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Abstract 17 

Near infrared (NIR) diffuse reflectance was used to predict the contents of taste-related compounds of 18 

tomato. Models were obtained for several varietal types including processing tomato, cherry and cocktail 19 

tomato, mid-sized tomato and tomato landraces, with a wide range of varieties. Good performance was 20 

obtained for the prediction of soluble solids, sugars and acids, considering a non-destructive methodology 21 

applied to fruits with different internal structure. Specific models averaged RMSEP (%mean) values lower 22 

than 6.1% for SSC, 13.3% for fructose, 14.1% for glucose, 12.7% for citric acid, 13.8% for malic acid and 21.9% 23 

for glutamic acid. The performance was dependent on varietal type. General models with a higher number 24 

of samples and variation did not improve the performance of specific models. The models obtained, either 25 

specific or general, couldn’t be extrapolated to external assays and an internal calibration would be required 26 

for each assay in order to provide a reliable performance. 27 

 28 

Keywords: Fructose, glucose, citric, breeding, Solanum lycopersicum L. 29 

 30 
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1. Introduction 32 

Consumers are often disappointed with the flavor of tomatoes (Solanum lycopersicum L.). Several causes 33 

explain this situation, ranging from poor genetic material to harvest and handling procedures (Baldwin et al., 34 

2000). Tomato flavor is defined by taste and aroma. Taste is determined by the accumulation of sugars, 35 

mainly fructose and glucose, organic acids, mainly citric and malic acid, and the relationship among them. A 36 

prominent role for glutamic acid has also been suggested (Bucheli et al., 1999). Increased levels of sugars and 37 

acids raised flavor acceptability, though there are maximum levels of acids above which further increases 38 

negatively affect consumer acceptability (Malundo et al., 1995). On the other hand, tomato aroma is defined 39 

by the accumulation of volatiles. Unlike other crops, aroma in tomato is rather complex, determined by the 40 

accumulation and interaction of multiple volatile compounds with none of them holding a prominent role 41 

(Baldwin et al., 2000). 42 

Both taste and aroma are also inter-related. Some volatiles associated with fruity or floral notes can enhance 43 

the perception of sweetness, and other related to green notes can enhance the perception of sourness 44 

(Baldwin et al., 1998). On the other hand, sugars also affect aroma perception. Increased sugar levels enhance 45 

the perception of overall, ripe tomato, sweet tomato and tropical aroma notes. Furthermore, increased levels 46 

of acids also affect aroma perception. In this case, raising the perception of overall, tropical, ripe tomato and 47 

green aroma notes. It also causes a shift from floral and sweet tomato aroma and sweet taste towards bitter 48 

and citrus tastes and earthy, green, viney and musty notes (Baldwin et al., 2008). 49 

The development of high-quality tomato productions has become an important objective in order to supply 50 

market segments, where some customers value niche products characterized by organoleptic features, giving 51 

less importance to the visual quality of the product and willing to pay a premium price (Bazzani and Canavari, 52 

2013). This added value is especially important in the current market context, as after the financial crisis, the 53 

level of volatility in tomato prices is especially high and although the prices of tomato for consumers seem 54 

to be quite stable, price fluctuations in the chain damage the rest of the agents (Sidhoum and Serra, 2016). 55 

For this purpose, it is necessary to develop new high-quality varieties to offer improved genotypes, to 56 

evaluate the growing conditions that optimize the expression of these genotypes and finally to monitor the 57 
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production to assure quality standards. Although the recovery of positive alleles involved in the accumulation 58 

of volatile compounds that were present in tomato landraces has been proposed (Tieman et al. (2017), the 59 

truth is that it is not feasible to analyze the aroma of high quantity of samples at an affordable cost. 60 

Accordingly, most emphasis has been placed in the evaluation the accumulation of the sugar and acids, which 61 

also play a crucial role in the improvement of tomato flavor. Traditionally, these taste-related compounds 62 

have been indirectly measured with gross determinations involving soluble solid contents (SSC) and titratable 63 

acidity. But it has been described that sucrose equivalents calculated from the individual accumulation of 64 

fructose and glucose is a far better predictor of sweetness and tomato acceptability (Baldwin et al., 1998). 65 

And the same applies to organic acids, as it has been reported the positive influence of free acids on sourness 66 

