Universitat Politecnica de Valencia
Departament de Sistemes Informatics i Computaciéd

Master Thesis

A recommendation framework based on automated ranking
for selecting negotiation agents.
Application to a water market

Submitted by: Encarna Maria Dura Garcia

Supervisors: Marfa José Ramirez Quintana
Antonio Bella Sanjuan

Valencia
September 26, 2011

Acknowledgements

First of all, I would like to especially thank Maria José Ramirez and Antonio
Bella for all their advice, support and patience during these months.

Also I would like to truly appreciate the collaboration and dedication
of Antonio Garrido and Adriana Giret, and the Agreement Technologies
Project (Consolider Ingenio CSD2007-00022).

It is necessary to mention the helpful contribution of the members of
DMIP meetings: José Herndndez, Cesar Ferri, Nando Martinez, Jorge Be-
doya and Javier Insa. I also wish to remember and thank my colleagues of
the laboratory 201 of DSIC, as well as the support of ELP Group and, in
extension, everyone who has contributed in some way to this thesis.

Also I would like to mention the friends I have made during the years at
ETSINF and at the master’s degree. Particularly, my good friend Javi, who
has always supported me as I support him.

Outside the academic environment, I would like to express my deep gra-
titude to my family, especially my parents.
And finally, to Victor, for being so important and special to me.

Abstract

This thesis presents an approach which relies on automatic learning and
data mining techniques in order to search the best group of items from a
set, according to the behaviour observed in previous groups.

The approach is applied to a framework of a water market system, which
aims to develop negotiation processes, where trading tables are built in
order to trade water rights from users. Our task will focus on predicting
which agents will show the most appropriate behaviour when are invited
to participate in a trading table, with the purpose of achieving the most
beneficial agreement.

This way, a model is developed and learns from past transactions oc-
curred in the market. Then, when a new trading table is opened in order to
trade a water right, the model predicts, taking into account the individual
features of the trading table, the behaviour of all the agents that can be
invited to join the negotiation, and thus, becoming potential buyers of the
water right.

Once the model has made the predictions for a trading table, the agents
are ranked according to their probability (which has been assigned by the
model) of becoming a buyer in that negotiation. Two different methods are
proposed in the thesis for dealing with the ranked participants. Depending
on the method used, from this ranking we can select the desired number of
participants for making the group, or choose only the top user of the list
and rebuild the model adding some aggregate information in order to throw
a more detailed prediction.

Resumen

Esta tesina presenta una aproximacion basada en aprendizaje automatico y
mineria de datos con el fin de buscar el mejor grupo de items de un conjunto,
segin el comportamiento observado en grupos previos.

La aproximacién se aplica en un marco de un sistema de mercado de
agua, el cual tiene como objetivo desarrollar procesos de negociacién, donde
se crean mesas de negociacion para comerciar los derechos de agua de los
usuarios. Nuestra tarea se centrard en predecir qué agentes mostraran el
comportamiento méas apropiado cuando son invitados a participar en una
mesa de negociacion, con el proposito de alcanzar el acuerdo més beneficioso.

De este modo, se desarrolla un modelo que aprende de transacciones
pasadas ocurridas en el mercado. Cuando se abre una nueva mesa de ne-
gociacion para vender un derecho de agua, el modelo predice, teniendo en
cuenta las caracteristicas individuales de la mesa de negociacién, el com-
portamiento de todos los agentes que pueden ser invitados a unirse a la
negociacién, y asi, convertirse en potenciales compradores del derecho de
agua.

Una vez el modelo ha hecho las predicciones para una mesa de nego-
ciacion, los agentes son clasificados de acuerdo a su probabilidad (asignada
por el modelo) de convertirse en comprador en dicha negociacién. Dos
métodos diferentes se proponen en esta tesina para tratar a los participantes
clasificados. Dependiendo del método utilizado, de este ranking podemos se-
leccionar el nimero deseado de participantes para confeccionar el grupo, o
elegir sélo el usuario que se encuentra en el primer lugar de la lista y recons-
truir el modelo anadiendo informacién agregada con el fin de lanzar una
prediccién més detallada.

Resum

Aquesta tesina presenta una aproximacié basada en aprenentatge automatic
i mineria de dades amb la finalitat de buscar el millor grup d’items d’un
conjunt, segons el comportament observat en grups previs.

L’aproximacié s’aplica dins un marc d’un sistema de mercat d’aigua,
el qual té com a objectiu desenvolupar processos de negociacié, on es creen
taules de negociacio per a comerciar els drets d’aigua dels usuaris. La nostra
tasca es centrara en predir quins agents mostraran el comportament més
adequat quan sén convidats a participar en una taula de negociacié, amb el
proposit d’abastar ’acord més beneficios.

D’aquesta manera, es desenvolupa un model que aprén de transaccions
pasades ocorregudes al mercat. Aleshores, quan una nova taula de negociacid
s’obri per a vendre un dret d’aigua, el model prediu, tenint en compte les
caracteristiques individuals de la taula de negociacid, el comportament de
tots els agents que poden ser convidats a unir-se a la negociacid, i aixi,
convertir-se en potencials compradors del dret d’aigua.

Una vegada el model ha efectuat les prediccions per a una taula de ne-
gociacid, els agents son classificats d’acord a la seua probabilitat (assignada
pel model) de convertir-se en comprador en eixa negociacié. Dos metodes
diferents es proposen en aquesta tesina per a tractar els participants classifi-
cats. Depenent del metode utilitzat, d’aquest ranking podem seleccionar el
numero desitjat de participants per confeccionar el grup, o elegir solament
I'usuari que es troba a la primera posicio de la llista i reconstruir el model
afegint informacié agregada amb la finalitat de llancar una prediccié més
detallada.

Contents

1 Introduction
1.1 Motivation L o
1.1.1 Emergence of Data Mining
1.1.2 Machine Learning and Data Mining
1.1.3 Negotiation
1.2 Purposes.
1.3 Organization

2 Preliminaries
2.1 Knowledge Discovery in Databases and Data Mining
2.1.1 KDD Stages.
2.1.2 Data Mining. Tasks and Methods
2.2 Negotiation
2.2.1 Game Theoretic Models
2.2.2 Heuristic Approaches
2.2.3 Argumentation-Based Approaches
2.2.4 Machine learning techniques in negotiation

3 Working Hypothesis
3.1 Decision Trees Induction
3.2 Rules learning based on Covering
3.3 Other applications for Decision Trees
3.4 Probability Estimation Trees

4 Problem Definition
4.1 Casestudy
42 mWater Lo
4.2.1 mWater Requirement Specification
4.2.2 Activities in the Market scenario

5 Data description
5.1 mWater Database
5.2 Selectionof Data

10
11
11
12

14
14
14
19
25
28
29
30
31

33
34
37
38
38

40
40
40
42
43

6 Making mWater recommendations based on probabilities 53

6.1 Direct Ranking approach 54
6.2 Incremental Ranking approach 55
7 Implementation and Experimental Evaluation 60
7.1 Communication with Weka 60
7.2 Experimental Evaluation. 61

List of Figures

2.1 Stages in the KDD process. 15

3.1 Classification decision tree for iris plants. 35

List of Tables

2.1

6.1
6.2
6.3
6.4
6.5
6.6

7.1

7.2
7.3
7.4
7.5

Correspondence between tasks and techniques. 25
Trading tables in training dataset. 54
Test instance of a trading table. 56
Test dataset of water users. 56
Ranking associated to the trading table (1st iteration). . . . 57
Ranking associated to the trading table (2nd iteration). . . . 57
Example of the prediction of 10 trading tables. 58
Example of recommended groups of participants (Incremental

ranking approach). L 62
Example of groups of participants (Direct ranking approach). 62
Hits in each iteration (with k=4). 63
Summary of the resulting hit rates. 63
Hit rates according to the valueof & 64

Chapter 1

Introduction

1.1 Motivation

Data Mining is the process of extracting useful and comprehensible know-
ledge from large amounts of data, which is stored in different formats [1]. It
is the analysis of large observational sets to find unsuspected relationships
and to summarize the data in novel ways that are both understandable
and useful to the data owner. The relationships and summaries derived are
referred to as models or patterns.

Thus, the goal of this discipline is finding intelligible models from this
data, using appropriate techniques to analyze the data and extract new and
useful knowledge. Data Mining can be viewed as a result of the natural
evolution of information technology.

Data Mining is closely related to the concept of Knowledge Discovery in
Databases (KDD). In fact, sometimes both concepts have been used in an in-
distinguishable way. But there are differences between them. As we will see
in the second chapter, KDD refers to a process composed by several stages,
where one of these stages is precisely, the Data Mining. The five stages in
which is organized the process of KDD are: Integration and Data Collection;
Selection, Cleaning and Data Transformation; Data Mining; Evaluation and
Interpretation; Diffusion and Use. Data Mining is the most important step
in the process, this is why KDD is often confused with the term of Data
Mining. Later in this thesis we will go deeper in the connection between
these two concepts and in how the KDD process works.

1.1.1 Emergence of Data Mining

Data Mining does not appear because of the development of very new tech-
nologies, but because of the emergence of new needs and the discovery of a
new potential: the underused value of the high quantity of stored data in
the information systems of all kind of organizations. This way, data is no

longer a product, but becomes raw material ready to be exploited in order
to obtain the main objective: knowledge. Knowledge is specially valuable
for decision making in organizations [2].

How did these new needs come up? The amount and variety of information
computerized in digital databases has increased spectacularly in last times.
This historical information is highly useful to explain the past, understand
the present and predict future information. Most of the decisions taken
in organizations are based on information extracted from past experiences.
Additionally, due to the diverse sources and formats of data, it seems obvious
the need of analyze and unify data, in order to be able to extract useful
information from it. Thus, the main task of Data Mining will be to solve
problems analyzing data stored in databases.

The traditional approach to analyze the data from a database is done by
means of SQL queries and using On-Line Transaction Processing (OLTP).
However, this process only generates summarized information in a previous-
ly established way, and not scalable to large amounts of data. Databases
technology has developed a new architecture in order to solve this, Data
Warehousing. A Data Warehouse is a repository of heterogeneous sources
of data, integrated and organized by a unified scheme in order to make easier
the analysis and to support decision making. Data Warehousing includes
On-Line Analytical Processing (OLAP) operations, like summaries and ag-
gregations. The problem with OLAP tools is that they do not generate rules
and patterns. In other words, knowledge that can be applied to other data,
so as to inferring new knowledge and use it.

The limitations of traditional approaches that we just saw, have led to
come up the need of a new generation of tools and techniques able to support
the extraction of useful knowledge from the available information. These
tools meet under the designation of Data Mining. Data Mining differs from
traditional approaches because it does not obtain extensional information
(data), but intensional (knowledge). Data Mining outcome are sets of rules,
decision trees, neural networks... that can be used to extract useful and
valuable knowledge.

1.1.2 Machine Learning and Data Mining

The field of Machine Learning [9] concerns the design of systems which
automatically extract patterns from data. Machine Learning is a scientific
discipline based on developing computational methods which can learn and
improve from experience [32]. The term experience refers in this definition
to training data. This set of data is formed by examples, each one corres-
ponding to a real-world object, who may be accompanied by a label. The

10

label encodes a property, a measurement of this object or a class/group
membership [32].

The scenario where all the examples from the training set are labeled is
called Supervised Learning, while Unsupervised Learning refers to techniques
dealing with unlabeled data.

In supervised contexts, since Supervised Learning aims to obtain a func-
tion h : X — Y (hypothesis or model) which labels unseen examples
[32], it corresponds to Predictive Models. On the other hand, Unsupervised
Learning corresponds to Descriptive Models, which are not concerned about
predicting future data, but exploring the properties that characterize the
studied data.

1.1.3 Negotiation

The field of automated negotiation provides techniques and mechanisms
to allow several agents to interact and trade for assets, in exachange for
economical compensations. Agents are an essential unit in these trading
procedures, due to they and their individual interests are the triggers and
the recipient of any comercial transaction that can be proceeded within a
negotiation framework. Controlling and predicting the behaviour and pro-
ceedings of the agents turns to be vital in order to ensure an optimal per-
formance of a negotiation, and consequently, to ensure also the satisfaction
of the agents themselves.

Since the only information that we can handle before a negotiation pro-
cess is the historical data about past transactions ended in the same market
system, it seems clear the usefulness of benefit from this advantage and ex-
ploit this information in order to learn from past transactions and predict
the behaviour of agents in future negotations. In order to find behaviour in
past negotiations, namely, extract knowledge from stored data about tran-
sactions, we can make use of data mining techniques.

1.2 Purposes

The main goal of this thesis is to make an approach to a problem which has so
far been solved manually, as a data mining problem, covering all the stages
integrated in the KDD process. Concretely, we work within a framework
which models a water-right market system. Our task will be, given a set of
items, search the best group of items according to the behaviour of previous
groups.

This is a new approach in the way in which the market systems between
real users are considered. The water-right market corresponds to a virtual
market system in which water rights will be traded by water users and

11

transfer agreements will be executed by them under specific conditions. The
idea of our work is to apply machine learning and data mining in order to
provide the best trading tables (the basic mechanism in the framework for
trading an asset) that can be formed, by means of predicting the water
users that will behave better and, consequently, achieve the best transfer
agreement. The quality of a transfer agreement will be determined by some
criteria defined by the framework, such as maximum economical benefit,
social welfare, individual satisfaction, etc. With the purpose of providing
the participants that will show the best behaviour in a certain situation, we
aim to develop a model which learns from the past transactions recorded in
the system’s database and predict future behaviour of users under specific
conditions.

Since we work within a framework that implements a virtual market,
it seems obvious the relation of our problem with the field of automated
negotiation. The problem we face here can be also defined as a negotiation
problem approached from a data mining perspective, in order to select a
group of negotiating agents, who fulfill certain requirements.

The process is organized along this document as follows:

e First, the historical data of the water market, stored in a database,
is studied, analyzing which aspects must be considered and which at-
tributes are relevant for our purposes.

e When the necessary data is extracted from the database, a minable
view is generated, and a data mining process is developed, in order to
learn a model able to understand the users’ historical behaviour and
to predict future behaviour in a successful way.

e Then, in order to evaluate the quality of the model to check if it is
valid enough, we split data in two parts, assuring that the evaluation
of the models is done over a different data set from the training set
used for learning those models. As a result of the evaluation, a ranking
of users is generated, giving to the market system a recommendation
about the best participants that each trading table needs, in order to
achieve certain objective or maximize some feature.

1.3 Organization
This thesis is organized in seven chapters, including this introduction:

e Second chapter (Preliminaries): the concept of Knowledge Discovery
in Databases is introduced and deeply detailed by means of an expla-
nation of each of its stages. Furthermore, KDD and Data Mining are
connected and the differences between both concepts are submitted.

