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Opening up the Black Box: A Systematic Literature Review of 

Life Cycle Assessment in Alternative Food Processing Technologies 
 

Abstract  

The last few decades have stood out because of the improvements made in food processing under 

two axes: plurality (conventional technologies co-existing with new alternatives) and sustainability 

(jointly with efficiency, quality and safety). This article aims at discussing how these technological 

developments in food processing are addressed in life cycle literature, regarding case studies in 

which different food processing alternatives are compared. From the examined case studies some 

methodological aspects were underscored to improve the application of LCA in food processing: 

the functional unit, system boundaries, scale and data source issues, as well as the relevance of 

process water and wastewater composition. Furthermore, different findings have emerged with a 

direct impact on future developments: the (re)thinking of technological and operational conditions 

(with an emphasis on cleaner production techniques), the inclusion of scale decision and 

consumption, and the importance of incorporating nutritional, sensorial and socio-economic 

dimensions to assist decision making. 

 

Highlights 

• How to evolve towards a more sustainable food system is a golden question 

• Technological alternatives co-existing today are not usually included in food LCAs 

• Eco-friendly processing implies rethinking technologies and operational conditions 

• Up-scaling should be incorporated into prospective LCAs  

•  Methodological proposals to harmonize LCAs of processed food have been highlighted 

 

Keywords: Life Cycle Assessment, Food system, Food processing, Environmental load, 

Sustainability, Systematic literature review 

 

 

 

 

 

 

 



1. Introduction 

Processed food represents one of the icons of contemporary society. Try, for instance, to imagine 

the experience of one single meal without using any processed food, ready or semi-ready for 

consumption. In fact, more than half the volume of food sold in the world is processed (IMAP, 

2010), while it is projected that the worth of the global packaged food market will be over US$ 

2.2 trillion by 2021 (Euromonitor, 2016). 

This context underscores the food industry among the main industrial sectors, but also places it at 

the forefront in terms of its social and environmental burdens. On the one hand, the health 

problems attributed to nutritional imbalance, such as obesity and cardiovascular diseases, are one 

of the major causes of death around the world (FAO et al., 2017; Lazarides, 2012; Saguy et al., 

2013). On the other hand, food production and distribution consume a considerable amount of 

energy, contributing significantly to global greenhouse emissions, as well as to water consumption 

and waste generation (Defra, 2017). This implies a double nuance as regards the corporate social 

responsibility of the food industry (Saguy et al., 2013): to ensure consumer health and well-being 

in an articulated manner with both society and natural environment in which the food system is 

embedded. 

This should be considered under the present-day consumption trends related to food products 

(Silva et al., 2018), in a global economy no longer restricted to developed countries (Euromonitor, 

2015). As a result, the number of food companies interested in this twofold improvement is 

increasing worldwide (Dijekic et al., 2018).  

This has encouraged both improvements in existing technologies and in the development of new 

alternatives, mainly non-thermal processing technologies, such as High Hydrostatic Pressure, 

High-Intensity Electric Field Pulses or Supercritical Fluid Extraction. These advances are 

described as promising in nutritional terms (Jermann et al., 2015; Toepfl, 2006), and at the same 

time they are claimed to be more environmentally friendly than the conventional techniques 

(Lazarides, 2011). 

To confirm the potential environmental yield of these processing alternatives, tools with which to 

assess their impact are needed nevertheless. In this sense, Life Cycle Assessment (LCA) stands 

out as a recognized powerful method permitting the assessment of the environmental load of food 

products throughout their entire life cycle, as can be confirmed by the high number of studies 

published.  

Different reviews on LCA of agri-food products have been carried out. Most of them focus on case 

studies about the primary production of foods such as milk (Baldini et al., 2017), pig (MacAuliffe 

et al., 2016), vegetables (Bessou et al., 2013; Cerruti et al., 2014; Perrin et al., 2014) or fish 



(Henriksson et al., 2012; Vázquez-Rowe et al., 2012). They aim at analysing methodological 

choices, detecting gaps and weaknesses and providing recommendations to harmonize the studies. 

Notwithstanding, fewer reviews analysing case studies on processed foods can be found, such as 

wine (Rugani et al., 2013), edible oils (Kathri and Hain, 2017), cheese (Finnegan et al., 2018), or 

a food miscellany (Roy et al., 2009), and even these ones are mostly focused in the methodological 

aspects of the primary production stage. In turn, Hospido et al. (2010) review the role of LCA in 

the development of novel food products and processes.  

From that picture, a gap in the literature emerges since the coexistence of technological alternatives 

arising from recent developments is marginalized in most of the existing LCA literature. Taking 

into account the importance of the food processing sector and the technological improvements 

developed in the last years, the main purpose of this article is to discuss how technological 

developments in food processing are addressed in life cycle literature, regarding case studies on 

LCA and carbon footprint (CFP) in which different food processing alternatives are compared. To 

this end, a systematic literature review was conducted, exploring the methodological challenges 

involved when applying LCA/CFP to processed food in order to provide recommendations to 

harmonize future practices. Furthermore, by analysing the main findings of these comparative 

studies, this review also aims at highlighting some challenges that must be faced to improve the 

sustainability assessment of food processing.   

 

2. Systematic Review Strategy and Selection of LCA in Food Processing Studies  

Over recent years, there has been a proliferation of new approaches with which to increase the 

scientific rigor of the knowledge-mining process such as systematic literature review (Denyer and 

Tranfield, 2009; UNEP/ SETAC, 2013), in which the high comparative power attributed to it 

comes from its essence. A method of reviewing existing research studies in an organized, 

systematic and transparent way, in order to summarize all the existing information about the 

phenomenon of interest, at the same time that the personal biases of the researchers are better 

controlled, and the scientific validity is improved (Denyer and Tranfield, 2009). For that reason, it 

is expected to pre-determine, to follow and to share a clear protocol, designed according to the 

main objectives of the research, detailing the strategy of knowledge mining pursued in the 

investigation. 

In this study, the scope was case studies where alternative food processing technologies where 

compared. Web of Science, Scopus and Google Scholar databases were explored due to their 

credibility and scientific coverage. The entire collection of the respective databases was consulted 

considering records registered until September 2018. 



The search strategy was planned following three main phases, as shown in Figure 1 (Clune, Crossin 

and Verghese, 2017, Denyer and Tranfield, 2009, and Moher et al., 2015). Identification, followed 

by the Screening and eligibility of the studies to ensure their alignment with the scope of the 

systematic review, ending up with a Final analysis, based on a quantitative and qualitative 

assessment of the content of the selected records. 

 

 
Figure 1. Systematic review strategy. Based on Clune, Crossin and Verghese (2017), Denyer 

and Tranfield (2009) and Moher et al. (2015). *LCA studies on food processing. 
 

From that three databases, articles, articles-in-press, books, book chapters and conference articles 

were screened by a six-filter strategy, taking advantage of the tools provided by the respective 

databases. Initially, six terms (life cycle assessment, food, production, processing, technology, and 

preservation) were combined, focusing their identification either in titles, key words or in the 

abstracts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scopus search Google Scholar 

Screening (abstract, introduction,  
final remarks, references) 

 

Excluded:  
not meeting 

inclusion criteria  

Added:  
new records 

Excluded: 
duplicate titles 

Full reading process 

Meta-analysis 

# records: 123 

Identification 

Screening  
and eligibility 

Final analysis 

# records: 30 

# records: 76 

Selected sample 
# records: 63 

Black box 
perspective 
# records: 43 

Records dealing with  
alternative processing technologies 

# records: 20 

On target records:  
meeting inclusion criteria* 

# records: 31 

# records: 32 

Consolidated Basis 
 
 
 

Web of Sc search 

# records: 107 
# records: 130 

# records: 84 

http://www.sciencedirect.com/science/article/pii/S0959652616303584#!


As shown in Table 1, from the total results found for life cycle assessment, a second filter was 

applied, by using the terms in quotation marks to guarantee the accuracy of the search, in this way, 

excluding contaminations by occurrences of synonyms of the terms or other variations, 

translations, abbreviations, plurals, etc.  

Table 1. Sequence of filters and results of the systematic review strategy. 
 
 
 

Filters  
/  

Databases 

 
 

Life Cycle 
Assessment 

 
 

“Life Cycle 
Assessment” 

 
 

“Life Cycle 
Assessment” 

and food 

“Life Cycle 
Assessment” 

W/10; 
Near/10 

food;  
In the title 

 

 
Product* 

or Process* 
or 

Technolog* 
or 

Preserv* 

 
Not 

waste, 
Not 

biofuel*, 
Not 

pack* 

 
 
 

Consolidated 
base 

 

 1st filter 2nd filter 3rd filter 4th filter1 5th filter 6th filter  
Scopus 37,018 18,489 1,479 258 238 123  

107 Web of Sc. 25,934 16,702 1,516 192 173 84 
Google 
Sch. 

276,00 171,000 38,100 221 38 30 

Source: Based on records from Scopus, Web of Science and Google Scholar databases, completed in September 2018. 1The 4th filter refers 
to proximity operators offered by the databases. Scopus (w/10) and Web of Science (near/10) by controlling the distance between the main 
term of interest (“Life Cycle Assessment”) and a specific complement (food processing). Google Scholar, by searching for a specific term 
or words combination in the title (“Life Cycle Assessment” and food).  

 

Next, a third filter was used to ensure both the adherence and relevance to the food field, by using 

“life cycle assessment” AND food. The fourth filter consisted of the application of the proximity 

operators offered by Scopus, Web of Science and Google Scholar. This allowed to control the 

distance between “life cycle assessment” AND food in the records selected. The idea was to 

identify records in which “food” was quite closed of the title, or being part of it. The fifth filter 

was the Boolean operator asterisk, used as a way to broaden the search by finding words that start 

with the same letters, retrieving any variations of a term. Finally, a sixth filter was employed to 

eliminate waste, biofuel and packing (and their variations) approaches among the selected records. 

The selected documents were grouped and duplicate records were subsequently removed. The 

result of the Identification phase was a consolidated base of 107 records (Figure 1).  

In the second phase, Screening and eligibility, the selected records were revised to ensure the 

adherence of the records to the scope of the review. It was observed that many LCA studies use 

the terminology “food processing” but do not properly deal with food processing technologies. 

This was the case of 71% of the consolidated basis, i.e. 76 records out of 107 in the sample (Figure 

1). A possible interpretation could be that the terms “food product”, “food processing” and 

“processed food”, including their variations, are often used as a strategy to sensitize the reader (a 

way to increase the audience), whereas the essence of the discussion often remains attached to the 

farming stage. It is important to highlight as well that food production involves a complex system, 



from the farm level, through the industrial transformation, distribution and consumption to waste 

management, which may also contribute to this lack of accuracy in the terminology used in the 

scientific documents. 