(Tandon et al., 2003). 67 

Near-infrared (NIR) spectroscopy offers several advantages over the precise determination of sugars and 68 

acids via direct analytical methods based on high pressure liquid chromatography or capillary 69 

electrophoresis. It entails an indirect analysis, as NIR data is related to the actual sugar and acid content using 70 

chemometrics. Different algorithms have been used for this purpose. In the case of fruit and vegetables the 71 

most widely used are least squares regression, LSR, multiple linear regression, MLR, partial least squares, PLS, 72 

and principal component regression, PCR (Naes et al., 2002). Among them, PLS is usually preferred over other 73 

alternatives for quantification purposes, and PCA as an explorative method (Bureau et al., 2019). In fact, most 74 

researches involving spectroscopic data and with NIR and FTIR data choose PLS models (Arendse et al., 2018; 75 

Bureau et al., 2019). 76 

The most notable advantage of NIR indirect quantification is that it enables non-destructive indirect 77 

determinations, highly valuable in applications that require straightforward, speedy characterization of 78 

samples (Blanco and Villarroya, 2002). For this purpose, it has been used in quality analysis of fruits and 79 

vegetables. But most works related to taste are targeted to predict gross measurements such as soluble solids 80 

contents (SSC) or titratable acidity and using a limited number of varieties (Arendse et al., 2018). 81 

Nevertheless, the lacking availability of scientific evidence of the accuracy of these systems is considered a 82 

major drawback (Porep et al., 2015). 83 
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In this context, several questions have driven the development of the present work. Can efficient NIR PLS 84 

regression models be obtained to predict not only SSC but also major sugars and acids in diverse 85 

heterogeneous materials with similar characteristics? And in that case, are particular calibrations needed for 86 

each assay or general models can be satisfactorily extrapolated? 87 

 88 

2. Material and methods 89 

2.1. Plant material  90 

Five sets of samples, each one with a specific material, were used to develop prediction models. The sample 91 

sets were configured considering varietal types, usually determined by their size (e.g. cherry and cocktail 92 

tomato) and purpose (e.g. processing tomato). The first sample set included 180 samples belonging to eight 93 

processing tomato varieties grown with different water and fertilization regimes in Navarra (Spain). The 168 94 

samples from the second sample set were similar but were obtained in Extremadura, a different environment 95 

with warmer and sunnier conditions. These samples were obtained during the development of different 96 

agronomical studies (Lahoz et al., 2016; Martí et al., 2018). In both cases the fruits had a width in the range 97 

of 40-50 mm. The third sample set included 106 samples of 32 varieties of cherry and cocktail tomato (width 98 

range 20-35 mm) obtained from local markets. The fourth sample set was more heterogeneous. It 99 

represented 108 samples of mid-sized tomatoes (width range 40-82 mm) from 25 varieties including ribbed 100 

flat, rounded, plum and cluster tomatoes from commercial and landrace varieties. It was also obtained from 101 

local markets. Finally, the fifth sample set included 88 samples of 11 accessions of Spanish tomato landraces 102 

(width range 60-120 mm) of the ”Moruno” type, ribbed flat tomatoes similar to the beef type, grown in 103 

Albacete (Spain) and kindly provided by Dr. Moreno.  104 

Each specific sample set and a general set with the 650 tomato samples were used for the calculation of 105 

models predicting SSC, sugar and acid contents from NIR spectra. In all cases, fully ripe fruits were sampled.  106 

 107 

 108 
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2.2. Acquisition of NIR spectra 109 

All the fruits were washed with water and dried with cellulose tissue. The measurements of the NIR spectrum 110 

were carried out at four different and equidistant points in the equatorial peripheral zone of each fruit, as 111 

following the four cardinal points, (Hahn, 2002), and measurements were averaged. The spectrum was 112 

obtained with a portable NIR spectrometer (Ocean Optics, Dunedin, FL, USA) with an InGaAs detector, 113 

covering the range between 902 and 2094 nm, with measurements spaced 6.80 nm, and an optic fibre probe 114 

that allowed measurements directly on fruits using diffuse reflectance. The same probe was used for all the 115 

varieties independently of the size of the fruit, and if had a space of 20mm between the optical fibre and the 116 

edge of the probe. In order to calibrate the equipment a Teflon disk was used as reference, measuring the 117 

spectra several times per day. 118 

 119 

2.3. Quantification of sugars and acids with capillary electrophoresis 120 

Once the NIR spectra were acquired, the tomatoes were crushed and homogenized. The determination of 121 

the soluble solids content was carried out with the obtained tomato juice using a Pocket PAL-α digital 122 

refractometer (Atago, Tokyo, Japan). The remaining sample was stored at -80 ° C until the other analytical 123 

determinations were made. 124 

The quantification of the reducing sugars fructose and glucose and the organic acids citric, malic and glutamic 125 

acids was performed by capillary zone electrophoresis (CZE) with an Agilent 7100 equipment (Agilent 126 