12

With regard to Data Mining, we analyze its tasks and methods, trying
to present them in a clear and understandable way. In this part it is
also introduced the concept of negotiation. We take a look to its main
characteristics and to its relation with the application developed.

e Third chapter (Working Hypothesis): here is analyzed the working hy-
pothesis, in which we study the supervised learning and some learning
algorithms, focusing on decision trees induction. Especially, we review
those decision trees that work with probabilities, since this kind of
trees will be the technique used for the generation of the model in our
application.

e Fourth chapter (Problem Definition): this chapter encompasses the
definition of the problem faced in this thesis; in the first section we
present the Case Study, paying attention to the question that we are
trying to solve, and in the next section we totally focus on the water
market system, reviewing the most important issues of its implemen-
tation. Also, we take a look to the Requirement Specification of the
virtual market system and we summarize the activities developed in
the market scenario, grouping them according to the space of the pro-
blem where they are located.

e Fifth chapter (Data Description): this chapter details the data used in
the application. The first section lists all the tables from the database
that are essential for our work, namely, those that are directly related
to the market view of the system implementation. Next section focuses
on the selection of the data, reviewing the minable views generated
and showing an example of a query that extracts information from the

tables presented in the previous section and several aggregate functions
defined.

e Sixth chapter (Making mWater recommendations based on probabili-
ties): the different approaches developed for the problem are examined
in this part. We explain how do they work and the differences and coin-
cidences between them. The explanation is accompanied by several
examples in order to visualize more clearly the process followed.

e Seventh chapter (Implementation and Experimental Evaluation): the
evaluation of the approaches mentioned in the sixth chapter is pre-
sented here. We show and comment the results thrown by the appli-
cation and we evaluate its quality and goodness, detailing the criteria
used for that evaluation.

Finally, the last section corresponds to a conclusion to the present work.

13

Chapter 2

Preliminaries

2.1 Knowledge Discovery in Databases and Data
Mining

Knowledge Discovery in Databases (KDD) is the nontrivial process of identi-
fying valid, novel, potentially useful, and ultimately understandable patterns
in data [7].

As it has been mentioned, usually the concept of KDD is confused with
Data Mining. Obviously, they are terms very related to each other, mainly
due to the fact that Data Mining is a stage in the process of KDD. While
KDD is the global process of discovering useful knowledge from databses,
Data Mining refers to the application of learning and statistical methods
in order to obtain hypotheses about patterns and models. Because of Data
Mining is the stage where hypotheses are generated, usually KDD is referred
with the term Data Mining.

KDD is a complex process that includes not only the generation of the
models and patterns, but also includes the evaluation and possible interpre-
tation of them.

2.1.1 KDD Stages

KDD is an iterative and interactive process. It is iterative since the output
of some stages can lead to previous steps, and sometimes several iterations
are needed to extract high quality knowledge. It is interactive because the
user should help in activities like data collection, validation of extracted
knowledge, etc.

Often, it is added a previous phase about the analysis of the organization
needs and problem definition [8], in which the purposes of the Data Mining
are established.

14

KDD process is organized in the following five stages, which are pictured
in the Figure 2.1.

{lntegration and } [Seleﬂﬁm‘r Cle"““%-} { Data Mining J { Evaluation and] { Diffusion and Use }

Data Collection Transformation Interpretation

= —p —» wﬂ—rlﬂl—P‘—’

Minable Transformed Patterns
Data

Knowledge
View

Data Warehouse

Figure 2.1: Stages in the KDD process.

1. Integration and Data Collection

The need of the activities performed in this stage comes from the fact
that databases based on On-Line Transaction Processing (OLTP) are
not enough to execute complex functions like analysis, planning and
prediction, namely, long-term strategic decisions. In fact, OLTP co-
vers daily needs of an organization but it is not intended to deal with
the functions mentioned. In this situations, usually the necessary data
for a KDD process comes from different organizations or different and
heterogeneous sources. The problem of assemble a dataset that makes
possible the knowledge extraction requires the decision of which inter-
nal and external sources are going to be used, how are we organizing
them, how will be they keep along time and finally, and in which way
could we extract information from them. The first step is to integrate
this data. The integration is possible thanks to a data warehousing.
This term refers to the tendency in the institutions to collect data
from several sources, stored by a unified scheme usually located in
a single location. Data warehousing is a relatively recent technology
that tries to provide methodologies in order to collect and integrate
historical data of an organization. Its goals are analysis, summaries
and complex reports and knowledge discovery.

Thus, although data warehouses are not essential for knowledge ex-
traction from data, they are very recommended, because of the seve-
ral advantages that they provide, when facing large amounts of data,
or data providing from heterogeneous sources or randomly combined.
Data warehousing makes the task easier to us.

2. Selection, Cleaning and Data Transformation

The quality of the knowledge discovered not only depends on the mi-
ning algorithm used, but also on the quality of the data mined. Next

15

step is about selecting and preparing the subset of data for the mining,
which would be part of the minable view. Therefore, data collection
needs to be followed by a data cleaning, in order to be ready for the
analysis. Related to this, some of the data collected are irrelevant or
innecessary for the mining task. Another important problem is the
occurrence of values that does not adjust to the general behaviour.
These values are called outliers, and they can represent bugs in the
data or they can be just correct values that are significatively diffe-
rent. Data mining algorithms does not have a common pattern to
treat them, since some algorithms ignore them and others discard
them. The reason of this disparity is that we shall be very careful
with outliers because there are applications where anomalous events
are more interesting than ordinary ones. As we can see, it will depend
on the application and on the individual situations.

Missing values is another problematic issue, due to that they can lead
to inaccurate results. There are several approaches to deal with mis-
sing values. It is important to know the reason why the values are
missing. For example, they can represent nonexisting values, incom-
plete data (as a result of a union of fields from different sources) or
maybe missing values can express relevant information. In general, the
potential actions to be developed to handle this problem are: ignore
them, remove the corresponding attribute, filter the row or replace the
value by an estimated value which does not interfere. The replacing
solution is one of the most used.

The presence of problems like outliers and missing values makes more
obvious the need of assuring the quality of the data and the right
selection of the attributes.

If we select as a minable view all the information that could be
relevant, it can turn it into a huge minable view with too many columns
and rows. It is more interesting to find a subset of instances in order
to handle the data more appropriately. Apart from reducing the size
of the minable view, the selection helps to improve the outcome. This
stage aims to present data in the most suitable way for data mining.
The output will be a set of rows and columns known as minable view.
This minable view will be a virtual table containing the data prepared
to modelization.

. Data Mining

The Data Mining stage is the most characteristic of KDD and it is
usually used to name the whole process. The goal is to produce new
knowledge that the user can apply. This is done by constructing a
model based on collected data from previous stages. The model is a

16

description of the patterns and relations among data that can be used
for predictions, for a better understanding of data or to explain past
situations.

Before starting the process is necessary to take three important deci-
sions:

e which kind of mining task is more appropriate
e choose the type of model

e choose the right algorithm that solves the task and obtains the
model we are looking for

Related to the concept of Data Mining, it appears the term of in-
ductive learning. First of all, we present four different definitions of
inductive learning:

e the improvement of the performance with the experience [9].

e the ability to predict plausible future observations or to explain
past observations.

e the identification of patterns, regularities, existing in the evi-
dence.

e the removal of redundancy, seen as information compression [10].

These four approximations are perfectly combined in the sense that
the learning allows us to identify regularities in a set of observations.
These regularities are redundancies that can be represented by pat-
terns, which will be used to predict future observations or explain
past ones.

The two last definitions correspond to inductive learning. This is a
special kind of learning, which comes from particular cases (examples)
and generates general cases (models) that abstract the evidence.

All the tasks and methods defined in Data Mining, which will be de-
tailed in further sections, are focused around the idea of inductive
learning.

. Evaluation and Interpretation

This stage evaluates the quality of the discovered patterns by a Data
Mining algorithm. It is not a trivial process, since the criteria involved
is very subjective. Ideally, patterns discovered must have three quali-
ties, namely, be accurate, understandable and interesting. Depending
on the application, one quality can become more important than other.

Thus, this phase tries to verify that the patterns produced occur in
the wider data set. In other words, we want to know if a certain

17

model obtained in previous stages is valid enough for our purposes.
There are several methods to evaluate the quality of a model from the
evidence. An optimal option for the evaluation is to test the models
over a different data set from the training set. Data is divided in two
parts, one for training and one for test. This separation is necessary
to guarantee the independence of the measure taken in the evaluation
of model accuracy. Usually, partition is made randomly, for example
taking 50% of the data for the training and the remaining 50% for the
test subset. This percentage varies according to the application needs
(80%-20%, 75%-25%...).

A problem originated by a random partition is that it may occur
that two different experiments done by the same evidence and the
same learning method, can obtain disparate outcomes. Also, when
the problem has not enough data, it is not a good idea to reduce even
more the data by splitting them.

A solution that reduces the dependency of the results on the way in
which the data is partitioned is called cross-validation. This method
consists in dividing the set of the evidence into k disjunct subsets of
similar size. A hypothesis is learned using the set composed by the
union of k — 1 subsets, and the remaining subset is used to calculate
a partial sampling error. This process is repeated k times, each time
using a different subset to estimate the sampling error. The final error
is calculated as the arithmetic mean of the k final errors. This way, the
final result has the mean of the partial expermients with & independent
test subsets.

Another technique that is specially indicated in order to estimate the
error of a model when there is not enough data, is bootstraping. This
method builds a model with the initial data, and then creates several
data sets, called bootstrap samples, by sampling the original data
with replacement. This means that instances from the original set are
selected (same instance can be selected more than one time). When
the sets are created, a model is built from each set and we calculate
its error rate on the test set. Final estimated error is figured averaging
the errors obtained for each sample.

With regard to the interpretation, Data Mining produces several
models whose interpretation by the user is essential to the success of
the knowledge extraction process. Because of this, some methods to
visualize the results of learning stage have been implemented. Visuali-
zation of models allows users to identify clearly the more significative
patterns that the model has discovered. Additionally, some visualiza-

18

tion methods enable users to modifiy the represented models in order
to refine them or adapt them according to the circumstances.

5. Diffusion and use

Once the learned model is built and validated, it can be used with two
main goals: by an analyst in order to recommend actions based on
the model and its results, or to apply the model to different data sets.
Whatever its use is, it is necessary a diffusion of the model, namely, a
distribution and communication to the potential users.

It is also important to measure how the model evolves. We should
check periodically the performance, due to the variability of the pat-
terns and external factors, that may lead us to a re-evaluation and
reconstruction of the model.

2.1.2 Data Mining. Tasks and Methods

Data Mining aims to analyze data to extract knowledge. This extracted
knowledge can take the form of relations, patterns or rules inferred from data
and previously unknown, or also can take the form of a concise description
(a summary). These relations and summaries represent the model of the
analyzed data. Models can be of two types: Predictive or Descriptive.

As it has been said, Predictive Models represent the tasks that can be
developed within a Supervised Learning context. In this supervised scenario,
all the examples of the training set have a label that reveals a property of
the object represented by the example. The aim is to predict the value of a
function h : X — Y for an unseen example, after having studied a number
of training examples. For that purpose, the learner generalizes from the pre-
sented data to unseen situations. Thereby, predictive models try to estimate
future or unknown values of certain variables (target variable) using other
fields of the database (predictive variables). This kind of tasks always has
an output. Within the schema of Supervised Learning, we can differentiate
between classification and regression. When the set Y is without order, we
talk about classification, and when Y is a continuous set of ordered values,
it is called a regression task.

Below, we will see a review of the data mining tasks and then we will
study several methods that can be applied to solve these tasks. Further
in this section is pictured in the Table 2.1 the correspondence between the
tasks and the methods that we are about to examine.

Tasks

Classification is the task of generalizing known structure to apply it to new
data. The set Y has nominal values, so that it can take a set of values
known as classes. A learned function will be able to determine the class for

19

a new unlabeled example: it will assign a value from Y for each value from
X. When there are only two classes, the task is called binary classification.

Another variation of classification is soft classification. Besides from the
function h, it learns an extra function that represents the certainty of the
prediction produced by h. This kind of extension enables other applications,
like a ranking of the predicitions or a selection of the best k examples.

With regard to Regression, it attempts to learn a function that represents
the correspondence between the examples, for each value of X it assigns to
it a single value for Y. Unlike classification, here the set Y is numeric, and
can be integer or real. In this case, the goal is to minimize the error between
the predicted value and the actual value.

Descriptive Models, on the other hand, meet those tasks that can be de-
veloped within a Unsupervised Learning context, namely, where the training
data set given to the learner contains only unlabeled examples. This kind
of tasks attempt to identify patterns that explain the data. That is, des-
criptive models explore the studied data and provide information about its
relationships and propierties, but do not predict new data. As a result,
descriptive tasks do not have an output attribute. Examples are presented
as an unlabeled and unordered set. The major challenging here consists in
discovering hidden groups or unknown classes in data [32].

The data mining tasks that result in descriptive models are clustering, as-
sociation rules and correlations. Clustering is the task of discovering groups
of individuals among the elements of a set h, such that the elements as-
signed to the same group are similar. It differs from classification in the fact
that, the groups and the groups membership are what we want to clarify,
and besides, classes and its number are unknown, in order to create dif-
ferent groups. Sometimes, the number of desired groups is determined by
the clustering algorithm. The function to obtain is identical to the function
mentioned in supervised contexts, with the difference that the values on Y
and the members of the set will be created along the learning process. The
main utility of clustering is to decide the behaviour of a new instance ac-
cording to which group it belongs, due to the certainty that all the instances
of a group act in a very similar manner.

In regard to correlation, this task analyzes relationships between nume-
rical attributes exclusively, so that we are able to detect if several attributes
from a set are linearly correlated or related in some other way. By exploring
relationships, we can determine hypotheses and discover associations in the
data set.

The last task that we are talking about in the unsupervised learning
context is association rules. Its purpose is similar to correlation but it applies
to nominal attributes. It searches for relationships between variables, so
that we get an association between two attributes when the frequency of

20

having certain values of each one together in a certain moment is quite
high. Usually, we look for more than one association rule, namely, a set of
association rules that work good together.

Methods

In the data mining context, a type of task refers to a type of data mining
problem. Methods are the techniques that let us solve the data mining tasks.
One single task can be solved by several methods, and also one method is
able to solve many different tasks. The type of knowledge that we want to
extract determines the possible techniques that can be used. In the Table
2.1 we present a correspondence between the tasks we have seen and several
techniques.

Algebraic and statistical methods are techniques based on expressing
models and patterns by means of algebraic functions, linear and no linear
functions, distributions or statistical aggregate values. Usually, a pattern
is obtained from a predetermined model, from which some parameters are
estimated. The most known algorithms within this group of techniques are
the linear regression and the logistic regression. The simplest regression
function is the linear, in which each explanatory variable participates in a
constant and additive way for all the observed domain of the answer [2].
Meanwhile, logistic regression is used to solve soft classification. This kind
of task obtains a probability estimation for categorical variables. Thereby,
logistic regression models a probability. In this case, the output variable has
two or more possibilities, each one with its respective probability.