Additional records were found by screening the text and the reference list of each document; as 

well as by monitoring of new publications in the area. As a result, 32 new documents were 

identified, culminating in a sample of 63 studies into LCA applied to food processing (Figure 1).  

Finally, in the last phase of the search strategy, these 63 papers were analysed in-depth following 

a full reading process, looking for those in which different processing techniques are compared. It 

was observed that when LCA studies properly deal with food processing technologies, a black box 

perspective prevails. This means that a detailed analysis considering the contribution of each 

process step to the whole process is not carried out, with the consequent lack of transparency and 

reproducibility (Sanjuan et al., 2014; Walker et al., 2018). 43 out of 63 LCA studies into food 

processing technology (i.e. 68%) were discarded because either a black box perspective prevailed 

or alternative processing techniques were not compared, resulting in a final sample of 20 records, 

that is, 32% of the selected sample (Figure 1).  

 

3. Selected LCA studies on Alternatives in Food Processing Technologies 

As regards the purpose, the 20 reviewed studies can be classified into three: those which compare 

alternative operational conditions, another comparing technological approaches, and a third group 

in which the effect of production scale is analysed. Table 2 presents a classification proposal for 

these 20 papers according to their typology and emphasis. 

The discussion on the operational conditions is present in four studies (20% of the reviewed 

studies). Take for instance, Sanjuan et al. (2011) who assess different technical and cleaner 

production criteria in order to determine the most eco-efficient techniques for cheese production. 

While Zhou et al. (2017a) calculate the CFP of cooling systems for cooked rice.  

The second group discusses the environmental impact of variations in the technological approach 

and encompasses 13 studies (65%), which, in turn, could be grouped into two. A first category, 

covering four studies (20%), considers the environmental impact of emerging technologies 

complementing conventional food processing methods. For instance, Krokida et al. (2016) 

compare the conventional production of skimmed milk powder with the inclusion of reverse 

osmosis. While Kyriakopoulou et al. (2015) compare conventional techniques for β-carotene 

extraction with and without microwave or ultrasounds. The second category, which comprises nine 

papers (45%), contrasts different technologies, such as pulsed electric fields (PEF) and high 

pressure processing (HPP) for juice pasteurisation (Aganovic et al., 2017; Davis et al., 2010), or 



deep-freezing, drying assisted by infrared radiation and ohmic aseptic treatments in the production 

of semi-finished apricots (De Marco and Iannone, 2017),  

The remaining three studies (15%), referring to the third group, analyse the environmental burdens 

of different production scales, which generally affect to the processing techniques. Davis and 

Sonneson (2008) and Schmidt Rivera et al. (2014) compare homemade and industrially 

manufactured dishes. Meanwhile, Calderón et al. (2018) compare four different production scales 

for the same dish: canned and consumed at home, catering company, restaurant, and homemade 

cooking.  

The following section addresses these 20 LCA studies as regards methodological terms (LCA 

typology, goal and scope, functional unit, system boundaries and impact categories targeted by the 

analysis).  

 

4. Key Methodological Issues on LCA of Alternatives in Food Processing Technologies 

4.1. Type of LCA   

LCA studies are typically classified as attributional or consequential. Most LCA studies apply an 

attributional perspective (A-LCA), referring to a steady state of the internal flows of a specific 

production system. On the other hand, the consequential LCA (C-LCA) aims to evaluate the 

environmental consequences of a decision, normally a change in the demand of the product to be 

investigated, trying to overcome the limitations of the attributional approach when quantifying the 

indirect effects of that decision. Other classifications can be found in the literature. Specifically, 

Sandén et al. (2005) classify LCA based on three dimensions, namely responsibility, time and 

technical generality. According to the time dimension, a prospective LCA is looking forward at 

future environmental impact. Following this classification, Hospido et al. (2010) recommend a 

prospective A-LCA as the most suitable approach with which to evaluate novel systems (product 

or technology) at a future steady time. Recently, Arvidsson et al. (2017) define prospective LCA 

as those studies of emerging technologies in early development stages, when there are still 

opportunities to use environmental guidance for major alterations. It must be noted that in a recent 

paper Guinée et al. (2018) discuss the emergence of other modes of LCA, among them prospective 

LCA. Those authors state that A-LCA focuses on modelling a situation as it is, either in the past, 

present or future, but without any changes, and recommend to include the remaining types of LCA 

in a group called explorative LCA.  

 

 



Table 2. Processing variants considered in LCA and CFP studies  
into alternative food processing technologies. 

Typology Processes compared References Sector / 
Product 

Operational  
Conditions (OC) 

Alternative parboiling 
processes Roy et al. (2007) Rice 

Degree of milling Roy et al. (2009) Rice 
Cleaning and  
degree of automation 

Sanjuán et al. 
(2011) 

Dairy  
(cheese) 

Different cooling methods for 
cooked rice Zhou et al. (2017a) Rice 

Technological 
Approach  

Emerging 
technologies 
assisting 
conventional 
ones 

Conventional production of 
skimmed milk powder vs. 
including a  RO1 pretreatment 

Krokida et al. 
(2016) 

Dairy 
(milk powder) 

Extraction with solvents vs.,  
ultrasound or ,microwave 
assisted 

Kyriakopoulou et 
al. (2015) 

β-carotene 
(apple a algae) 

Freeze drying: conventional  
vs. assisted with osmotic 
dehydration pretreatment 

Prosapio et al. 
(2017) 

Fruit 
(strawberries) 

Freezing (conventional  
vs. ultrasound assisted) Xu et al. (2016) Water 

Contrasting 
different 
technologies 

Conventional (thermal) vs. 
alternative technologies: PEF2, 
and HPP3  

Aganovic et al. 
(2017) 
 

Juice  
(tomato and 
watermelon) 

Mild thermal pasteurization vs.  
PEF2 and HPP3 Davis et al. (2010) Juice 

(carrot) 
Milk powders vs.  
Milk concentrates 

Depping et al. 
(2017) 

Dairy  
(milk) 

Drying: drum vs.  
multistage drying 

De Marco et al. 
(2015) 

Fruits  
(apple) 

Deep-freezing, drying assisted 
by infrared radiation, and 
ohmic aseptic treatment 

De Marco and 
Iannone (2017) 
 

Fruits  
(apricot) 

Chilling vs. superchilling Hoang et al. (2016) Fish 
(salmon) 

Preservation methods: 
autoclave pasteurization, 
microwaves, HPP3 and 
modified atmosphere 
packaging 

Pardo and Zufía 
(2012) Meals 

Oil extraction: hexane vs. 
supercritical CO2 Li et al. (2006) Oil 

(soybean) 
Ultra-High Pressure 
Homogenisation 
vs. conventional UHT4 
processing  

Valsasina et al. 
(2016) 

Dairy  
(milk) 

Production scale Domestic vs. industrial 

Calderón et al. 
(2018) 

Meals Schmidt Rivera et 
al. (2014) 
Sonesson et al. 
(2005) 

RO1: reverse osmosis; PEF2: Pulsed Electric Fields; HPP3: High Pressure Processing; UHT4: Ultra High Temperature. 



From the sample of studies reviewed, only Valsasina et al. (2017) conducted both attributional and 

consequential analyses. As to the consequential one, the aim was to assess the possibility of using 

UHPH sterilised milk for fresh cheese production, since its shelf life is longer than that of 

conventional UHT milk. Therefore, a system expansion accounting for the avoided production of 

fresh cheese was investigated. Additionally, Schmidt Rivera et al. (2014) designed a scenario 

which considered the displacement of animal feed as a consequence of upgrading processing waste 

as fodder through system expansion, which can thus be considered a C-LCA. The remaining 19 

studies can be classified as A-LCA, that is, they intend to make a snapshot of the methodologies 

in order to detect hot spots of the technological innovations, without taking into account further 

consequences of its implementation, such as rebound effects.  

On the other hand, only Aganovic et al. (2017) and Pardo and Zufía (2012) classify their respective 

studies as prospective LCA, whereas Sonesson et al. (2005) recommend to make prospective 

studies to find processing systems that are better than today’s. Taking into account Arvidsson et 

al.’s (2017) definition of a prospective LCA, many of the analysed studies can be included in that 

category, since they analyse technologies in an early phase of development, such as Davis et al. 

(2010), and even on laboratory scale (Zhou et al., 2017a, Xu et al., 2016). 

 

4.2. System boundaries 

Mapping the process and setting the boundaries are important steps to clarify parts of the food 

system analysed (Djekic et al., 2017). Assessing the whole product life cycle (from cradle- to-

grave, or cradle-to-consumer) allows the magnitude of the environmental impact to be quantified, 

as does the contribution of the processing stage to the total impact. Nevertheless, an analysis 

restricted to processing (from farm gate-to-factory gate) may be an interesting approach if the LCA 

is intended for technological comparisons, provided that the technologies to be compared ensure 

the same ratio of agricultural raw material input to food product output (Arcand et al., 2012). Along 

these lines, Hospido et al. (2010) suggest, for comparative studies, including only the parts of the 

system that are affected (and, therefore, show differences) by the change.  

This perspective helps us to understand that ten of the analysed studies (50% of the revised studies) 

conduct a farm gate-to-factory gate analysis (Table 3). Of those, Aganovic et al. (2017) and de 

Marco et al. (2015) additionally considered farm-to-factory gate and gate-to-grave system 

boundaries, respectively. A full cradle-to-grave analysis is performed in six of the reviewed 

studies (30%) as can be seen in Table 3. The remaining studies adopt cut-off variations justified 

by their respective main goal and scope. For instance, cradle-to-factory gate is employed by De 



Marco et al. (2015) and Kyriakopoulou et al. (2015), while the consumer is considered by Calderón 

et al. (2018) (factory gate-to-consumer), and Roy et al. (2009) (cradle-to-consumer).  

The farm gate-to-factory gate boundaries allow eliciting environmental information related to the 

sphere of influence of the food processor. However, in that case, the displacement of 

environmental loads to other life cycle stages, such as waste generation and management, cannot 

be quantified.  

In turn, the inclusion of capital goods in the system boundaries is a controversial issue. Considered 

as an explicit part of the product system in ISO standards (Finkbeiner et al., 2006, 

ISO14040:2006a,b), a common problem seems to be the lack of information about the 

environmental burden of producing and maintaining processing infrastructure (Davis et al., 2010, 

Xu et al., 2016).  

Of the reviewed papers, only Davis et al. (2010), Deeping et al. (2017), Kyriakopoulou et al. 

(2015), Sanjuan et al. (2011), Xu et al. (2016), and Zhou et al. (2017a) evaluated the possibility of 

including capital goods. Input-output LCA was used to estimate the overall environmental impacts 

of capital goods in Sanjuan et al. (2011), Xu et al. (2016) and Zhou et al. (2017a). Deeping et al. 

