)

where ρ is the air density, A is the cross-sectional area, U the air velocity and the numbers

indicate the locations in the model of Figure 2.1. Moreover, since the mass flow (ṁ = ρAU)

can be considered constant along the tube (the same amount of air that enters the control

volume exits it), Equation 2.1 can be rewritten as:

T = ṁ(U1 − U4) (2.2)

In Equation 2.2 the thrust can be considered positive, so the free stream velocity (U1) will

be reduced when passing through the actuator disk and therefore U4 will be less than U1.

If the velocity around the turbine rotor is taken as constant (U2 = U3) and no work is done

on either side of the actuator disk, the Bernoulli equation can be written for both sides of the

actuator disk like:
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p1 +
1

2
ρU2

1 = p2 +
1

2
ρU2

2 (2.3)

p3 +
1

2
ρU2

3 = p4 +
1

2
ρU2

4 (2.4)

and expressing the thrust as the net sum of forces on each side (Equation 2.5):

T = A2(p2 − p3) (2.5)

One can solve p2−p3 from Equations 2.3 and 2.4 and substitute it on Equation 2.5, obtaining:

T =
1

2
ρA2(U

2
1 − U42) (2.6)

Here making use of Equation 2.2 the following relation appears (Equation 2.7):

U2 = U3 =
U1 + U4

2
(2.7)

Then, introducing the axial induction factor, a , as a decelerating coefficient between U

(free stream velocity) and U2 (around the rotor):

U2 = U1(1− a) (2.8)

and

U4 = U1(1− 2a) (2.9)

So a must be under 0.5 in order for the wind to keep some velocity at U4
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On the other hand, the power generated, P, can be expressed as the thrust times the

velocity at the turbine rotor, U2:

P =
1

2
ρA2(U

2
1 − U2

4 )U2 (2.10)

where A2 (control volume area at the disk) can be substituted by A (the rotor area), and

the free stream velocity (U1) by U . Then one can rearrange Equation 2.10 with the help of

Equations 2.8 and 2.9:

P =
1

2
ρAU34a(1− a)2 (2.11)

For the aim of improving the performance of a wind turbine, the non-dimensional power

coefficient (CP ) plays a major role, since the generated power can also be expressed as

P ∝ CPU
3 , and the turbine performance is usually characterized by this coefficient. It also

has an important effect in controllability at extreme wind speeds, and represents the coefficient

of the rotor power against the power in the wind:

CP =
P

1
2ρAU

3
(2.12)

CP = 4a(1− a)2 (2.13)

Taking the derivative with respect to a and equalizing it to zero, which yields a = 1/3, will

maximize CP , obtaining the value:

CP =
16

27
= 0.5926 (2.14)

This value is known as Betz’s limit, and states that if an ideal turbine rotor was designed

and operated such that the wind speed at the rotor (U2) was 2/3 of the free stream wind speed

(U), then it would be operating at the point of maximum power production, since no turbine

can capture more than 59.26% of the kinetic energy in wind.
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Working similarly to Equation 2.11, the thrust on the rotor is:

T =
1

2
ρAU24a(1− a) (2.15)

And the non-dimensional normal force can be expressed as the coefficient between the

thrust force and the dynamic force:

CT =
T

1
2ρAU

2
(2.16)

Operating with Equations 2.15 and 2.16 and maximizing like in Equation 2.13 , the

maximum achievable thrust coefficient is equal to 1, for a = 1/2. Note that for the maximum

achievable CP = 16/27, a = 1/3 and CT is equal to 8/9. One must bear in mind that any axial

induced factor over 1/2 yields invalid results due to wrong or complicated results of air velocity

behind the rotor (U4), which cannot be studied using this simplified model. This is represented

graphically in Figure 2.2, where the maximum values are easily located. Above a = 1/2, in

the turbulent wake state, measured data indicate that thrust coefficients increase up to about

2.0 at an axial induction factor of 1.0. This state is characterized by a large expansion of the

slipstream, turbulence and recirculation behind the rotor. While momentum theory no longer

describes the turbine behavior, empirical relationships between CT and the axial induction

factor are often used to predict wind turbine behavior[5].
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Figure 2.2: Operating parameters CP and CT for a Betz turbine

In practice, some real effects that were simplified in this model greatly decrease the

performance of the turbine, so in order to measure the effect on the power coefficient of these

phenomena some in depth study must be made on three main effects (apart from mechanical

losses): rotation of the wake behind the rotor, finite number of blades (and associated tip

losses) and aerodynamic drag.

2.c Horizontal Axis Wind Turbine with Wake Rotation

In this subsection the wake rotation is included in the simplified model of the previous

part. This flow rotation is in the opposite direction of the turbine rotation, as a reaction to the

torque applied from the wind to the blades (see Figure 2.3).
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Figure 2.3: Picture of stream tube with wake rotation

Due to this wake, there will be less energy to extract from the wind than in the previous

case, and as will be shown in this Section, wind turbines with low rotational speed and high

torque have more wake losses than high-speed wind ones with low torque.

Taking the pressure, wake rotation and induction factors as a function of the radius, and

assuming ω (angular velocity of the flow) is much smaller than Ω (angular velocity of the rotor)

as well as that the pressure in the far wake equal to the free stream pressure, one can use a

control volume with a cross-sectional area equal to 2πrdr (circumference of width dr) that

yields the following relation of pressures (see Glauert, 1935 [4])):

p2 − p3 = ρ(Ω +
1

2
ω)ωr2 (2.17)

Notice that the increment of the angular velocity of the flow relative to the blade in the

actuator disk increases from Ω to Ω + ω, while the axial component remains constant. Then

using the definition of the thrust applied to an annular element:

dT = (p2 − p3)dA =

[
ρ(Ω +

1

2
ω)ωr2

]
2πrdr (2.18)

Here the angular induced factor can be expressed as:
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a′ = ω/2Ω (2.19)

And when including the wake rotation, a rotor plane component appears, rΩa′. So Equation

2.18 can be rewritten as:

dT = 4a′(1 + a′)
1

2
ρΩ2r22πrdr (2.20)

Analogously, thrust can also be expressed using the axial induced factor a, being U the free

stream velocity U1:

dT = 4a(1− a)
1

2
ρU22πrdr = 4a(1− a)ρU2πrdr (2.21)

Making these two thrusts (Equations 2.20 and 2.21) equal gives the local tip speed ratio

(λr) definition:

a(1− a)

a′(1 + a′)
=

Ω2r2

U2
= λ2r (2.22)

Using the expression of λr for the whole blade, the non-dimensional tip speed ratio (λ) is

introduced:

λ =
ΩR

U
(2.23)

And Equations 2.22 and 2.24 can be related in the following way:

λr =
Ωr

U
= λ

r

R
(2.24)
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Now the conservation of angular momentum can be used in order to calculate the torque,

Q, since it will be equal to the change in angular momentum of the wake, in incremental form

(Equation 2.25)

dQ = dṁ(wr)r = (ρU22πrdr)(ωr)r (2.25)

And substituting U2 = U(1− a) and a′ = ω/2Ω:

dQ = 4a′(1− a)ρUΩπr3dr (2.26)

And the power generated (in incremental form again), dP :

dP = ΩdQ (2.27)

Now one can substitute dQ, and bearing in mind U2 = U(1 − a), a′ = ω/2Ω and the

definition of λr, the rearranged equation is given by:

dP =
1

2
ρAU3

[
8

λ2
a′(1− a)λ3rdλr

]
(2.28)

In Equation 2.28, the axial and angular induction factors represent the magnitude and

direction of the flow.

Now the incremental power coefficient can be expressed as:

dCP =
dP

1
2ρAU

3
(2.29)
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And therefore the integral expression for the power coefficient is:

CP =
8

λ2

∫ λ

0
a′(1− a)λ3rdλr (2.30)

Now the relation between a, a′ and λr will give the aerodynamic conditions in order to

generate the maximum possible power. This is done by substituting all the relations in the

expression a′(1−a) (from Equation 2.35 is seen that this term maximizes the power generation)

and setting the derivative with respect to a equal to zero. Using Equation 2.22:

a′ = −1

2
+

1

2

√
1 +

4

λra(1− a)
(2.31)

d(a′(1−a))
da = 0

λ2r =
(1− a)(−1 + 4a)2

1− 3a
(2.32)

This local tip ratio will maximize Cp, so substituting it in Equation 2.22:

a′ =
1− 3a

−1 + 4a
(2.33)

Equation 2.33 defines the angular induction factor for maximum power in each angular

ring. Moreover, a relationship between the gradients of a and λr (da and dλr), which is given

by Equation 2.32:

2λrdλr =
6(−1 + 4a)(1− 2a)2

(1− 3a)2
da (2.34)

Then the power coefficient expression for maximizing the output in integral form (from

Equation 2.35) can be rewritten as:
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CP,max =
24

λ2

∫ a2

a1

[
(1− a)(1− 2a)(1− 4a)

(1− 3a)
]2da (2.35)

For the limits of the integral, a1 corresponds to λr = 0 and a2 to λr = λ. Making use of

Equation 2.32 for λ the value a1 = 0.25 is calculated as the lower limit, and the upper limit

(a2) corresponds to operation at tip speed ratios of interest. Here each tip speed ratio will have

a correspondent a2 until it gets to a2 = 1/3, which is the limit, since it will correspond to an

infinite tip speed ratio. Therefore Cp can be written as a function of λ (a2 is a function of λ as

well). With all this data Figure 2.4 can be calculated in order to plot the results and compare

them with the 1-D approach (Betz theoretical limit).

Figure 2.4: Theoretical maximum power coefficient as a function of tip speed ratio for an ideal horizontal axis

wind turbine, with and without wake rotation

Figure 2.4 clearly shows how wake rotation heavily affects the efficiency of wind turbines

with low rotational speeds in which the torque extracted is higher, as previously said at the

beginning of this section. In addition, the higher the tip speed ratio, the closer the power

coefficient can approach the theoretical maximum power extraction. It should be mentioned

that angular induction factor gets close to zero in the outer parts of the rotor, while increasing

exponentially when approaching the hub, which means a high angular velocity of the flow

compared to the angular velocity of the rotor (Equation 2.19).

In the previous sections the nature of the air flow around the wind turbine was studied
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using physics in order to extract theoretical limits and compare them with a more complex

model. In the next sections aerodynamics theory will be used with the purpose of showing how

these limits can be achieved optimizing airfoils’ design.

2.d General Concepts of Aerodynamics

Lift generated in a wing (in the case of an airplane), and (in the case of a wind turbine)

normal force in the blades so as to produce mechanical power, is made by the relative motion

between an airfoil and a surrounding fluid. An airfoil (see Figure 2.5) is the cross-sectional

shape of a wing or blade, and produces aerodynamic forces when moving through a fluid.

The component of this force perpendicular to the direction of motion is called lift and the

component parallel to the direction of motion is called drag. Subsonic flight airfoils have a

characteristic shape with a rounded leading edge, followed by a sharp trailing edge, and some

times with a symmetric curvature of upper and lower surfaces.

Figure 2.5: Wind turbine blade with its different airfoils (designated in different nomenclatures) depending on

the section

The width and length of the blade are functions of the desired aerodynamic performance,

the maximum desired rotor power, the assumed airfoil properties, and strength considerations.