Moreover, one of the most used techniques in data mining problems are
the Bayesian Methods, which are based on the estimation of the probability
of belonging to a certain class. According to [9], the two main reasons of
the relevance of bayesian methods in data mining and automatic learning
are, on the one hand, because they are practical methods to make inferences
from data, inducing probabilistic models that will be used to formulate hy-
potheses about new examples. And also because they calculate explicitly
the probability associated to each hypothesis. On the other hand, bayesian
methods enable a useful framework for the comprehension and analysis of
multiple learning techniques and data mining techniques which do not work
directly with probabilities. Regarding to its inconvenients, the main problem
that bayesian methods have to deal with is the computational cost that they
require. It is usual to restrict the models by some kind of simplifications.
Despite these simplifications, these models turn to be very competitive. Here
we can find algorithms like Naive Bayes Classifier and the EM Algorithm.
Before discussing these algorithms, we need to introduce the concept of
Bayesian Networks. They are a formalism that represents the qualitative
knowledge of the model by means of a directed acyclic graph. This know-
ledge articulates around the definition of independence/dependence relations

21

between the variables that compose the model [2]. Bayesian networks consti-
tute a very attractive tool in its usage as knowledge representation, because
they use graphical representation of the model. Naive Bayes is the simplest
classification model in this area. In this case, the structure of the networks is
fixed and we only have to learn the parameters. The Naive Bayes Classifier
[56, 57] assumes that all the attributes are independent when the value of
the class variable is known. Despite of this assumption, Naive Bayes Clas-
sifier is one of the most used classifiers, and it has been proved [58] that its
results are very compelling.

Other classifiers based on bayesian networks are TAN and BAN. TAN
(Tree Augmented Naive Bayes) [61] is an extension of Naive Bayes Classi-
fier that tries to improve the hit rate during the classification by means of
the specification of several dependencies between the attributes, by assu-
ming that the attributes form a bayesian network in a tree-structure. BAN
(Bayesian Network Augmented Naive Bayes) learns a bayesian network for
the attributes (except the class) and then increases the model by adding the
class variable and edges from it to all the attributes.

On the other hand, EM Algorithm (Ezpectation Mazimization) [59, 60]
can be used in problems where we need to estimate the distribution tables
associated to each node of a bayesian network. The algorithm is organized in
two iterative stages, where the first one calculates the expected frequencies
from the model, and the second phase deals with the reestimation of the
paramaters from those expected frequencies. The process stops when reaches
the convergence.

Another common technique are the methods based on decision trees and
rules learning. This kind of techniques will be deepen in its corresponding
section, but here we are going to see a brief review of them. Both perspec-
tives are techniques that can be represented by a collection of rules. In the
case of decision trees, these rules are structured like a tree. These methods
turn out to be very comprehensible, in the sense that they are expressed in a
symbolic way, by building a set of conditions, and so, the models generated
are extremely intelligible and usable for humans. In the chapter dedicated
to decision trees induction and rules learning we will have a more intensive
review.

Neural networks are another interesting approach. Artificial neural net-
works are a learning method that aims to emulate biological processors of
information. They use artificial supports similar to those that exist in hu-
man brains. These techniques learn a model by training the weights that
connect a set of nodes. The network topology and the connection weights
define the learned pattern. Basically, an artificial neural network consists of
units called neurons. Each neuron receives several inputs through intercon-
nections (synapsis), and releases an output. This means that in the network,

22

the outputs of some neurons connect with other neurons inputs. An output
is characterized by a propagation function that has the effect of excitation
when the weight between two neurons is positive. Instead, if the weight is
negative, the effect is inhibitory.

Artificial neural networks can be divided by those that use supervised
learning and those that use unsupervised learning. Supervised learning pro-
vides the network with an input dataset and with the right answer. The
input dataset is propagated forward until the activation reaches the neurons
of the output layer. In that moment, we can compare the calculated output
with the target output. Then the weights are adjusted in order to assure a
correct answer if the same input pattern is received again [2]. One of the
most used neural netwokrs in this context is the Multilayer Perceptron. This
consists of multiple layers of nodes in a directed graph, with each layer fully
connected to the next one. The activation propagates through the weights
from the input layer to the intermediate layer, where a function of activation
is applied to the inputs received. Then the activation propagates till the out-
put layer. Multilayer perceptron overcomes the limitations of the previous
Perceptron, since due to its multiple layers it can solve problems not linearly
separable. The Backpropagation algorithm [62] is the most known technique
that implements this kind of neural network. Its learning algorithm works
as follows: The weights are initialized to random values, as well as the input
dataset. The activation is propagated forward through the weights until
the activation reaches the output layer. Then, the network calculates the
error of each inputs (by comparing the output generated with the desired
output) and also of each hidden layer. The weights are now updated by
back-propagating the error backwards to the previous layers until the input
layer.

Meanwhile, in the unsupervised learning, the network is provided only
with an input dataset. This means that models are discovered only from
the input data, and does not exist an ouput value that we can use to com-
pare. The network must organize itself by means of reacting to some kind
of structure existing in the dataset. The two methods mostly used for un-
supervised learning with neural netoworks are the Hebbian Learning and
the Competitive Learning. Hebbian Learning [63] is used to obtain projec-
tions or optimal compressions of data sets. The conjecture described by
Hebb says that when a modification is produced between two neurons, the
influence of one over the another is increased. In a network with forward
propagation this statement means that the weight between an input neuron
and an output neuron strengthens when the activation of the input neuron
reaches the output neuron and activates it. This connection between two
neurons is called synapsis. On the other hand, in the Competitive Learning
takes a place a competition between the neurons of the output layer for
the right to respond or activate. The goal is to find groups within data
(clusters). One of the most important variations of competitive learning

23

are the Self-Organizing Maps (SOM or Kohonen Maps) [64]. This type of
neural network produces a two-dimensional discretized representation of the
input space of the training samples, which is called a map. The input layer
contains the examples and in the competitive layer each cell represents a
prototype. The objective of the training is to cause the prototypes to cap-
ture similar examples (in order to ensure that different parts of the network
respond similarly to certain input patterns). The Kohonen algorithm states
that there is a competition between the neurons of the output layer. The
difference is that not only the weights of the winning neuron are updated,
but also the weights of the neighbour neurons. This is defined by a neigh-
bourhood function, which preserves the topological properties of the input
space. However, in the training the number of neurons affected by this
function decreases with time.

Another variation of competitive learning is the Learning Vector Quan-
tisation (LVQ) [65]. It is based on Kohonen neural networks, although it is
a supervised technique employed in classification problems. The main dif-
ference from Kohonen Maps is that in this technique the number of classes
is known previously, so that in the competitive layer is introduced this num-
ber of cells (or a bigger number). These cells represent the prototypes,
which are distributed randomly along the input space. Once the network
is trained, the solution to the classification problem will be the disposal of
those prototypes with the rule of the nearest neighbour. The prototypes are
allocated according to the values of the weights of the connections between
the input layer and the competitive layer. The rule of nearest neighbour
works this way: the new unclassified example is introduced. It is calculated
the distance from this example to all the existing prototypes. The example
is labeled with the class of the prototype that has the lowest distance [2].
When comparing LVQ to SOM, we can observe that in LVQ does not exist
the concept of neighbourhood, and only is modified the winning cell (and
not always in the same direction).

Otherwise, the Support Vector Machines (SVM) try to maximize the mar-
gin between several formed groups, by means of transformations (denomi-
nated kernels) that can increase the dimensionality. The possible variations
depend on the kernel and the margin used. SVM are based on a simple
linear classifier. The standard SVM takes an input data set and predicts
for each given input, which of two possible classes the input is a member of.
Given a set of training examples, a SVM training algorithm builds a model
that assigns new examples into one category or the other. A SVM model
is a representation of the examples as points in space. The simplest model
of SVM is the maximal margin linear SVM. Assuming that the data set is
linearly separable in the input space, the examples can be divided by an
hyperplane such that in each side of it, there are only examples belonging

24

to a single class.

Last method we are seeing are the Case-based Reasoning techniques. This
type of methods aim to solve a problem by using information extracted from
a set of previous examples. K means clustering is the most popular method
of cluster analysis in this area. This method starts with several prototypes
and a group of unlabeled examples, and it tries to place the prototypes in the
space, such that data belonging to the same prototype have similar features
[66]. When the prototypes have been placed, each new example is compared
with them and associated to the nearest one.

Another important technique based on distances is the K-NN (k-nearest
neighbour) [67]. This method assigns the majority class among the k nearest
neighbours. This way, an object is classified to the class most common
amongst its k£ nearest neighbours. The main issue within this context is to
determine the optimal value for k.

Technique Predictive Descriptive
Classification | Regression | Clustering | Association rules | Correlations

Neural Networks v/ v/ v/

Decision Trees v(C4.5) v (CART) v/

Kohonen Maps v/

Linear Regression v/

Logistic Regression v

Kmeans v/

Apriori v/

Factorial Analysis v

CN2 rules v/ v/

K-NN v/ v/ v/

Naive Bayes v/

SVM v/ v/ v/

Table 2.1: Correspondence between tasks and techniques.

2.2 Negotiation

In the context of the application implemented in this dissertation, nego-
tiation arises as an important issue that we must pay attention to. Since
the water market system is developed within an environment of a Multi-
Agent System, where the trading mechanism constitutes a crucial stage in
the framework, we need to define some of the main characteristics of the
negotiation process.

As it is defined in [34], the concept of negotiation involves determining a
contract under certain terms and conditions. Automated negotiations form

25

an important type of interaction in agent-based systems for e-commerce. As
it happens in our virtual water market, automated negotiation provides a
mechanism that allows sellers and buyers to exchange offers iteratively to
reach acceptable agreements. A good automated negotiation can both save
time and find better deals in the current complex and uncertain e-commerce
environment [35].

A decisive aspect involved in a negotiation context and that is very im-
portant in our application, is experience. Good negotiation skills in humans
seem to come from the experience [34]. That is because, when we face a nego-
tiation situation, we make use of past negotiation experience and strategies
as guidance in suggesting suitable ways to proceed.

Collecting and analyzing all behaviour data obtained during the negotia-
tion process and about the negotiation result will improve our understanding
of the actual behaviour of negotiators during a negotiation process [36]. For
finding behaviour in negotiations, in this thesis we propose to use Data
Mining techniques.

When we talk about a Multi-Agent System, we should stop on the con-
cept of agent, and think about it. [38] and [39] say that agents are being
advocated as a next generation model for engineering complex, distributed
systems. Meanwhile, [40] and [41] mention that agents are being used as
an overarching framework for bringing together the component Al subdis-
ciplines that are necessary to design and build intelligents entities. A des-
cription that seems to be mostly accepted claims that an agent is an encap-
sulated computer system that is situated in some environment and that is
capable of flexible, autonomous action in that environment in order to meet
its design objectives [39].

Negotiation is seen in this environment as the process by which a group
of agents come to a mutually acceptable agreement on some manner [37].

Following the distinction appeared in [37], and more detailed in [42], auto-
mated negotiation research deals with three broad topics:

e Negotiation Protocols: the set of rules that govern the transaction.
This refers to the permissible types of participants, the negotiation
states, the events that change negotiation states and the valid actions
of the participants.

e Negotiation Objects: the range of issues over which agreements must
be reached.

e Agents’ Decision Making Models: the system by which the partici-
pants act in line with the negotiation protocol in order to achieve
their individual objectives.

26

Even so, there is no universally best approach for automated negotiation.
In [37] is described a generic framework for automated negotiation, where
a negotiation is viewed as a distributed search through a space of potential
agreements and where participants are the active components that determine
the direction of the search. Each agent who gets involved in the negotiation
process, has at the beginning a portion of the space in which it is willing to
make agreements. That space may change during the negotiation process,
and the search comes to an end when the required number of participants
find a mutually acceptable point in the agreement space or when the protocol
dictates that the search should be terminated without making an agreement.

Within the context of a very basic negotiation, the minimal negotiation
capabilities are to propose some part of the agreement space as being accep-
table, and to respond to such a proposal indicating whether it is acceptable
[37]. If we take as an example the simplest kind of negotiation, that is,
a Dutch auction [43], we can see that the process develops as follows [37].
The auctioneer calls out prices. When there is no signal of acceptance from
the other parties in the auction, the auctioneer makes a new offer which it
believes will be more acceptable (by reducing the price). In this protocol, a
lack of response is sufficient feedback to infer a lack of acceptance. In more
complex protocols, the minimal feedback requirement is that other agents
indicate dissatisfaction with proposals that they find unacceptable.

A negotiation where agents can only accept or reject others’ proposals
can become very inefficient and a time wasting. In order to improve the
efficiency of the negotiation process, the recipient needs to be able to provide
more useful feedback on the proposals it receives. This feedback can take the
form of a critique (comments on which parts of the proposal the agent likes or
dislikes) or a counter-proposal (an alternative proposal generated in response
to a proposal) [37]. Obviously, the more information placed in the critique,
the easier it is for the original agent to determine the boundaries of the other
agent’s agreement space. In contrast, counter-proposals differ from critiques
in that the feedback is less explicit but generally more detailed. This way, by
using critiques and counter-proposals, according to the feedback received,
the proposer should be in a position to formulate a new proposal that is more
likely to be in concordance with the other users’ wishes and, in consequence,
more likely to lead to a satisfactory agreement.

Within the framework proposed in [37] are discussed three negotiation
techniques, which we are going to review below. But before discussing these
techniques, we need to comment the main kinds of negotiation protocols that
are implemented in our application. The aforementioned dutch auction is
a type of auction where the price of the selling item is lowered until it gets
a bid. When the auction starts, there is a defined price for the auctioned
item, and the buyer can bid that price. If no buyer places a bid, the item

27

price is decreased by a percentage of its initial price. In the case that a bid
for the actual price is placed by a buyer, the auctioneer decides whether
to accept or to refuse the bid. Finally, the winning participant pays the
last announced price. The basic paramaters to start a dutch auction in our
implementation are the initial price, the minimum price and the waiting
time between rounds [16].

Another possible negotiation protocol is the English Auction. In this
auction, bids can be placed when the auctioneer is calling for bids. Usually,
the auction is opened with a suggested opening bid, and the bids must
be progressively higher in value. Each round terminates with a temporary
allocation of the good being auctioned to the prospective buyer that meets
the auctioneer call [42]. The parameters needed to start a english auction
in our application are the initial price and the length of the timeout [16].

A variation of the english auction is the Japanese Auction. When the
bidding starts, no new bidders can join, and all the bidders participating
are considered in the auction with a continuously rising price. Each bidder
must continue to bid each round or drop out.

A basic and useful protocol which is also implemented is the Face-to-face
strategy. In it, the seller who is trading with the item negotiates individually
with each buyer interested in the purchase. This is a very extended protocol
thanks to its simplicity and its intention to facilitate the rapprochement
between parties involved.

Finally, the last protocol implemented in the market is called Blind Dou-
ble Auction. As it is defined in [16], all the members participating are
matched by the auctioneer with another member that has submitted the
same price. If a bid from an agent matches with another agent’s bid, the
auctioneer informs the agent about the agreement that was just created in
the double auction, so each agent may finally know who is the other agent
he will trade with. If after several counter-offers all the participants of the
blind double auction are not matched, the round is restarted with this call
and all the members must make a new offer.