Technologies, Waldbronn, Germany) following the method described by Cebolla-Cornejo et al. (2012). 127 

 128 

2.4. Chemicals and reagents 129 

Fructose, glucose, citric, malic and glutamic acids, hexadimethrine bromide (HDM), and 2,6-pyridine 130 

dicarboxylic acid (PDC), and sodium dodecyl sulfate (SDS) were purchased from Sigma-Aldrich (Steinheim, 131 

Germany). Ultrapure water was obtained using a Milli-Q water system (Millipore, Molsheim, France).  132 

 133 
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2.5. Data analysis 134 

Each sample set was randomly divided into a calibration group (75% of the samples), used to develop the 135 

calibration and cross-validation procedures of partial least squares (PLS) regressions, and a validation group 136 

(25% of the samples), used to make predictions with the PLS developed. PLS method was selected considering 137 

that it is the preferred method for the quantification of sugars and acids in fruits and vegetables using 138 

spectroscopic data (Arendse et al., 2018; Bureau et al., 2019). 139 

Before PLS regression, the NIR spectra pre-treatment was performed transforming the diffuse reflectance 140 

measured in absorbance (log [1/R]). Subsequently, signal interferences of a multiplicative type, those due to 141 

particle size and those associated with changes in wavelength, were eliminated with the SNV correction 142 

algorithm (Barnes et al., 1989).  143 

The predictive models were then obtained by PLS regression (Naes et al., 2002). The optimal number of latent 144 

variables was calculated using the Venetian blinds cross-validation procedure. Root mean squared errors of 145 

calibration (RMSEC) and cross-validation (RMSECV) and the respective coefficients of determination were 146 

calculated to check the validity of the results. Minimum RMSECV values and number of latent variables were 147 

used as the selection criteria for the number of latent variables to be included in the model. New latent 148 

variables were included if they provided a reduction of RMSECV higher than 2%.  149 

At this point, the software provides information regarding outliers in the NIR spectra. The considerations 150 

explained by Porep et al. (2015) regarding the identification and removal of outliers were taken into account. 151 

Consequently, outliers were removed considering the values of the Hotelling T2 statistics and the Q residues. 152 

In the case of response variables, the values of the normalized residuals  153 

(<-3 or >3) and leverage parameters were considered. Then, a definite PLS regression model was recalculated, 154 

and the spectra of the samples of the validation group were used to make predictions, calculating the 155 

coefficient of determination and root mean squared errors of prediction (RMSEP). RMSEP values were also 156 

contextualized using the mean (%mean) of the validation group. Residual prediction deviation (RPD), 157 

representing the ratio between the standard deviation of the validation and RMSEP, was calculated to 158 
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provide a better comparison between models obtained with different samples. Usually, RPD values higher 159 

than 2 represent useful models for classification or quantification (Fearn, 2002). 160 

The reliability of the specific models was studied applying each model to the rest of sample sets. In order to 161 

analyse the reliability of general models, five new general models were calculated with four of the sample 162 

sets for the calibration and cross-validation and they were later applied to predict the contents using the 163 

spectra of the remaining specific sample set. 164 

The pre-treatment of the spectra, PLS regression models, detection of outliers, error parameters and 165 

goodness of fit for each model were performed with Matlab v 9.4 (Mathworks Inc, Natick, MA, USA) using 166 

the PLS_Toolbox v 8.2.1 module (Eigenvector Research Inc, Wenatchee, WA, USA).  167 

 168 

3. Results and discussion 169 

The calibration and validation groups for the specific and general model had similar means and coefficients 170 

of variation (Table 1). As expected, the set with cherry and cocktail tomatoes had the highest SSC, and 171 

contents of fructose, glucose and citric and malic acids. The group with tomato landraces also had high sugar 172 

content, but with much lower citric acid accumulation. In general, a higher level of variation was found for 173 

acid contents than for sugars. 174 

 175 

 176 

 177 

 178 

 179 

 180 
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Table 1. Statistical parameters of the sample sets used for the calibration and validation of PLS models. Nc: 181 

number of samples used for calibration; Nv number of samples used for validation. N: Navarra; E: 182 

Extremadura. 183 

  Calibration  Validation 

 Model (Nc/Nv) Mean SD Range CV (%)  Mean SD Range CV (%) 