Before the details of wind turbine power production are explained, aerodynamic concepts

related to airfoils need to be discussed.
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2.d.i Lift, Drag, Moment and Non-dimensional Parameters

As previously mentioned, an airfoil produces aerodynamic forces over its surface. This is

due to the fact that fluids accelerate in convex surfaces, decreasing the pressure on that side

of the airfoil, and thus creating a ’suction’ effect, since the other side (with more pressure)

is ’pushing’ in the direction of the ’suction side’ and therefore generating lift. In addition,

viscous friction slows down the flow near the surface, which has some effects on the forces as well.

Figure 2.6: Forces and moments on an airfoil section. The direction of positive forces and moments is indicated

by the direction of the arrow

As can be seen in Figure 2.6, the resultant forces and viscous effects can be resolved into

lift, drag and pitching moment, which can also be simplified and assumed that their resultants

are applied at a distance of c/4 from the leading edge.

Moreover, non-dimensional parameters are used to describe the flow characteristics, being

the Reynolds number the most important one, since it relates the convective or inertial forces

to the viscous ones, and giving an idea of the regime (laminar or turbulent) of the flow with

respect to the shape of the body:

Re =
Ul

υ
=
ρUl

µ
=
Inertial force

V iscous force
(2.36)

where ρ is the fluid density, µ is fluid viscosity, υ = µ/ρ is the kinematic viscosity, and

U and l are a velocity and length that characterize the scale of the flow. At low Reynolds

numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds

numbers flows tend to be turbulent. The turbulence results from differences in the fluid’s speed

and direction, which may sometimes intersect or even move counter to the overall direction of

the flow (eddy currents).

In addition, other non-dimensionalized coefficients need to be defined: two-dimensional lift,
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drag, pitching moment and pressure coefficients (respectively Equations 2.37, 2.38, 2.39 and

2.41). These are calculated (with the help of wind tunnel tests for computing the forces) as

follows:

Cl =
L
l

1
2ρU

2c
=

Lift force/unit length

Dynamic force/unit length
(2.37)

Cd =
D
l

1
2ρU

2c
=

Drag force/unit length

Dynamic force/unit length
(2.38)

Cm =
M

1
2ρU

2Ac
=

M
1
2ρU

2lc2
=
Pitchingmoment

Dynamicmoment
(2.39)

Cp =
p− p∞
1
2ρU

2
=

Static pressure

Dynamic pressure
(2.40)

where A is the projected airfoil area (A = cl), p the pressure at some point of the airfoil

and p∞ the incoming air pressure.

All these coefficients, as well as the surface roughness ratio (ε/l=Surface

roughness height/unit length), will be used to analyze airfoil flow along the section.

For three-dimensional objects (CL, CD and CM ), additional wind tunnel tests will be

needed, since 3D blades have a finite span and force and moment coefficients are affected by

the flow around the end of the airfoil. Two-dimensional airfoil data, on the other hand, are

assumed to have an infinite span (no end effects).

2.d.ii Flow Around an Airfoil and its Behaviour

As seen in previous sections, lift, drag and pitching moment are caused due to pressure

changes, which can be explained by changes in air velocity. These two phenomena are related

in the Bernoulli’s principle, which for non-viscous flows can be stated as:

p+
1

2
ρU2 = Static pressure+Dynamic pressure = constant (2.41)
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One can see that if the flow accelerates through the surface (p.e upper side of an airfoil),

pressure will drop, creating a negative pressure gradient, and vice versa, for example when

the flow decelerates in the trailing edge, the surface pressure increases and a positive pressure

gradient is created. In order to calculate the behaviour of an airfoil, the integral of all its

points on the upper surface must be computed, and then the lift and pitching moment can be

calculated bearing in mind the pressure distribution.

In the case of drag, in addition to the pressure distribution over the airfoil, viscous effects

between the air flow and the surface play a major role. This friction produces two different

regions: the boundary layer, next to the surface, where viscous effects predominate and another

region further from the airfoil surface, where frictional effects are negligible.

Figure 2.7: Boundary layer representation

Boundary layer thickness in a turbine blade may vary from one millimeter to several tens

of centimeters depending on the size of the wind turbine, the flow conditions and the surface

roughness. In the boundary layer, the velocity of the flow increases from zero at the surface to

the velocity of the flow outside the boundary layer (velocity in the boundary layer is a function

of distance to the surface). Depending on the viscosity and the inertial forces, the boundary

layer might display laminar (smooth and steady) or turbulent (irregular with vortices) flow.

Usually from the leading edge of an airfoil up to some point near the trailing edge the flow

remains laminar, however, due to the interaction of the viscous and inertial forces, this flow

turns into a turbulent one, more chaotic (right part of increasing pressure gradient of Figure

2.8), where frictional forces are way higher than in the laminar zone of the boundary layer .
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Figure 2.8: Effects of favorable (decreasing) and adverse (increasing) pressure gradients on the boundary layer

As Figure 2.8 shows, flow in the boundary layer is accelerated or decelerated depending on

the pressure gradient, while is always decelerated by friction in the surface. The combination

of a negative pressure gradient and friction might cause the flow to stop or even go in the

reverse direction, which results in a flow separation from the surface, and therefore losing lift,

since an airfoil can only efficiently produce lift as long as the surface pressure distributions can

be supported by the boundary layer.

This turbulence in the boundary layer must not be confused with the atmosphere one, as

a wind turbine will produce a much larger turbulence with its wake, while he boundary layer

is only sensitive to fluctuations on the order of the size of the boundary layer itself. Thus,

the atmospheric turbulence does not affect the airfoil boundary layer directly. It may affect it

indirectly through changing angles of attack, which will change the flow patterns and pressure

distributions over the blade surface.

The flow behaviour can be understood with the help of streamlines, which can be thought

of as the path that a particle would take if placed in a flowing fluid. In Figure 2.9 one can

see how by increasing the angle of attack the flow is finally detached (last picture), entering

stall conditions and losing most of the airfoil efficiency. On the other hand, in the first picture,

streamlines which converge indicate an increase in velocity and a decrease in pressure (and the

opposite for diverging streamlines). In these cases the Bernoulli’s equation can be applied for

each streamline in different places along the chord.
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Figure 2.9: Streamlines around an airfoil at increasing angles of attack

Turbulent flow is characterized by its vorticity (ζ), that describes the flow rotational

velocity, and circulation (Γ), which is the integral of the vorticity of each element multiplied by

their incremental areas and describes the flow rotational behaviour along the span of the blade.

ζ =
∂u

∂y
− ∂v

∂x
(2.42)

Γ =

∫ ∫
(
∂u

∂y
− ∂v

∂x
)dxdy (2.43)

where u is the velocity component in the direction of the flow (x) and v is the component

perpendicular to the flow (y).

Lift per unit span (L′ = L/l) is given by the expression L′ = ρU∞Γ, being U∞ the free

stream velocity. Using the shape of a cylinder of radius r as a first calculation, its maximum

circulation value is Γ = 4πU∞r, yielding a lift coefficient (Cl) of 4π, which can be transformed

into an airfoil making a change of variable of coordinates and simplifying the calculus.

This method of analysis (the application of transformations of shapes, streamlines, and

pressure distributions) provides the foundation of thin airfoil theory, which is used to predict

the characteristics of most commonly used airfoils. Thin airfoil theory shows, that the lift

coefficient of a symmetrical airfoil at low angles of attack is equal to 2πα (when the angle

a is measured in radians), as can be seen in Figure 2.10. Nevertheless for higher angles of

attack this assumption is no longer valid, but more detail on the theory of lift and circulation,

as well as on the use of transformations can be found in literature such as Fundamental of

Aerodynamics [8].
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Figure 2.10: Lift and drag coefficients for the NACA 0012 symmetric airfoil (Re, Reynolds number)

Airfoils for horizontal axis wind turbines (HAWTs) are cambered (not symmetric,

asymmetric between the two acting surfaces of the airfoil, with the top surface of a wing

commonly being more convex) and designed to be used at low angles of attack, where lift

coefficients are fairly high and drag coefficients are fairly low. The drag coefficient is usually

much lower than the lift coefficient at low angles of attack and it increases at higher angles

of attack. Moreover, the behaviour of the airfoil is affected by the Reynolds number: as

Reynolds numbers decrease, viscous forces get more important compared to inertial forces,

which increases the effects of surface friction, decreasing velocities, increasing the pressure

gradient, and therefore decreasing the lift generated by the airfoil.

Due to the different conditions in which an airfoil can operate, David A. Spera [9] sorted

three types of flow regime: the attached flow regime, the high lift/stall development regime,

and the flat plate/fully stalled regime.

• Attached Flow Regime. At low angles of attack (up to about 7 degrees for cambered

airfoils), the flow is attached to the upper surface of the airfoil. In this attached flow

regime, lift increases with the angle of attack and drag is relatively low.

• High Lift/Stall Development Regime. In the high lift/stall development regime

(from about 7 to 11 degrees), the lift coefficient peaks as the airfoil becomes increasingly

stalled. Stall occurs when the angle of attack exceeds a certain critical value (10 to 16

degrees, depending on the Reynolds number) and separation of the boundary layer on the

upper surface takes place, as shown in the right image of Figure 2.9. This causes a wake

to form above the airfoil, which reduces lift and increases drag.

• Flat Plate/Fully Stalled Regime. In the flat plate/fully stalled regime, at larger

angles of attack up to 90 degrees, the airfoil acts increasingly like a simple flat plate with

approximately equal lift and drag coefficients at an angle of attack of 45 degrees and zero

lift at 90 degrees.
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3 Blade Design for Modern Wind

Turbines
Generally, in the 1970s and early 1980s, wind turbine designers felt that minor differences

in airfoil performance characteristics were far less important than optimizing blade twist and

taper (relation between the chord at the tip and at the root). For this reason, little attention

was paid to the task of airfoil selection. Thus, airfoils that were in use by the aircraft industry

were chosen because aircraft were viewed as similar applications. Aviation airfoils such as the

NACA 44xx and NACA 230xx were popular airfoil choices because they had high maximum

lift coefficients, low pitching moment, and low minimum drag.

The NACA classification has 4, 5, and 6 digit series wing sections. For wind turbines,

four-digit series were generally used, for example NACA 4415 (Figure 3.1). The first integer

indicates the maximum value of the mean camber line ordinate in percent of the chord. The

second integer indicates the distance from the leading edge to the maximum camber in tenths of

the chord. The last two integers indicate the maximum section thickness in percent of the chord.

Figure 3.1: NACA 4415 airfoil in a 4 digit airfoil generator (http://airfoiltools.com/airfoil/naca4digit)

In the 1980s, there were some advances regarding the leading edge roughness, nevertheless,

stall-controlled HAWTs commonly produced too much power in high winds, causing generator

damages, and that was the reason why these turbines operated half of its useful life with most

part of its blades in stall conditions. Predicted loads were only 50% to 70% of the measured

loads. Designers began to realize that a better understanding of airfoil stall performance was

important. In addition, leading edge roughness affected rotor performance. For example, with

the early airfoil designs, when the blades accumulated insects and dirt along the leading edge,

power output could drop as much as 40% of its clean value. Moreover, pitch-controlled wind

turbines (the blades are rotate along their axis to control loads), often experienced excessive
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loads or load fluctuations during gusts, before the pitch system could rotate the blade, entering

stall conditions before the pitch system actuated.

As a consequence of these experiences, airfoil selection criteria and the designs for wind

turbine airfoils and blades have had to change to achieve high and reliable performance.