After seeing the negotiation protocols used in the framework, in next
sections we are presenting several negotiation techniques.

2.2.1 Game Theoretic Models

Game theory is a branch of economics that studies interaction between self-
interested agents [37]. Techniques and results of game theory can equally be
applied to all interactions that occur between self-interested agents. Game
theory is relevant to the study of automated negotiation because the partici-
pants in such negotiations can reasonably be assumed to be self-interested.

28

If we imagine a particular negotiation scenario involving several automa-
ted agents, two key problems arise on which the techniques of game theory
can be applied:

e The design of an appropriate protocol in order to govern the possible
interactions that may occur between the participants of the negotia-
tion. The protocol defines the “rules of encounter” between agents
[46].

e The design of a particular strategy that can be used by the individual
agents during the negotiation process. It seems obvious that an agent
will aim to use a strategy that maximizes its own individual welfare
[37], in terms of economical compensation or other kind of profits,
which depend on the particular case of each participant.

There are several problems associated with the use of game theory when
applied to automated negotiation. The first problem is that game theory
assumes that it is possible to characterize an agent’s preferences with res-
pect to possible outcomes but, in real world it is difficult to define human
preferences in a simple way, especially in complex situations that involve
multi-issue preferences. Second disadvantage is that this theory has failed
to generate a general model governing rational choice in interdependent si-
tuations [47]. Some very specialized models have been produced, instead of
a generic one that encompasses all of them. These separate models created
are applicable to specific types of interdependent decision making. Last
problem that has emerged is that game theory models often assume perfect
computational rationality meaning that no computation is required to find
mutually acceptable solutions within a feasible range of outcomes [37]. Ne-
vertheless, in real world cases, agents typically know their own information
space but totally ignore that of their opponent.

In conclusion, despite of the problems highlighted, game theory is ex-
tremely compelling as a tool for automated negotiation [37]. Especially
in those scenarios where the preferences and strategies of the participating
agents are known. This approach can turn out to be very useful in those
cases.

2.2.2 Heuristic Approaches

Heuristic methods overcome the aforementioned limitations of game theory
models. These techniques acknowledge that there is a cost associated with
computation and decision making and so seek to search the negotiation space
in a non-exhaustive fashion. This has the effect that heuristic methods aim
to produce good, rather than optimal solutions [37].

The main advantages that this approach offers are the following. The
models produced are based on realistic assumptions and, because of that,

29

they are capable to provide a more suitable basis for automation. Besides,
the designers of agents can use alternative models of rationality to develop
different agent architectures.

This line of work is concerned about modelling the agent’s decision ma-
king heuristically during the course of the negotiation, so that, the chosen
protocol does not prescribe an optimal course of action.

[37] has developed a set of deliberation mechanisms that work within a
fairly free negotiation protocol [48, 49, 50]. Within this framework, the space
of possible agreements is quantitatively represented by contracts having dif-
ferent values of each issue. The participants have to rate these points in the
space of possible outcomes, so that proposals and counter-proposals become
offers over these points. The termination of the search is determined by the
expiration of the time agreed or by the formulation of a mutually acceptable
solution. This corresponds to a point of intersection of the agents’ accepta-
ble outcome. An agent architecture that models the decisions included in
this search has been developed in [49].

Decision making within this mechanism is based on a linear combination
of simple functions called tactics, which manipulate the utility of contracts
[48].

Although heuristic approaches solve the disadvantages of the game theo-
retic models, they also charge with their own problems. According to [37],
the two main drawbacks of these methods are that the models often select
outcomes that are sub-optimal and that they need extensive evaluation.

2.2.3 Argumentation-Based Approaches

The basic idea of the argumentation-based approach is to allow additional
information to be exchanged, over and above proposals. This way the ap-
proach aims to remove the limitations showed in the negotiation systems
aforementioned.

The information to exchange can be of a number of different forms, all of
which are arguments which explain explicitly the opinion of the agent about
the proposal received or sent. Thus, in addition to rejecting a proposal,
an agent can offer a critique of the proposal, explaining why he finds it
unacceptable. Similarly, in reverse, an agent can accompany a proposal with
an argument which says why the other agent should accept it, specifying
the benefits that the other agent could obtain in the transaction. This
procedure makes it possible to change ocasionally the other agent’s region
of acceptability (by altering its preferences), and also provides a means of
changing the negotiation space itself.

As it happens in human argumentation, agents may not be truthful in the
arguments that they elaborate. Thus when evaluating a received argument,

30

the recipient needs to asses it on its own merits and then modify this by its
own perception of the argument’s degree of credibility in order to work out
how to respond.

The argumentation mechanism implemented in [51] builds on work in ar-
gumentation as an approach to handling defeasible reasoning. This way,
agents are able to handling the frequent contradictory statements, allowing
the resolution of conflicting arguments that may lead the negotiation process
to failure. Using agumentation in real agents (as opposed to simple collec-
tions of logical statements) means handling the complexities of the agents’
mental attitudes, communication between agents, and the integration of the
argumentation mechanisms into a complex agent architecture.

In [52] was showed how to augment a standard model of argumentation
to work for agents which reason using beliefs, desires and intentions.

2.2.4 Machine learning techniques in negotiation

The summary of the negotiation techniques that we have just seen reveals
that automated negotiation has not faced the problem of making a selection
of the most appropriate agents to participate in a particular negotiation
scenario. Nowadays, this selection is done manually by a determinate person
responsible of assembling the group of invited agents. Depending on the
particular case, this person will take certain specific criteria as guidance to
select the agents.

The distinction that we want to introduce in this thesis is that this group
of agents who participate in a negotiation process will be prepared following
the criteria set by the historical information of past transactions. Based on
the behaviour observed in historical negotiations, we want to predict the
behaviour of the agents in future negotiations, in order to select the most
suitable group of agents for a given negotiation scenario.

Since the only certain information available before starting a negotiation
process is the historical data stored about past transactions, our application
aims to learn from this information, concretely that relative to the behaviour
of the agents, paying special attention to its role in a transaction (whether
if they have achieved an agreement or not). We attempt to introduce the
capabilities of machine learning and data mining techniques by following the
stages dictated by the KDD process in order to apply a model that learns
from historical behaviour and predict the future behaviour of each partici-
pant in a certain negotiation scenario, which in our case will correspond to
a trading table.

Focusing in the system implemented, our virtual market incorporates and
defines its own negotiation mechanisms in order to govern and control all
the trading process. More concretely, within this system we are interested in
the market view, which is the view where it is implemented the environment

31

of trading tables and agents. Here, during a negotiation process, a group of
agents come (or not) to an agreement by using the negotiation mechanisms
available and satisfying the rules established in the market scenario.

An approach that also has used data mining techniques in negotiation
is [34]. This work has proposed a negotiation model which tries to learn
past behaviour of buyers in order to provide the seller with information
that he can use to adopt an effective interaction strategy, given a set of
registered strategies. In that work, the knowledge extracted from previous
negotiations is used to decide strategies during the negotiation, according
to the behaviour and the proposals from the other agent. The question they
want to answer is which strategy should a seller choose for negotiating with
a new buyer. This is solved using experience from previous negotiations
and analyzing them. This way, when a seller needs to decide a strategy, he
just has to find a cluster of buyers with similar behaviour to the behaviour
demonstrated by the buyer with he is dealing in the current negotiation.

32

Chapter 3

Working Hypothesis

As it has been said, the problem we face here consists in finding certain set
of appropriate elements, specifically participants, who give the best perfor-
mance according to a criterion based in their ease to reach a satisfactory
transfer agreement.

To prepare this group of best participants, in this work we have ap-
proached the problem by setting up a ranking to classify them, from the best
to the worst user who can be invited and participate in a certain trading
table. In order to create such a ranking, we use the classification algorithm
known as probability estimation trees. In next sections, we start commen-
ting supervised learning and explaining decision trees and then we focus in
probability estimation.

Among all the aproximations to the supervised learning, which has been
studied in prior sections, the so called methods based on models represent
the learned knowledge (the model) in some richer language than that used
to represent evidence from which the learning is done. These methods build
explicit generalizations from the training examples, and then they can be
applied to classify other non seen cases. On the other hand, methods based
on instances represent the learned knowledge as a set of prototypes described
in the same language used to represent the evidence. The prototype can be
one of the examples or can be obtained from one or more examples [54].

An advantage of the methods based on models is that once the model
is built there is no need to maintain the training examples to classify new
ones. Also, models can obviate some attributes if they are not relevant for
the classification.

Now are going to study some learning algorithms. According to the way
in which the rules are generated, the algorithms are classified in:

e Splitting Algorithms: consist in recursively divide into subsets the
initial data according to the value of one attribute until each subset

33

contains cases belonging to a single class. This is the strategy followed
by the decision trees induction.

e Algorithms based on Covering: this system consists in finding condi-
tions of the rules that cover as many examples of a class and the least
amount of the other classes.

In the next sections of this chapter, these algorithms and other ap-
proaches will be reviewed.

3.1 Decision Trees Induction

Decision Tree Induction is one of the simpliest learning methods. Decision
trees are used in different tasks related to data mining, which were studied
in prior chapters, like classification [20], regression [24] and clustering [25].

A decision tree is a graphical representation of a procedure to classify or
evaluate a concept. They are an excellent support tool to help us to make
appropriate choices among many possibilities.

Formally, a decision tree is a tree structure where each inner node re-
presents a condition or test about an attribute and each branch that comes
out of the node corresponds to a boolean condition over a possible value of
the attribute considered in the node. Each branch leads to another decision
node or to a leaf node. Leaves represent the class value for all the instances
that reach that leaf. An unseen case is classified starting in the root node
and applying the test of the attribute specified by this node and following
the branch corresponding to the value that the attribute has in the example.
The process is recursively repeated, and this way, a path is traced from the
root to the appropriate leaf, and so the instance is classified with the label
indicated in that leaf, determined by the set of training cases associated with
it. If the class attribute is discrete, the decision tree is called classification
tree, while if the class takes values in a continuous rank is called regression
tree.

In order to understand this more clearly, we are going to see an example
of the classification of iris plants (Iris dataset from UCI repository [26]).
This problem consists in determine the kind of an iris plant (iris setosa,
iris versicolor, iris virginica), according to the width and length of its petal
and/or sepal. In the Figure 3.1 is pictured a classification decision tree for
this problem.

Every path from the root node to a leaf correspond to a conjunction of
tests about the attributes, while all the tree corresponds to a disjunction of
those conjunctions. This can be expressed with a set of if-then-else rules,
where the conditions are the conjunction of the tests and the leaves are the
consequents.

34

iris—setosa

|/_ iris—virginica h
hS

/

' - ™
K iris—versicolor |
S

\I

r1s—virginica

Y ;
[iris—versicolor

Figure 3.1: Classification decision tree for iris plants.

Below is represented the set of rules corresponding to the previous deci-
sion tree of the Figure 3.1.

IF petalwidth <= 0.6 THEN Iris-setosa
ELSE petalwidth > 0.6

| IF petalwidth <= 1.7

| | IF petallength <= 4.9 THEN Iris-versicolor

| | ELSE petallength > 4.9

| | | IF petalwidth <= 1.5 THEN Iris-virginica

| | | ELSE Iris-versicolor // petalwidth > 1.5

| ELSE Iris-virginica // petalwidth > 1.7

Most of the induction decision tree algorithms build the tree following
the top-down system, from root to the leaves [20]. This approach applies
a Divide-and-Conquer strategy. Initially we have the training set, at every
turn the best attribute is selected, according to a certain criterion, as the
test of the node and the examples are distributed among the descendant
nodes. The process repeats until all the examples in a node are from the
same class. This node becomes a leaf, assigned to that class.

Algorithms that split the instances from the top to the bottom are called
partition algorithms. The two main issues in the decision trees induction
algorithms are the generation of possible partitions and the criterion of se-
lection of the best partition. These functions are, in fact, what distinguishes

35

the existing partition algorithms, like CART [24], ID3 [20], C4.5 [23] or AS-
SISTANT [53]. The importance of these points is due to the fact that once
a partition is chosen it can not be changed even though we realize that it
was a wrong choice. Furthermore, more number of partitions could generate
a more expressive decision tree, but also will increase the complexity of the
algorithm. Because of that, most decision tree algorithms allow a very limi-
ted number of partitions. For instance, the C4.5 algorithm, developed from
the previous algorithm ID3, only contains one type of partition for nominal
attributes and one type for numeric attributes. These types of partitions
are described as follows [54]:

e Partitions on nominal attributes: if a nominal attribute x; has the
values {v1,v2,..., v}, can generate partitions like i = v;, with 1 <
J<k.

e Partitions on numeric attributes: the rank of a numeric attribute x;
splits into intervals, such that the partitions are (z; < v, z; > v¢). Ve

is some intermediate value between the maximum and the minimum
value, and it is called cutoff point.

When facing the situation of choosing the best partition for a node, the
partitions are ranked by heuristic functions and the first in the ranking is
chosen. Most of the heuristics suggested are based on minimize the entropy.

According to [54], entropy is a measure used to characterize the degree
of impurity of the examples E. In a classification problem with c¢ classes,
the entropy is defined as:

[

Entropy(E) = Z —pi - logp; (3.1)
=1

where p; is the probability of an example of belonging to a class 7.

Another way to observe the effect of splitting the data by a particular
attribute is the criterion called Information Gain, which calculates the ex-
pected reduction of the entropy by splitting the examples according to that
attribute [54]. The Gain(E,z) of a set of examples E in relation to the
attribute x is:

Gain(E,x) = Entropy(E) — Z Do - Entropy(Ey) (3.2)
veV (z)

where V(z) corresponds to the set of values of the attribute z, p, is the
probability of the attribute of taking v(|E,|/|F|) and E, is the subset of E
whose attribute = has the value v.

As it is said in [54], by maximizing the gain, it is expected to obtain
smaller trees, by selecting in a given node the attribute which allows to

36

distribute the examples in groups that are as homogeneous as possible. Ne-
vertheless, gain does not reflect whether if the attribute x distributes the
examples in a uniform way or not. In order to include this information, it
has been proposed the criterion of gain ratio [20], which corresponds to a
modification of the gain, defined as:

Gain(E, x)

- _ 3.3
amm azo(,x) Split[nformation(E,w) ()

where E corresponds to a set of examples, = represents the selected attribute,
and SplitInformation(E, x) is the entropy of E with respect to x.

Another criterion is the Gini heuristic [24], which is similar to the gain
but it replaces the entropy of a set of examples E by:

g(B)=1-3 9} (3.4)
=1

Therefore, the quality of the partitions inducted by an attribute z is
settled as:

Gan(va) = g(E) - Z bv - g(Ev) (3'5)
veV (z)

3.2 Rules learning based on Covering

This rules perspective is somehow related to the previous one, since, as we
have shown, decision trees can be viewed as a collection of propositional
rules organized into a tree structure. In systems based on covering, the
algorithms build the rules following a covering strategy, consisting in the
generation of the rules one by one, and removing the examples covered by
the new rule. So that, the process starts again with the remaining uncovered
examples until it arrives to the final set of rules. These covering algorithms
are based in the family of AQ algorithms [27, 28]. Another example of
algorithm based on covering is the CN2 algorithm [44], [45]. CN2 redesigns
AQ including pre-processes and post-processes to generalize the rules. FOIL
[21] and FFOIL [22] are also based on covering.