SSC 
ºBrix 

Processing tomato N (135/45) 4.53 0.56 3.45-6.10 12.3  4.54 0.48 3.60-5.50 10.6 

Processing tomato E (126/42) 4.57 0.47 3.50-5.80 10.3  4.51 0.41 3.65-5.35 9.2 

Cherry&cocktail (80/26) 5.64 1.08 3.95-9.15 19.1  5.51 1.14 3.50-9.00 20.6 

Mid-sized tomato (81/27) 4.30 0.55 2.95-5.65 12.9  4.31 0.55 3.45-5.40 12.7 

Tomato landraces (66/22) 5.42 0.42 4.30-6.20 7.7  5.32 0.53 4.20-6.20 10.0 

General model (487/163) 4.72 0.580 2.95-9.00 16.9  4.79 0.82 3.45-9.15 17.2 

Fructose 
g kg-1 fw 

Processing tomato N (135/45) 13.42 2.85 5.84-22.42 21.2  12.47 3.12 7.16-19.21 25.0 
Processing tomato E (126/42) 14.46 2.89 8.30-20.04 20.8  14.38 2.44 10.56-18.64 17.0 

Cherry&cocktail (80/26) 19.90 5.63 12.09-38.26 28.3  19.67 5.74 10.35-38.30 29.2 
Mid-sized tomato (81/27) 13.52 3.56 8.15-25.63 26.3  13.86 3.88 8.84-22.75 28.0 
Tomato landraces (66/22) 19.42 2.35 13.85-23.60 12.1  19.02 2.71 13.92-22.95 14.2 
General model (487/163) 15.14 4.36 7.16-38.30 28.8  15.00 4.96 5.09-36.85 33.0 

Glucose 
g kg-1 fw 

Processing tomato N (135/45) 12.15 2.79 6.10-20.87 22.9  11.67 2.54 7.42-17.16 21.8 
Processing tomato E (126/42) 14.08 2.51 7.60-19.69 18.4  13.88 1.82 10.17-18.67 13.1 

Cherry&cocktail (80/26) 17.30 5.91 9.09-37.25 34.2  17.50 6.61 7.71-38.63 37.8 
Mid-sized tomato (81/27) 11.86 3.34 6.73-22.72 28.1  12.24 3.45 7.11-20.14 28.2 
Tomato landraces (66/22) 17.71 2.67 11.02-22.11 15.1  17.26 3.18 11.13-21.86 18.4 
General model (487/163) 13.89 4.11 6.10-38.63 29.6  13.83 4.40 6.24-35.25 31.9 

Citric 
g kg-1 fw 

Processing tomato N (135/45) 4.33 0.81 2.13-7.06 18.7  4.18 0.89 2.22-5.69 21.3 
Processing tomato E (126/42) 3.52 0.61 2.03-5.54 17.4  3.50 0.64 2.36-5.22 18.4 

Cherry&cocktail (80/26) 8.61 1.64 5.38-12.38 19.0  8.22 1.53 5.20-10.72 18.7 
Mid-sized tomato (81/27) 5.79 1.94 2.70-14.03 33.6  5.66 1.73 2.98-9.64 30.6 
Tomato landraces (66/22) 4.47 0.81 2.83-6.02 18.2  4.53 0.89 3.13-6.12 19.5 
General model (487/163) 5.05 2.08 2.03-14.03 41.3  5.13 2.20 2.13-11.73 42.9 

Malic 
g kg-1 fw 

Processing tomato N (135/45) 0.95 0.24 0.37-1.74 25.2  0.91 0.26 0.32-1.27 28.0 
Processing tomato E (126/42) 1.15 0.31 0.48-1.86 26.7  1.21 0.36 0.64-2.00 29.5 

Cherry&cocktail (80/26) 1.42 0.36 0.96-2.55 25.2  1.42 0.54 0.79-3.44 37.6 
Mid-sized tomato (81/27) 1.75 0.65 0.56-4.02 36.9  1.74 0.62 0.56-3.89 35.8 
Tomato landraces (66/22) 1.59 0.50 0.72-2.68 31.7  1.48 0.46 0.82-2.22 30.7 
General model (487/163) 1.26 0.51 0.32-4.02 40.3  1.28 0.51 0.37-3.89 39.7 

Glutamic 
g kg-1 fw 

Processing tomato N (135/45) 1.75 0.41 0.81-2.77 23.5  1.76 0.45 0.87-2.82 25.7 
Processing tomato E (126/42) 1.03 0.36 0.36-2.35 35.3  1.11 0.46 0.45-2.30 41.6 

Cherry&cocktail (80/26) 1.43 0.91 0.28-4.35 63.7  1.40 0.97 0.32-4.10 69.7 
Mid-sized tomato (81/27) 1.71 0.75 0.70-4.25 44.0  1.64 0.69 0.74-3.70 42.1 
Tomato landraces (66/22) 1.97 0.44 0.92-2.88 22.5  1.87 0.45 0.93-2.65 23.8 
General model (487/163) 1.50 0.66 0.28-4.35 43.9  1.50 0.68 0.43-4.22 45.2 