Nowadays engineers design airfoils specifically for HAWTs, using mainly the code developed

by Eppler and Somers (1980), and others like XFOIL, RFOIL and PROFOIL. These codes

combine a variety of techniques to optimize boundary layer characteristics and airfoil shapes

to achieve specified performance criteria.

The National Renewable Energy Laboratory developed special purpose families of airfoils

for three different classes of wind turbine using the Eppler code, and the same in Europe

(researchers of the Delft University of Technology) using the XFOIL and RFOIL codes during

1990s. In Delft they also focused on achieving low sensitivity to surface roughness, and they

did it by locating the point of transition to turbulent flow near the leading edge, as the flow

approached stall. DUT also designed airfoils for the blade tips of pitch-controlled rotors with

the design lift coefficient (the lift coefficient at the maximum lift–drag ratio) close enough to

the peak lift coefficient to minimize changes in lift and, thus, peak loads as gusts occurred, but

with a design angle of attack far enough from stall to minimize the fluctuating loads from stall

before the pitch system could react.

Larger wind turbines that were built in the later 1990s required even thicker airfoils for

structural strength. To deliver sufficient torque at low wind speeds, without significantly

large chords, the maximum lift coefficients need to be high on these inboard airfoils. Some

compromises needed to be made, as high maximum lift coefficients often accompany sensitivity

to leading edge roughness. An additional complication is that the inner portion of the blade

is more subject to flow distortions due to the rotation of the blades. The Delft University of

Technology addressed these issues by using an updated version of XFOIL (RFOIL) to design

a number of thick airfoils for wind turbines that met their design criteria while operating in

the flow field in the inner portion of the blade. All these studies can be seen in detail in the

Summary of the Delft University Wind Turbine Dedicated Airfoils [10].

For the design of the different airfoil shapes along the blades, one should take into account

the variation of flow conditions, and choose a performance in a range of situations that will

determine the choice of airfoil, chord length and twist along the blade. This choice has changed

over the years, as explained previously, until nowadays, when rotors are designed for minimum

cost of energy. This approach also starts with a rotor that is as aerodynamically efficient as

possible. The rotor design is then optimized using a multidisciplinary approach that includes

wind characteristics, an aerodynamic model, a structural model of the blades, and cost models

for the blades and all major wind turbine components. Such approaches have resulted in

slightly lower energy capture than previous designs, but lower loads (by about 10%) and lower
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overall cost of energy.

These designs are achieved thanks to computer codes that model not only the aerodynamics

of the rotor, but also the motions of the elastically deforming blades and the interactions

between these blade motions and the flow, so they are usually called aeroelastic codes.

These codes can calculate the interaction between the boundary layers around the airfoil, the

production of power and the flow field around the wind turbine, and then manufacturers use

these results to improve the performance of their wind turbines and to get their wind turbine

design certified according to international standards.

The aeroelastic codes are based on blade element momentum (BEM) theory, which

describes the steady state behavior of a wind turbine rotor, with extensions to address

unsteady operation. Section 3.a will describe this type of analysis. More complicated modeling

tools that are being developed to more accurately model the rotor aerodynamics will be also

explained (taking into account the effect of drag, wake rotation and number of blades) in

Section 3.c.iii.

In this section, in addition to the BEM theory explanation, a simple (infinite blades

and no wake) optimum blade design will be presented, as well as another optimum design

including wake rotation and a finite number of blades, which can be used as a first approach

for a real design. Along the analysis and calculation, performance characteristics like forces,

power coefficients and air flow characteristics will be compared between the different approaches.

3.a Momentum and Blade Element Theory

As already presented in previous sections, a wind turbine generates lift thanks to a pressure

difference across its airfoils, producing a pressure change like the one caused by the actuator

disk seen in Section 2.b. For the calculation of the flow field around a wind turbine rotor by the

actuator disk the conservation of linear and angular momentum was used, and the axial and

angular induction factors (function of the rotor power extraction and thrust) were presented in

order to characterize this flow field.

For the analysis shown here, momentum theory and blade element theory will be assessed.

Momentum theory refers to a control volume analysis of the forces at the blade based on the

conservation of linear and angular momentum. Blade element theory refers to an analysis of

forces at a section of the blade, as a function of blade geometry. The combination of both

analysis is the blade element momentum (BEM) theory, which can be used to relate blade

shape to the rotor’s ability to extract power from the wind.
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3.a.i Momentum Theory

Force is the rate of change of momentum, and considering conservation of linear and angular

momentum, all necessary equations have already been developed in Section 2.c, yielding:

dT = 4a(1− a)ρU2πrdr (3.1)

dQ = 4a′(1− a)ρUΩπr3dr (3.2)

Thus, from momentum theory one gets two equations, Equations 3.1 and 3.2, that define

the thrust and torque on an annular section of the rotor as a function of the axial and angular

induction factors.

3.a.ii Blade Element Theory

One can also use the angle of attack and lift and drag coefficients in order to express the

forces on the blade of a wind turbine. For the explanation, no radial flow will be taken into

account, nor other forces apart from the lift and drag characteristics of the airfoil shape of the

blades.

Figure 3.2: Schematic of blade elements; c, airfoil chord length; dr, radial length of element; r, radius; R, rotor

radius; Ω, angular velocity of rotor
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Figure 3.3: Schematic of discretization of the rotor

In analyzing the forces on the blade section, it must noted that the lift and drag forces

are perpendicular and parallel, respectively, to an effective, or relative, wind (see Figure 3.4).

The relative wind is the vector sum of the wind velocity at the rotor, U(1 − a), and the wind

velocity due to rotation of the blade. This rotational component is the vector sum of the blade

section velocity, Ωr, and the induced angular velocity at the blades from conservation of angular

momentum, ωr/2, or

Ωr + ωr/2 = Ωr + Ωa′r = Ωr(1 + a′) (3.3)
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Figure 3.4: Blade geometry for analysis of a horizontal axis wind turbine

Here, θp is the section pitch angle, which is the angle between the chord line and the plane

of rotation; θp,0 is the blade pitch angle at the tip; θT is the blade twist angle; α is the angle of

attack (the angle between the chord line and the relative wind); ϕ is the angle of relative wind;

dFL is the incremental lift force; dFD is the incremental drag force; dFN is the incremental

force normal to the plane of rotation (this contributes to thrust); and dFT is the incremental

force tangential to the circle swept by the rotor. This is the force creating useful torque.

Finally, Urel is the relative wind velocity.

Note from Figure 3.4 that θT can be written as θT = θp − θp,0. Moreover, the angle of the

relative wind is the sum of the section pitch angle and the angle of attack (ϕ = θp + α). In

addition the twist angle is, of course, a function of the blade geometry, whereas θp changes if

the position of the blade, θp,0, is changed.

Now one can make the follow relations with the help of Figure 3.4:

tanϕ =
U(1− a)

Ωr(1 + a′)
=

1− a
(1 + a′)λr

(3.4)
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Urel = U(1− a)/sinϕ (3.5)

dFL = Cl
1

2
ρU2

relcdr (3.6)

dFD = Cd
1

2
ρU2

relcdr (3.7)

dFN = dFLcosϕ+ dFDsinϕ (3.8)

dFT = dFLsinϕ− dFDcosϕ (3.9)

If the rotor has B blades, the total normal force on the section at a distance, r, from the

center is:

dFN = B
1

2
ρU2

rel(Clcosϕ+ Cdsinϕ)cdr (3.10)

And the differential torque due to the tangential force operating at a distance, r, from the

center is given by:

dQ = BrdFT = B
1

2
ρU2

rel(Clsinϕ− Cdcosϕ)crdr (3.11)

So now another two equations for the normal force (thrust) and tangential force (torque)

on the annular rotor section are defined (Equations 3.10 and 3.11 respectively). They are a

function of the flow angles and airfoil characteristics. Note that drag is decreasing torque (and
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therefore power), however is increasing the thrust. In the following sections, several assumptions

will be taken to determine ideal blade shapes for optimum performance and to determine rotor

performance for any arbitrary blade shape.

3.b Blade Shape for Ideal Rotor without Wake Rotation

Here a simple example will be presented so that the method to follow to get a first blade

design is clear. In this analysis no wake rotation will be used (a′ = 0), as well as no drag

(Cd = 0 and an infinite number of blades. The axial induction factor, a, is assumed to be the

optimum 1/3 (as seen in Section 2.b).

The next step would be to choose an appropriate tip speed ratio (λ), number of blades

(B), radius (R) and an airfoil with known lift and drag coefficients as a function of angle of

attack. This angle of attack should be selected where Cd/Cl is minimal in order to most closely

approximate the assumption that drag is 0.

From momentum theory (Equation 3.1) and the assumption of a = 1/3, one can get:

dT =
8

9
ρU2πrdr (3.12)

and from blade element theory (Equation 3.10), assuming Cd = 0:

dFN = B
1

2
ρU2

rel(Clcosϕ)cdr (3.13)

Finally a two more equations from blade element theory will be simplified using the

assumptions made:

Urel = U(1− a)/sin(ϕ) =
2U

3sin(ϕ)
(3.14)

tanϕ =
1− a

(1 + a′)λr
=

2

3λr
=

2

3λ r/R
(3.15)
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Combining Equations 3.12, 3.13, 3.14 and 3.15 (since dT would be equal to dFN ) yields the

following equation:

ClBc

4πr
= tan(ϕ)sin(ϕ) =

2

3λ r/R
sin(ϕ) (3.16)

From where the chord c can be extracted:

c =
8πrsin(ϕ)

3BClλ r/R
(3.17)

And the chord and radius (r) can be non-dimensionalized by dividing by the rotor radius.

Giving some values for the example, like λ = 8, Cl = 1, α = 6 (for this value Cd/Cl is minimum)

and a wind turbine with three blades (B = 3), one can calculate the non-dimensional chord

of the blades, angles and relate them with the help of Figure 3.4 relations (explained in the

paragraphs under the image).

The example has been calculated, giving the following results:

r/R c/R Twist angle (θT )(deg) Angle of rel. wind (ϕ)(deg) Section pitch angle (θp)(deg)

0.1 0.22 35.04 39.81 33.81

0.2 0.13 17.86 22.62 16.62

0.3 0.09 10.76 15.52 9.52

0.4 0.07 7.00 11.77 5.77

0.5 0.06 4.70 9.46 3.46

0.6 0.05 3.14 7.91 1.91

0.7 0.04 2.03 6.79 0.79

0.8 0.04 1.18 5.95 -0.05

0.9 0.03 0.53 5.29 -0.71

1 0.03 0 4.76 -1.24

Table 1: Twist and chord distribution for the example Betz optimum blade; r/R, fraction of rotor radius; c/R,

non-dimensionalized chord
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Figure 3.5: Blade chord for the example

Figure 3.6: Blade twist angle for sample

It can be seen that blades designed for optimum power production have an increasingly

large chord and twist angle as it gets closer to the blade root, characteristics that could

make fabrication more laborious, since another consideration in blade design is the cost and

difficulty of fabricating the blade. An optimum blade would be very difficult to manufacture at

a reasonable cost, but the design provides insight into the blade shape that might be desired

for a wind turbine.
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In general, a rotor is not of the optimum shape because of fabrication difficulties.

Furthermore, when an ‘optimum’ blade is run at a different tip speed ratio than the one for

which it is designed, it is no longer ‘optimum’. Thus, blade shapes must be designed for easy

fabrication and for overall performance over the range of wind and rotor speeds that they will

encounter. In considering non-optimum blades, one generally uses an iterative approach. That

is, one can assume a blade shape and predict its performance, try another shape and repeat

the prediction until a suitable blade has been chosen.