There are two main differences between these algorithms and the de-
cision trees recently explained. In a decision tree, the rules are mutually
exclusive because of they come from different conditions. However, cove-
ring algorithms may overlap rules, since rules are generated independently.
The second difference is that a new example will be classified on a single
class in a decision tree but can be classifed on several distinct classes in a
covering algorithm. Splitting algorithms like decision trees tend to be more
efficient due to that each partition generates two or more rules. Even so,
the capability of representation of both approaches is very similar.

37

3.3 Other applications for Decision Trees

Classification task is the best known application of decision trees, although
it is not the only one. There are other variations of the decision trees in order
to use them for tasks like regression or clustering. The main difference of a
regression tree in front of a classification tree is that leaf nodes are labeled
with real values. Even so, regression trees are built similarly to classification
ones.

CART Algorithm [24] was one of the firsts decision tree learning systems,
and implements both learning models for classification (predict nominal va-
lues) and for regression (predict numeric values). This way, the quality of
a regression tree is measured in terms of a certain magnitude that we want
to maximize. CART makes binary partitions in the atrributes, by assigning
values of average and variance to each node, and then trying to select the
partitions that lower the variance of child nodes.

As we have said, apart from regression, there are also algorithms for de-
cision trees learning applied to clustering problems. The idea is to generate
partitions in order to split into dense zones and sparse zones. The process
continues until we get zones with very high density or very low density, which
constitute the tree nodes. The method developed by [25] refines this idea, by
considering all the examples from a class F (existing) and by adding fictional
examples N (nonexistent) uniformly distributed in the space. Then, it is
used a method of decision trees learning in order to classify the examples,
having as a result, rules obtained for class E, which become the clusters.

3.4 Probability Estimation Trees

Finally, another area where decision trees can be applied is the probability
estimation. As it happens in a classification problem, the examples have a
discrete label, called class. The main difference is that probability estimators
are based on assigning to each new case a probability distribution for all the
classes at the leaf nodes, instead of determine which is the class of the case.
They count the proportions from each class present at the leaf nodes, based
on the training data, and generate a local maximum likelihood estimate.

A probability estimator is specially useful when we need a certain relia-
bility in the prediction, when we want to combine predictions from several
classifiers or when we are interested in making a ranking of the predictions,
which is the case of our mWater problem. As it happens in mWater, there
are problems in which ranking samples by the class probability are more
useful than class predictions.

It is simple to adapt a classification tree to turn it into a probability
estimator, by means of using class absolute frequencies of each leaf. For

38

example, as seen in [2], if we have three classes: a,b,c. Each leaf node
with a cardinality n (the total number of training examples that arrive to
that node) has a certain number of examples corresponding to each class:
ng,Np and n.. The probability estimation is obtained by dividing each of
those values by the total cardinality, namely: p, = ng,/n,p, = np/n and
pe = ne/n. This kind of decision trees is called Probability Estimation Trees
(PETs) [30, 29].

Despite of the easiness of the conversion, the probability estimates ob-
tained are poor when comparing to other probability estimators. However,
there are some ways to change these results. [29] has improved the quality
of PETs by applying frequency smoothing like Laplace correction, which
has significatively improved the estimations. Similarly, at [30] the probabi-
lities were improved using a ponderation of all the probabilities calculated
through each branch, which was called m-branch smoothing. Furthermore,
it has been observed that the use of transformations techniques like pruning
usually harms the probability estimation. Consequently, trees unpruned
produce the best results.

Thus, considering these particularities, decision trees are a good tool for
the probability estimation.

Back into mWater problematique and focusing briefly in it, PETs appear
to be a valid solution in order to create a best group of participants, due
to the fact that we can leverage from the probabilities estimated by the
decision tree and rank them. Thereby, we set a group of water users which
show the best behaviour according to certain quality factor.

A recent work that have tried to exploit as well the use of PETS in order
to generate rankings is [31]. This work faces a mailing campaign application,
where a probability estimation model is learned and used to rank customers
according to their probability of buying certain target product. From that
customers ranking is selected the optimal cutoff that maximizes the overall
benefits of the mailing campaign.

Moreover, an extension of PETSs recently developed is [55], where it is
presented a redefinition of PETs based on stochastic understanding of deci-
sion trees that follows the principle of attraction. The probability estimation
tree learning method proposed there, is based on computing prototypes and
applying an Inverse Square Law that uses the distance to the prototype and
its mass in order to derive an attraction force which is then converted into
a probability.

39

Chapter 4

Problem Definition

4.1 Case study

The problem we tackle in this thesis consists in, given a set of items, choose
the best group of items according to the behaviour of previous groups. The
historical data we have is about items and collections, both of them with
several features. Each collection may have different number of items, and
each item may have appeared in several collections. This way, we can talk
about many-to-many relation between items and collections. The goodness
of the collection not only depends on the goodness of each individual re-
commendation, but on the whole set, since in many cases there might be
relations between the products.

Given this historical data, we are able to formalize the problem. For a
new collection and a set of items, we need to select a number of items such
that a certain utility function is maximized.

The case study consists in modelling a virtual water-rights market sys-
tem, following the process described above. This system will be explained
in the next sections. Within this water market context, participants will be
the items and trading tables will correspond to the collections. This way,
we have to choose the best k users that will participate in a certain tra-
ding table, which is characterized with some particular features. These best
participants will be inferred according to a utility function that we want to
maximize, in order to increase the benefits of the transaction. This group
of best participants can be formed in different ways, approaches that we are
going to detail deeply in next sections.

4.2 mWater

mWater is an application of a regulated open Multi-Agent System (MAS)
[16, 18]. It uses intelligent agents to simulate a flexible water-rights market,
including the model and simulation of the water-rights market itself, the

40

basin, users, protocols, norms and grievance situations [17, 18].

In hydrological terms, a water market can be defined as an institutional,
decentralized framework where users with water rights are allowed to vo-
luntarily trade them, always fulfilling some pre-established norms, to other
water users in exchange of some kind of compensation, economic or not [11].

The motivation of a system like mWater is due to the fact that water
scarcity is becoming a major concern in most countries [16, 17, 18]. Parti-
cularly, it is specially problematic in dry climates which suffer from severe
water shortages, such as the Mediterranean coast of Spain [33], where there
is a high degree of public awareness of the main consequences of the scarcity
and the need of fostering efficient use of water resources.

Water scarcity threatens the economic viability of current agricultural
practices and also is likely to alter an already precarious balance among its
different types of use. Countries in arid climates need to find better ways
to manage their water. Factors like inneficiency and waste are luxuries that
water scarce regions can no longer afford.

This way, more efficient uses of water may be achieved within an ins-
titutional framework where water rights may be exchanged more freely
[12, 13, 11]. Big problem appears due to the fact that if farmers cannot
sell their extra water allotment, and in consequence, receive an economical
compensation, they have no incentive to use the allotment efficiently, and it
may become wasteful [33]. Initially, the willingness of irrigators to buy or
sell water depends on economic motivations, such as the difference between
the price of water and net revenue each farmer expects to earn by irrigating.

However, it is not always a matter of price expectations, but also of
regulation. Because of water’s unique characteristics, it is essential to de-
sign appropiate water laws and regulate the users’ actions, interactions and
trades. This emphasis on regulatory aspects is due to the fact that the main
objective of policy-makers is to achieve an adequate behaviour of users to
ensure the success of the market [16, 18], and the best way to control this
is by means of regulation.

Additionally, it is important to consider also the social perspective. The
idea is not only to consider hydraulic factors, such as river basins, water
demands or pumping flows, etc., but also different norms typology, human
(mis)conducts, trust criteria and users willingness to agree on water-right
trading, which may lead to a win-win situation in a more efficient use of
water. This requires the use of intelligent agent technology, including trust,
cooperation, argumentation and, in general, agreement technologies [18].

The idea is to implement such a market with a regulated open multi-
agent system, which focuses on demand and, in particularly, on the type of
regulatory and market mechanisms that foster an efficient use of water while

41

preventing conflicts among parties [16, 18]. Also, one of the main goals of
mWater is to be used as a simulator to assist in decision-taking processes
of policy-makers. This way, it plays a vital role defining norms, agents
behaviour and roles, and assess their impact in the market, thus enhancing
the quality and applicability of its results as a decision support tool.

In such institutional framework we shall profit from agreement technolo-
gies in order to understand the behaviour of participating agents and the
collective effects of their behaviour. Taking control of these agents actions
and attempting to predict their future behaviour seems to be a useful tool
to perform more efficient and beneficial transactions.

4.2.1 mWater Requirement Specification

As it is declared in [16], mWater will be a virtual market system [14, 15, 19],
in which water right transfer agreements will be executed by autonomous
normative entities. In this environment, different entities will get in contact
with water right holders that are willing to transfer their rights. By means
of mWater system they will be able to negotiate the terms and conditions of
the transfer agreement, following the spanish National Hydrologic Plan laws.
The correct execution of the water balanced distribution and usage will be
assured by normative entities that will represent the Basin Administration
in the mWater system.

The two main scenarios mWater will support are: water markets among
water users of the same basin and water markets among users of different
basins. Both are quite simple, and comprise the temporary transfer of water-
right from one right-holder to another after reaching an agreement in terms
of the rights to be transferred and the economic compensation associated
[14, 15, 19]. These two scenarios are well detailed in [16]. In the first case, the
stakeholders are formed by all the members of the basin together with the
administrative organisms of the basin. Equally, when water users come from
different basins, stakeholders are members and administrative organisms of
the basins involved.

The two right-holders that finally come to an agreement are allowed by
law to establish the economic compensation by means of a private agreement
process. Also, when water requieres third parties’ infrastructure, its use
must be freely agreed by the parties: seller, buyer and infrastructure owners.

On the other hand, mWater system implements a MySQL database, which
will be seen later. According to the mWater implementation [18], there are
three views that comprise the basin, market and grievance structure. In the
first view all the information about the nodes, connections, users, norms and
water-right definition is modeled. The second view models the information
related to the entire market, including trading tables and their protocols,

42

the water rights to be traded, participants, agreements and contracts that
can be signed. Finally, in the third view, is modeled the information about
the legislation and conflicts that may appear after an agreement or contract
and the mechanisms for solving them. Anyway, in this work we only focus
in the market view, and its related tables.

4.2.2 Activities in the Market scenario

Here are described the different activities required for any of the afore-
mentioned market scenarios, as it is defined by mWater documentation.
For more information, see [16]. For our purposes, the activities have been
grouped by their scope, and the scopes are ordered according to their ap-
pearance in the scenario. The scopes that have been considered are the
following four: Registration, Offers and Demands, Transfer Agreements and
Grievances.

e Registration

The initial group of activities is related to the registration of all the
necessary elements in the system. These are the beginning steps in
order to fulfill the conditions required to create the scenario.

The activities included are:

— Admission and Registration of Water Users

— Registration of a Buyer

Registration of a Seller

Group Formation

e Offers and Demands
This scope combines the activities related to the offer and demand of
water rights, before they are negotiated.
— Publish Water-Right Offer
— Publish Water-Right Demand
— Withdraw Water-Right Offer
— Withdraw Water-Right Demand
— Query Water-Right offers
— Query Water-Right demands

e Transfer Agreements

Once the Water-Right offers and demands are public, the negotiation
can start, and so, all the activities included in it. This scope groups
the actions around a transfer agreement.

43

— Negotiate Water-Right transfer agreement

— Registration and publication of Water-Right transfer agreement
— Query Water-Right transfer agreement

— Authorization of Water-Right transfer agreement

— Execution of Water-Right transfer agreement

e Grievances

Last scope refers to the grievances mechanism. Water users are allowed
to initiate a conflict resolution procedure about a transfer agreement.
The activities in this group correspond to the typical stages on a con-
flict.

— Allegation against Water-Right transfer agreement
— Hearing of water dispute
— Sanctioning offenses in a Water-Right transfer agreement

— Expel Water user

Despite of the existence of these four groups of activities in the market
scenario, this work only takes into consideration the two of them directly
related to the trading mechanism, namely, Offers and Demands and Transfer
Agreements.

If we focus in Offers and Demands scope and take a look to the activities
that it involves, we can extract that they are all actions taken by a Water
user, who wants to do something with a water right that owns, or a water
right that he or she is willing to buy. The activities concerning to the pu-
blication of a water-right offer or demand constitute the trigger of a trading
process, which will be included as an instance in the corresponding table of
the database and, if it ends successfully (with an agreement), it will appear
also in the table that contains all the transfer agreements.

But before this happens, it is necessary to develop the activities included
in the Transfer Agreements scope. Here are defined the actions that can be
done about a transfer agreement, and correspond to the subphases which
an agreement can pass through. First step is the negotiation between the
seller and the potential buyers (and perhaps, a third party affected). In
a trading table is defined a certain number of invitations, which are sent
to the wished participants to join the negotiation. Anyway, this does not
mean that all the participants invited actually accept the invitation. The
water users are free to decline an invitation to a trading table if they are
not interested or if they consider that they can not extract anything positive
from the trading process. During the negotiation procedure, and according
to the settled protocol, the seller can hear the economic proposals of the
different users and freely negotiate with them in order to achieve the best

44

compensation in accordance to his individual needs. It is possible that a
potential agreement requires the intervention of another water user, besides
from seller and buyer. This user is called third party and it is due to the
fact that to carry out the transfer agreement is needed his infrastructure or
his authorization to use some area in his property. In this case, seller and
buyer negotiate together with the third party to give him a compensation
according to the help he has provided. Once the seller has accepted the offer
of a buyer and both have established the conditions (and, if it is appropriate,
with the third party), a transfer agreement is signed and remains pending of
the authorization from the Basin Administration. If the transfer agreement
conforms the normative regulation and there is no allegation (which would
be administered in the Grievance area), the transfer agreement is authorized
and will be executed in due course.

45

Chapter 5

Data description

5.1 mWater Database

Once we have seen a summary of the mWater characteristics, in this section
we focus in the implementation of the system. The MySQL database imple-
mented by mWater system is filled with 63 relational tables which store the
historical data of the water market. As we have said, in this work we only
care about the tables concerning the market view of the implementation.

In relation to this view of the database, the main tables we use for the
application are the following:

e TradingTable: represents the tables opened, each one having an
opening_user and a certain protocol_type, and with an opening and
closing date. Its primary key is formed by a combination of configura-
tion_id, trading_table_id and mwater_market_id. A market facilitator
is able to open a new trading table whenever a new auction period
starts or whenever a right-holder requests to trade a right [18]. In
such a case, the right-holder (opening_user) chooses the negotiation
protocol from a set of available ones. mWater system defines several
scenes through which can pass a trading table, namely, Registration,
Negotiation and Validation. This three-scene performative structure
is handled by the system.