 184 

3.1. Prediction models 185 

3.1.1. SSC 186 

Most published works based in non-destructive methods for fruits with thin or thick rind have focused their 187 

interest in the indirect quantification of basic parameters such as SSC, titratable acidity and pH (Arendse et 188 

al., 2018). In the case of SSC, the performance for prediction varies in each study, with R2=0.9 and RMSEP=0.4 189 

for apple (Giovanelli et al., 2014), R2=0.88 and RMSEP=0.46 for pear (Xu et al., 2012), R2=0.93 and 190 

RMSEP=0.62 in peach (Shao et al., 2011) and R2=0.82 and RMSEP=0.85 in cherry (Escribano et al., 2017). 191 
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Tomato has also received attention. Even though only one variety has been used in most studies, the 192 

performance of NIR based predictions have not been always satisfactory. De Oliveira et al. (2014) tried to 193 

develop NIR models predicting SCC in different fruits but concluded that the methodology was not 194 

appropriate for fruits with heterogeneous internal structure such as tomato. In fact, their performance for 195 

prediction with a single variety was R2=0.53 and RMSEP=0.53 (%RMSEP=8.9%). Other authors have obtained 196 

better performances with their materials. Saad et al. (2015) reached R2=0.91 and SEP=0.28, again with a 197 

single variety. Ecarnot et al. (2013) with the model cultivar “Microtom” obtained a performance for 198 

prediction with R2=0.82 and RMSEP=0.45. Torres et al. (2015) with an obsolete variety, but highly appreciated 199 

in the Spanish market, obtaining performances for the prediction with R2=0.60-0.75 and SEP=0.83-0.65, 200 

depending on the hardware used. These last results are similar to the previously obtained by Flores et al. 201 

(2009) with the same variety and a validation group of 100 samples (R2=0.77 and SEP=0.68). 202 

In the present work, the performance was highly dependent on the tomato type considered, with R2
P values 203 

for prediction ranging from 0.92 in tomato landraces to 0.51 for processing tomato grown in Navarra (Table 204 

2). RMSEP values also ranged from 0.14 to 0.46, which represented 2.7% to 8.4% of the mean value of the 205 

validation. RPD values were close to 2, considered a limit to define useful models (Fearn, 2002). These values 206 

are similar or even improve those obtained in previous works in tomato or other crops. It is true that the 207 

range of variation present in the samples of the calibration model was greater than in other works. This was 208 

expected as most works deal with a single variety and in the present work several varieties are present in 209 

each specific model. But at the same time this fact also represented a challenge, considering that the 210 

interference of the internal structure of tomatoes (pericarp width, number and size of locules, juiciness…) 211 

would be much higher as it was much more varied, and differences in internal structure hinder the 212 

development of efficient models (de Oliveira et al., 2014). 213 

The general model including all the samples had a performance similar to the worse specific model, with 214 

R2
P=0.62 and RMSEP=0.47°Brix, which represents 9.8% of the mean contents (Table 2). Despite being higher, 215 

the values obtained with the general model are still similar to those described by other works with a limited 216 
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range of varietal variation, and would still be interesting in order to minimize costs in wide screening 217 

programs. 218 

Table 2. Performance of NIR based models using partial least squares (PLS) regression predicting contents of 219 

taste-related compounds. SSC: soluble solids content; R2 coefficient of determination; RMSE: root mean 220 

squared error; NC: number of samples in the calibration group. NV: number of samples in the validation 221 

group; C: calibration; CV: cross-validation; P: prediction; RPD: residual prediction deviation. The number of 222 

outliers includes the sum of cases from both the calibration and validation group. 223 