3.c Real Blade Performance Prediction

In previous sections, the blade shape for an ideal rotor without wake rotation has been

considered. In this section, the analysis of arbitrary blade shapes is considered. This analysis

includes wake rotation, drag, losses due to a finite number of blades, and off-design performance.

3.c.i Blade Performance Including Wake Rotation

Here, the already known four equations (3.1, 3.2, 3.10 and 3.11) derived from momentum

and blade elements theory will be used. From momentum theory:

dT = 4a(1− a)ρU2πrdr

dQ = 4a′(1− a)ρUΩπr3dr

and blade element theory:

dFN = B 1
2ρU

2
rel(Clcosϕ+ Cdsinϕ)cdr

dQ = B 1
2ρU

2
rel(Clsinϕ− Cdcosϕ)crdr

which can be both rewritten using the relation between Urel and U (Equation 3.5):

dFN = σ′πρ
U2(1− a)2

sin2(ϕ)
(Clcosϕ+ Cdsinϕ)rdr (3.18)

dQ = σ′πρ
U2(1− a)2

sin2(ϕ)
(Clsinϕ− Cdcosϕ)r2dr (3.19)
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where σ′ is the local solidity of an airfoil located at a distance r from the hub:

σ′ =
Bc

2πr
(3.20)

The manufacturing of the resulting blade turbine should be as simple as possible. In this

sense, the maximum local solidity should never exceed from certain value. If this solidity is too

high it will be difficult to construct the transition between it and the hub.

For the next step, the accepted practice is to assume Cd = 0, since for airfoils with low

drag coefficients this simplification yields negligible errors. By equation Equations 3.1 and 3.18

(normal forces from momentum and blade element theory) and applying the drag simplification

one gets:

a

(1− a)
= σ′Cl

cos(ϕ)

4sin2(ϕ)
(3.21)

and using the same procedure for the torque equations (Equations 3.2 and 3.19):

a′

(1− a)
=

σ′Cl
4λrsin(ϕ)

(3.22)

From these two resulting equations (3.21 and 3.22) and introducing Equation 3.4, after

some rearranging one can get the following useful relations[5]:

Cl = 4sinϕ
cosϕ− λrsinϕ

σ′(sinϕ+ λrcosϕ)
(3.23)

a′

(1 + a′)
=

σ′Cl
4cos(ϕ)

(3.24)

a

a′
=

λr
tanϕ

(3.25)
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a =
1

[1 + 4sin2ϕ
σ′Clcosϕ

]
(3.26)

a′ =
1

[4cosϕσ′Cl
− 1]

(3.27)

Solution Methods

According to Manwell [5], there are two solution methods in order to determine flow

conditions and forces at each blade section, which will be explained down below.

• Method 1 - Solving Cl and α

Knowing the blade geometry and blade conditions, Equation 3.23 has two unknowns: Cl

and α. To find the values, the empirical Cl vs. α curves for the chosen airfoil are needed,

so that one can numerically solve Equation 3.23 or even plot it and graphically solve it

finding the point in which both curves match.

• Method 2 - Iterating a and a′

Another solution (especially useful for highly loaded rotor conditions), is to follow the

iterative steps:

1. Guess values of a and a′.

2. Calculate the angle of the relative wind from Equation 3.4.

3. Calculate the angle of attack from ϕ = α+ θ0 and then Cl and Cd .

4. Update a and a′ from Equations 3.21 and 3.22 or 3.26 and 3.27.

3.c.ii Power Coefficient Calculation and Tip Loss Effect on it

There are two mainly extended expressions for the calculus of the power coefficient, the

first one, introduced by Wilson and Lissaman [12] in 1974 (Equation 3.28), which is derived

from the power contribution from each annulus (dP = ΩdQ) and the relations introduced in

the previous sections:

CP = (8/λ2)

∫ λ

λh

λ3ra
′(1− a)[1− (Cd/Cl)cotϕ]dλr (3.28)
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The second one was introduced by de Vries [13] in 1979, which derivation is algebraically

complex, yielding the following equation:

CP = (8/λ2)

∫ λ

λh

sin2 ϕ(cosϕ− λrsinϕ)(sinϕ+ λrcosϕ)[1− (Cd/Cl)cotϕ]λ2rdλr (3.29)

Usually these equations are solved numerically. Note that even though the axial induction

factors were determined assuming zero drag, the drag is now included here in the power

coefficient calculation.

At the tip of the rotor blade an air flow occurs from the lower side of the airfoil profile to

the upper side. This air flow couples with the incoming air flow to the blade. The combined

air flow results in a rotor tip efficiency (F ).

De Vries [13] also introduced a convenient approach developed by Prandtl for including the

tip loss effect in the power coefficient calculation. This method applies a correction factor, F ,

which is a function of the number of blades, the angle of relative wind, and the position on the

blade:

F =
2

π
cos−1

{
exp

[
−
(

(B/2)[1− (r/R)]

(r/R)sinϕ

)]}
(3.30)

where the inverse cosine is in radians (otherwise the initial 2/π must be replaced by 1/90.

Here the force reduction due to the tip loss is being calculated at a radius r, and it affects the

forces derived from momentum theory, and since F is always between 0 and 1, Equations 3.1

and 3.2 become:

dT = 4Fa(1− a)ρU2πrdr (3.1a)

dQ = 4Fa′(1− a)ρUΩπr3dr (3.2a)
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And therefore all the derived equations (3.21 through 3.27) can be rewritten as:

a

(1− a)
= σ′Cl

cos(ϕ)

4Fsin2(ϕ)
(3.21a)

a′

(1− a)
=

σ′Cl
4Fλrsin(ϕ)

(3.22a)

Cl = 4Fsinϕ
cosϕ− λrsinϕ

σ′(sinϕ+ λrcosϕ)
(3.23a)

a′

(1 + a′)
=

σ′Cl
4Fcos(ϕ)

(3.24a)

a =
1

[1 + 4Fsin2ϕ
σ′Clcosϕ

]
(3.26a)

a′ =
1

[4Fcosϕσ′Cl
− 1]

(3.27a)

Urel =
U(1− a)

sinϕ
=

U

(σ′Cl/4F )cotϕ+ sinϕ
(3.31)

And the power coefficients expressions:

CP = (8/λ2)

∫ λ

λh

Fλ3ra
′(1− a)[1− (Cd/Cl)cotϕ]dλr (3.28a)

CP = (8/λ2)

∫ λ

λh

F sin2 ϕ(cosϕ− λrsinϕ)(sinϕ+ λrcosϕ)[1− (Cd/Cl)cotϕ]λ2rdλr (3.29a)
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3.c.iii Effect of Drag and Blade Number on Optimum Performance

Most wind turbines use two or three blades and, in general, most two-bladed wind turbines

use a higher tip speed ratio than most three-bladed wind turbines. This fact makes practical

difference in the maximum achievable Cp negligible (when no drag effects are assumed), as can

be seen in Figure 3.7. However, the relation between the drag coefficient and lift coefficient

does play a major role in the maximum Cp, as Figure 3.8. Therefore when designing a 2 or

3-bladed wind turbine, choosing an appropriate airfoil (with high lift to drag ratios).

Figure 3.7: Maximum achievable power coefficients as a function of number of blades, no drag

Figure 3.8: Maximum achievable power coefficients of a three-bladed optimum rotor as a function of the lift to

drag ratio, Cl/Cd
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The one and two bladed rotors need to rotate at a higher rotational speed to obtain the

same ’solidity’ and thereby power production as for the three bladed rotor. This will increase

the acoustic noise emission, but for offshore application it may not be a problem. Still, the one

bladed rotor will need a large counterweight (to balance the static rotor weight). From that

point of view the two bladed rotor is a better option. For stability issues the two bladed rotor

may be exposed to large cyclic loads originating from the fluctuating rotational inertia about

the yaw axis. And with the higher rotational speed for both the one and two bladed rotors,

blade edge erosion could occur, which would tremendously increase the offshore maintenance

costs.

3.c.iv Blade Shape Optimization with Wake Rotation

Similarly to Section 2.c (Horizontal Axis Wind Turbine with Wake Rotation), here the

optimized shape of a blade including wake rotation can be calculated neglecting drag (CD = 0)

and tip losses (F = 1). Following the procedure of taking partial derivatives of the power

coefficient expression introduced by de Vries (Equation 3.29) and equalizing it to zero to

maximize it:

∂

∂ϕ
[sin2ϕ(cosϕ− λrsinϕ)(sinϕ+ λrcosϕ)] = 0 (3.32)

λr = sinϕ
(2cosϕ− 1)

(1− cosϕ)(2cosϕ+ 1)
(3.33)

With this data the following relations are made:

ϕ =
2

3
tan−1(1/λr) (3.34)

c =
8πr

BCl
(1− cosϕ) (3.35)

Comparing Equations 3.34 and 3.35 to the ones obtained without wake rotation (Equations

3.15 and 3.17) one can see that the effects of wake are, often, minimum. However, the effects
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could be significant for some cases.

Local solidity was introduced before, and now the concept of solidity as the ratio ratio of

the planform area of the blades to the swept area is presented in Equations 3.36 and 3.37:

σ =
1

πR2

∫ R

rh

cdr (3.36)

σ ∼=
B

Nπ

(
N∑
i=1

ci/R

)
(3.37)

Note that Equation 3.37 models the solidity for N blade sections for obtaining the optimum.

Here the blade twist is directly related to the angle of the relative wind due to the fact that

the angle of attack is assumed to be constant, and therefore a change in the blade twist would

make the same changes in the angle of the relative wind.

3.d Wind Turbine Design Procedure

Manwell [5] presents a usefull simplified HAWT rotor calculation procedure, however, a

series of more detailed steps will be presented here so that the procedure and use of equations

presented along the previous sections and analysis is clear. In the first approach, only wake

rotation will be taken into account, in order to obtain an initial blade shape. After that,

iterative calculations will take into account drag, tip losses, and ease of manufacture to get the

final blade shape.

1. First step will be choosing an appropriate power (P ) that the wind turbine is going to

generate. Then an indicative wind velocity (U), a probable CP and general efficiencies

(η) considering mechanical losses, losses of the gearbox, pump losses, etc. will be added

to Equation 3.38, which will give an estimation of the radius (R):

P =
1

2
CP ηρπR

2U3 (3.38)

2. Next, a tip speed ratio (λ) will be chosen according to the application of the turbine, for

instance, for a water-pumping windmill, for which greater torque is needed, use 1 < λ < 3.
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For electrical power generation, use 4 < λ < 10. The higher speed machines use less

material in the blades and have smaller gearboxes, but require more sophisticated airfoils.

3. After that, the number of blades can be selected from the suggested values presented in

Table 2.

λ B

1 8-24

2 6-12

3 3-6

4 3-4

>4 2-3

Table 2: Suggested blade number, B, for different tip speed ratios, λ

4. Airfoil selection bearing in mind the purpose of the blades. The curves for the aerodynamic

properties must be studied and the design conditions established (Cl,design and αdesign for

Cd,design/Cl,design is the minimum possible.