It is important to note that the trading tables are stored here whether
the trading agreement has been reached or not. Instead, only the
trading tables where the seller has successfully transferred the water
right will appear in the table explained below.

e TransferAgreement: represents an agreement of a transaction on
a water right made by a buyer in a TradingTable, with a price ac-
corded with the seller by means of the negotiation protocol set in
the TradingTable. If the water-right transfer agreement conforms to
the National Hydrological Plan (current Spanish law on water rights)

46

normative regulation and there is no allegation, the agreement is au-
thorized by the Basin Administration. Once a trading table has been
succesfully validated reaching an agreement, a new instance appears
in Transfer Agreement table. Furthermore, if in the transfer agreement
has participated a third party, he or she receives the agreed compen-
sation.

User: contains all the water users included in the database, what-
ever its function. Every user has a user_type which indicates his
priority_value, and other individual properties, concerning to their be-
haviour in the negotiation. The table UserType adds more information
about these properties.

Although this table only stores users with water rights, mWater pro-

totype specifies the following stakeholders, where the first point cor-
responds to the different types of user reflected in the database:

— Water users: A water user is a water right holder. It could be:
* Human water suppliers: a company that supplies water for
human consumption.
x Irrigator: owner of a property that uses water for agriculture.
* Power companies: a company that produces electricity by
means of hydraulic power.
x Industries: other industrial uses.
x Aquiculture Users: water use for growing plants in water
dissolved nutrients.
x Leisure Users: sport and leisure uses of water.
x Navigation and Aquatic Transportation
Water users can adopt four different roles in the market scenarios:
*x Water User: a water right-holder of the basin.
x Buyer: a Water User that wants to transfer its right and or
buy a transportation resource.
x Seller: a Water User that wants to purchase rights and or
sell a transportation resource.
* Third Party: a Water User that can be affected by a water-
right transfer agreement.
mWater specification defines several attributes that describe a
water user, which are: name of the farm, area of the farm, de-
limitation and boundary localization, district where it is settled,
owner’s name, participation in the assembly expenses, water vo-
lume and type of water.
— Basin Adminsitration: assures an adequate management of the
water requests, in order to promote saving and socio-economical
efficiency in the different water uses.

47

— Ministry of the Environment and Rural and Marine Affair: is the
major authority on water uses regulation.

— The Irrigators and other Uses Jury: is acquainted of the possible
problems that may appear among the User Assembly members.

e RecruitedParticipant: represents all the water users who have par-
ticipated in a TradingTable, whether they are the final buyer or not.
For each participant there is an invitation_date and the number of his
participations within the negotiation is recorded in the table.

A water right-holder becomes a recruited participant when he or she
accepts an invitation for a trading table. During the negotiation, every
participant is allowed to interact and discuss offers for the water right.
If he arrives to an agreement with the seller, the participant turns into
buyer.

There is another possibility for a recruited participant in a trading
table to be a part of the transfer process, and it happens when the
participant becomes a third party, as it is listed in User part. This
may occur if the seller and the buyer need others’ infrastructure to
carry out the transfer.

e WaterRight: represents the water rights that will be traded in the
trading tables, owned by a certain water user from the system. The
water right is defined by: basin, water user, water volume, district
where it is settled, time period and type of water. The type of water
is determined by the type of user that owns it. The types of water
defined in this table are: Aquiculture, Human, Energy, Industrial and
Irrigation.

e Resource: represents resources that will be used in a TransferAgree-
ment (RequiredResource) between an initial and final date and with an
agreed price. The main resource in the system is obviously water, but
there are different water sources which are also resources of the system,
and the transportation infrastructure that connects different sources
and allows water flow. These resources are the following: river, dam,
underground water and transportation infrastructure. Nevertheless,
in our implementation we only consider water as a resource.

5.2 Selection of Data

We have seen in the previous section the most important tables in the
database for our purposes. Following the steps dictated by the KDD process,
all these tables correspond to the first stage, the one dedicated to Integra-
tion and Data Collection. The mWater database collects all the information
about past transactions performed within the framework. All this data needs

48

to be analyzed in order to select only the information that is useful to our
purposes. In this section we study how the minable view has been built,
which corresponds to the second stage of the KDD process, which precisely
outputs a minable view, ready to begin the process of data mining. The
minable view generated will be used in the third stage of KDD to build a
model that can make predictions and discover patterns in the data.

In order to selecting data to build the minable view, we design several
SQL queries that help us to extract the information that we need from all the
historical data stored in the water market system. The idea is to prepare
three different datasets, containing the training set, the group of trading
tables and the group of water users. For creating each dataset, it has been
modeled a query, which extracts the required attributes and instances for
each dataset.

Below it is presented as an example one of these three queries, specifically
the one used for obtaining the trading tables dataset.

SELECT TradingTable.configuration_id, TransferAgreement.trading_table_id,
TransferAgreement .mwater_market, ‘opening user‘, ‘protocol_type‘ ,
‘authorized_extraction_flow‘, ‘type_of_water‘,

DATEDIFF (WaterRight.initial_date_for_extraction, ’2000-01-01’) AS dias_inicio,
DATEDIFF(WaterRight.final_date_for_extraction, ’2000-01-01’) AS dias_fin

FROM ‘TransferAgreement‘ , ‘TradingTable‘, ‘WaterRight°

WHERE TransferAgreement.trading_table_id = TradingTable.trading_table_id
AND TransferAgreement.mwater_market = TradingTable.mwater_market

AND TradingTable.configuration_id = TransferAgreement.configuration_id
AND WaterRight.id=TransferAgreement.waterright_id

ORDER BY ‘trading_table_id‘, ‘configuration_id‘, ‘mwater_market‘

This SQL query extracts from the tables Transfer Agreement, TradingTa-
ble and WaterRight the attributes that are needed in the minable view, such
as the identifier of the trading table (composed necessarily of three elements),
the water user who has opened the trading table, the type of the protocol
used in the negotiation, the type and quantity of the water to be traded and
the initial and final dates of the extraction right.

Next, we are taking a deeper look to the attributes extracted in the query.
Regarding to the trading table identifier, as we just said, it is necessarily
composed of three attributes. These attributes are the identifier of the tra-
ding table, the identifier of the configuration and the identifier of the water
market which the trading table belongs to. This three-set will unequivocally
stand for a single trading table.

The water right holder who requests to trade a right is the user who
opens the table (actually, this task is developed by a market facilitator, but

49

for our purposes and with the aim of a better understanding, the right-holder
will receive the designation of opening user).

The type and the quantity of the water to be traded also appear in the
minable view, as well as the type of negotiation protocol that is used in the
trading process. Finally, the initial and final dates for the extraction right,
which are settled by the seller, are also an aspect to be considered.

With regards to the other two SQL queries mentioned, the aspect of both
queries is very similar to the showed prior. The one intended to contain
the training set extracts the information about the ended training tables,
wherever an agreement has been reached or not. This data set will be split
in two parts, in order to use one of these parts for the training and one for
the test. By making this partition, we guarantee the independence of the
measure taken in the validation of the model obtained in the training.

The other data set obtained by a query is the list of all the water users
included in the database who are able to participate in trading procedures.
Each water user is accompanied by the statistics of its participations in the
historical trade, that is, the number of times that he has participated in a
trading table, what role he took and the number of succesful trades in which
he has been involved, either as seller or buyer. These statistics have been
extracted from the database by means of the definition of several aggregate
functions, one for each value that we want to obtain. In a SQL query,
the aggregate functions return a single value by performing a mathematical
calculation on a set of some values of the table. All the aggregate functions
used in the users query are quite simple, since they just need to make use of
the COUNT function. This function returns the number of items in a group,
in our case the number of rows in a certain table that satisfy the criteria
specified in the WHERE clause. For instance, if we require the number of
final transfer agreements that each water user has reached in the history
of the market system, the query and its corresponding aggregate function
would have the following aspect:

SELECT user AS user_id, count (%)
FROM ‘TransferAgreement‘ , ‘TradingTable‘, ‘RecruitedParticipant®

WHERE TransferAgreement.trading_table_id = TradingTable.trading_table_id

AND TransferAgreement.trading_table_id = RecruitedParticipant.trading_table
AND RecruitedParticipant.trading_table = TradingTable.trading_table_id

AND TransferAgreement.mwater_market = TradingTable.mwater_market

AND TransferAgreement.mwater_market = RecruitedParticipant.mwater_market

AND RecruitedParticipant.mwater_market = TradingTable.mwater_market

AND TradingTable.configuration_id = TransferAgreement.configuration_id

AND RecruitedParticipant.configuration_id = TransferAgreement.configuration_id
AND TradingTable.configuration_id = RecruitedParticipant.configuration_id

AND RecruitedParticipant.user=buyer_id

GROUP BY RecruitedParticipant.user

50

In this simple case, the COUNT function only cares about the number of
rows that fulfill the conditions required in the WHERE clause, namely, if the
identifier of a participant in the trading table corresponds to the identifier
of the final buyer.

In the users query, the functions are a bit more complex. Below are
presented one by one the four aggregate functions defined:

count (case when RecruitedParticipant.user=opening_user then 1 end)
as seller_participations

This aggregate function returns the total number of times each water
user has opened a trading table in order to trade a water right he was
willing to sell. We must highlight that the fact that a trading table has
been opened does not mean that an agreement is reached in that table.
Because of this, it has been created another aggregate function that shows
the total number of sales that each opening user has achieved. Obviously,
this number must be obligatorily less or equal to the number thrown by the
previous function. The following query corresponds to that total number
of sales. It makes an intersection between the tables TradingTable and
TransferAgreement, as a result we get the quantity of trading tables that are
not included in the Transfer Agreement table, because there was no succesful
agreement reached in those trading tables. Since this intersection shows the
number of unsuccesful trading tables opened by each water user, we just
need to substract this quantity to the total number of opened tables by each
one, namely, the quantity obtained in the previous query.

SELECT count (*)

FROM TradingTable

LEFT OUTER JOIN TransferAgreement

ON TradingTable.configuration_id = TransferAgreement.configuration_id
AND TradingTable.mwater_market = TransferAgreement.mwater_market

AND TradingTable.trading_table_id = TransferAgreement.trading_table_id

WHERE TransferAgreement.configuration_id IS null
AND TransferAgreement.mwater_market IS null
AND TransferAgreement.trading_table_id IS null

On the other hand, the next two aggregate functions focus on the buying
statistics. The function presented below makes the count of the total number
of times each water user has participated in a trading table playing the role
of a potential buyer (this does not mean that finally becomes the buyer). To

o1

count the participations of a water user as a potential buyer, the function
calculates the difference between the total number of appearances of each
user in a trading table and the number of times that he appears as a seller.

count (*) - count(case when RecruitedParticipant.user=opening_user then 1 end)
as buyer_participations

Similarly, in order to compute the number of final transfer agreements
that each water user has obtained as a buyer in all the trading tables, the
function pays attention to the correspondence between the identifier of the
participant and the identifier of the user that has bought the water right in
each table.

count (case when RecruitedParticipant.user=buyer_id then 1 end)
as num_agreements

Another remarkable function defined in the queries is DATEDIFF. This
function returns the amount of time between two given dates. In the con-
text of the system’s database, the function is used to denote the difference
between the initial and the final date specified for the right of the water
extraction. The idea is to mark a previous reference date, from which we
can place any day, so that the starting day for the extraction (and also the
final date for extraction) appears as the interval between the reference date
and that day, calculated in days. The functions are defined as following;:

DATEDIFF (WaterRight.initial_date_for_extraction, ’2000-01-01’) AS dias_inicio,

DATEDIFF(WaterRight.final_date_for_extraction, ’2000-01-01’) AS dias_fin

52

Chapter 6

Making mWater
recommendations based on
probabilities

In this chapter, the approaches proposed for solving the problem are pre-
sented. Our application deals with the problem of assembling an optimal
group of water users that achieve the best performance in a particular tra-
ding table. The basic idea is to observe the historical information stored
in the market’s database in order to study the past behaviour of the par-
ticipants to successfully predict future behaviour under specific conditions.
As we are saying along this thesis, the predictions of the future behaviour
will be obtained by using the probabilities that can estimate a probability
estimation tree. By means of taking the value thrown by the tree for each
participant about the probability of becoming the final buyer, a ranking is
generated. A ranking is a great tool in order to visualize in a clear way
which are the best items of a list. In this particular scenario, the best items
shape the ideal group of participants for a trading table.

This issue has been faced in different ways. In this chapter we present
the best approaches that we have developed, those that produced the best
performance.

All the implementations make use of the three datasets mentioned in the
section 5.2. They coincide in the fact that they all split data in two parts,
one for training and one for the test. This way, the evaluation of the model
can be done over a set of data different from the set in which the model is
learned.

Below are presented these approaches dealing with the problem of ma-
king the group of the best participants for a trading table.

93

6.1 Direct Ranking approach

In this simple approach, for each trading table considered we will obtain
a ranking of the water users that can be invited as participants. These
users are ranked according to their probability to get a transfer agreement
during the negotiation with the seller who is trading his water-right. From
this ranking, we offer to the water market system a recommended group
of agents, formed by the k first classified users. k will correspond to the
number of invited participants required by the mWater system.

How can we perform that? We start from the idea of having, on the one
hand, a dataset with trading tables, and on the other hand, one dataset with
all the existing participants and their attributes. The 75% of the trading
tables dataset is taken for the training, and the remaining 25% is used
for the test. The trading tables stored for the training include, besides of
the main attributes that characterize a trading table and explained in the
prior chapter, the information about the participants in each one, and an
output attribute indicating whether the user has got a transfer agreement
in the trading table or not. In the Table 6.1 is represented an extract of
these trading tables used for the training. In order to better visualization
of the data, we omit some columns of the table that have no relevance
to the example. Each row stands for a trading table stored in the system’s
database and a water user who has participated in it. For each trading table
it is indicated which was the agent who achieved the transfer agreement, in
case that it is necessary (can exist trading tables without buyer).

configuration_id | trading_table_id | mwater_market | opening_user user (id) buyer
572 1 571 7 3 NO
572 1 571 7 4 NO
572 1 571 7 9 YES
587 1 586 5 9 .. || NO
587 1 586 5 10 .. || YES
1537 1 1536 4 3 .. || YES
1537 1 1536 4 7 .. || NO
1537 1 1536 4 8 .. || NO
1537 1 1536 4 10 .. || NO
1537 1 1536 4 11 .. || NO
1952 1 1952 10 4 YES
1952 1 1952 10 7 NO
1952 1 1952 10 NO
1952 1 1952 10 11 NO
2251 3 2250 8 2 NO
2251 3 2250 8 9 NO
2251 3 2250 8 10 NO

Table 6.1: Trading tables in training dataset.

54

From this minable view, we would learn a model for the utility variable.
The model is learned by means of a probability estimation tree, specifically
the application works with a version of the classifier C4.5, called J4.8. In
the next chapter are reviewed the details of the communication between our
application and the environment used. This way, a C4.5 decision tree is
generated from the training dataset. This model will be used to evaluate
the test dataset and predict future buyers on the trading tables included in
that dataset.