(2017) took the production and transport of raw materials as a proxy for the inventory of these 

goods and depreciated their environmental impacts linearly over their lifetime. On the other hand, 

Kyriakopoulou et al. (2015) took site levelling works and land occupation of capital infrastructure 

into consideration. Davis et al. (2010) excluded the production of capital goods due to lack of data, 

since if the life span and capacities of the equipment are taken into account, the burden split per 

manufactured unit (e.g., per litre of juice) is expected to be very small. 

 

4.3. Functional unit  

The definition of the functional unit (FU) is a critical issue for all LCAs, and especially in food, 

where different proposals can be found in the literature (Martínez-Blanco et al., 2010; Tyszler et 

al., 2016; Rice et al., 2018). Hospido (2010) and Weidema (2003) recommend the classification 

of properties as the starting point for the correct definition of the products under comparison. 

Nevertheless, food quality is a complex issue ranging from the organoleptic properties (e.g. texture 

or colour) to the nutrient content (i.e., macronutrients, such as lipids or carbohydrates; 

micronutrients, such as vitamins or minerals and specific compounds, such as antioxidants) and 

safety aspects (e.g. the presence of pathogens). Furthermore, these properties can be substantially 

affected by the processing technologies. Hence, given that this review focuses on process 

comparison, the FU must then ensure that the compared processes yield products of the same 

quality.  



Table 3. LCA type, function unit and system boundaries choices of the LCA and CFP selected studies. 
Typology Authors Type of 

LCA 
Functional  

unit 
System  

boundaries 

O
pe

ra
tio

na
l  

C
on

di
tio

ns
  

Roy et al. 
(2007) 

ALCA 1 ton rice Gate-to-gate 

Roy et al. 
(2009) 

ALCA 1 kg final product or 1 MJ energy  
supplied by the final product 

Cradle-to-
grave 

Sanjuan 
et al. (2011) 

ALCA 1 kg cheese ripened over 105 days Gate-to-gate 

Zhou et al. 
(2017) 

ALCA 0.02 kg cooked rice in a plastic meal box Gate-to-gate 

Te
ch

no
lo

gi
ca

l A
pp

ro
ac

h 
 

Em
er

gi
ng

 te
ch

no
lo

gi
es

 
as

si
st

in
g 

co
nv

en
tio

na
l 

on
es

 

Krokida et al. 
(2016) 

ALCA 1 kg of skimmed milk powder unpacked Gate-to-gate 

Kyriakopoulou 
et al. (2015) 

ALCA 1 kg β-carotene extract Cradle-to-
grave 

 
Prosapio et al. 

(2017) 
ALCA 450 g strawberries Cradle-to-

grave 
 

Xu et al. (2016) ALCA 1 mL deionized water frozen from 4 to −10 °C Gate-to-gate 
 

Te
ch

no
lo

gi
ca

l A
pp

ro
ac

h 
C

on
tr

as
tin

g 
di

ffe
re

nt
 te

ch
no

lo
gi

es
 

Aganovic et al. 
(2017) 

ALCA. 1 kg pasteurized juice, PET bottled, and ready 
for sale 

Gate-to-gate  
and 

farm to 
factory gate 

Davis et al. 
(2010) 

ALCA 1 L carrot juice at the point of sale Cradle-to 
retailer 

Depping et al. 
(2017) 

ALCA 1 kg skim-milk concentrate ready to be further 
processed at the customer stage with a DMC of 

12.5%, reconstituted/diluted in skim milk (FU1), 
30%, reconstituted/diluted in skim milk (FU2) 
or water (FU4), 35%, reconstituted/diluted in 

skim milk (FU3) or water (FU5). 

 
 

Cradle-to-
grave 

De Marco et al. 
(2015) 

ALCA 3 kg weight 
apple powder (95 ºBrix) package 

Gate-to  
gate and 
gate-to-
grave 

De Marco and 
Iannone (2017) 

ALCA 1 kg on dry basis of semi-finished apricots 
produced and packaged  

Gate-to-gate 
 

Hoang et al. 
(2016) 

ALCA 1 kg salmon at the end of the cold chain (at 
domestic fridge) 

Cradle-to-
consumer 

Pardo and Zufía 
(2012) 

ALCA 1 kg pre-cooked dish of fish and vegetables 
processed to achieve a threshold 30 days shelf 

life period 

Cradle-to-
grave 

Li et al. (2006) ALCA 1 ton of soybean oil production per hour Gate-to-gate   
Valsasina et al. 

(2017) 
ALCA  
CLCA  

1000 L of raw milk to reach commercial sterility Gate-to-gate 
 

  
Pr

od
uc

tio
n 

sc
al

e 

Calderón  
et al. (2018) 

ALCA 1 kg finished hot product ready to be consumed Gate-to-
consumer 

Schmidt Rivera 
et al. (2014) 

ALCA 0.360 kg meal  
for one person 

Cradle-to-
grave 

Sonesson et al 
(2005)  

ALCA  1 meal for one person ready for eating Cradle-to-
grave 

 



In Table 3, the FUs of all the reviewed studies are summarised. Obviously, all the reviewed papers 

consider that the function of food processing is producing food. Hence, the FU is expressed as 

mass (kg) or volume (L) of the raw material or final product, that is, the processed product. It can 

also be observed that, for many of the examined papers, the FU covers a quality aspect of the final 

product related with the processes being evaluated. This is especially true for the studies in which 

different technological approaches are compared. For instance, Aganovic et al. (2017) compare 

pasteurisation methods for fruit juices and the level of microbial inactivation to be attained is, thus, 

included in the FU definition. In turn, De Marco et al. (2015) compare dehydration systems for 

apple powder and the FU considers the sugar content of the dehydrated products (95 ºBrix). While 

Depping et al. (2017) define five FUs. Those authors aim at comparing the substitution of skim 

milk powder by skim milk concentrates as ingredients for processed foods, since milk powder is 

more energy intensive. Consequently, they define five FUs as 1 kg skim milk concentrate ready to 

be further processed with specific dry matter contents according to the concentrations needed for 

the subsequent applications (yogurt, ice cream, etc.). Only Valsasina et al. (2017) use the mass of 

raw material to denote the technology’s function of providing safe drinkable milk (defined as the 

processing of 1000 litres of raw milk to reach commercial sterility).  As can be observed in Table 

3, the FUs of the studies comparing changes in the operational conditions or the use of emerging 

technologies assisting conventional ones do not consider the quality aspect. This can be related to 

the fact that those shifts in the analysed processes are mostly aiming at improving their 

environmental performance (e.g. by reducing dehydration time, changing solvent or cleaning 

agents) and substantial changes in the characteristics of the final product are not expected.  

As to the studies assessing the production of a dish on different production scales, it must be borne 

in mind that the function of the dish can be different in each case, both concerning to the 

organoleptic properties and the shelf life, especially on the factory level, when the product exhibits 

a longer shelf life. However, as pointed by Sonesson et al. (2005), many consumers consider a 

ready-to-eat meal to be equivalent with a corresponding home prepared meal. Therefore, the 

chosen FU (1 kg of ready-to-eat product) allows the objective of the study to be reached without 

considering any other quality attribute.  

 

4.4. Inventory analysis: sources and data quality  

As a rule, data describing the foreground system are collected from the specific process; they can 

be directly measured, estimated, or elicited from interviews with stakeholders. This is the case of 

most of the conventional processes analysed.  



For instance, as presented in Table 4, Depping (2017) gathered the data for the conventional 

process from technical visits to processing plants. In the same way, Pardo and Zufía (2012) 

conducted technical visits using questionnaires, interviews and internal reports, which represent 

average data from a typical working day. On the other hand, Roy et al. (2007) and Hoang et al. 

(2016) based their LCAs of already existing technologies on literature data. 

However, applying LCA at early product development stages is challenging due to the lack of 

foreground inventory data, mainly those concerning emerging food technologies. A compound 

strategy is usually employed, mixing data obtained directly (from laboratory or pilot experiments) 

and indirectly (e.g. interviews with stakeholders, patents or literature data). Pilot plant data were 

used in three studies (15% of the reviewed sample). Pardo and Zufía (2012) collected data on 

alternative preservation methods from personal communication with technology suppliers together 

with the equipment specifications and experiments at a pilot plant. Aganovic et al. (2017) collected 

primary data for the thermal and PEF processes from respective continuous pilot scale units, 

whereas a small industrial scale unit was used for the HP treatment. Due to its batch nature, the 

HP process was taken as a starting point for the definition of the production capacity.  

Laboratory scale experiments were the basis for the data in two of the reviewed studies (10%), 

namely Kyriakopoulou et al. (2015), and Xu et al. (2016). Interesting to highlight Kyriakopoulou 

et al. (2015) considered a potential upscale regarding the solvents’ recycling and reuse, although 

they do not provide data on other scaling aspects (e.g. energy consumption of industrial 

equipment). It must be noted that the magnitude of the impacts on lab scale may be far from that 

of the real processes. Nevertheless, as Sampaio et al. (2017) state, results from lab scale 

experiments may be useful for choosing alternative materials and techniques in the early stages of 

product development and provide the basis for process design in the pilot stage.   

Data used by Li et al. (2006) for the conventional solvent and alternative supercritical CO2 

extraction of soybean oil were based on mass and energy balance calculation. Simulation was used 

as data source for the three scales compared by Sonesson et al. (2005).   

As can be observed in Table 4, for both already existing and emerging technologies, background 

data are mostly obtained from LCA databases, mainly Ecoinvent, and published studies. 

 

 

 

 

 



Table 4. Data sources (Fd: foreground data, Bd: background data) and  
life cycle impact assessment (LCIA) method of the LCA and CFP selected studies.  

Typology Authors Data sources_ LCIA method  
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ra
tio

na
l  

co
nd

iti
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s 
Roy et al. (2007) 

Fd:  literature 
Bd: n.s.1 

Energy consumption 
(literature) and CFP 

(emissions factors from 
literature)  

Roy et al. (2009) Fd: manufacturer (milling process), 
laboratory (cooking process)  

Bd: literature 
Only inventory analysis 

Sanjuan 
et al. (2011) 

Fd: manufacturer 
Bd: GaBi 4 EDIP  

Zhou et al. (2017) 
Fd: Experimental data using industrial 

equipments  
Bd: literature 

IPCC  

Te
ch

no
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ca

l a
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ac

h 
Em
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gi

ng
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no
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gi

es
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Krokida et al. (2016) Fd: manufacturer and literature data  
Bd: Ecoinvent and GaBi 6 CML  

Kyriakopoulou et al. 
(2015) 

Bd: Ecoinvent v2.0 CML 

Prosapio et al. (2017) Fd: manufacturer (conventional 
processing) and experimental data 

(osmotic pretreatment).  
Bd: literature 

ReCiPe 

Xu et al. 
(2016) 

Fd: Laboratory scale  
Bd: literature and stakeholders IPCC  

 
Te
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gi

ca
l a

pp
ro

ac
h 
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g 
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Aganovic et al. (2017) Fd: Pilot scale.  
Bd: literature and Ecoinvent v3.2 IMPACT 2002+ 

Davis et al. (2010) 

Fd: manufacturer (conventional 
processing), literature and communications 

with experts (alternative technologies).  
Bd: Ecoinvent v2.0. 