5. In order to simplify calculus, the blade needs to be divided in N elements (≈20) and

using the theory shown in previous sections a first approach of the blade shape can be

made for each element i:

λr,i = λ(ri/R) (3.39)

ϕi =
2

3
tan−1(1/λr,i) (3.40)

ci =
8πr

BCl,design,i
(1− cosϕ) (3.41)

θT,i = θp,i − θp,0 (3.42)
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ϕi = θp,i + αdesign,i (3.43)

6. Regarding ease of manufacture, after calculating the optimum blade shape as a guide,

one can use linear variations of chord, thickness and twist that get as close as possible to

the optimum design but saving a lot of effort in the manufacturing process.

ci = a1ri + b1 (3.44)

θT,i = a2(R− ri) (3.45)

7. Now one of the two methods described previously must be applied to determine flow

conditions and forces at each blade section.

• Method 1 - Solving Cl and α

The angle of attack and lift coefficient can be calculated using the empirical airfoil

curves and the following equations:

Cl,i = 4Fisinϕi
(cosϕi − λr,isinϕi)
σ′i(sinϕi + λr,icosϕi)

(3.46)

σ′i =
Bci
2πri

(3.47)

ϕi = αi + θT,i + θP,0 (3.48)
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Fi =
2

π
cos−1

{
exp

[
−
(

(B/2)[1− (ri/R)]

(ri/R)sinϕi

)]}
(3.49)

For the iterative process an initial estimation of Fi is needed using

ϕi,1 = 2
3 tan

−1(1/λr,i) for the first iteration and then ϕi,j+1 = θP,i + αi,j ,

where j is the number of iterations (usually only a few are needed). Finally the

axial induction factor is calculated:

ai =
1

[1 + 4sin2ϕi

σ′
iCl,icosϕi

]
(3.50)

If ai is greater than 0.4, Method 2 must be used.

As stated in the solution method, this method can also be solved graphically plotting

the empirical Cl vs. α curves for the chosen airfoil and Equation 3.46 (see Figure 3.9).

Figure 3.9: Graphical solution for angle of attack, a; Cl , two-dimensional lift coefficient; Cl,i and ai , Cl and

a, respectively, for blade section, i

• Method 2 - Iterating a and a′

It was indicated that this method was especially useful for highly loaded rotor

conditions (ai > 0.4), so following the steps presented in the solution method

presentation:

First step is guessing values of a and a′. Use ϕi,1 = 2
3 tan

−1(1/λr,i) for the first

iteration (as in the previous method), then:
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ai,1 =
1

[1 +
4sin2ϕi,1

σ′
i,designCl,designcosϕi,1

]
(3.51)

a′i,1 =
1− 3ai,1
4ai,1 − 1

(3.52)

After the initial iterations, the angle of the relative wind and the tip loss factor can

be calculated:

tanϕi,j =
U(1− ai,j)
Ωr(1 + a′i,j)

=
1− ai,j

(1 + a′i,j)λr,i
(3.53)

Fi,j =
2

π
cos−1

{
exp

[
−
(

(B/2)[1− (ri/R)]

(ri/R)sinϕi,j

)]}
(3.54)

Now Cl,i,j and Cd,i,j and the local thrust coefficient (CTr,i,j) can be determined using:

αi,j = ϕi,j − θp,i (3.55)

CTr,i,j =
σ′i(1− ai,j)2(Cl,i,jcosϕi,j + Cd,i,jsinϕi,j)

sin2ϕi,j
(3.56)

Now if CTr,i,j < 0.96, only a must be updated:

ai,j+1 =
1

[1 +
4Fi,jsin2ϕi,j

σ′
iCl,i,jcosϕi,j

]
(3.57)
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on the other hand, if CTr,i,j > 0.96, both a and a′ must be updated:

ai,j =
1

Fi,j

[
0.143 +

√
0.0203− 0.6427(0.889− CTr,i,j)

]
(3.58)

a′i,j+1 =
1

[
4Fi,jcosϕi,j

σ′
iCl,i,j

]− 1
(3.59)

The iterations must be repeated until the induction factors have little error with

respect the previous guesses and they are within an acceptable range of values,

otherwise another design values should be taken and the process must be repeated.

8. Once all the elements of the blade have been calculated, the power coefficient can be

determined using:

CP =
8

λ2

N∑
i=1

Fisin
2ϕi(cosϕi − λr,isinϕi)(sinϕi + λr,icosϕi)

[
1− Cd

Cl
cotϕi

]
λ2r,i (3.60)

In case the power coefficient is not sufficiently high or the desired one, the design

conditions can be changed and recalculated.

3.e CP − λ Curves and Controllability

Once the blade has been designed for optimum operation at a specific design tip speed

ratio, the performance of the rotor over all expected tip speed ratios needs to be determined,

and the results are presented in a CP − λ curve. They provide immediate information on the

maximum rotor power coefficient and optimum tip speed ratio.

All wind turbines are designed for a maximum wind speed, called the survival speed, above

which they will be damaged. The survival speed of commercial wind turbines is in the range

of 40 m/s (144 km/h, 89 MPH) to 72 m/s (259 km/h, 161 MPH). The most common survival

speed is 60 m/s (216 km/h, 134 MPH). And due to the high power requirements of wind

turbines, it is necessary to ensure that the automatic control of the rotor is correctly applied

and can be controlled in every situation. Therefore, in order to make sure that the automatic
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control does not have to apply an unacceptable brake torque at high wind velocities, the

turbine must be effectively stall-regulated.

In this aspect, as indicated in the publication of A. Torregrosa et al.[6], the left slope of

the blade non dimensional power curve is found to be a key design parameter, in order to

obtain a design able to produce power in a wide range of wind velocities avoiding the risk of

uncontrollable conditions.

As it can be seen in Equation 2.27, the power scales with the relation PαCpU
3, and since

the stall-regulated condition implies dP
dU < 0 for the maximum expected wind velocity, the

following expression can be determined:

dCP
dλ

>
3CP
λ

(3.61)

Equation 3.61 means that the higher the left slope in the CP − λ curve is, the better

controllability the rotor will have, since a small reduction in the velocity (and therefore λ)

implies a fast decrease in power generated, thus preventing the wind turbine from excessive

loads.

3.f Non-ideal Steady State, Turbine Wakes and Unsteady Aerodynamic

Effects

All the previous sections predicted the wind turbine performance as a function of steady

state aerodynamics, with most ideal assumptions, without taking into account most of the

dynamics effects. An introduction of these effects is presented in this section [5], including

non-ideal steady state effects, the influence of turbine wakes, and unsteady aerodynamics.

3.f.i Non-ideal Steady State Aerodynamic Issues

Here effects such as surface roughness, stall and blade rotation are included. For instance

the deterioration and dirt of the surface can decrease up to a 40% [5], and the only solution is

investing on maintenance and better blade materials. Regarding stall conditions, fluctuating

loads arise, yielding rapidly fluctuating flow conditions and rapidly fluctuating loads on the

wind turbine. Then, experimental testing on the blades is done without rotation, but when the

blades are on an horizontal wind turbine, they may produce more power than expected and

delayed stall conditions due to rotation, which might shorten the life of the blade since the

conditions tested were ’smoother’ than the real ones.

45



3.f.ii Unsteady Aerodynamic Effects

Aerodynamic forces are not steady due to several phenomena such as turbulent eddies,

blade vibrations, material fatigue... Tower shadow, dynamic stall and inflow and rotational

sampling are other effects that change the performance unexpectedly and occur at the

rotational frequency of the rotor or at multiples of that frequency.

The effect of wind distorsion behind a windmill is known as tower shadow, which affects

each blade once per revolution, causing a deficit of power and vibrations along the structure.

More about the effect of tower shadow in downwind wind turbines can be read in the thesis of

Marit Reiso [17].

Dynamic stall is defined as the sudden changes in aerodynamics that cause stall conditions

variations, such as delay. Rapid changes in wind speed (for example, when the blades pass

through the tower shadow) cause a sudden detachment and then reattachment of air flow

along the airfoil. Such effects at the blade surface cannot be predicted with steady state

aerodynamics, but may affect turbine operation, not only when the blades encounter tower

shadow, but also during operation in turbulent wind conditions. Dynamic stall effects occur

on time scales of the order of the time for the relative wind at the blade to traverse the

blade chord, approximately c/Ωr. For large wind turbines, this might be on the order of

0.2 seconds at the blade root to 0.01 seconds at the blade tip according to Snel and Schepers [14].

Next, the dynamic inflow can be described as the response of the larger flow field to

turbulence and changes in rotor operation. Steady state aerodynamics suggest that increased

wind speed and, thus, increased power production should result in an instantaneous increase in

the axial induction factor and changes in the flow field upstream and downstream of the rotor.

During rapid changes in the flow and rapid changes in rotor operation, the larger field cannot

respond quickly enough to instantly establish steady state conditions. Thus, the aerodynamic

conditions at the rotor are not necessarily the expected conditions, but an ever-changing

approximation as the flow field changes. The time scale of dynamic flow effects is on the order

of D/U, the ratio of the rotor diameter to the mean ambient flow velocity. This might be as

much as ten seconds again according to Snel and Schepers[14]. Phenomena occurring slower

than this can be considered using a steady state analysis.

Finally, rotational sampling increases fluctuating loads on the wind turbine due to unsteady

aerodynamic effects, since the wind is relatively seen by the rotor and this is constantly

changing, which could bring wind speed changes on a time scale of about five seconds.
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3.f.iii Turbine Wakes

This effect was described along several sections such as Section 2.c for the whole wind

turbine, and Section 3.c for the specific blade effect. However, the actual effect is much more

complicated. This wake affects the performance of the whole group of wind turbines (downwind

wind turbines), and may result in a ‘skewed wake,’ which causes increased fluctuating loads

which are not predicted by BEM theory.

First, one must differentiate between near and far wake, each of them characterized by

the spatial distribution and the intensity of the turbulence in the flow field. Then, according

to Voutsinas et al.[15], a blade generates vortices not only on the tips (which are the ones

mentioned in Section 3.c.ii and the most important ones), but on the trailing edge and on

the hub as well, which convert downstream. The periodic nature of the vortex flow is lost in

the near wake (Ebert and Wood[16]), therefore creating an evenly distributed turbulence and

velocity profiles in the far wake. The free stream wind recharges the flow and mixing and

diffusion continue in the far wake until the turbulence and velocity difference with respect to the

free stream flow have dissipated. The vortex sheet from the tip vortices results in an annular

area in the far wake of higher relative turbulence surrounding the less turbulent core of the wake.

The effects of these wakes are material fatigue, which is not negligible on wind farms where

the wake may affect several wind turbines downwind and increased loads, which reduce the

energy transformed by the blades.
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4 Fluid Dynamic Modelling
This section will include the description of the analysis of a wind turbine on Simcenter

Star-CCM+, a commercial Computational Fluid Dynamics (CFD) based simulation software,

in which more effects can be modelled and in most cases replace expensive experiments

which require high end test facilities. Most information regarding the program setup and

configuration has been recollected from the STAR-CCM+ Product Overview[21].

4.a Turbulence modelling

There are a few different methods that can be used to properly model the flow around a

wind turbine. The most widely used of these is the Reynolds averaged Navier-Stokes turbulence

model (RANS). Fluid mechanics governing equations are the one used to characterize the flow,

and in this case a simplification is made by taking various assumptions in order to be able to

solve them. RANS is a turbulent flow model, which solves the Navier-Stokes equations by using

the mean flow. Therefore, the sets of equations that are used are time-averaged. This is a

very common method used for computation fluid modeling and it is frequently applied to wind

turbine models because it yields fairly accurate results within a relatively short computation

time.