With respect to the test, for each trading table we analyze its perfor-
mance with each single water user, namely, we create as many new ta-
ble+participants as trading tables we have in the test dataset. As a result,
for each resulting dataset (each individual trading table combined with all
the potential participants), is generated a ranking of the participants that
better performance offer in the trading table. This performance is deter-
mined by the probability of each participant of having an agreement in the
conditions settled in the table. The probabilities are calculated by a proba-
bility estimation tree mentioned, the J4.8 classifier, which assigns to each
unclassified instance (trading table 4+ participant) a probability distribution
for the output classes, yes/no in our application (’yes’ stands for a user has
reached an agreement on the trading table, if not, the label is 'no’). Because
of we care about the possibility of a participant becoming a final buyer, we
are interested in the 'yes’ probability, so each instance is ranked according to
it. It is generated a ranking for each trading table in the test dataset, this
way each single trading table will have different appropriate participants
according to its particular features. From each ranking of probabilities, a
certain number of water users is chosen, according to the number of partici-
pants required in the trading table associated to the ranking. This group of
selected participants will constitute the recommendation given to the water
market system by our implementation.

6.2 Incremental Ranking approach

This approach is conceived as a redefinition and improvement of the previous
one. It also aims to create a ranking of participants according to their ’yes’
probabilities, but it takes into consideration more elements. We include some
aggregate information about the historical behaviour of the participants in
each trading table, with the purpose of refining the prediction of the model.

Following the steps detailed for the previous approach, the model is
learned similarly, data splits in two parts and the same datasets are used.
Up to this point, the steps followed are the same. The main difference
arises when the ranking is generated, because we re-evaluate the model
introducing several modifications. The first improvement is produced when

95

the ranking for each trading table is available, so for each one we take the
first classified of the ranking, namely, the instance who has obtained the
highest probability for the ’yes’ class, and keep this user apart as the first
of the final group of recommended participants, that we will offer to the
mWater system. This user is called the winner. In order to choose the next
participant, we rebuild the classifier, but before rebuilding we introduce
slight changes in the datasets that we are using. This means that this time
the winner is removed from the users’ dataset (this way that participant
can not “win” again) and also we add an attribute in the training dataset
which contains the information associated to the winner statistics. For each
trading table of the training set, this new attribute indicates whether the
winner had participated in it or not. The model is re-evaluated and a new
probability estimation tree is generated. The test is evaluated similarly
to the prior approach, and a new ranking is generated for each trading
table of the test dataset. In the new rankings is obviously not included
the winner of the previous iteration, and each ranking tends to be different
from the ranking generated previously for the same instance. Choosing the
top of the list again, we have the second participant for each trading table
recommendation. Then we repeat the process iteratively until we obtain the
required number of participants for the trading table.

Let us illustrate the process with an example. Suppose we have a test
dataset containing all the unclassified trading tables combined with all the
potential water users that can be invited to the negotiation process. Suppose
also that the required number of invitations has been fixed on k = 4, so that
in the incremental approach we will run the application until we get the
4 recommended participants. This means 4 iterations. For example, an
instance of one of these trading tables is represented in the Table 6.2.

configuration id | trading table id | mwater market | opening user | protocol | flow | type_of water | dias_inicio | dias_fin
217 1 2216 5 1 97 human 3653 5478

Table 6.2: Test instance of a trading table.

user | user_type | priority_value | seller_participations | buyer_participations | num_sales | num_agreements
2 5 6 232 645 133 143
3 4 7 210 660 109 162
4 6 5 170 678 80 247
6 6 5 169 700 93 260
7 6 5 208 635 121 125
8 6 5 187 696 92 203
9 7 4 150 663 101 122
10 5 6 134 744 50 241
11 4 7 151 730 66 154

Table 6.3: Test dataset of water users.

o6

The potential participants are represented in the Table 6.3. Each user
is accompanied by information about the past transactions in which he has
participated, both as seller and as buyer. The model would predict, for each
user, the probability of becoming a buyer in the trading table of Table 6.2, by
means of achieving an agreement with the opening user of the trading table
after a negotiation process. Then, these probabilities are ranked in order to
choose the participant who occupies the top position of the ranking.

The classification obtained for the trading table after ranking the ’yes’
probabilities takes the form pictured below. Assuming that the number of
invitations required by the system is k = 4, the ranking only shows the top
four participants.

Water User | Probability
10 60%
6 48,24%
4 48,24%
3 42.42%

Table 6.4: Ranking associated to the trading table (1st iteration).

Water User | Probability
6 85,81%
11 72,16%
8 50,77%
3 34,32 %

Table 6.5: Ranking associated to the trading table (2nd iteration).

Following the scheme described before, from this ranking we choose only
the top of the list (that is, user with id = 10 in our example) and rebuild the
model, introducing the modifications already mentioned. Now, the training
set includes a new attribute indicating, for each trading table, whether the
winner of the previous iteration had participated in it or not. The winner
is also removed from the pool of water users (pictured in Table 6.3) that
can be invited to the trading table. After the second iteration, the ranking
generated is showed in Table 6.5. We should emphasize that the ranking
after the second iteration has changed significantly from the first ranking
showed in Table 6.4, due to the introduction of aggregate information which
reflects the possible relationships and influences between the agents. It seems
obvious that if the iterations after the first one do not change the results of
it, it would be not necessary to develop this incremental approach.

Then, the process repeats until we obtain the required number for the
group of recommended participants (in this particular example, until we

o7

make four iterations).

In order to understand this more clearly, let us see one more example
of the execution of the application. In the Table 6.6 there are pictured ten
trading tables predicted, showing the prediction made by the model and the
buyer who achieved the transfer agreement in the real world.

configuration id | trading_table id | mwater_market | 1st ranked (id) || Real case buyer (id)
757 2 756 10 3
311 3 310 4 4
573 2 572 8 6
704 2 703 6 8
505 2 504 3 8
1986 1 1985 10 10
1193 1 1192 8 8
858 1 857 6 10
1052 1 1051 4 2
236 3 235 2 10

Table 6.6: Example of the prediction of 10 trading tables.

In this incremental ranking approach, the results of this table would
correspond to the first iteration. We can observe that each trading table
has an independent prediction, namely, the user predicted as the winner in
each one is not affected by the predictions of other trading tables. In the
next chapter, we will study the different ways of how this results have been
evaluated.

This method would improve over the previous one as more appropriate ag-
gregate attributes are included, in such a way that this information captures
global information about the trading tables and not only local information.

It is important to highlight also that in the previous approach the values
of the probabilities obtained by the decision tree for each instance are inde-
pendent from the other water users considered for the same trading table.
Meanwhile, in the incremental approach the other users information is used
to calculate the probability of each participant. This occurs after the first
iteration, when we start to take into consideration who was the participant
with the highest probability in the previous iterations and also it is included
the information of the participation of that user in the trading tables of
the training dataset. This way, the estimation of the future behaviour of
a water user is conditioned by its relationship with the other users of the
pool. The social aspect of a negotiation is an important issue to consider,
since the relationships between real users can facilitate or lead to failure
a trading operation. In the incremental method, we take into account the
agents that worked together in past negotiations and then appreciate this

o8

information in order to predict the most suitable group of participants for
each new trading table.

Related to that, our incremental approach has resemblances with the con-
cept of Structured Prediction. This kind of problems deals with the task of
predicting structured objects by means of learning a function h : X — Y
where Y corresponds to complex structured outputs. This output space Y
decomposes over some smaller substructures and the different output values
are related to each other. As it is commented in [68], these dependencies
between the output units suggest that in each case it makes more sense to
solve a single task of predicting structured outputs rather than a collection
of independent classification problems.

The incremental approach defined is halfway between the structured
prediction and the idea of simply rank the probabilities. As we have said,
the resulting value of the probability of getting an agreement is affected
by the dependence of the water user to the other users. In our particular
case, the output space is not so much a structured prediction as a prediction
depending on the relationships between the individual agents.

99

Chapter 7

Implementation and
Experimental Evaluation

7.1 Communication with Weka

The classifiers generated in the approaches studied in the previous chapter
have been learned by means of WEKA. It is a free distribution data mining
tool, Java implemented. In this section it is presented a brief review of the
main points of how the application interacts with Weka.

WEKA is a data mining environment capable of accessing to data. Be-
cause of that, we can load the data from files in a ’.arff’ format. This
corresponds to a plane file structured in rows and columns. So that, we
need to settle the datasets extracted from the database in that format, in
order to become understandable by WEKA. This way, the application de-
veloped can read the datasets as external files and work with them by using
WEKA libraries in a successful way.

WEKA provides us with many algorithms that we can apply to datasets.
As it has been studied, the application works with probability estimation
trees, in order to create a ranking of participants according to their proba-
bilities. WEKA implements a version of C4.5 classifier, mentioned in the
section 3.1 when talking about decision trees induction, called J4.8. This
method builds a model from the training dataset with the form of a decision
tree, which will be used in the test, for classifying new instances.

As regards to the test, WEKA evaluates the test dataset according to the
previously trained set of instances. By means of the probability decision tree
mentioned, for a new instance (a trading table combined with a potential
participant) it will assign a probability of the participant of belonging to
each class, ’yes’ or 'no’, according to his probability to become a buyer in
the trading table.

60

7.2 Experimental Evaluation

Once the models are built, we test the validity of their predictions in the
evaluation part. As it has been examined in the previous chapter, we analyze
the performance of each new trading table combined with all the potential
users that are able to join the negotiation that is about to start. For this
purpose, we have used a test dataset filled with 382 instances, each one
corresponding to an unlabeled trading table. This number of instances has
been extracted from the total training dataset, consisting of 1562 trading
tables. From this dataset we have taken the 25% (382 instances) for the test,
and the remaining 1144 were used for the training. The results reviewed in
this section are taken from the average of ten executions of each of the two
approaches explained in the prior chapter.

This way, for each dataset trading table 4+ users, it is calculated, by
means of the probability estimation tree, the probability of each instance to
belong to the class ’yes’ and to the class 'no’. Then, a ranking is generated
in order to observe which are the participants who have obtained the highest
'yes’ probabilities. After generating the rankings for each trading table, and
for each iteration in the case of the incremental ranking approach, we test
their hit rate. Before studying the results, we are going to see how the
evaluation is performed.

It have been used two ways of measuring the models. In both of them,
the hit rate is obtained by observing how the trading table predicted was
developed in the real world. The difference comes because in the first way,
if the participant that was actually the final buyer of the water right in
a specific trading table is the same as the one that our model has ranked
on the top of the list, we conclude that the model has achieved a succesful
prediction. Instead, the second way aims to see further than the user placed
on the top of the list. This way to evaluate the predictions is to form, for
each trading table, the pool of k participants required by the mWater system
and to observe if the real world buyer is in that group of users recommended
by the model. In the case of the incremental ranking approach, whenever
an iteration is produced, one participant is picked for the group associated
to each trading table. Meanwhile, in the direct ranking approach, the group
is extracted directly from the ranking obtained for each trading table.

In the Table 6.6 of section 6.2 was showed an example of an execution of
the incremental ranking approach, considering the first type of evaluation
just commented. The total hit rate of the model corresponding to that exam-
ple was 23.82%. This hit rate corresponds to the possibility of “guessing”
the real buyer in the first iteration of the execution, but since the mWater
system usually asks our application for a recommendation of a group of best
agents, it seems more appropriate to measure the quality of the predictions
in terms of a group of several users, as it is evaluated in the second way

61

configuration id | trading table id | mwater market | 1st | 2nd | 3rd | 4th || Real case buyer (id)
77 2 756 10 8] 6| 4 3
311 3 310 4 1101913 4
573 2 572 8|1 3 |10 6 6
704 1 703 6 | 10| 4|8 8
505 1 504 31 8 |6 |10 8
1986 1 1985 106 |5 |8 10
1193 1 1192 81 3 |10 2 8
858 1 857 6 | 10 | 4 10
236 3 235 2 1103 |11 10
1052 1 1051 4 17|38 2

Table 7.1: Example of recommended groups of participants (Incremental
ranking approach).

explained above. This way, considering k& = 4, Table 7.1 completes the
Table 6.6 by picturing an example of several groups of participants made for
different trading tables. The right column contains the real buyer in each
trading table. In this particular case, the total hit rate, considering a hit
when the real buyer is contained in the group, reaches the 62.56%.

Meanwhile, the corresponding results of the direct ranking approach for
the same trading tables of the previous table are represented in the Table
7.2. In this approach, the group of selected participants for a new trading
table is taken directly from the top k users of the ranking associated to the
trading table. The total hit rate in this example, also considering a hit when
the real buyer is contained in the top k ranked agents, reaches the 54.45%
(208 hits over 382 trading tables in the test dataset).

configuration id | trading table_id | mwater market | 1st | 2nd | 3rd | 4th || Real case buyer (id)
757 2 756 0] 9 |42 3
311 3 310 8|10 3 |11 4
573 2 572 21 8 |10 6 6
704 1 703 8110 6 | 4 8
505 1 504 816 | 3 |1 8
1986 1 1985 10 6 | 4 10
1193 1 1192 8110 | 6 8
858 1 857 4 1101 6 10
236 3 235 51 9 | 11| 8 10
1052 1 1051 81 4 |3 |10 2

Table 7.2: Example of groups of participants (Direct ranking approach).

62

In order to understand how the hit rate is calculated, the Table 7.3 shows
the number of hits achieved by an execution example in each iteration of
the incremental ranking approach. We need to keep in mind that in each
iteracion, a hit is produced when the top agent of the ranking corresponds
to the buyer in the real world case. Obviously, when a hit is produced in a
certain trading table in the iteration n, the next iterations (n + 1,n + 2...)
of that particular table will not be considered as potential hits, because the
top user (who coincides with the real case buyer) has been already removed
from the pool of potential participants.

Iteration || 1st | 2nd | 3rd | 4th || Total
Hits 76 | 64 | 67 | 32 239

Table 7.3: Hits in each iteration (with k = 4).

In this case, the total number of hits of the table is 239. As the test
dataset used for the example contained 382 trading tables, the total hit rate
is 62.56%.

The next table summarizes the average hit rates of each approach after
several executions of the application, considering the two ways mentioned
of evaluating them.

Approach First classified | Group of 4 agents
Direct Ranking Approach 19.11% 54.97%
Incremental Ranking Approach 23.82% 61.78%

Table 7.4: Summary of the resulting hit rates.

As we can observe, in both examples of Tables 7.1 and 7.2, and in the
summary of Table 7.4 (and therefore, in the rest of the execution, since
the examples pictured are a representative sample of the results), usually
the real buyer is contained in the group of participants selected by the
application. This way of evaluating, in contrast to the first one, which only
cares about the first classified, seems to be a fairer measure of the validi-
ty of the prediction, since when a new trading table is opened within the
framework, what we offer to the system is the recommendation of this group
of agents, and if it is considered appropriate, those will be the participants
invited to the negotiation process. The hit rates of 62% (at incremental
ranking approach) and 55% (at direct ranking approach), constitute a good
measure of the goodness of the application developed.