 Model(Nc/Nv) Outliers R2
C RMSEC R2

CV RMSECV R2
P RMSEP %RMSEP 

(Mean) 
RPD 

SSC 
°Brix 

Processing tomato N (135/45) 7 0.89 0.18 0.06 0.69 0.72 0.23 5.1 2.09 

Processing tomato E (126/42) 13 0.81 0.20 0.25 0.43 0.51 0.28 6.2 1.46 

Cherry&cocktail (80/26) 4 0.92 0.31 0.52 0.78 0.87 0.46 8.4 2.48 

Mid-sized tomato (81/27) 10 0.88 0.18 0.64 0.32 0.63 0.34 7.9 1.62 

Tomato landraces (66/22) 4 0.97 0.07 0.33 0.36 0.92 0.14 2.7 3.81 

General model (487/163) 8 0.73 0.41 0.47 0.61 0.62 0.47 9.8 1.74 

Fructose 
g kg-1 fw  

Processing tomato N (135/45) 8 0.73 1.35 0.08 2.91 0.49 1.95 15.6 1.60 

Processing tomato E (126/42) 8 0.78 1.35 0.35 2.44 0.58 1.69 11.7 1.45 

Cherry&cocktail (80/26) 8 0.86 2.07 0.52 4.04 0.81 2.32 11.8 2.47 

Mid-sized tomato (81/27) 9 0.82 1.47 0.29 3.05 0.32 2.94 21.2 1.32 

Tomato landraces (66/22) 7 0.93 0.64 0.19 2.29 0.82 1.15 6.0 2.36 

General model (487/163) 14 0.58 2.76 0.41 3.31 0.47 3.24 21.6 1.53 

Glucose 
g kg-1 fw 

Processing tomato N (135/45) 16 0.78 1.12 0.18 2.39 0.42 1.51 13.0 1.68 

Processing tomato E (126/42) 9 0.75 1.21 0.25 2.23 0.50 1.66 12.0 1.09 

Cherry&cocktail (80/26) 6 0.80 2.47 0.58 3.66 0.62 2.87 16.4 2.30 

Mid-sized tomato (81/27) 14 0.84 1.30 0.28 2.94 0.38 2.49 20.4 1.38 

Tomato landraces (66/22) 6 0.91 0.80 0.22 2.54 0.73 1.49 8.7 2.13 

General model (487/163) 14 0.57 2.54 0.41 2.98 0.46 2.92 21.1 1.51 

Citric 
g kg-1 fw  

Processing tomato N (135/45) 15 0.81 0.28 0.04 0.80 0.71 0.43 10.2 2.08 

Processing tomato E (126/42) 18 0.79 0.25 0.06 0.62 0.65 0.31 8.8 2.08 

Cherry&cocktail (80/26) 5 0.53 1.11 0.22 1.50 0.46 1.17 14.2 1.31 

Mid-sized tomato (81/27) 8 0.68 0.96 0.30 1.47 0.40 1.33 23.5 1.30 

Tomato landraces (66/22) 5 0.94 0.19 0.54 0.57 0.88 0.31 6.9 2.85 

General model (487/163) 23 0.84 0.80 0.73 1.01 0.75 1.00 19.5 2.20 

Malic 
g kg-1 fw  

Processing tomato N (135/45) 4 0.79 0.11 0.30 0.21 0.71 0.15 16.6 1.73 

Processing tomato E (126/42) 9 0.83 0.12 0.52 0.21 0.73 0.16 13.0 2.28 

Cherry&cocktail (80/26) 7 0.81 0.16 0.48 0.27 0.72 0.18 12.6 3.03 

Mid-sized tomato (81/27) 10 0.80 0.23 0.50 0.37 0.62 0.29 16.6 2.14 

Tomato landraces (66/22) 5 0.96 0.10 0.48 0.37 0.90 0.15 10.3 3.01 

General model (487/163) 23 0.69 0.27 0.53 0.35 0.67 0.28 21.9 1.82 

Glutamic 
g kg-1 fw 

Processing tomato N (135/45) 12 0.75 0.20 0.17 0.39 0.35 0.25 14.2 1.80 

Processing tomato E (126/42) 14 0.75 0.18 0.35 0.30 0.54 0.24 21.3 1.95 

Cherry&cocktail (80/26) 4 0.85 0.35 0.62 0.57 0.74 0.48 34.3 2.02 

Mid-sized tomato (81/27) 14 0.73 0.32 0.23 0.59 0.26 0.51 31.2 1.35 

Tomato landraces (66/22) 8 0.94 0.10 0.39 0.34 0.81 0.16 8.7 2.77 

General model (487/163) 30 0.51 0.43 0.31 0.53 0.36 0.50 33.1 1.37 

 224 

The robustness of the models was tested trying to apply each of the specific models obtained to the samples 225 

of the rest of sample sets. On the other hand, new general models were calculated with the data of four of 226 

the five sample sets and then they were applied to predict the contents of the remaining one. None of the 227 

specific models passed the test (Table 3). The highest R2
P values for the predictions with external assays was 228 
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0.20, and RMSEP values ranged from 0.5 to 5.10 in absolute values, and from 10.6% to 100.2% in values 229 

contextualized with the mean.  230 

Among the different models applied to predict the rest of assays, the one corresponding to mid-sized 231 

tomatoes and the general models had the lowest mean %RMSEP values (20.2% and 20.6% respectively) with 232 

absolute values close to 1°Brix (Table 3). In the case of the new general models, R2
P values were close to 0, 233 