 
CML 

Depping et al. (2017) Fd: manufacturer 
Bd: Ecoinvent v3.1 CML  

De Marco et al. 
(2015) 

Fd: manufacturer 
Bd: Ecoinvent v3.1 IMPACT 2002+ 

De Marco and Iannone 
(2017) 

Fd: processing company 
 Bd: Ecoinvent v3.1 ReCiPe 

Hoang et al. (2016) Fd: literature 
Bd: Ecoinvent v3 

CML  

Pardo and Zufía (2012) 

Fd: manufacturers (data for conventional 
processes). Trials at pilot scale (alternative 

processes) 
Bd: Ecoinvent v2.0 

ReCiPe 

Li et al. (2006) 
Fd: based on mass and energy balance 

calculations. 
Bd: n.s.1 

 
n.s.1 

Valsasina et al. (2017) Fd: Pilot scale.  
Bd: Ecoinvent v3 ReCiPe  

 
Pr

od
uc

tio
n 

 
sc

al
e 

Calderón  
et al. (2018) 

Fd: manufacturers and house cook. Bd: 
Ecoinvent v2, LCA Food DK, 

BUWAL250, IDEMAT 2001, ETH-ESU 
96. 

CML  
Eco-indicator 99  

Schmidt Rivera et al. 
(2014) 

Fd: industrial processing. 
Bd: Ecoinvent v2 CML 

Sonesson et al (2005)  Foreground data:Simulation software 
Background data: n.s1 

 
n.s.1 

1n.s: not specified. 
 

 

  



4.5. Impact categories targeted by the analysis  

Table 4 shows the impact assessment methods used in the examined studies. The predominant 

methods are CML baseline 2000 (Frischknet et al., 2007) (35% of the selected studies), followed 

by the two ReCiPe versions (Goedkoop et al., 2008; Huijbregts et al., 2017) (20% of the examined 

studies).  

Regarding the impact categories (Table 5), the most widely assessed in the reviewed articles are 

global warming potential (95% of the studies), followed by eutrophication and acidification 

potential (75%), ozone layer depletion (55%), resource depletion fossil and mineral (50%) and 

photochemical ozone formation (50%).  

Despite considering water use in the inventories of most of the reviewed papers, the impact caused 

by the consumption of this resource has only been tackled by De Marco and Iannone (2017), Pardo 

and Zufía (2012), Prosapio et al. (2017), Sanjuan et al. (2011), and Valsasina et al. (2017), that is, 

25% of the reviewed papers. It is also remarkable that, although eutrophication is assessed in many 

studies, wastewater composition (eg, COD, BOD or N and P concentration), which is what mainly 

contributes to eutrophication in the processing stage, has only been taken into account by Sanjuan 

et al. (2011) and Depping et al. (2017).  

As to the robustness of the results, none of the reviewed studies performed an uncertainty analysis, 

although many carried out a sensitivity or scenario analysis. Nevertheless, those analyses mostly 

focus on the parameters affecting upstream or downstream stages, such as the composition of the 

electricity mix, transport distance or packaging material (e.g. Aganovic et al., 2017; Depping et 

al., 2017; Marco and Ianonne, 2017). Of those who analysed the effect of changes on processing 

parameters, it is worth mentioning Valsasina et al. (2017), who assessed the effect of process 

upscaling, Xu et al. (2016), who took into account the effect of changing the emission factors of 

the equipment, and Zhou et al. (2017a), who studied the effect of changing the cooling load 

quantity. Schmidt Rivera et al. (2014) also carried out a thorough sensitivity analysis on process 

parameters and other variables affecting different life cycle stages.  

 

 

 

 



Table 5. Impact categories employed in LCA and CFP selected studies.  
Typology Authors GWP EPa EPt WDP ODP PMF APa APt PE/CED POFP HTPc HTPnc RO RnO TETP FETP METP IR ALO ULO NLT MRD/ADe FFD HM 

O
pe

ra
tio

na
l  

C
on

di
tio

ns
 

Roy et al. (2007) X                                               

Roy et al. (2009)                                                 
Sanjuan et al 

(2014) X eutrophication WAb                                         
Zhou et al. 

(2017) X                                               

Em
er

gi
ng

 te
c 

as
si

st
in

g 
co

nv
en

tio
na

l o
ne

s Krokida et al. 
(2016) X eutrophication X X X acidification X X X X                   X X   

Kyriakopoulou 
et al. (2015) X eutrophication   X   acidification   X human toxicity X X X         X     

Prosapio et al. 
(2017) X M/Fa   X X X   X   X human toxicity X X X X X X X X X   

Xu et al. 2016 X                                               

C
on

tra
st

in
g 

 
di
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nt
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no
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Aganovic et al. 
(2017) X       X     X     X X X X X 

aquatic 
toxicity 

X land occupation X X   

Davis et al. 
(2010) X eutrophication       acidification X                               

Deeping et al. 
(2017) X eutrophication       acidification X                               

De Marco et al. 
(2015) X X     X   X X     X X X X X 

aquatic 
toxicity 

X land occupation X X   

De Marco and 
Iannone (2017) X M/Fa   X X X acidification   X human toxicity X X X X X X X X X   

Hoang et al. 
(2016) X eutrophication   X   acidification   X human toxicity X X X         X     

Pardo and Zufía 
(2012) X eutrophication X     acidification X X                             

Li et al. (2006) X nitrification   X   acidification   WS/SSc                           X 
Valsasina et al. 

(2017) X M/Fa   X  X  X  X    X human toxicity X X X X X X X X X   

Pr
od

uc
tio

n 
 

sc
al

e 
 

Calderón et al. 
(2018) X eutrophication   X   acidification     X   X X ecotoxicity X land use X X   

Schmidt Rivera 
et al. (2014) X X     X   X     X       X X X X         X X   

Sonesson et al. 
(2005)  X eutrophication       acidification   X                             

GWP: Global Warming Potential; EPa: Aquatic Eutrophication Potential; EPt: Terrestrial Eutrophication Potential; WDP: Water Depletion Potential; ODP: Ozone Depletion Potential; PMF:  Particulate Matter Formation; APa: 
Aquatic Acidification Potential; Apt: Terrestrial Acidification Potential; PED/CED: Primary Energy Demand/Cumulative Energy Demand; POFP: Photochemical Ozone Formation Potential;  HTPc: Human Toxicity Potential 
Carcinogenic; HTPnc: Human Toxicity Potential Non Carcinogenic; RO: Respiratory Organics; RnO: Respiratory Non Organics; TETP: Terrestrial Ecotoxicity Potential; FETP: Freshwater Ecotoxicity Potential; METP: Marine 
Ecotoxicity Potential; IR: Ionising Radiation; ALO: Agricultural Land Occupation; ULO: Urban Land Occupation; NLT: Natural Land Transformation; MRD/ADe: Mineral Resource Depletion/Abiotic Depletion Elements; FFD: 
Fossil Fuel Depletion; HM: Heavy Metals. aM/F Marine and Freshwater Eutrophication; bWA: water abstraction; cWS/SS: winter smog/summer smog. 
 



5. Main findings  

This section summarizes the main lessons learnt from the results of the reviewed studies, in a bid 

to underscore the potential environmental benefits of technological changes or production scale.  

The group of studies contrasting different technologies (see Table 2) remarks that the 

technological approach plays an important role in the challenge of seeking the environmental 

sustainability of food processing.  

New technologies tend to represent better alternatives than conventional methods, improving both 

quality attributes (nutritional and sensorial) and shelf life (Jermann et al., 2015; Knorr et al., 2011). 

In addition, many of them contribute to resource savings, as well as to decreasing energy 

consumption (Depping et al., 2017; De Marco et al., 2015; De Marco and Iannone, 2017; Hoang 

et al., 2016; Kyriakopoulou, et al., 2015; Pardo and Zufía, 2012; Valsasina et al., 2016), 

GHG emissions (Pardo and Zufía, 2012), and water consumption (Pardo and Zufía, 2012). 

However, new technologies do not always imply an environmental improvement. In fact, when 

comparing alternative pasteurisation methods for juices, both Davis et al. (2010) and Aganovic et 

al. (2017) showed that the energy consumption of conventional pasteurisation was lower than for 

HPP and PEF. Despite these differences in terms of energy consumption, slight differences in the 

impact results were observed in the processing stage. This is mainly due to the significant 

contribution of other life cycle stages to the overall impacts, mainly farming and packaging 

production. However, Davis et al. (2010) state that, for products where more energy-intensive 

processing is undertaken, novel technologies might prove to be more beneficial in terms of overall 

energy savings. Take for instance the case study of Hong et al. (2016), it shows that despite the 

higher energy consumption of superchilling vs. conventional chilling, the new alternative 

eliminates the ice during storage and transport and decreases the packaging weight, hence the total 

environmental impact of the cold chain decreases.  

Indeed, it must be noted that in some of the reviewed studies, the outsourced elements of the supply 

chains have the highest impacts regardless of the processing technique: waste management 

(Aganovic et al., 2017; Calderón, et al., 2018; Davis et al., 2010; Krokida et al., 2016) and packing 

production (Aganovic et al., 2017; De Marco and Iannone, 2017) represent two critical points in 

that discussion. The results from Depping et al (2017) show the environmental advantage of milk 

concentrates relative to that of the benchmark, milk powder, although this advantage decreases 

with greater transport distances. These results emphasize the importance of both considering cradle 

to grave system boundaries and improving the environmental performance of other life cycle 

stages (e.g. packaging, transport, waste management).  

When analysing the results of the studies on emerging technologies assisting conventional ones, 

the impact of food processing was observed to decrease with respect to that caused by the purely 



conventional in terms such as energy demand (Krokida, et al., 2016; Xu et al., 2016; Prosapio et 

al., 2017); global warming (Xu et al., 2016; Prosapio et al., 2017), or water consumption (Krokida, 

et al., 2016). 

From the above comments, therefore, no general conclusions about which technologies are the 

best can be drawn, because there are still few studies carrying out a comparative assessment of the 

environmental performance of technological shifts. Furthermore, as discussed in subsection 4.4, 

some of these studies are based on laboratory experiments, and further analyses on an industrial 

scale are needed. It must also be noted that the environmental impact of a technology can vary 

depending on the raw material processed (see, for instance, Aganovic et al., 2017) or the process 

design (e.g. the possibility of recovering energy or not, or the values of set points). 