63

The Table 7.5 presents a compilation of the differences of the hit rates
obtained according to the number of agents picked to form the recommended
group (namely, the possible values of k).

Approach k=1 k=2 k=3 k=4 k=5 k=6
Direct Ranking 19.11% | 29.32% | 43.2% | 54.97% | 66.23% | 74.61%
Incremental Ranking || 23.82% | 38.22% | 50.26% | 61.78% | 73.04% | 83.78%

Table 7.5: Hit rates according to the value of k

We can observe the solid performance of the incremental method when
the number of invited participants is increased to five or six, reaching a
hit rate of nearly 84%, which could be considered a good estimation of the
trading table development.

As we commented in the presentation of incremental ranking approach in
section 6.2, this method is supposed to improve the direct ranking approach
by capturing aggregate information about the agents who participate in the
negotation process, as the relationships between the users that can affect
the trading. Thanks to the execution of several iterations, the probabilities
of each participant of getting an agreement in a trading table are recalcu-
lated in the n > 1 iterations, based on the relationships and interactions
between individual users. After seeing the results, we can conclude that
this improvement actually happens, since most of the times the execution
of the incremental ranking approach throws a higher hit rate than the other
approach.

64

Conclusions

In this thesis we have presented an approach based on automatic learning
in order to elaborate trading tables within the framework of a negotiation
process. We have applied the methods developed to a particular case: a
water market system. It have been proposed two methods based on com-
puting the probabilities of each agent of buying a water right, by means of
taking into consideration the information about their trading behaviour in
past negotiation processes.

The process that leads to the need of the proposed methods works as it
follows: the virtual market receives the demand of opening a new trading
table in order to trade a water right by a water user who is interested in
temporarily transfering its right. Then, the system requires to our applica-
tion of a recommendation of the best group of agents to join the negotiation
in order to achieve the most satisfactory agreement. At this point, the me-
thods developed prepare that recommended group according to the different
characteristics of each trading table, the agents and the behaviour observed
in past negotiations within the same framework.

The groups are formed using the probabilities thrown by a classifica-
tion algorithm of a probability estimation tree. Each probability stands for
the likelihood of an agent of becoming the final buyer of the water right
traded. The agents with the highest probabilities are picked up to concoct
the recommended group.

After studying the results reviewed in section 7.2, it can be highlighted
that the incremental ranking approach throws nearly a 75% of hits, when
the trading tables are composed of five agents, and nearly 84% when six
agents are required. This hit rate overcomes the outcomes of the direct
ranking approach. This improvement is due to the fact that the incremental
method aims to include aggregate information about the historical behaviour
of the agents, and also incorporate the social aspect of the negotiation, by
means of considering the relationships between the individual participants.
The inclusion of such aspects makes the incremental ranking approach more
sensitive to the details of interactions between agents that could decant the
negotiation towards a specific user.

65

On the other hand, in a case of a trading table where the application
predicts a group of participants in which the real case buyer is missing, it
would be a very interesting issue the possibility of checking how this group
handles the negotiation and if they achieve a transfer agreement that is more
beneficial for the parties involved than the original agreement that the real
buyer reached. This kind of evaluation of the predictor could not be per-
formed because of several difficulties (beyond our control) in the simulation
tool used to simulate the whole water market system. However, it is a very
interesting aspect to consider in possible future improvements of the work
developed in this thesis.

66

Bibliography

[1]

Clark, P.; Boswell, R.: Data Mining. Practical Machine Learning Tools
and Techniques with Java Implementations, Morgan Kaufmann Pu-
blishers, 2000.

Hernéndez, J., Ramirez, M.J., Ferri, C.: Introduccion a la Mineria de
Datos, Pearson Prentice Hall, 2004.

Baklr, G., Hofmann, T., Scholkopf, B., Smola, A.J., Taskar, B.: Pre-
dicting structured data, The MIT Press, 2007.

Ricci, E., De Bie, T., Cristianini, N.: Magic moments for structured
output prediction, Journal of Machine Learning Research, 9:2803-2846,
2008.

Joachims, T., Hofmann, T., Yisong Yue, Chun-Nam Yu: Predicting
structured objects with support vector machines, Communications of
the ACM, Research Highlight, 52(11):97-104, November 2009.

Vembu, S.: Learning to Predict Combinatorial Structures, PhD thesis,
Department of Computer Science, University of Bonn, 2009.

Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining
to Knowledge Discovery: An Querview, Advances in Knowledge Dis-
covery and Data Mining, 1-34, AAAI/MIT Press 1996.

Two Crows Corporation: Introduction to Data Mining and Knowledge
Discovery, 1999.

Mitchell, T. M.: Machine Learning, McGraw-Hill, 1997.

Solomonoff, R.: A Formal Theory of Inductive Inference, Part I, In-
formation and Control, Part I: Vol 7, No. 1, 1-22, March 1964.

Thobani, M.: Formal water markets: Why, when and how to in-
troduce tradable water rights, The World Bank Research Observer,
12(2):161179, 1997.

67

[12]

[13]

[14]

[15]

[16]

[17]

[22]

[23]

[24]

Calatrava, J.: Mercados y bancos de agua en Esparia, Agricultura
Familiar en Espana, 99105, 2006.

Riesgo, L., Gémez Limén, J.A.: Mercados del agua. andlisis de las
opciones elegidas para su aplicacion en Espana, IV Congreso Nacional
de Economia Agraria, 2004.

Botti, V., Garrido, A., Giret, A., Noriega, P.: Managing water demand
as a requlated open MAS, Proceedings of the MALLOW Workshop on
Coordination, Organization, Institutions and Norms in agent systems
in on-line communities (COIN@MALLOWO09), 108109, 2009.

Botti, V., Garrido, A., Giret, A., Igual, F., Noriega, P.: On the design
of mWater: a case study for agreement technologies, Proceedings of
the 7th European Workshop on Multi-Agent Systems (EUMAS 2009),
2009.

Botti, V., Garrido, A., Giret, A., Igual, F., Noriega, P.: mWater
Analysis and Design, AT /2008 /Deliverable D8.2.1/v0.7, 2009.

Botti, V., Criado, N., Garrido, A., Garrido, J.A., Giret, A.,
Noriega, P.: mWater prototype review #2 analysis and design,
AT /2008 /Deliverable D8.2.1.P2/v0.5, 2010.

Botti, V., Garrido, A., Gimeno, J.A., Giret, A., Noriega, P.: m Water
Analysis and Design, AT /2008 /Deliverable D8.2.3/v0.1, 2010.

Garrido, A., Giret, A., Noriega, P.. mWater: a sandbox for Agreement
Technologies, Proceedings of the XII Congreso Cataldn de Inteligencia
Artificial (CCIA09), 252261, 2009.

Quinlan, J.R.: Induction of decision trees, Machine Learning, 1(1):81-
106, 1986.

Quinlan, J.R.: Learning logical definitions from Relations, Machine
Learning, 5:239-266, 1990.

Quinlan, J.R.: Learning first-order definitions from relations, Machine
Learning, 5(3), 239-266, 1996.

Quinlan, J.R.: C4.5. Programs for Machine Learning, San Francisco,
Morgan Kaufmann, 1993.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification
and Regression Trees, Wadsworth and Brooks, Monterey, CA, 1984.

Liu, B., Xia, Y., Yu, P.S.: Clustering through decision tree construc-
tion, Proceedings of the ninth international conference on Information
and knowledge management, 20-29, 2000.

68

[26]

[27]

33]

[34]

[35]

Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of
machine learning databases, 1998.

Michalski, R., Larson, J.: Incremental generation of VL1 hypotheses:
The underlying methodology and the description of program AQ11, ISG
83-5, Computer Science Department, University of Illinois at Urbana-
Champaign, 1980.

Michalski, R., Mozetic, 1., Hong, J., Lavrac, N.: The AQ15 inductive
learning system: an overview and experiments, Proceedings of IMAL
1986, Orsay 1986. Université de Paris-Sud.

Provost, F.J., Domingos, P.: Tree induction for probability-based ran-
king, Machine Learning, 52(3):199-215, 2003.

Ferri, C., Flach, P.A., Hernandez, J.: Improving the AUC of proba-
bilistic estimation trees, Machine learning: ECML 2003, 14th Furo-
pean Conference on Machine Learning, Cavtat-Dubrovnik, Croatia,
September 22-26, 2003, Proceedings 121-132, 2003.

Bella, A., Ferri, C., Herndndez, J., Ramirez, M.J.: Joint Cutoff Pro-
babilistic Estimation Using Simulation: A Mailing Campaign Applica-
tion, Intelligent Data Engineering and Automated Learning - IDEAL
2007, Lecture Notes in Computer Science 4881, 609-619, 2007.

Estruch, V.: Bridging the Gap between Distance and Generalisation:
Symbolic Learning in Metric Spaces, PhD thesis, Departament de Sis-
temes Informatics i Computacid, Universitat Politecnica de Valencia,
2008.

Honey-Roses, J.: Assessing the potential of water trading in Spain,
ENR 319 Advanced International Environmental Economics, Professor
Theo Panayotou at Harvards John F. Kennedy School of Government,
2007.

Mashayekhy, L., Nematbakhsh, M.A., Ladani, B.T.: FE-negotiation
model based on Data Mining, IADIS International Conference e-
Commerce, 2006.

Lai, H., Doong, H., Kao, C., Kersten, G.E.: Understanding Behavior
and Perception of Negotiators from Their Strategies, Hawaii Interna-
tional Conference on System Science, Hawaii, 2006.

Coehoorn, R.M., Jennings, N.R.: Learning an opponents preferences
to make effective multi-issue negotiation tradeoffs, Proceedings of the
6th International Conference on Electronic Commerce (ICEC2004),
Delft, The Netherlands, 5968, 2004.

69

[37]

[38]

[39]

[40]

[41]

[42]

[48]

[49]

Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Sierra, C.,
Wooldridge, M.: Automated Negotiation: Prospects, Methods and
Challenges, Int Journal of Group Decision and Negotiation, 2000.

Jennings, N.R.: On Agent-Based Software Engineering, Artificial In-
telligence, 117 (2) 277-296, 2000.

Wooldridge, M.: Agent-based software engineering, IEE Proc Software
Engineering 144 (1) 26-37, 1997.

Nilsson, N.J.: Artificial Intelligence: A New Synthesis, Morgan Kauf-
mann, 1998.

Sandholm, T.W.: Distributed Rational Decision Making, Multiagent
Systems, MIT Press, 201-258, 1999.

Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification
scheme for negotiation in electronic commerce, Agent-Mediated Elec-
tronic Commerce: A FEuropean Perspective, Springer Verlag, 19-33,
2000.

Rodriguez-Aguilar, J.A., Martin, F.J., Noriega, P., Garcia, P, Sierra,
C.: Towards a tesbed for trading agents in electronic auction markets,
AT Communications 11 5-19, 1998.

Clark, P., Niblett, T.: The CNZ2 induction algorithm, Machine Lear-
ning, 3(4):261-283, 1989.

Clark, P., Boswell, R.: Rule induction with CN2: Some recent im-
provements, Proceedings of the Fifth European Working Session on
Learning, 151-163, Springer, Berlin, 1991.

Rosenschein, J.S., Zlotkin, G.: Rules of encounter, MIT Press, 1994.

Zeng, D., Sycara, K.: How can an agent learn to mnegotiate?, in J.
Mller, M. Wooldridge and N. R. Jennings, Intelligent Agents II1, 233-
244, Springer Verlag, 1997.

Faratin, P., Sierra, C., Jennings, N.R.: Negotiation Decision Functions
for Autonomous Agents, Int. Journal of Robotics and Autonomous
Systems 24 (3-4) 159-182, 1998.

Faratin, P., Sierra, C., Jennings, N.R., Buckle, P.: Designing Res-
ponsive and Deliberative Automated Negotiators, Proceedings AAAI
Workshop on Negotiation: Settling Conflicts and Identifying Oppor-
tunities, Orlando, FL, 12-18, 1999.

70

[50]

[51]

[52]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

Faratin, P., Sierra, C., Jennings, N.R.: Using Similarity Criteria to
Make Negotiation Trade-Offs, Proceedings 4th Int. Conf on Multi-
Agent Systems, Boston, USA, 119-126, 2000.

Parsons, S., Jenning, N.R.: Negotiation Through ArgumentationA
Preliminary Report, Proceedings 2nd Int. Conf. on Multi-Agent Sys-
tems, Kyoto, Japan, 267-274, 1996.

Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and ne-
gotiate by arguing, Journal of Logic and Computation 8 (3) 261-292,
1998.

Cestnik, G., Kononenko, 1., Bratko, 1.: Assistant 86: A knowledge
acquisition tool for sophisticated users, Progress in Machine Learning,
Sigma Press, 1987.

Palma, J.T., Marin, R.: Inteligencia Atificial: Técnicas, métodos y
aplicaciones, McGraw HII, 2008.

Martinez, F., Estruch, V., Ferri, C., Hernandez, J., Ramirez, M.J.:
Newton Trees, Al 2010: Advances in Artificial Intelligence, Proceed-
ings 23rd Australasian Joint Conference, Adelaide, Australia, 2010.

Duda, R., Hart, P.E.: Pattern classification and scene analysis, John
Wiley and Sons, 1973.

Langley, P., Iba, W., Thompson, K.: An analysis of bayesian Classi-
fiers, Proceedings of the 10th National Conference on Artificial Intel-
ligence, 223-223, 1992.

Michie, D., Spiegelhalter, D., Taylor, C.C.: Machine learning, neural
and statistical classification, Ellis Horwood, 1994.

Dempster, A., Laird, N., Rubin, D.: Mazimum Likelihood from incom-
plete data via EM Algorithm, Journal of the Royal Statistical Society.
9:1-38, 1977.

McLachan, G.J., Krishnan, T.: The EM Algorithm and FExtensions,
Wiley, 1996.

Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian netwroks classi-
fiers, Machine Learning, 29:131-163, 1997.

Rumelhart, D.E., Hintont, G.E., Williams, R.J.: Learning representa-
tions by back-propagating errors, Nature vol 323, 533-536, 1986.

Hebb, D.O.: The Organisation of Behaviour, Wiley, 1949.

Kohonen, T.: Self-Organising Maps, Springer, 1995.

71

[65] Kohonen, T.: Learning vector quantization for pattern recognition,
Helsinki university of technology, department of technical physics,
Technical report, TKK-F-A601, 1986.

[66] Moody, J., Darken, C.: Fast learning in networks of locally tuned
processing units, Neural computation, 1, 281-294, 1989.

[67] Cover, T.M., Hart, P.E.: Nearest neighbour pattern classification,
IEEE Trans. Info. Theory, IT-13, 21-27, January 1967.

[68] Lampert, C., Blaschko, M.: Structured prediction by joint kernel sup-
port estimation, Machine Learning 77: 249269, 2009.

72