with mean %RMSEP values ranging from 11.1%, when it was applied to predict the contents of processing 234 

tomato grown in Extremadura to 35.7%, when applied to make predictions with cherry and cocktail tomato, 235 

and averaging 20.6% (Table 3). 236 

On the other hand, when the different models were applied to predict the contents of the samples of 237 

processing tomato grown either in Navarra or Extremadura and tomato landraces, a lower mean %RMSEP 238 

was obtained (17.4, 16.6 and 17.8% respectively). The samples from the cherry and cocktail set and mid-sized 239 

tomatoes were more difficult to predict using external calibrations. 240 

Table 3. Performance of NIR based models using partial least squares (PLS) regression for cross-predicting 241 

soluble solids content in other assays. SSC: soluble solids content; R2
P coefficient of determination of the 242 

predictions; RMSEP: root mean squared error of the predictions. N: Navarra; E: Extremadura. For each sample 243 

set (calibration and validation), the number of samples is indicated. 244 

Model calibration 
Model 

validation 
R2

P 
RMSEP 

°Brix 
%RMSEP (Mean) 

Processing tomato (N) 
(168 samples) 

Processing tomato (E) (180 samples) 0.031 0.65 14.4 

Cherry&cocktail (106 samples) 0.026 5.10 90.9 

Mid-sized tomato (108 samples) 0.002 4.28 100.2 

Tomato landraces (88 samples) 0.126 0.74 13.7 

General (482 samples) 0.002 3.49 72.7 

Processing tomato (E) 
(180 samples) 

Processing tomato (N) (168 samples) 0.001 0.71 15.4 

Cherry&cocktail (106 samples) 0.000 2.65 47.2 

Mid-sized tomato (108 samples) 0.003 2.19 51.3 

Tomato landraces (88 samples) 0.202 1.29 23.9 

General (470 samples) 0.010 1.85 38.5 

Cherry&cocktail 
(106 samples) 

Processing tomato (N) (168 samples) 0.008 1.05 22.8 

Processing tomato (E) (180 samples) 0.000 0.95 21.1 

Mid-sized tomato (108 samples) 0.006 2.10 49.2 

Tomato landraces (88 samples) 0.101 0.57 10.6 

General (544 samples) 0.021 1.30 28.3 

Mid-sized tomato 
(108 samples) 

Processing tomato (N) (168 samples) 0.013 0.61 13.3 

Processing tomato (E) (180 samples) 0.042 0.50 11.1 

Cherry&cocktail (106 samples) 0.005 1.80 32.1 

Tomato landraces (88 samples) 0.157 1.28 23.7 

General (542 samples) 0.001 1.01 21.0 

Tomato landraces 
(88 samples) 

Processing tomato (N) (168 samples) 0.027 1.07 23.3 

Processing tomato (E) (180 samples) 0.121 1.13 25.1 

Cherry&cocktail (106 samples) 0.008 1.88 33.5 

Mid-sized tomato (108 samples) 0.030 1.34 31.4 

General (562 samples) 0.014 1.33 28.3 
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General models 
(650-model validation) 

Processing tomato (N) (168 samples) 0.082 0.56 12.2 

Processing tomato (E) (180 samples) 0.060 0.50 11.1 

Cherry&cocktail (106 samples) 0.004 2.00 35.7 

Mid-sized tomato (108 samples) 0.000 1.15 26.9 

Tomato landraces (88 samples) 0.046 0.91 16.9 

 245 

It is difficult to compare these results with other works, as it is unusual to find the application of the obtained 246 

models to external assays. Escribano et al. (2017), in their work with two cherry varieties tried to apply the 247 

models of one of the varieties to the other. In that case, the authors concluded that models for SSC did not 248 

need to be specific to the variety to be measured to perform adequately. In the present work, neither specific 249 

models nor general models were robust enough as to offer reliable predictions in other assays. Even those 250 

developed the same varieties and growing conditions but applied to predict contents of samples obtained in 251 

a different environment failed to offer a reliable performance. This result emphasizes the need to develop 252 

specific calibrations for each assay in order to minimize the error in the indirect predictions. 253 