Moving forward in the lessons, the group of studies related to changes in operational conditions 

highlights the relevance of (re)thinking operational conditions seeking the environmental 

sustainability of food consumption.  

Indeed, it is quite evident that reducing the environmental impact does not necessarily imply 

changing the technological base (which implicitly entails the need for large capital investments). 

Important environmental gains also stem from the implementation of cleaner production practices 

such as good housekeeping or process optimization (UNEP, 2002). As discussed by Sanjuan et al. 

(2011) and Zhou et al. (2017a), the challenge of increasing the environmental sustainability 

requires an optimisation of the industrial facilities in terms of unit operations, determining the 

optimal processing parameters (e.g. time, temperature), automating the process or reducing water 

use in cleaning processes. 

In addition, the reviewed studies on production scales show that scale matters in terms of 

environmental performance. This is a polemic discussion in the field of LCA in food processing. 

First introduced by Andersson and Ohlsson (1999), it was later rescued by Schlich and Fleissner 

(2005), who coined the term ecology of scale, i.e. the environmental performance could depend 

on the volume of produced items. Contrary to what it might seem, the concept of ecology of scale 

suggests that large scale does not necessarily mean a greater environmental load when compared 

to small manufacturers, or even homemade food. Among the reviewed studies, Calderón et al. 

(2018) and Davis and Sonneson (2008) confirm this effect. The impact of large-scale production 

can be further reduced by applying other measures, such as energy efficiency, heat recovery, 

reverse logistics, etc., which contribute to increasing the environmental performance of food 

processing.  

Of course, this positive effect of scale cannot be generalized, particularly when comparing 

industrial processing with homemade cooking. Schmidt Rivera et al. (2014) found that the impacts 

of preparing the meal at home from scratch were lower than those for the equivalent ready-made 



meal. As the authors point out, an avoidance of manufacturing, a reduction in refrigerated storage 

and a lower amount of waste in the life cycle of the homemade meal are the main reasons. On the 

other hand, Calderon et al. (2018) show that large-scale systems (ready meals industry and catering 

companies) incorporate measures aimed at energy saving and waste reduction and, thus, can offer 

a better environmental performance than small-scale systems, such as eating in restaurants or even 

cooking at home. 

Finally, it should also be considered that moving technological standards is not trivial. Resistance, 

inertia and costs tend to slow down technological development, a context that could compromise 

the achievement of food sustainability if it were entirely dependent on the need to rethink 

technological standards.  

Indeed, the processes of evaluating novel technologies can be slow (Bock et al., 2014), revealing 

the presence of other factors that limit emerging technologies: for example, non-technical issues, 

such as regulations and additional costs (Shibasaki et al., 2006 and Valsasina et al., 2017). 

Moreover, the willingness of manufacturers to shift the bases of production and adopt a new 

technology is induced by the return in investment as well as cost-efficiency, which is also a 

function of the production scale.  

 

6. Recommendations for Future LCA Practices on processed food 

LCA is a powerful tool of analysis that can aid to increase the sustainability of food system. 

Nevertheless, some issues need to be improved to harmonize and enhance its application to food 

processing. These issues and the recommendations are summarized in Table 6.   

 

6.1. Methodological recommendations 

In this section, methodological recommendations for the purposes of harmonizing and increasing 

the reliability of LCA application to processed foods are described. Although some 

recommendations concern LCA practice in general (e.g. those referred to result reliability), other 

issues are specific to food processing (e.g. the relationship between shelf life and food waste, or 

the importance of processing water). Available Product Category Rules (PCRs) for processed 

foods (e.g. preserved meat, fruit juices, etc.) have been taken into account for some of these 

recommendations.  

 

6.1.1. Functional unit, other proposals 

As commented on in section 4.3, when defining the FU, a quality aspect (e.g. water content or 

microbial reductions) of the product related with the evaluated processes is mostly considered in 

the studies under review. However, the issue of which FU is better when carrying on food LCAs 

https://www.sciencedirect.com/science/article/pii/S0959652616318972#bib45


remains unresolved. As discussed in Notarnicola et al. (2017), different points of view start to 

appear in this regard, such as the nutritional value of the food and also the economic and social 

dimensions. Ponsioen and van der Werf (2017) propose economic value, in currency units, as a 

FU, reflecting the way in which a consumer values the different functionalities of food. In fact, as 

already recommended by other authors, using several FU in the same study would allow the 

multifunctionality of food products (eg. cultural, hedonistic value, etc.) to be captured (Martinez-

Blanco et al., 2011; Notarnicola et al., 2017). Since this review is focused on product comparisons, 

the use of different FU can also be useful to decrease the uncertainty due to the choice of the FU. 

 

6.1.2. System boundaries 

When comparing products, leaving out common life cycle stages allows the LCA process be 

simplified. Nevertheless, we cannot forget the interest of assessing the whole product life cycle, 

since many decisions made at the factory level, such as those referring to the selection of raw 

materials, packaging or product distribution, will affect upstream and downstream life cycle stages 

and, thus, the whole product impact. In fact, the procedure adopted in the PCRs for processed 

foods considers three different life cycle stages, namely upstream processes (from cradle-to-gate), 

core processes (from gate-to-gate), and downstream processes (from gate-to-grave), which shall 

be reported separately. Even though the focus of attention can be directed at the study of the 

technological performance, conducting studies that look at the entire chain seems essential. In this 

way, one can have a better view of the problem, better evaluating the weight of the processing and, 

further, identifying those parts of the life cycle where the greatest improvements can be made 

(Pardo and Zufía, 2012).   

The inclusion of food waste generation and its treatment can also be crucial when defining the 

system boundaries in comparisons between alternative technologies. This is because some 

alternatives can extend the shelf life of foods, which, in turn, influences the amount of food waste. 

To better assess this, and also in relation to the improvement of inventory data for food LCAs, 

models linking shelf life with waste production such as the one developed WRAP (2013) are 

needed.   

By-product upgrading is another issue related to system boundaries. By-products are generated 

during the processing stage of many products (e.g. whey from cheese production, peels and trims 

from vegetable processing, etc.). Although PCRs state that the by-products must be excluded from 

the system boundaries, designing scenarios including the loads avoided as a consequence of by-

product upgrading through system expansion could give a better picture of the environmental 

impact of the product system.  

 



6.1.3. Capital goods, yes or no?  

Frischknecht et al. (2007) propose that capital goods manufacturing be included by default in 

LCAs. In that very paper, the authors point out that in a workshop held in 1991 in the Netherlands, 

it was already agreed to include capital goods in the comparative LCAs of processes in which the 

amount of investments would be clearly and significantly different (Huisingh 1992). Available 

PCRs for processed food, though, state that capital goods with an expected lifetime over three 

years shall not be included.  

When assessing the impact of capital goods, a common problem seems to be a lack of 

information, although rough assumptions or educated guesses can be enough, as shown in some 

of the reviewed studies. In fact, both Xu et al. (2016) and Zhou et al. (2017a) could not find 

significant differences in the CFP results when using emission factors for equipment based on 

mass data instead of using economic input-output data. Frischknecht et al. (2007) suggest 

considering the costs of maintenance and depreciation as initial indicators of the relative 

importance of capital goods and, in the event of these costs being a substantial part of the product 

price, the environmental impacts of capital goods should not be excluded a priori.  

 

6.1.4. The scale and data source issues 

In some of the studies, real processes are compared with pilot scale or even lab scale or simulated 

processes, without taking into account scaling considerations. Other studies gather data from 

processing on lab scale, such as Xu et al. (2016), who highlight a limitation of their study as being 

the use of a laboratory-scale ultrasound system and a sample of 1 mL of deionized water. 

As seen in section 4.4, different sources are used to obtain foreground data for new processes and, 

considering the inherent data scarcity in those LCAs, the authors agree with Arvidsson et al. (2017) 

that using several of these types of sources in the same study can be a useful means of verifying 

the quality of the data. As to the background data, Arvidsson et al. (2017) also underline the 

importance of avoiding a temporal mismatch between the foreground and background systems in 

order to ensure the relevance of the results. 

The authors also agree with Valsasina et al. (2017) on the need to include scaling considerations 

in the LCA of new technologies and also on the importance of developing and validating scaling 

methodologies for food processing. Studies have been developed along these lines, such as the one 

by Caduff et al. (2014), which provided quantitative scaling factors for an accurate quantification 

of the environmental impacts in relation to equipment functioning. Zhou et al. (2017b), who 

developed a systematic methodology aimed at the chemical and pharmaceutical sectors to bridge 

the gaps between pilot plant operation and LCI and, also, to predict LCI on an industrial scale. 



Piccino et al. (2016) elaborated a framework that helps to scale up chemical production processes 

for LCA studies when only data from laboratory experiments are available. 

 

6.1.5. On the importance of process water 

The food processing industry is one of the most water intensive, which is mostly discharged as 

effluent with a high concentration of organic pollutants (Ölmez, 2014). This points to the need to 

account for water consumption in the inventories of processing technologies, as does the 

subsequent wastewater with its corresponding quality parameters. Walker et al. (2018) developed 

a toolbox to determine water demand per unit process, which can also be used to estimate the 

wastewater discharge. As to wastewater characterisation, an analysis of the wastewater of the 

processing plant can be used, although this is not possible when assessing new technologies. The 

development of models to quantify wastewater quality could be an interesting option. Similarly to 

the one by Muñoz et al. (2008) for food excretion, the model should take into account the quantity 

of both the wastewater released and the raw materials emitted to wastewater.  

 

6.1.6. Improving the reliability of the results 

As commented on in Section 4.5, none of the reviewed studies carried out an uncertainty analysis. 

Using only average values to perform an LCA may be misleading due to the inherent variability 

associated with both model and process parameters (Escobar et al., 2015). Among others, Groen 

et al. (2017), Heijungs and Huijbregts (2004) and Steinmann et al. (2014) provide guidelines with 

which to address uncertainty and variability, thus improving the reliability of the results. Non-

parametric statistics (e.g. Monte Carlo or bootstrap) stand out as the most commonly-used 

methods, allowing the confidence intervals to be computed in order to check whether differences 

between the impact results are significantly different (Ribal et al., 2017). A sensitivity analysis can 

be used in conjunction with an uncertainty analysis to study the robustness of the results and their 

uncertainty (Wei et al., 2015). A scenario analysis has been proposed to tackle the uncertainty 

caused by choices (Heijungs and Guinée, 2007), and is also helpful to examine the influence of 

different parameters on the environmental impacts (Schmidt Rivera et al., 2017).  



Table 6. Overview of the main issues and recommendations to enhance the application of LCA to food processing.  

Functional Unit (FU)  

There is no consensus on which is the most meaningful FU for food products. Proposals based on mass of final product, price, nutritional value 
have been made. When comparing processing methods, the FU often takes some quality characteristic of the processed food into account so as to 
ensure that the compared processes yield products of the same quality. Using several FUs in the same study is recommendable, in this way the 
multifunctionality of food products (eg. cultural, hedonistic value, etc) is captured. 