ρ
(
∂u
∂t + u∂u∂x + v ∂u∂y + w ∂u

∂z

)
= − ∂p

∂x + µ
(
∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

)
+ ρgx

ρ
(
∂v
∂t + u ∂v∂x + v ∂v∂y + w ∂v
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(
∂ρu
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+
∂ρv

∂y
+
∂ρw

∂z

)
= 0 (Continuity equation)

where the term at the left part of the Navier-Stokes Equation represents the convective

forces, the derivative of pressure is the pressure gradient, the µ term is the viscous effects

one (diffusion term) and finally the last term represents the body forces acting. For

Navier-Stokes equation and Continuity equation, u represents the velocity in the x direction,

v in the y direction and w is the velocity in the z axis. The Continuity equation states

that the rate at which mass enters a system is equal to the rate at which mass leaves the

system plus the accumulation of mass within the system, which is necessary for the calculations.

When choosing between the different variants of a model, one must take into account the

behavior of the fluid near the wall, and its relationship with the size of the mesh in it, and
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then is when the wall y+ plays a major role:

y+ =
yu∗

ν
(4.1)

where y is distance from the wall to the centroid of the first cell, u∗ is friction velocity and

ν is the kinematic viscosity as referenced above. For the calculation of the turbulent boundary

layer, one can use what is known as the Law of the wall, which is a logarithmic law that relates

the velocity in the boundary layer to the value of y+. There are two types of Law of the wall:

• Standard wall laws, in which velocities transition between laminar and turbulent flow

occur with a discontinuity.

• Blended wall laws, in which this transition is gradual, and this region is known as buffer

region.

One cannot choose the law explicitly, since they are bounded to each type of model. However,

mesh size must be taken into account in order to fit y+ values: the finer the mesh and the lower

the flow velocity, the lower will be the values of y+. In this case three types of wall treatment

can be chosen:

• High-y+ wall treatment : assumes that the cell closest to the wall is within the logarithmic

region and therefore makes use of the law of the wall.

• Low-y+ wall treatment : It is only valid for low Reynolds numbers. Requires a mesh

sufficiently fine, and the higher the Reynolds number, the finer the mesh must be.

Therefore, it is computationally expensive. This treatment resolves the viscous boundary

layer without need to make use of the law of the wall.

• All-y+ wall treatment : this treatment is a hybrid of the previous ones. It makes use of the

former one when the cell is within the logarithmic region, and the latter if the cell is within

the viscous region (very fine mesh) and is also valid if the cell is in the laminar-turbulent

transition region (buffer region).

There are several turbulence models that can be applied depending on the system that has

to be modelled. The most common ones are k − ε, k − ω and Spalart-Allmaras turbulence

models. These three models are all eddy viscosity models, which use the Reynolds-averaged

Navier-Stokes and turbulent viscosity to model the Reynolds stress tensor as a function of the

average flow. The k−ε and k−ω models are two-equation models, while Spalart-Allmaras uses

only one equation. Now a description on each model will be made based on David C. Wilcox [18].
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4.a.i k − ε model

The k − ε model is characterized by νT = νT (k, ε) (kinematic viscosity is dependent of the

variables k and ε), where k is the turbulent kinetic energy and ε the turbulent kinetic energy

dissipation rate. So as to determine the expression of νT and of k and ε, it is necessary to use

results of simpler flows whose theoretical or experimental solution are known. The software

has up to 8 different k − ε models.

4.a.ii k − ω model

As the previous model, the k − ω model makes use of two variables: k is the turbulent

kinetic energy, as before, and ω is the specific dissipation rate, that is, the dissipation per unit

of turbulent kinetic energy (ω ∼ ε
k ). The software has two different k − ω models.

For this project, this model has been used, more specifically the SST (Menter) K-Omega.

The Shear Stress Transport K-Omega model takes advantage of accurate formulation of the

K-Omega model in the near-wall region with the free-stream independence of the K-Epsilon

model in the far field. It does so multiplying a final additional term, obtained from deriving the

K-Epsilon model, by a blending function. Close to wall the damped cross-diffusion derivative

term is zero (leading to the standard ω equation), whereas remote from wall the blending

function is unity (corresponding to the standard ε equation).

4.a.iii Spalart-Allmaras model

This model solves the equations by introducing a single variable: turbulent viscosity

kinematics. It was originally created for the aerospace industry and for low Reynolds number,

as well as for values y+ ∼ 1, although currently there are less restrictive models. Star-CCM+

presents up to three possible variants of this model.

4.a.iv Reynolds Stress Transport model

Another form of RANS turbulence model available is the Reynolds Stress Transport model.

Unlike the other turbulence models, this is not an eddy viscosity model, since it solves for

all components of the Reynolds stress tensor, rather than focusing on viscosity like the eddy

viscosity models. It is best suited for situations when the flow is very anisotropic, which means

that it varies greatly depending on direction.

4.a.v Detached Eddy Simulation

Detached eddy simulation (DES) is often used for situations when the unsteadiness in the

flow is “imposed or inherent,” such as when the boundary conditions are changing significantly

with time or there is massively separated flow.
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4.a.vi Large Eddy Simulation

Another common method that arose more recently than RANS is Large-Eddy Simulation,

or LES. This method differs from RANS in that it removes the smaller aspects of the flow in

order to model the large turbulent eddies, thus capturing the larger structures of the flow more

accurately. Therefore, rather than averaging the flow, it filters out the small-scale information

in the flow, which simplifies the model so that the large aspects of the flow can be modeled

directly. While it has been acknowledged that this method typically yields more accurate

results (LES does a much better job at capturing the turbulent mixing of the airflow) than the

RANS turbulence model, it requires far more computational time, and is not always a viable

option.

4.b Simulation Setup

4.b.i General guides

The main goal of this project is to calculate power values for wind turbines, being the flow

a secondary aspect of the simulations that will be analyzed. Therefore the complexity of a LES

model would have been superfluous , since a RANS model and a LES have the same capability

to determine power generated.

For the geometry, it is the NREL Phase VI blade, depicted in Figure 4.1, used in several

documents like the paper published by Antonio Torregrosa et al[6] . The blade radius (5.029

m) was set as a parameter to build the fluid region and set another variables with respect to

this measure.

Figure 4.1: Shape model of the NREL Phase VI wind turbine blade

Around this geometry, a part with the shape of a truncated cone was created in order to

simulate the flow region in Star-CCM+, obtaining the fluid zone by substracting the blade

shape from that cone. Moreover, in order to get 2-bladed, 3-bladed and 4-bladed turbines, this
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cone was cut in half (Figure 4.2), withing 120◦ (Figure 4.3) and 90◦ (Figure 4.4) respectively,

as will be seen in the following section (Section 4.b.ii). Then the different regions and domain

were set, leading to the physics and mesh conditions. As previously stated, the model K-Omega

SST (Menter) was used, and standard atmosphere conditions. Regarding motions, it must

be said that a moving reference frame was set in order to solve the case, where the geometry

of the blade rotates with that reference frame, so that the fluid is steady from that point of

view. This reference frame rotates with the relation of the tip speed ratio parameter, λ, and a

constant wind velocity of 10 m/s (Equation 2.24). Finally one can configure different meshes

and compute some solutions in order to check with the references and determine which is the

best one to carry the rest of the calculus, following the workflow shown in Figure 1.3.

4.b.ii Geometry and region definition

For the NREL Phase VI blade, 3 different setups were set, obtaining three types of

turbines: a 2-bladed, 3-bladed and 4-bladed, whose blade geometry is the same, while the

region definition varies according to Figures 4.2,4.3 and 4.4:

Figure 4.2: 2-bladed computational domain Figure 4.3: 3-bladed computational domain

Figure 4.4: 4-bladed computational domain

For all the geometries, the front wall (radius 3 times the blade radius and 2 radius ahead)

was set as a velocity inlet, the back (radius 6 times the blade radius and 4 radius behind) was

defined as a pressure outlet and, for the outer cylindrical region, the far field, it was set as a

velocity inlet in the same way as the front wall. This boundary condition is important because
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if the wall was set as no-slip wall, the velocity of the flow at the wall would be zero, meaning

the flow would not only be affected by the rotating turbine, it would also be heavily influenced

by the wall. Moreover, all the setups have a periodic condition set in the lower parts, being

able to define the number of blades thanks to the angle formed between them: 180◦ for the

2-bladed, 120◦ for the 3-bladed turbine and 90◦ for the 4-bladed one. This periodic condition

was configured through an interface created with a symmetry plane in the region section

between the two blue planes (the ones that change its angle between setups) of Figure 4.6. In

Figure 4.5 the geometry distances is depicted as well.

Figure 4.5: Distance and geometry setups in the 2 bladed configuration
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Figure 4.6: Distance and geometry setups in the 3 bladed configuration

4.b.iii Continua Physics and Mesh

As previously mentioned, the physics make use of the SST k − ω model with an all y+

wall treatment. This study was conducted with steady, turbulent flow, which was defined as

incompressible because there are no changes in density as the air travels through the turbine,

since air stays at a very low velocity compared to the velocity of sound. Moreover, the reference

pressure was set at 101325 Pa, and air conditions set to the ones found in literature: a density

of 1.18415 kg/m3 and a dynamic viscosity of 1.7894 · 10−5 Pa·s. An implicit coupled flow solver

was selected, so the conservation equations for continuity, momentum, energy, and species are

solved in a coupled manner, that is, they are solved simultaneously as a vector of equations.

The velocity field is obtained from the momentum equations. From the continuity equation,

the pressure is calculated and the density is evaluated from the equation of state. The Courant

Number (CFL) property of the Coupled Implicit and Coupled Explicit solvers controls the size

of the local time-steps that are used in the time-marching procedure these two solvers employ.

The Courant number plays the same role as under-relaxation parameters in the segregated

solver.

Regarding meshing conditions, a base size of half the radius of the blade was set, an essential

point, due to the the fact that all the other parameters in the meshing part are calculated with

respect to that value.

It should be remarked that the most complicated part of this study was determining the

best mesh to use. There have been (among many other failed attempts) two types of meshes,

with the only difference of the boundary layer thickness between them. Both were done with
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a polyhedral mesher, surface remesher and of course a prism layer mesher for solving the

boundary layer. Both had 15 prism layers and a stretching factor of 1.2, with thicknesses of

0.5 cm and 0.32 cm, yielding better results the latter, as will be shown in Section 4.c. for both

the wall y+ stayed under 1 for most of its cells, and since the all y+ treatment was applied,

we can count for the boundary layer to have been correctly solved and transitioned to the free

stream flow.

Figure 4.7: Boundary layer meshing

Moreover, two volumetric controls were created to refine the mesh and make it smaller in

certain parts closer to the blade, as Figures 4.8 and 4.9, and the resulting mesh can be seen in

Figure 4.10:

Figure 4.8: Volumetric control 1 Figure 4.9: Volumetric control 2
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Figure 4.10: Meshing regions depending on control volumes

It can be seen how by doing this, the mesh will need less cells than meshing all with the

same size, since one can focus on the parts that need more computational effort, while saving

computational costs in the outter regions where the flow will not affect in the same way. More

details on the mesh can be seen in the following pictures (Figures 4.11 and 4.12).