 254 

 255 

3.1.2. Sugars and acids 256 

The performance of specific PLS models for the prediction of fructose and glucose was highly dependent on 257 

the varietal type considered. Mean %RMSEP values of 13.3% and 14.1 were obtained for fructose and glucose 258 

respectively, with R2
P values for prediction ranging from 0.32 to 0.82 (Table 2). Nonetheless, the model for 259 

mid-sized tomato offered comparatively high errors, up to 21.2% for fructose and 20.4% for glucose. This 260 

group was formed by highly heterogeneous varieties, including flat salad type tomato, plum tomato and 261 

cluster tomatoes. The rather heterogeneous internal structure of the varieties would be probably originating 262 

a higher level of error in the predictions. 263 

The performance of the general model was highly influenced by the worse specific model, with R2
P for 264 

prediction of 0.47 for fructose and 0.46 for glucose and %RMSEP values of 21.6% and 21.1%. As in the case 265 

of SSC, general models proved to have low efficacy. Consequently, in this case it would also be recommended 266 

to rely on specific models. 267 
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Few articles on the determination of specific sugars are available for the quantification of specific 268 

compounds, as most published works rely on the determination of basic parameters such as SSC and 269 

titratable acidity (Arendse et al., 2018). Among the different limitations of non-destructive NIR spectroscopy 270 

for this purpose, the scattering typical of non-transparent media and assignment of NIR bands to specific 271 

compounds which absorb in the MIR region have been suggested (Porep et al., 2015). Nonetheless, some 272 

data is available. For example, Torres et al. (2015), with a single variety obtained SEP values of 3.8 and 4.0 273 

for fructose and 4.2 for glucose and R2 values ranging from 0.35 to 0.52, depending on the hardware. 274 

Considering mean contents in that work, those values would represent contextualized errors of 20.1%-21.2% 275 

for fructose and 19.3% for glucose. Better results were reported by Pedro and Ferreira (2007) with %SEP 276 

values of 13.4% for fructose and 11.6% for glucose. In that case, the authors also used diffuse reflectance, 277 

but they analyzed samples of tomato concentrate, involving homogenized samples with higher sugar 278 

contents. Therefore, a better performance would be logically expected. 279 

The performance of specific models for the indirect quantification of acids was similar to those obtained for 280 

sugars, though a worse performance was obtained for glutamic acid. Mean %RMSEP values of 12.7%, 13.8% 281 

and 21.9% were obtained for citric, malic and glutamic acid respectively (Table 2). Again, the models for mid-282 

sized tomatoes tended to show a worse performance and the efficiency of the general model was lower than 283 

that of the worse specific model. Torres et al. (2015) also modelled citric and malic acid accumulation in their 284 

work, obtaining SEP values of 0.81-0.86 and 0.22 respectively, which would represent 18.1-19.2% and 16.5% 285 

of the reported mean contents respectively. Most specific models improved these results, while the model 286 

for mid-sized tomatoes had similar error levels. 287 

In perspective, mean %RMSEP values obtained in the present work are lower than 15% for fructose, glucose, 288 

citric and malic acids, using specific models based on different varieties. These values are considerably good, 289 

bearing in mind that they are obtained directly on intact fruits with heterogeneous internal structure. It is 290 

true though that the higher level of heterogeneity in fruit internal structure will result in inferior 291 

performance, as reported by de Oliveira et al. (2014). That would mean that in order to develop useful models 292 

in the industry, the calibration and prediction groups should be formed by fruits with similar structures.  293 
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Models based on FT-MIR can be more accurate than those obtained with NIR (Schulz and Baranska, 2009). 294 

But the high absorption of MIR radiation in biological tissues entails a low penetration depth, allowing only 295 

superficial measurements of a few micrometers (Porep et al. 2015). That means, that MIR indirect 296 

measurements require a previous homogenization of the sample and centrifugation of the juices obtained. 297 

Undoubtedly, this prior homogenization contributes to a higher accuracy.  298 

The selection of the most appropriate methodology will remain a decision for each industrial/agronomical 299 

application. It will be necessary to choose between high-throughput indirect analysis directly on intact fruits 300 

with NIR models, with higher error levels and the need to obtained specific calibrations, or obtaining more 301 

accurate indirect measurements with general models, but involving a cumbersome pre-processing of 302 

samples. 303 

 304 

4. Conclusions 305 

One of the main limitations of non-destructive indirect predictions of taste-related compounds based on NIR 306 

spectra is that different internal structures of tomatoes can critically affect the performance of the models. 307 

In fact, most of the published work available relies on a single tomato variety. Our work proves that it is 308 

possible to obtain models with good performance despite this limitation. These models can include several 309 

varieties within a specific varietal type and will represent a valuable tool to quantify gross measurements 310 

such as soluble solid contents, or even the individual accumulation of fructose, glucose and citric and malic 311 

acids. General models can also be obtained, representing a higher number of samples and variability, but 312 

their performance would not be better than specific models. More importantly, models must be calibrated 313 

for each assay, as the performance of specific or general models to samples obtained in new assays is 314 

unacceptable.  315 
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