System boundaries 

Different system boundaries are used in LCAs of processed food. However, assessing the whole product life cycle (from cradle to grave), as 
recommended by PCRs of processed food, seems essential since many decisions made at the factory level affect upstream and downstream life 
cycle stages.  Furthermore, it allows the magnitude of the environmental impact to be quantified, as does the contribution of the processing stage to 
the total impact. 
When different possibilities for upgrading by-products are available, system expansion can give a better picture of the environmental impact of the 
product system and the avoided loads as consequence of the up-grading.  

Available PCRs for processed food state that capital goods with an expected lifetime over three years shall not be included. However, capital goods 
can be crucial in comparative LCAs when the amount of investments are significantly different (Huisingh, 1992).  As recommended by 
Frischknecht et al. (2007), considering the costs of maintenance and depreciation can be initial indicators of their relative importance and, in the 
event of these costs being a substantial part of the product price, the environmental impacts of capital goods should not be excluded a priori. Then, 
the impact of capital goods can be assessed based on rough assumptions or educated guesses (mass data or economic input-output data).   

Inventory data 

As concerns foreground data for the processing stage, scaling considerations must be contemplated, avoiding mixing lab data with pilot or 
industrial scale data. Scaling methodologies specific for food processing need to be developed.  
As to background data, temporal mismatch between the foreground and background systems must be avoided to ensure the relevance of the results 
(Arvidsson et al., 2017). 
The food industry is water intensive, causing effluents with a high concentration of organic pollutants. Water consumption and wastewater 
discharge with its corresponding quality parameters should be accounted for. Toolboxes (e.g. Walker et al., 2018) can be used to estimate the 
amount of water consumed and discharged. Wastewater analysis can be used to characterize wastewater of existing processes. When assessing 
emerging technologies, the development of models could be an option to characterize wastewater.  
Processing technologies can extend the shelf life of foods, which, in turn, influences the amount of food waste generated. To assess this, models 
linking shelf life with amount of waste generated, such as the one developed WRAP (2013), are needed.   

Results reliability 

Using only average values in the life cycle inventory may be misleading due to the inherent variability associated with each parameter. Non-
parametric statistics (e.g. Monte Carlo or bootstrap) together with sensitivity analysis are recommended for uncertainty and variability assessment.  
Scenario analysis allows the uncertainty due to choices to be assessed (Heijungs and Guinée, 2007). It is also helpful to examine the influence of 
different parameters on the results (Schmidt Rivera et al., 2017) and a support to decision making that may identify improvement opportunities 
(Yang and Campbell, 2017). 

Reinforcing LCA with 
other complementary 

approaches 

LCA can be combined with other approaches in order to obtain a better picture of the sustainability of technological changes. Examples of these 
approaches are food process engineering, cleaner production, life cycle costing, eco-efficiency, multicriteria methods such as DEA or AHP, 
consumer perception. 



6.2. Further recommendations 

Although the state of the art shows that there is a lack of LCA studies comparing processing 

technologies, the findings suggest the importance of reconsidering the role of LCA towards 

sustainable food processing.  

Alternative technologies must be introduced into the LCA studies, by means of a comparison 

among the variants in food processing (contrasting different technologies, or the role of emerging 

alternatives in assisting conventional processing techniques). However, as stated in section 5, it 

must be bore in mind that both the improvement and new design of environmentally-friendly 

processes imply a proper selection and combination of unit operations.  

Depping et al (2017) underscore how process engineering combined with environmental 

assessment can support processing technology selection and product design. Therefore, the 

optimisation of unit operations (scale, production capacity, hygienisation and cleaning lines, etc.) 

should contribute to the achievement of a more sustainable food system. It is expected that new 

aspects be tackled in future LCA practices seeking to achieve process optimisation from an 

environmental point of view. 

Of these new aspects, emphasis should be placed on cleaner production (CP) associated with the 

LCA approach. CP has been defined as, “the continuous application of an integrated, preventive, 

environmental strategy applied to processes, products and services to increase overall efficiency 

and reduce risk to humans and the environment” (UNEP, 2002). What means to say CP aims at 

reducing water and energy consumption and also waste generation (among other aspects by 

increasing by-products recovery).  Scenario analysis can help to select those CP strategies for food 

processing that promote more efficient and sustainable food products throughout their entire life 

cycle. Yang and Campbell (2017) underscore the use of scenario analysis as a support to decision 

making, opening the door to innovative thinking that may identify more improvement 

opportunities.  

Important to remark that the consumption stage should also be properly incorporated in this 

scenario analysis, since consumer choices are relevant, as discussed in Aganovic et al. (2017). 

LCA research is required to help consumers and partners to make informed choices about different 

food systems and food consumption patterns, with the aim of improving sustainability in the food 

sector (Calderón et al., 2018). Consumer education seems to be a key element in terms of its role 

in the challenge of the sustainability of the food system. Therefore, there is an increased awareness 

that the environmentally conscious consumer of the future will consider ecological and ethical 

criteria in selecting food products (Pardo and Zufía, 2012), in terms such as the reduction of food 

waste, or the choice of appropriate packaging or waste management strategies.  



The implementation of CP can also mean a reduction of process costs, which is linked to the 

concept of eco-efficiency. In this regard, Sanjuan et al. (2011) introduce economics into the study 

by assessing the eco-efficiency of technological choices that cause a lower environmental impact 

by using data envelopment analysis (DEA). Hence, if new technologies imply a change in the 

quality aspects of products and could also motivate a higher price, all of these aspects could be 

assessed together with the environmental profile.  

Additionally, combining LCA results with multicriteria methods, such as DEA or goal 

programming (Ribal et al., 2016) would allow other decisive issues, such as nutritional, sensorial 

or economic ones, to be included in decision making. In this way, the selection of technologies 

will be based not only on economic and environmental criteria but also on other decisive aspects 

related to the quality of the final product.  

From the analysis of costs and economic feasibility, and considering the added value of the 

product, there seems to be one last aspect to be considered: consumer perception. Is the consumer 

prepared to receive food submitted to alternative processes? It seems that instructional and training 

work should be part of both the industrial sector’s and the government’s positive agenda. 

 

7. Conclusions  

How to advance toward a sustainable food system is an, as yet, unanswered question. The reviewed 

studies show the usefulness of LCA to assess the hot spots and the positive effects of processing 

technologies. This matches with the efficiency perspective to attain food system sustainability, as 

described by Garnett et al. (2014). Under this approach, technological innovations and managerial 

improvements should enable supply food products with less environmental impact. Nevertheless, 

food system is very complex, and its sustainability involves considering other issues such as which 

is the recommendable level of production (and consumption) of certain foods (e.g. organic versus 

conventional, local supply vs. globally-sourced food, or reductions in meat and dairy), or the 

rebound effects that can arise as a consequence of changing technologies, etc. Furthermore, it is 

not merely a matter of consumer preferences but also an issue of cultural values. 

Some suggestive insights have emerged from the studies highlighting the relevance of opening the 

black box within which food processing is usually understood. On the one hand, the revision of 

the state of the art shows that some methodological aspects should be incorporated into LCA to 

harmonize its application and increase the results’ reliability. Additionally, the combination of 

LCA with other disciplines such as process engineering, cleaner production, cost assessment or 

multicriteria methods can provide a valuable contribution towards the sustainability of food 

production systems.   



The act of delving further into the achievement of a more sustainable food system implies opening 

up the black box, analysing alternative processing methods, defining and assessing other 

innovative scenarios, and integrating also the food quality dimension, in which LCA should be 

understood as an approach to assessing how different shifts can be coupled with the improved 

sustainability of food systems. 

 

References 

Aganovic, K., Smetana, S., Grauwet, T., Toepfl, S., Mathys, A., Loey, A.V., & Heinz, V. (2017). 
Pilot scale thermal and alternative pasteurization of tomato and watermelon juice: An energy 
comparison and life cycle assessment. Journal of Cleaner Production, 141(10), 514-525. Doi 
10.1016/j.jclepro.2016.09.015 

Andersson, K., & Ohlsson, T. (1999). Life cycle assessment of bread produced on different 
scales. The International Journal of Life Cycle Assessment, 4(1), 25-40 

Arvidsson, R., Tillman, A. M., Sandén, B. A., Janssen, M., Nordelöf, A., Kushnir, D., & 
Molander, S. (2017). Environmental Assessment of Emerging Technologies: 
Recommendations for Prospective LCA. Journal of Industrial Ecology. 
Doi.org/10.1111/jiec.12690 

Arcand, Y., Maxime, D., & Zareifard, R.J. (2012). Life cycle assessment of processed food. In: 
J.I. Boye, Arcand, Y. (Eds.), Green technologies in food production and processing. Food 
Engineering Series / Springer Science+Business Media. Doi 10.1007/978-1-4614-1587-9_6  

Baldini, C., Gardoni, D., Guarino, M. (2017). A critical review of the recent evolution of Life 
Cycle Assessment applied to milk production. Journal of Cleaner Production, 140, 421-435. Doi 
http://dx.doi.org/10.1016/j.jclepro.2016.06.078  

Bessou, C., Basset-Mens, C., Tran, T., & Benoist, A. (2013). LCA applied to perennial cropping 
systems: a review focused on the farm stage. The International Journal of Life Cycle Assessment, 
18(2), 340–361. Doi https://doi.org/10.1007/s11367-012-0502-z 

Bock, A.K, Maragkoudakis, P., Wollgast, J., Caldeira, S., Czimbalmos, A., Rzychon, M., Atzel, 
B., & Ulberth, F. (2014). Tomorrow’s healthy society research priorities for foods and diets. JRC 
Foresight Study Joint Research Centre. Final Report. See at: 
https://ec.europa.eu/jrc/sites/jrcsh/files/jrc-study-tomorrow-healthly-society.pdf 

Caduff, M., Huijbregts, M.A.J.J., Koehler, A., Althaus, H.-J., & Hellweg, S. (2014). Scaling 
relationships in life cycle assessment. Journal of Industrial Ecology, 18(3), 393-406. Doi 
10.1111/jiec.12122 

Calderón, L.A., Herrero, M., Laca, A., & Díaz, M. (2018). Environmental impact of a traditional 
cooked dish at four different manufacturing scales: from ready meal industry and catering 
company to traditional restaurant and homemade. The International Journal of Life Cycle 
Assessment, 23(4), 811-823. Doi10.1007/s11367-017-1326-7 

Chalmers, N. G., Brander, M., & Revoredo-Giha, C. (2015). The implications of empirical and 1: 
1 substitution ratios for consequential LCA: using a 1% tax on whole milk as an illustrative 
example. The International Journal of Life Cycle Assessment, 20(9), 1268-1276. 