Figure 4.11: Meshing details from hub perspective
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Figure 4.12: Meshing details from tip perspective

4.b.iv Initial Conditions and Motion

The three different geometries have been studied for 11 different λ (which relates the inlet

velocity (10 m/s) with the rotational rate Ω with Equation 2.24). The tip speed ratios begin at

0, which obviously yields null angular velocity and results, until λ = 11, resulting in Ω ≈ 200

rpm (which would correspond to velocities in the tip of up to vtip = R ·Ω ≈ 110 m/s), a highly

excessive rotation rate, but in this way all type of conditions will be studied withing a wide

range. Table 3 outlines the velocities and rates studied for the three models of wind turbines.

λ Ω (rad/s) Ω (rpm)

1 1.91 18.26

2 3.82 36.52

3 5.74 54.79

4 7.65 73.05

5 9.56 91.31

6 11.47 109.57

7 13.39 127.84

8 15.30 146.10

9 17.21 164.36

10 19.12 182.62

11 21.04 200.88

Table 3: Conversion of velocities for the different conditions studied
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For the velocity inlet, as just stated, a velocity of 10.0 m/s along the z-axis (negative

direction) was set, a medium-fast wind velocity at low altitudes.The initial free stream velocity

was also set to -10.0 m/s in the direction of the z-axis.

And as previously mentioned, the reference pressure was set at 101325 Pa, and air conditions

set to the ones found in literature: a density of 1.18415 kg/m3 and a dynamic viscosity of

1.7894 · 10−5 Pa·s, with a null initial pressure.

4.c Analysis of Results

In this chapter results will be compared for different cases. For reasons of time, resources

and the great variety of parameters that influence the problem, only the number of blades has

been changed from the turbines. The rest of the geometry and the atmosphere has remained

invariable.

The first calculation after the meshing was the power and force generated by each wind

turbine, in order to validate it with data from the NREL Phase VI and other bibliographic

resources.

The long way of determining the power generated by the turbine is to integrate the pressure

over the blade to find the force along it, then one can use the force and the radius of the blades

to find torque. Finally, the dot product of torque and angular velocity is taken to calculate

power generated (Equation 2.27.) On Star-CCM+ the torque of the turbine can be determined

directly by creating a moment report for the turbine and ensuring that the axis origin is located

at the origin of the turbine. The power can then be calculated directly by using the value for

torque found by the report. After several iterations, the calculations of the power generated

by each turbine, in this case expressed as the power coefficient (Equation 2.12) and the normal

force, represented by the thrust coefficient (non-dimensional normal force, Equation 2.16) be

found in Figures 4.13 and 4.14:
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Figure 4.13: Power curves calculated for NREL Phase VI with a boundary layer thickness of 0.32 cm

Figure 4.14: Normal force curves calculated for NREL Phase VI with a boundary layer thickness of 0.32 cm
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Comparing the different designs, one can see that there is a remarkable increase in power

generation between the two-bladed and the three and four-bladed designs (∼ 15%), while

there is a small difference between the three and four-bladed ones (∼ 6%), which might give

a first idea of the return of investment one may get, being the three bladed, apparently, the

best choice regarding manufacturing, maintenance and transportation costs while obtaining an

average efficiency of ∼ 45% in a wide range of operation, which is a fair high one compared to

the Betz limit.

Moreover the optimum points of operation are clear for each model, obtaining greater

values for lower λ as the blade number increase, and improving the slope of the Cp graph,

which has an important role regarding controllability (Section 3.e).

4.c.i Model validation

In order to carry out a proper validation study for the rigid body motion simulation, a CAD

model that already has been tested experimentally or by other researchers should be used.

This would be beneficial because, although similar size turbines should be generating similar

magnitudes of power, there can still be vast differences in the exact value due to the design

of the blades. It is plausible that one turbine could generate 100 W, while a different turbine

with the same radius might generate only 20 W. Therefore, in order to determine the accuracy

of a model, a turbine with known or estimated power generation values should be modeled.

Thankfully there is a large amount of published research regarding the power generation of the

NREL Phase VI turbine in various conditions, so it would be easy to compare the results.

Comparing the two-bladed rotor of Figures 4.13 and 4.14 to the reference ones (Figures

4.15 and 4.16[6]), it can be seen that the values are above the ones referenced from λ = 3 (for

Figure 4.15), however, the force curve (Figure 4.16) is almost the same. Regarding differences,

one must take into account the fact that in this study, the hub of the blade started a bit above

the plane of symmetry, about 0.2 meters above (Figure 4.17), yielding higher torque results

than expected and therefore higher power coefficient calculation. Moreover, the mesh from

Togregrosa et al. was of 8M cell, which is expected to yield more accurate results. All in all,

the curves are pretty similar in shape, with a maximum power generation at around λ = 8, the

same as the one found in literature.
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Figure 4.15: Power curve for the blade NREL Phase VI [6]

Figure 4.16: Force curve for the blade NREL Phase VI [6]
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Figure 4.17: Gap between hub and symmetry plane (origin)

Moreover, according to Mukesh M. Yelmule et al.[19], the pressure coefficient distribution

for a two-bladed wind turbine with the NREL blade at a rotation rate of λ = 4 has the

following solutions (red dots of Figures 4.18 and 4.19), which are plotted with the results of

the blade calculated for λ = 4 (blue dots):
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Figure 4.18: Pressure coefficient distribution at r/R=0.633

Figure 4.19: Pressure coefficient distribution at r/R=0.95

As can be seen in the images, the tip solution is pretty similar, while the 63% is not as

similar on the suction side, but might be due to the differences in the atmosphere conditions (in

[19] they make use of a density of 1.246 kg/m3), mesh size (for the 2-bladed model a mesh of

∼ 3.6M cell was used), the software (in the Yemule study ANSYS CFX 12.1 was used) or due
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to the hub gap (Figure 4.17). In addition, the transition from laminar to turbulent flow used

by Yemule et al.[19] is modeled using Langtry and Menter correlation based Gamma-Theta

transition model, which is property of ANSYS, and therefore a different solver from the one

used in Star-CCM+.

Once mesh independence was achieved for the current CFD model and the best mesh was

chosen (the one with a boundary layer thickness of 0.32 cm) and a number of 3.6M cells for

the two-bladed case, more studies were carried out. In this section three main studies will be

presented: a pressure distribution along the blade, a shear stress distribution along the blade

and finally a velocity representation along the blade.

4.c.ii Pressure distributions

For this study, two additional derived planes were created in Star-CCM: one at the 3 m

section, and another one at 4.5 m, closer to the tip. All results were studied in these two

sections, to analyse the pressure evolution not only along the non-dimensional chord, but along

the blade radius.

In addition, two types of graphs were collected for this section in order to better represent

the phenomena. The first one is a plot of the pressure coefficient along the chord (for instance

Figure 4.20), while the second one is a scene of the same scalar function represented for the

whole blade section (for example Figure 4.21).

For the dotted-plots, the 3 m section is the red-dotted one, while the 4.5 m section is

blue-dotted, and the upper part of each representation is the suction side of the blade (upper

side as well), whereas the lower dots show the pressure side of the blades.
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• λ = 3

Figure 4.20: Pressure coefficient for the 3-bladed turbine

Figure 4.21: Pressure coefficient distribution along the 3 m section for the 3-bladed case
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Figure 4.22: Pressure coefficient distribution along the 4.5 m section for the 3-bladed case

• λ = 6

Figure 4.23: Pressure coefficient for the 3-bladed turbine
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Figure 4.24: Pressure coefficient distribution along the 3 m section for the 3-bladed case

Figure 4.25: Pressure coefficient distribution along the 4.5 m section for the 3-bladed case
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• λ = 9

Figure 4.26: Pressure coefficient for the 3-bladed turbine

Figure 4.27: Pressure coefficient distribution along the 3 m section for the 3-bladed case
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Figure 4.28: Pressure coefficient distribution along the 4.5 m section for the 3-bladed case

For all the cases, it can be seen as the stagnation point advances towards the leading edge

for the 4.5 m section (Figures 4.21, 4.22, 4.24, 4.25, 4.27 and 4.28), since it has a lower angle of

attack with respect to the hub. The evolution of the suction zone (upper part) becomes larger

as the boundary layer is more adhered, up to a certain point, in the onset of stall (∼ λ = 8),

where the efficiency of the airfoil is not the expected one, even though the suction zone remains

growing. Entering the stall conditions means that the blade is no longer working efficiently, the

increase in the drag is clearly noticeable and thus the energy transformation is poorly done.

Observing the peak in the pressure near the leading edge of the suction surface in Figure

4.23, the peak might be due to flow separation and resulting localized transient stall effects.

These graphs are not as precise as the other due to difficulty of RANS models when solving

separated and transient flows, however, this does not cause major differences with this flow

behaviour, which is a characteristic specific to the S809 airfoil at higher angle of attack, and is

in the range of the results of [19]. Figure 4.26 shows a pressure distribution in a regime which

is categorized as stall region, where the inertial forces have gained more weight with respect to

the viscous ones and the air is in turbulent regime.

Having a look back to the power curves and matching them to the pressure distribution

graphs, one can locate the optimum points of operation for the values λ ∈ [5, 6, 7]. From λ = 8,

in the 4.5 m section (closer to the tip), the power coefficient value starts to drop, and from

that point a different behavior can be seen in the pressure distribution compared with λ = 6

(Figure 4.26).
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4.c.iii Shear stress distribution along blades

For this section, the shear stress has been adimensionalized with the dynamic pressure,

yielding better result and therefore being able to clearly observe where the flow is applying

greater forces and stresses, and which parts are more exposed to cracking or even breaking

(black lines). Moreover, the pressure coefficient has been represented on the extrados of the

blades to better observe the flow detachment and evolution. All figures are represented at the

section located at 3 m from the hub.
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• λ = 3

Figure 4.29: Non-dimensional shear stress and pressure coefficient of a blade in the 3-bladed case

• λ = 6

Figure 4.30: Non-dimensional shear stress and pressure coefficient of a blade in the 3-bladed case
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• λ = 9

Figure 4.31: Non-dimensional shear stress and pressure coefficient of a blade in the 3-bladed case

In these figures, the horizontal black lines like the ones in Figure 4.31 delimit the detachment

zone, meaning the flow is not attached to the blade, and therefore exerts null force over it. On

the other hand the vertical ones represent the shear stresses that the blade withstands.

At low wind speed the flow is attached, and the transition from laminar to turbulent occurs

close to the mid-chord. At the onset of stall separation occurs close to mid chord. In stall,

the separation that initiated at mid-chord (at the onset of stall) moves over up to 75% of the

chord.

However, following with the pressure distribution ideas, observing the results, one can see

how from λ = 7 the shear stress value starts to increase too much in the tip zone, which is

clear in Figure 4.31 (dark blue zones), which could mean that it is not safe for the blade to

operate from that point (λ = 7), since it could increase the maintenance costs if blades had to

be replaced regularly due to cracks or other imperfections along the surface.