Cerutti, A. K., Beccaro, G. L., Bruun, S., Bosco, S., Donno, D., Notarnicola, B., & Bounous, G. 
(2014). Life cycle assessment application in the fruit sector: state of the art and recommendations 
for environmental declarations of fruit products. Journal of Cleaner Production, 73, 125-135. DOI 
10.1016/j.jclepro.2013.09.017 

https://www.sciencedirect.com/science/journal/09596526
https://ec.europa.eu/jrc/sites/jrcsh/files/jrc-study-tomorrow-healthly-society.pdf


Clune, S., Crossin, E., & Verghese, K. (2017). Systematic review of greenhouse gas emissions for 
different fresh food categories. Journal of Cleaner Production, 140(2). Doi 
10.1016/j.jclepro.2016.04.082 

Davis, J., & Sonesson, U. (2008). Life cycle assessment of integrated food chains: A Swedish case 
study of two chicken meals. The International Journal of Life Cycle Assessment, 13, 574-584. Doi 
10.1007/s11367-008-0031-y 

Davis, J., Moates, G., & Waldron, K. (2010). The environmental impact of pulsed electric field 
treatment and high pressure processing: the example of carrot juice. In: Feeherry, F., Doona, 
C., Kustin, K. Case studies in novel food processing technologies: Innovations in Processing, 
Packaging, and Predictive Modelling. Woodhead Publishing 

Depping, V., Grunow, M., Middelaar, C., & Middelaar, J. (2017). Integrating environmental 
impact assessment into new product development and processing-technology selection: Milk 
concentrates as substitutes for milk powders. Journal of Cleaner Production, 149 (15), 1-10. Doi 
10.1016/j.jclepro.2017.02.070 

Defra (2017). Food statistics pocketbook 2016. Department for Environment Food and Rural 
Affairs (Defra). See at: 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/fil
e/608426/foodpocketbook-2016report-rev-12apr17.pdf. Accessed 31 May 2018. 

De Marco, I., Miranda, S., Riemma, S., & Iannone, R. (2015). Environmental assessment of drying 
methods for the production of apple powders. The International Journal of Life Cycle Assessment, 
20(12), 1659-1672. Doi10.1007/s11367-015-0971-y 

De Marco, I., & Iannone, R. (2017). Production, packaging and preservation of semi-finished 
apricots: A comparative life cycle assessment study. Journal of Food Engineering, 206, 106-117. 
Doi10.1016/j.jfoodeng.2017.03.009 

Denyer, D. & Tranfield, D. (2009). Producing a systematic review. In: D. Buchanan, A. Bryman 
(Eds.), Sage handbook of organizational research methods, London, UK  

Djekic, I., Sanjuán, N., Clemente, G., Jambrak, A.R., Djukić-Vuković, A., Brodnjak, U.V., Pop, 
E., Thomopoulos, R., & Tonda, A. (2018). Review on environmental models in the food chain: 
current status and future perspectives. Journal of Cleaner Production, 176(1), 1012-1025. Doi 
10.1016/j.jclepro.2017.11.241 

Escobar, N, Ribal, F.J., Rodrigo, A., Clemente, G., Pascual, A., & Sanjuan, N. (2015). Uncertainty 
analysis in the environmental assessment of an integrated management system for restaurant and 
catering waste in Spain. The International Journal of Life Cycle Assessment, 20(2), 244-262 

Euromonitor. (2015). Corporate strategies in health and wellness: Part 2 focus emerging markets. 
Euromonitor. 53p. 

Euromonitor (2016). Global Packaged Food Market to be Worth US$2.2 Trillion by 2021. 
Euromonitor. See at: https://blog.euromonitor.com/2016/10/global-packaged-food-market-worth-
us2-2-trillion-2021.html. Accessed 9 May 2018 

FAO, IFAD, UNICEF, WFP, & WHO. 2017. The state of food security and nutrition in the world 
2017: Building resilience for peace and food security. Rome, FAO. http://www.fao.org/3/a-
I7695e.pdf. Accessed 5 May 2018 

Finnegan, W., Yan, M., Holden, N. M., & Goggins, J. (2018). A review of environmental life cycle 
assessment studies examining cheese production. The International Journal of Life Cycle 
Assessment, 23(9), 1773-1787. DOI. 10.1007/s11367-017-1407-7 

Finkbeiner, M., Inaba, A., Tan, R. Christiansen, K., & Klüppel, H.J. (2006). The New 
International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. The 

http://www.sciencedirect.com/science/article/pii/S0959652616303584#!
https://www.safaribooksonline.com/search/?query=author%3A%22F%20Feeherry%22&sort=relevance&highlight=true
https://www.safaribooksonline.com/library/publisher/woodhead-publishing/


International Journal of Life Cycle Assessment, 11(2), 80-85. Doi 
https://doi.org/10.1065/lca2006.02.002 

Frischknecht, R., Althaus, H.J., Bauer, C., Doka, G., Heck, T., Jungbluth, N., Kellenberger, D., & 
Nemecek, T. (2007). The environmental relevance of capital goods in life cycle assessments of 
products and services. The International Journal of Life Cycle Assessment. 11, 1-11. Doi 
http://dx.doi.org/10.1065/lca2007.02.309 

Garnett, T. (2014). Three perspectives on sustainable food security: efficiency, demand restraint, 
food system transformation. What role for life cycle assessment? Journal of Cleaner Production, 
73, 10-18. 

Goedkoop M.J., Heijungs R., Huijbregts M., De Schryver A.; Struijs J., Van Zelm R. ReCiPe 2008, 
A life cycle impact assessment method which comprises harmonised category indicators at the 
midpoint and the endpoint level; First edition Report I: Characterisation. 6 January 2009 (updated 
May 2013) 

Groen, E. A., Bokkers, E. A., Heijungs, R., & de Boer, I. J. (2017). Methods for global sensitivity 
analysis in life cycle assessment. The International Journal of Life Cycle Assessment, 22(7), 1125-
1137 

Guinée, J. B., Cucurachi, S., Henriksson, P. J., & Heijungs, R. (2018). Digesting the alphabet soup 
of LCA. The International Journal of Life Cycle Assessment, 23(7), 1507-1511 

Heijungs R., & Guinée, J.B. (2007). Allocation and “what-if” scenarios in life cycle assessment of 
waste management systems. Waste Management 27(8):997–1005 

Heijungs R., & Huijbregts, M. (2004). A review of approaches to treat uncertainty in LCA. In: 
Pahl C, Schmidt S, Jakeman T (eds). iEMSs 2004 International Congress: Complexity and 
integrated resources management. International Environmental Modeling and Software Society, 
Osnabrueck 

Henriksson, P. J., Guinée, J. B., Kleijn, R., & de Snoo, G. R. (2012). Life cycle assessment of 
aquaculture systems—a review of methodologies. The International Journal of Life Cycle 
Assessment, 17(3), 304-313. DOI 10.1007/s11367-011-0369-4 

Hoang, H.M., Brown, T., Indergard, E., Leducq, D., Alvarez, G. (2016). Life cycle assessment of 
salmon cold chains: comparison between chilling and superchilling technologies. Journal of 
Cleaner Production, 126, 363-372 

Hospido, A., Davis, E., Berlin, J. & Sonesson, U. (2010). A review of methodological issues 
affecting LCA of novel food products. The International Journal of Life Cycle Assessment, 15 (1), 
44-52. Doi10.1007/s11367-009-0130-4 

Huisingh D. (1992). Workshop conclusions on inventory session. In: (SETAC) SoETaC-E (ed), 
Life-cycle assessment. SETAC, Brussels, Belgium, 2-3 December1991, Leiden, Netherlands, 71-
72  

Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira MDM, Hollander A, 
Van Zelm R, 2016. ReCiPe2016: A harmonized life cycle impact assessment method at midpoint 
and endpoint level. RIVM Report 2016-0104. Bilthoven, The Netherlands. 

IMAP. Food and beverage industry global report 2010. IMAP, 2010. 
http://www.proman.fi/sites/default/files/Food%20%26%20beverage%20global%20report%2020
10_0.pdf  

ISO (International Organization for Standardization). (2006a). ISO 14040: Environmental 
management - Life cycle assessment - Principles and framework. ISO copyright office, Genebra, 
Switzerland, 21 p  



ISO (International Organization for Standardization). (2006b). ISO 14044: Environmental 
management – Life cycle assessment – Requirements and guidelines. ISO copyright office, 
Genebra, Switzerland, 47 p 

Jermann, C., Koutchma, T., Margas, E., Leadley, C., & Ros-Polsk, V. (2015). Mapping trends in 
novel and emerging food processing technologies around the world. Innovative Food Science & 
Emerging Technologies, 31, 14-27. Doi 10.1016/j.ifset.2015.06.007 

Khatri, P., & Jain, S. (2017). Environmental life cycle assessment of edible oils: a review of current 
knowledge and future research challenges. Journal of Cleaner Production, 152, 63-76. 
doi.10.1016/j.jclepro.2017.03.096 

Knorr, D., Froehling, A., Jaeger, H., Reineke, K., Schlueter, O. & Schoessler, K. (2011). Emerging 
technologies in food processing. Annu. Rev. food Sci. Technol. 2, 203-235. 

Kyriakopoulou, K., Papadaki, S. & Krokida, M. (2015). Life cycle analysis of β-carotene 
extraction techniques. Journal of Food Engineering, 167(A), 51-58. 
Doi10.1016/j.jfoodeng.2015.03.008 

Krokida, M., Taxiarchou, M., Politis, A., Peppas, A., & Kyriakopoulou, K. (2016). Life cycle 
assessment (LCA) on European skimmed milk powder processing production plant. Scientific 
Bulletin. Series F. Biotechnologies, 20, 280-285 

Lazarides, H. (2011). Food processing technology in a sustainable food supply chain. Procedia 
Food Science, 1, 1918-1923. Doi:10.1016/j.profoo.2011.09.282 

Lazarides, H. (2012). Challenges and opportunities for the community of food sciences to 
contribute towards a society of healthier consumers and better world. International Journal of 
Food Studies, 1, p.101.Doi: 10.7455/ijfs/1.1.2012.a10 

Li, Y., Griffing, E., Higgins, M., Overcash, M. 2006. Life cycle assessment of soybean production. 
Journal of Food Process Engineering, 29, 429-445 

McAuliffe, G. A., Chapman, D. V., & Sage, C. L. (2016). A thematic review of life cycle 
assessment (LCA) applied to pig production. Environmental Impact Assessment Review, 56, 12-
22. doi. 10.1016/j.eiar.2015.08.008 

Martínez-Blanco, J., Antón, A., Rieradevall, J., Castellari, M., & Muñoz, P. (2011). Comparing 
nutritional value and yield as functional units in the environmental assessment of horticultural 
production with organic or mineral fertilization. The International Journal of Life Cycle 
Assessment, 16(1), 12-26 

Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, 
L.A., & PRISMA-P Group. (2015). Preferred reporting items for systematic review and meta-
analysis protocols 2015 statement. Systematic Reviews. 4(1). Doi 10.1186/2046-4053-4-1 

Muñoz, I., Canals, L.M., C., & Clift, R. (2008). Consider a spherical man: a simple model to 
include human excretion in life cycle assessment of food products. Journal of Industrial Ecology, 
12(4), 521-538. Doi10.1111/j.1530-9290.2008.00060.x 

Notarnicola, B., Sala, S., Anton, A., McLaren, S.J., Saouter, E., & Sonesson, U. (2017). The role 
of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. 
Journal of Cleaner Production, 140(2), 399-409. Doi 10.1016/j.jclepro.2016.06.071 

Ölmez, H. (2014). Water consumption, reuse and reduction strategies in food processing. 
Sustainable food processing, 401-434. Doi 10.1002/9781118634301.ch17 

Pardo, G., & Zufía, J. (2012). Life cycle assessment of food-preservation technologies. Journal of 
Cleaner Production, 28, 198-207. Doi 10.1016/j.jclepro.2011.10.016 

https://doi.org/10.1111/j.1530-9290.2008.00060.x
https://www.sciencedirect.com/science/journal/09596526
https://www.sciencedirect.com/science/journal/09596526
https://www.sciencedirect.com/science/journal/09596526


Perrin, A., Basset-Mens, C., Gabrielle, B. (2014). Life cycle assessment of vegetable products: a 
review focusing on cropping systems diversity and the estimation of field emissions. The 
International Journal of Life Cycle Assessment, 19(6), 1247-1263. Doi 10.1007/s11367-014-
0724-3 

Piccinno, F., Hischier, R., Seeger, S., & Som, C. (2016). From laboratory to industrial scale: a 
scale-up framework for chemical processes in life cycle assessment studies. Journal of Cleaner 
Production, 135, 1085-1097 

Ponsioen, T. C., & Van der Werf, H. M. G. (2017). Five propositions to harmonize environmental 
footprints of food and beverages. Journal of Cleaner Production, 153, 457-464. 

Prosapio, V., Norton, I., & De Marco, I. (2017). Optimization of freeze-drying using a life cycle 
assessment approach: Strawberries’ case study. Journal of Cleaner Production, 168(1), 1171-
1179. Doi10.1016/j.jclepro.2017.09.125 

Ribal, J., Fenollosa, M. L., García-Segovia, P., Clemente, G., Escobar, N., & Sanjuán, N. (2016). 
Designing healthy, climate friendly and affordable school lunches. The International Journal of 
Life Cycle Assessment, 21(5), 631-645 

Ribal, J., Ramírez-Sanz, C., Estruch, V., Clemente, G., & Sanjuán, N. (2017). Organic versus 
conventional citrus. Impact assessment and variability analysis in the Comunitat Valenciana 
(Spain). The International Journal of Life Cycle Assessment, 22(4), 571-586 

Rice, P., O’Brien, D., Shalloo, L., & Holden, N. M. (2018). Defining a functional unit for dairy 
production LCA that reflects the transaction between the farmer and the dairy processor. The 
International Journal of Life Cycle Assessment, 1-12. 

Roy, P., Shimizu, N., Okadome, H., Shiina, T., & Kimura, T. (2007). Life cycle of rice: Challenges 
and choices for Bangladesh. Journal of Food Engineering, 79(4), 1250-1255. Doi 
10.1016/j.jfoodeng.2006.04.017 

Roy, P., Ijiri, T., Nei, D., Orikasa, T., Okadome, H., Nakamura, N., & Shiina, T. (2009). Life cycle 
inventory of different forms of rice consumed in households in Japan. Journal of Food 
Engineering, 91(1). 49-55. Doi10.1016/j.jfoodeng.2008.08.005 

Rugani, B., Vázquez-Rowe, I., Benedetto, G., Benetto, E. (2013). A comprehensive review of 
carbon footprint analysis as an extended environmental indicator in the wine sector. Journal of 
Cleaner Production 54 (2013) 61-77. Doi 10.1016/j.jclepro.2013.04.036 

Saguy, I.S., Singh, R.P., Johnson, T., Fryer, P.J., & Sastry, S.K. (2013). Challenges facing food 
engineering. Journal of Food Engineering, 119(2), 332-342. Doi 10.1016/j.jfoodeng.2013.05.031 

Sampaio, A. P. C., Men de Sá, M., Castro, A. L. A., & de Figueirêdo, M. C. B. (2017). Life cycle 
assessment from early development stages: the case of gelatin extracted from tilapia residues. The 
International Journal of Life Cycle Assessment, 22(5), 767-783 

Sandén B.A., Jonasson, K.M., Karlström, M., Tillman, A.M. (2005). LCA of emerging 
technologies: a methodological framework. LCM2005-innovation by life cycle management; 
Book of Proceedings. Barcelona, Spain, September 5-7, 2005, pp 37-41 

Sanjuan, N., Ribal, J., Clemente, G., & Fenollosa, M.L. (2011). Measuring and improving eco-
efficiency using data envelopment analysis: a case study of Mahon-Menorca cheese. Journal of 
Industrial Ecology, 15(4), 614-628. Doi 10.1111/j.1530-9290.2011.00347.x 

Sanjuán, N., Stoessel, F., & Hellweg, S. (2014). Closing data gaps for LCA of food products: 
estimating the energy demand of food processing. Environmental science & technology, 48(2), 
1132-1140 



Schmidt, J. H., Weidema, B. P. (2008). Shift in the marginal supply of vegetable oil. The 
International Journal of Life Cycle Assessment, 13(3), 235 

Schmidt Rivera, X.C., Espinoza, N., & Azapagic, O.A. (2014). Life cycle environmental impacts 
of convenience food: Comparison of ready and home-made meals. Journal of Cleaner Production, 
73, 294-309. Doi 10.1016/j.jclepro.2014.01.008 

Schlich, E., & Fleissner, U. (2005). The ecology of scale: assessment of regional energy turnover 
and comparison with global food (5 pp). The International Journal of Life Cycle Assessment, 10(3), 
219-223 

Shibasaki, M., Fischer, M., & Barthel, L. (2007). Effects on Life Cycle Assessment – Scale Up of 
Processes In: Takata, S., Umeda, Y. (Eds.), Advances in Life Cycle Engineering for Sustainable 
Manufacturing Businesses. In: Proceedings of the 14th CIRP Conference on Life Cycle 
Engineering, Waseda University, Tokyo, Japan, June 11the13th, 2007. Springer London, London, 
pp. 377-381. Doi 10.1007/978-1-84628-935-4_65 

Silva, V.L., Sereno, A.M., & Sobral, P.J.A. (2018). Food industry and processing technology: on 
time to harmonize technology and social drivers. Food Engineering Reviews, 10(1), 1-13. Doi 
10.1007/s12393-017-9164-8 

Sonesson, U., Mattsson, B., Nybrant, T., Ohlsson, T. (2005). Industrial processing versus home 
cooking: an environmental comparison between three ways to prepare a meal. Ambio, 34(4-5) 
Steinmann, Z. J., Hauck, M., Karuppiah, R., Laurenzi, I. J., & Huijbregts, M. A. (2014). A 
methodology for separating uncertainty and variability in the life cycle greenhouse gas emissions 
of coal-fueled power generation in the USA. The International Journal of Life Cycle 
Assessment, 19(5), 1146-1155 

Toepfl, S., Heinz, V., & Knorr, D. (2006). Applications of pulsed electric fields technology for the 
food industry. In: Raso J., & Heinz V., eds. Pulsed Electric Fields for the Food Industry: 
Fundamentals and Applications. Heidelberg: Springer Verlag 

Tyszler, M., Kramer, G., & Blonk, H. (2014). Comparing apples with oranges: on the functional 
equivalence of food products for comparative LCAs. The International Journal of Life Cycle 
Assessment, 19(8), 1482-1487 

UNEP. (2002). Changing production patterns – learning from the experience of national cleaner 
production centres. United Nations Environment Programme (UNEP). Division of Technology, 
Industry, and Economics (DTIE), ParisUNEP/ SETAC_ United Nations Environment Programme 
/ Society of Environmental Toxicology and Chemistry (2013). An analysis of life cycle assessment 
in packaging for food & beverage applications. UNEP/SETAC Report. 
http://www.lifecycleinitiative.org/wp-
content/uploads/2013/11/food_packaging_11.11.13_web.pdf. Accessed 31 May 2018  

Valsasina, L., Pizzol, M., Smetana, S., Georget, E., Mathys, A., & Heinz, V. (2017). Life cycle 
assessment of emerging technologies: The case of milk ultra-high pressure homogenisation. 
Journal of Cleaner Production, 142(4), 2209-2217. Doi10.1016/j.jclepro.2016.11.059 

Vazquez-Rowe, I., Hospido, A., Moreira, M.T., Feijoo, G. (2012). Best practices in life cycle 
assessment implementation in fisheries. Improving and broadening environmental assessment for 
seafood production systems. Trends in Food Science & Technology, 28, 116-131 

Walker, C., Beretta, C., Sanjuan, N., & Hellweg, S. (2018). Calculating the energy and water use 
in food processing and assessing the resulting impacts. The International Journal of Life Cycle 
Assessment, 23(4), 824-839.Doi 10.1007/s11367-017-1327-6 

Wei, W., Larrey-Lassalle, P., Faure, T., Dumoulin, N., Roux, P., & Mathias, J. D. (2015). How 
to conduct a proper sensitivity analysis in life cycle assessment: taking into account 



correlations within LCI data and interactions within the LCA calculation 
model. Environmental Science & Technology, 49(1), 377-385 

Weidema, B.P. (2003). Market information in life cycle assessments. Technical report, Danish 
Environmental Protection Agency (Environmental Project no. 863). 
http://www2.mst.dk/udgiv/publications/2003/87-7972-991-6/pdf/87-7972-992-4.pd 

WRAP. (2013). The milk model: simulating food waste in the home. http://www.wrap.org.uk/ 

Xu, Z., Sun, D.W., & Zhu, Z. (2016). Potential life cycle carbon savings for immersion freezing 
of water by power ultrasound. Food and Bioprocess Technology, 9(1), 69-80. 
Doi10.1007/s11947-015-1633-6 

Yang, Y., Campbell, J. E. (2017). Improving attributional life cycle assessment for decision 
support: the case of local food in sustainable design. Journal of Cleaner Production, 145, 361-
366. 

Zhou, S., Zhu, Z., Sun, D.W., Xu, z., Zhang, Z., & Wang, Q.J. (2017a). Effects of different cooling 
methods on the carbon footprint of cooked rice. Journal of Food Engineering, 215, 44-50. Doi 
10.1016/j.jfoodeng.2017.07.014 