4.c.iv Velocity field around sections

Line integral convolution representation was used for this Section, as it provided a nicer and

clearer scene of the flow evolution. All scenes are represented at the section located at 3 m from

the hub in the rotating reference frame.
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• λ = 3

Figure 4.32: Velocity field in the 2-bladed case

• λ = 6

Figure 4.33: Velocity field in the 2-bladed case

73



• λ = 9

Figure 4.34: Velocity field in the 2-bladed case

With pressure and velocity increase there is an increase in the Reynolds number and

therefore an increase in the predominant inertial effects over the viscosity ones, which is

associated to a small boundary layer near the wall. This is more notable as we increase the

λ parameter, since having a look at Figures 4.32, 4.33 and 4.34 one can see how the angle

of attack reduces, due to the angular velocity increase (the perceived angle of the blade with

respect to the rotational frame gets smaller), and the flow stays attached to the upper part,

while for low velocities the angle of attack is increased and the stall conditions can be more

easily met at sections closer to the hub, where the twist of the blade induces higher angles of

attack. Moreover, observing Figure 4.32, when the flow is laminar, it quickly separates upon

reaching the blade, creating a low-pressure wake in the upper part and increasing resistance.

In the CFD analysis, the adhesion of the boundary layer evolution was studied, not being

able to distinguish it and observing large eddies at low speeds (up to λ = 5). In addition,

the boundary layer had a behaviour of detaching once the optimum performance point was

reached, which varied depending on the speeds. When the flow reaches the end of the blade, a

wake is generated where the velocity decreases greatly due to the pressure gradient caused by

the sudden change in geometry, increasing resistance as well.

Regarding the optimum operation point, in this section one can see, as previously said, that

regarding flow behaviour around the section, the fluid optimum conditions began at λ = 5,

so using this and the previous sections’ information, one can estimate that the maximum

efficiency and best operation point of the wind turbine would be λ ∈ [5 − 7], being the best

one, bearing all the conclusion and conditions in mind, around λ = 6, or just a bit above that

value.
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5 Conclusions and future work
Throughout the project, while writing each section, one realizes the real complexity of the

problem, which at the beginning might seem simpler, although it has been proved, that even

making loads of assumptions, the optimization of modern wind turbines gets way further than

a few set of equations. For this study, only the general mechanics and fluid equations were

used, without bearing in mind the material resistance nor fatigue conditions (only in the CFD

shear stress part), which would increase the difficulty enormously.

However, a wide variety of resources were used to carry out the study, yielding some pretty

useful conclusions that may help in the future or even in other different future projects.

First of all, it should be stated that when facing a new wind turbine design, there are

several approaches to get a first idea, but the most important thing to care about is power

generation. Once the target power has been set, one can get the idea of the size of the blades.

Then by making some iterations and using some of the methods presented in this project

one can get a pretty advanced design and be able to continue studying the options by more

advanced methods like CFD.

Regarding CFD, the first steps when preparing the simulation are essential. Choosing

between one or another arrangement of the regions can be very important in terms of not

only obtaining good results, but of doing it efficiently, since CFD resources could be extremely

expensive (companies often pay millions of Euros for their CFD program licenses), so one must

be careful and wise when using them in terms of efficiencies and times. It is very important

to define a suitable mesh and be able to refine it in the most optimal way. For instance,

the periodicity conditions established saved a lot of CPU resources and time, which for this

project might not seem important, but it makes a huge difference in large projects (like in the

aeronautical industry).

The mesh, as it has been seen, is vital, since it will be the main obstacle to reaching

a solution that is close to reality. It seems obvious that it is easy to choose a mesh to

ensure convergence if the geometry is well modeled, however, achieving that using limited

computational resources can be much more complicated. One of the major drawbacks when

simulating is the time it can take to carry out the simulation, so it is very important to make

sure that the simulation is defined correctly, and that the mesh is reasonable for the available

resources.

In addition, it is very likely that during the preparation of the simulation the original idea

will be lost, forgetting the real physics of the problem. This is important to remember since it

can help find results that show that the simulation is not doing what is expected. In addition,

when configuring this it is essential to do it in an orderly manner.
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To sum up the results of the fluid dynamic modelling and calculations, although the

calculated values for power generated by the wind turbines did not exactly match published

values, they were within the same magnitude. At low wind speed the flow is attached most of

the span, transition from laminar to turbulent occurs close to mid-chord and CFD predictions

are correct for these conditions. At the onset of stall separation occurs close to mid chord.

Steady state CFD fails to predict the power within measurement range (overprediction of up

to 20% ) and is known for its difficulty in capturing highly transient effects at the onset of

stall. In stall, the separation that initiated at mid-chord (at the onset of stall) moves over up

to 75% of the chord. Steady state CFD predicts correctly the quantities within measurement

range, although some differences are observed in pressure distribution on the suction side (as

stated in Section 4.c.ii), due to the specific stall behavior of the S809 airfoil[19].

In order to improve these models, some inputs for the study can be further defined, such

as turbulent viscosity ratio and other flow characteristics, not to mention the inclusion of

fluid-structure interaction, where vibrations and material fatigue could be studied more in

deep too. Defining as many inputs as possible will certainly improve the accuracy of the CFD.

Moreover, it could be interesting to study the unsteady case of this project, to see how transient

flows may affect and vary the behavior of the turbine, and even study more the controllability

of the rotations, although as introduced in the controllability part (Section 3.e), the left slope

of the blade non dimensional power curve is found to be a key design parameter, in order to

obtain a design able to produce power in a wide range of wind velocities avoiding the risk of

uncontrollable conditions.

Finally, looking back at Figures 4.13 and 4.14, one can see how increasing the number of

blades makes the optimum point require a lower wind speed, thus bearing less stresses, but

increasing the drag and hence slowing the generation of electricity and becoming less efficient

than three-bladed rotors. Two-bladed wind turbines are more prone to a phenomenon known

as gyroscopic precession, resulting in a wobbling. Naturally, this wobbling would create further

stability issues for the turbine as a whole. This would also place stress on the component parts

of the turbine, causing it to wear down over time and become steadily less effective. With three

blades, the angular momentum stays constant and in that way the turbine can rotate into the

wind smoothly.

All in all, after having studied three types of wind turbines, the three-bladed rotor is

the preferred solution, both having the lowest rotational speed (benefiting the acoustic noise

emission and blade edge erosion) and having a constant rotational inertia about the yaw axis.

Also from an aesthetic point of view (not as important offshore) and without any significant

increase in rotor weight (compared to the two-bladed rotor), the three bladed rotor is best fit

for most situations. But with the three-bladed rotor occupying a larger three dimensional space

compared to the two bladed rotor, the latter may be favourable from a transportation, erection
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and maintenance point of view, but as stated in the analysis (Section 4.c), three-bladed design

produces in the order of 10% more power than the two-bladed one (although the two-bladed

has a higher return on investment). Furthermore, the manufacturing costs of the four-bladed

design, in addition to the weight, maintenance and transportation issues, has discarded these

type of models from the commercial point of view, since the power generation increase has

proven to be unworthy.
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6 Project Budget
In this section, the cost calculation of the project development is carried out. This

includes the phase of the aerodynamic analysis of the blade without the design costs nor the

manufacturing ones, which do not belong to this work. It includes the cost of personnel and

computer equipment that are necessary to carry out the work.

6.a Labor costs

This part includes labor, that is to say, the workers who have participated in the project:

the student and author of the work, considered a graduate in Aerospace Engineering, and the

tutor professor, doctor and graduate in Aerospace Engineering. A cost of 15 e/h has been

considered for the student (graduate engineer) and 30 e/h for the tutor. The project has been

developed from May 2020 to November 2020, breaking down the student’s time in:

• Previous formation, information research and preparation: 70 h.

• Computational study for the different cases: 100 h.

• Analysis of results and document writing: 80 h

For the tutor an estimated time of 30 hours of labor is taken, in which tutorship, analysis

of the results and document revision is included.

Concept Units [h] Unit cost [e/h] Cost [e]

Graduate engineer 250 15 3750

Tutor 30 30 900

Total 4650

Table 4: Labor cost

6.b Cost of computer equipment and software licenses

These costs include the cost of the computers used to carry out the project and the licenses

of the software used. Some licenses are for students; therefore, they were free. It has been

considered that the Star-CCM+ license has been used for the convergence of the simulations

without being computed these hours in the hours of the graduate engineer.
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Concept Units [h] Unit cost [e/h] Cost [e]

PC HP Omen (16 GB RAM) 1598.65

Microsoft Office 15 - Academic license

Simcenter STAR-CCM+ 2020.1 350 3 1050

MATLAB R2018b 20 - Academic license

Overleaf (Latex) 80 - Free license

Total 2648.65

Table 5: Cost of computer equipment and software licenses

6.c Total project budget

Finally, the total project budget is calculated from the sum of the previous breakdowns. In

this budget is included the Value Added Tax (VAT) of 21%. All this is reflected in Table 6.

Concept Cost [e]

Labor cost 4650

Cost of computer equipment and software licenses 2648.65

Subtotal 7298.65

VAT (21%) 1532.72

Total 8831.37

Table 6: Total project budget

The final cost of the entire project amounts to EIGHT THOUSAND EIGHT

HUNDRED THIRTY ONE EUROS AND THIRTY SEVEN CENTS.
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[17] Marit Reiso

”The Tower Shadow Effect in Downwind Wind Turbines” (2013), Thesis for the degree of

Philosophiae Doctor, Norwegian University of Science and Technology.

[18] David C. Wilcox

”Turbulence Modeling for CFD” (1998), Second edition. Anaheim: DCW Industries.

[19] Mukesh M. Yelmule, EswaraRao Anjuri VSJ

”CFD predictions of NREL Phase VI Rotor Experiments in NASA/AMES Wind tunnel”

(2013), International Journal of Renewable Energy Research.

[20] Madeline Samuell

”Computational Fluid Dynamic Modeling and Analysis of Small Scale Horizontal Axis Wind

Turbines” (2017), Union College, Schenectady, NY.

[21] Siemens PLM Software

”STAR-CCM+ Product Overview” (2017), Siemens Product Lifecycle Management

Software Inc.

Wind energy in Europe in 2019 windeurope.org Trends and statistics


	Contents
	List of Figures
	List of Tables
	Introduction
	Fundamentals of Aerodynamics, Mechanics and Dynamics of Wind Turbines
	General Overview
	One-dimensional Approach
	Horizontal Axis Wind Turbine with Wake Rotation
	General Concepts of Aerodynamics
	Lift, Drag, Moment and Non-dimensional Parameters
	Flow Around an Airfoil and its Behaviour


	Blade Design for Modern Wind Turbines
	Momentum and Blade Element Theory
	Momentum Theory
	Blade Element Theory

	Blade Shape for Ideal Rotor without Wake Rotation
	Real Blade Performance Prediction
	Blade Performance Including Wake Rotation
	Power Coefficient Calculation and Tip Loss Effect on it
	Effect of Drag and Blade Number on Optimum Performance
	Blade Shape Optimization with Wake Rotation

	Wind Turbine Design Procedure
	CP- Curves and Controllability
	Non-ideal Steady State, Turbine Wakes and Unsteady Aerodynamic Effects
	Non-ideal Steady State Aerodynamic Issues
	Unsteady Aerodynamic Effects
	Turbine Wakes


	Fluid Dynamic Modelling
	Turbulence modelling
	k- model
	k- model
	Spalart-Allmaras model
	Reynolds Stress Transport model
	Detached Eddy Simulation
	Large Eddy Simulation

	Simulation Setup
	General guides
	Geometry and region definition
	Continua Physics and Mesh
	Initial Conditions and Motion

	Analysis of Results
	Model validation
	Pressure distributions
	Shear stress distribution along blades
	Velocity field around sections


	Conclusions and future work
	Project Budget
	Labor costs
	Cost of computer equipment and software licenses
	Total project budget

	References

